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Abstract. A theory of mixed finite-element/Galerkin approximations of a class
of linear boundary-value problems of the type T*Tu + ku + / = 0 is presented, in
which appropriate notions of consistency, stability, and convergence are derived. Some
error estimates are given and the results of a number of numerical experiments are
discussed.

1. Introduction. A substantial majority of the literature 011 finite-element approxi-
mations concerns the so-called primal or "displacement" approach in which a single
(possibly vector-valued) variable is approximated which minimizes a certain quadratic
functional (e.g. the total potential energy in an elastic body). A shortcoming of such
approximations is that they often lead to very poor approximations of various derivatives
of the dependent variable (e.g. strains and stresses). The dual model, also referred to
as the "equilibrium" model, employs a maximum principle (complementary energy),
and can lead to better approximations of derivatives, but it leads to difficulties in com-
puting the values of the function itself for irregular domains. The alternative is to use
so-called mixed or hybrid approximations in which two or more quantities are approxi-
mated independently (e.g. displacements and strains are treated independently).
Numerical experiments indicate that this alternative can lead to improved accuracies
for derivatives in certain cases, but the extremum character of the associated variational
statements of the problem is lost in the process. This means that most of the techniques
used to establish the convergence of the finite element method in the dual and primal
formulations are not valid for the mixed case.

In the mid-1960s, use of mixed finite-element models for plate bending were proposed,
independently, by Herrmann [1] and Hellan [2]. These involved the simultaneous approx-
imation of two dependent variables, the bending moments and the transverse deflection
of thin elastic plates, and were based on stationary rather than extremum variational
principles. Prager [3], Visser [4], and Dunham and Pister [5] employed the idea of
Herrmann to construct mixed finite-element models from a form of the Hellinger-
Reissner principle for plate bending problems with very good results. Backlund [6]
used the mixed plate-bending elements developed by Herrmann and Hellan for the
analysis of elastic and elasto-plastic plates in bending, and Wunderlich [7] used the idea
of mixed models in a finite-element analysis of nonlinear shell behavior. Parallel to the
work on mixed models was the development of the closely related hybrid models by
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Pian and his associates (e.g. [8, 9, 10]). Reddy [ 11J, Johnson [12], and Kikuchi and Ando
[13] obtained some error estimates for mixed models of the biharmonic equation; however,
their approach is not general and the biharmonic equation has the special feature that
it decomposes into uncoupled systems of canonical equations which are themselves
elliptic. In all of these studies, results of numerical experiments suggest that mixed
models can be developed which not only converge very rapidly but also may yield higher
accuracies for stresses than the corresponding displacement-type model. More import-
antly, the stationary conditions of the mixed formulation are a set of canonical equations
involving lower-order derivatives than those encountered in the governing equations.
This makes it possible to relax continuity requirements on the trial functions in mixed
finite-element models.

It is the purpose of the present paper to describe properties of a broad class of mixed
finite-element approximations and to present fairly general procedures for establishing
the convergence of the method and, in certain cases, to derive error estimates. Preliminary
investigations of the type reported herein were given in [14] and centered around notions
of consistency and stability of mixed approximations. The present study utilizes a similar
but more general approach, and we are able to obtain the conclusions of [14] as well as
those of previous investigators (e.g. [13]) as special cases.

2. A class of linear boundary-value problems. We are concerned with a class of
boundary-value problems of the type

T*Tu + ku + / = 0 in ft, Mu — g! = 0 on dfii, N(Tu) — y2 = 0 on dtt2 . (2.1)

Here T is a linear operator from a Hilbert space 11 into a Hilbert space V, T* is the
adjoint of T and its domain DT* is in V, the dependent variable w(x) is an element of 11
and is a function of points x = (xt , x2 , ■ • • , x„) in an open bounded domain 0 C R".
The boundary dS2 of U is divided into two portions, df^ KJ dil2 = 3i2 on which the images
of u and Tu under the boundary operators M and N are prescribed, as indicated. If
{«! , w2) and [v^ , v2] denote the inner products associated with spaces <U and V,
respectively, then T and T* are assumed to satisfy a generalized Green's formula of
the type

[Tu, v] = {u, T*v) + {iVv, u] an, + [Mu, v]ani (2-2)

where {■ , •) as, and [• , -]ao, are associated bilinear forms obtained using the extensions
of u and v and Mu and Nv to the indicated portions of the boundary. Clearly, the forms
of M and N depend upon T and the definition of the inner products (for a complete
picture see [15]).

The boundary-value problem (2.1) can be split into a canonical pair of problems
equivalent to (2.1) of the form

Tu = v in U Mu — gi = 0 on d^l1 , ^ ^

T*v + ku = —/ in Q, Nv — g2 = 0 on dfi2 .

Our mission is to study finite-element-Galerkin approximations of this pair.

3. Mixed Galerkin projections. We now identify finite, linearly-independent sets
of functions {"^(x)}£ H and jw4(x)ja,// £ 1), which, respectively span the



MIXED FINITE-ELEMENT APPROXIMATIONS 257

finite-dimensional subspaces 3TXGA and 91//. Now if u(x) and v(x) are arbitrary elements
in 01. and 13, respectively, their projections into 31ZGh and 91,/ are of the form (see [16])

n*(u) = U(x) = E a"$a(x, h); P,(v) = V(x) = £ bAo>A(x, Z). (3.1)
a =1 0 = 1

Here a" and &A are constants, uniquely determined by u, , v, and toA. It must be noted
here that there is no relation between the spaces 11 and 1), and the biorthogonal bases
in SHIb'1 and 91//' are completely independent of each other.

Consider the case in which 9HG'' C and 91//' C £>,*. In general, T(W.0k) is not a
subspace of 91//', and T*(91//) is not a subspace of 3Tl0\ The operators T and T* can be
approximated by projecting T(3YL0k) into 91//' and 71*(9l„') into 3TCG\ This projection
process leads to a number of rectangular matrices of which the following are encountered
naturally:

PlT{mat)-.Pl{T^„) = Sr.»A; PA") = Ztf'V ;
A r (3.2)

IlJ*(NHl):Ilh(T*uA) = £ Ta*A$a; n*(S.) = E Gafi&,
a 0

where {$"} and {uAj are the biorthogonal bases, and

TaA = [T*a ,<oA], Ta*A = {$a , TV} HAr = [uA,o>r], = {$„ , $,}. (3.3)

Analogously, the boundary operators M and N can be approximated using projections
to yield

P,(M.)=Llf;4« a; nA(7V(oA) = J^NaA^a (3.4)
A a

where

Ma"A = [i¥$„ ,<oAW ; iV„A = jiVa>A, $a}a0, • (3.5)

In view of Green's formula Ta "A can be also written in terms of Ta*A:

Ta"A = Ta*A + i;A + Na\ (3.6)

Mixed projections. Primal-dual -projection. The primal-dual projection, together with
dual-primal projection to be discussed subsequently, give mixed approximation of
boundary-value problem (2.1). In primal-dual projection, approximate solutions U* —
T, a"i\ and V* = 6ama of (2.3) are sought simultaneously by requiring

nA(T*V* + lcU* + /) = 0 in a, Uh(NV* - g2) = 0 on d% . (3.7)

This yields

E (T„'A - Ma'A)bA + k£a>G„ + fa = 0. (3.8)
A »

Since, in general, ~.MGh and 91,/ are of different dimensions, (TaA — MaA) is a rectangular
matrix; and since (3.8) involves (G + H) unknowns with only G equations, no unique
solution to (3.8) exists. The remaining H equations are provided by the dual-primal
projection.

Dual-primal projection. Here the approximate solutions U* and V* are obtained
by requiring

Pi(TU* — V*) = 0 in S2, Pt{MU* — g,) = 0 on dQj (3.9)



258 J. N. REDDY AND J. T. ODEN

which upon simplification lead to

jz (2VA + Na-yaa - £ 6ri/rA + f = 0 (3.10)
a r

where /A = [g, , o/Jan, . Note that (3.10) involves H equations in (G + H) unknowns.
Eqs. (3.8) and (3.10) combined lead to a determinate system for the approximate solutions
U* and V*. Solving (3.10) for br , we obtain

br = £ tfrA(Z (7VA + iV/)V - /A), (3.11)
A a

where HAT = (i/Ar)-1. Substitution of (3.11) into (3.8) leads to

E Kfaa" + F„ = 0 (3.12)

where

Kfa = £ (iyA - MiA)HAT(Ta*T + NJ)T + kGag
a , r

^ = h - Z (^'A - MiA)HATf.
(3.13)

Since Tp'* — Mp'A = Tg*A + A^fl'A, clearly KPa is symmetric. Eq. (3.12) determines the
coefficients a", and hence leads to the approximate solution U*. The local form of (3.12)
can be generated using usual finite-element approximations (see [16]); techniques for
connecting elements together to obtain the global model are well known (see [17]).

4. Some basic properties of mixed finite-element approximations. The proof of
convergence and the establishment of error estimates for conventional primal and dual
finite-element approximations follow easily from extremum properties of the associated
variational principles, and concrete results are available for a number of different approx-
imations of this type (see, for example, [18-24]). While a great deal of numerical evidence
has accumulated on the utility of mixed models, rigorous studies of their advantages or
disadvantages as compared to traditional formulations have not heretofore been made.
Indeed, the true utility of mixed models can only be determined when answers to a
number of basic questions concerning their intrinsic properties are resolved. The main
objective of this section is to examine some of these questions for linear boundary-value
problems of the type (2.3).

Let U and V denote the typical elements of 3TCGA and 91,/ respectively, and U*
and V* denote the mixed finite-element (or Galerkin) approximations of the weak
solutions u* and v* of the boundary-value problem (2.1):

[Tu — v, v] = 0 in J2, \Mu — g, , v] = 0 on , (4.1)

j T*\ + ku + f,u) = 0 in 12, {JVv — g2 , u\ = 0 on d!22 . (4.2)

By construction of the mixed models (3.7) and (3.9), U* and V* satisfy the following
orthogonality relations:

[TU* - V*, V] = 0 in 12, [MU* - g, , V] = 0 on 312, , (4.3)

{T*v* + kU* + f, U} = 0 in 12, {iVV* - g2 , U] = 0 on <9S22 . (4.4)
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These relations can be expressed in a more general form [see (3.7) and (3.9)] by employing
the projection operators nA and Pt of (3.1):

P,TU* - V* = 0 in 0; PtMU* - P,g1 = 0 on dQ, (4.5)

nh(T*V* + /) + lcU* = 0 in S2; Uh(NW* - gt) = 0 on dtt2 (4.6)

where advantage is taken of the fact Pt V* = V* and 11 hU* = U*.

Theorem 4.1. Let (u*, v*) be the weak solution of (4.1) and (4.2) and let U*
and V* be the corresponding mixed finite-element solutions satisfying (4.5) and (4.6).
Then the following relations hold:

(P,TnkT* + H)V* + p.rnj = o, (4.7)

(n hT*P,T + kI)U* + n „f = 0, (4.8)

where I and I are identity operators.
Prooj: The relation (4.7) is obtained from (4.6) by eliminating U* and (4.8) is

obtained from (4.5) by eliminating V*. Indeed, operating with P/T on (4.6) and sub-
stituting for PiTU* from (4.5) yields (4.7). Similarly, operating with IlhT* on (4.5)
and substituting for HkT*V* from (4.7) lead to (4.8).

At first glance at (4.7) and (4.8), it may seem that the approximate solutions U*
and V* are required to satisfy a greater degree of differentiability, equal to that of
exact solutions u* and v*. However, no extra smoothness of U* and V* is required
since projections of T*V* and TUhT*V* are always continuous, even if T*V* is piecewise
continuous. Now define

Rlh = (P.Tn.T* + kl), (4.9)

Qu = {YlhT*P iT + kl). (4.10)

Note that Qhi and Rlh are mixed discrete approximations of

Q = (T*T + kl), R = (TT* + kl), (4.11)

respectively. For the sake of simplicity, define

eu — u* — U* — approximation error in u*,

e, — v* — V* = approximation error in v*,

E, = u — Uhu — interpolation error in u, (4.12)

E, = v — P,v = interpolation error in v,

E* — u* — IIhu* = interpolation error in u*,

E,* = v* — P,v* = interpolation error in v*.

The following theorem establishes some fundamental properties of the approximation
errors e„ and e, in terms of the interpolation errors Eu* and E„*.

Theorem 4.2. Let the conditions of Theorem 4.1 hold. Then the approximation
errors eu and ev satisfy

PtTeu - ev + E* = 0, (4.13)
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nhT*e, + keu - kE* =0, (4.14)

n h(T*e, + keu) = 0, (4.15)

P:(Teu - e,) = 0, (4.16)

Pi(Meu)\ani = 0, (4.17)

Uh(Ney)\da, = 0. (4.18)

Proof : Proof of this theorem is straightforward and can be found in [14].
By using the relations (4.13) and (4.14), equations of the type in (4.7) and (4.8)

can be obtained for e„ and e, .
Corollary 4.1. The approximation errors eu and e, satisfy the relations

Qkleu = kE* - T*Ev*, Rlhev = kE* + kP.TE* (4.19)

5. Consistency of mixed variational approximations. The notion of consistency
of approximation of a differential equation is fundamental to conventional methods
of numerical analysis. It is a measure of how well the problem is discretized and whether
the discretized operators Qu and R,h approach the exact operators Q and R, respectively,
as the mesh parameters h and I approach zero. Consistency of a discrete model assures
that the discretization error goes to zero as the associated mesh parameters approach
zero. For primal and dual problems, the notion of consistency of variational approxima-
tion is studies by Aubin [22], and differs from the consistency of difference approxima-
tions defined in Isaacson and Keller [25], In the present analysis, notions of consistency
which are appropriate for the problems considered here are introduced.

Suppose that it is required to obtain approximate solutions of (2.3). Variational
methods of approximation involve seeking solutions to the weak problem (4.1) and
(4.2). The discrete approximations of (4.1) and (4.2) are obtained by replacing u by
IIam and v by P,v:

[T(n*u) - P.v, V]B ; [M(n„u) - gl , VW (5.1)

{r*(p,v) + k(uhu), U}» ; (iV(PiV) - g2 , U}da. (5.2)

for every U £ SHIo* and V £ 31/,'.
Weakly consistent approximations. The discrete system (5.1) and (5.2) shall be

referred to as weakly consistent with the variational equations (4.1) and (4.2) if

lim [T(nAu) - P,v, PjvJ = [Tu - v, vj, (5.3)
h,l~* 0

lim {T*(P,v) + kUhu, n^j} = {T*v + ku, u,\, (5.4)
h,l-0

lim [M(Jlhu), PjvJan, = [Mu,Vt]dUx , (5.5)
h,l~* 0

lim {N(P,v), ruujjan, = {Nv, Ut}aa, ■ (5-6)
h, J—»0

The quantities

Ahl(u, v) = |{T*(P,v) + kUhu, j - {T*v + ku, m,]|, (5.7)

Blh(u, v) = \[T(Ylhu) - P,v, PlVl] - {Tu - v, Vl} |, (5.8)



MIXED FINITE-ELEMENT APPROXIMATIONS 261

Chi{u,v) = |{2V(P,v), IIaUjJsb, - {Wv, MjJan.l, (5.9)

Dlh(u, v) = I[M(nAw), P,V,]aa, - [Mu, VI]an1|, (5.10)

shall be referred to as the lack-oj-consistency of the approximate problem (4.3) and
(4.4). Then (5.3)-(5.6) are equivalent to the conditions

lim Ahl(u, v) = 0, lim Clh(u, v) = 0, (5.11)
h,l~* 0 h,l-*0

lim B,h(u, v) = 0, lim Dth(u, v) = 0. (5.12)
h,l-*0 h,l~* 0

Lemma 5.1. Let Ahl(u, v), Bih(u, v), C,,i(u, v), and Dlh(u, v) be as defined in
(5.7)-(5.10). Then the following relations hold:

Ahl(u, v) = | jT*EV + kEu , n^} - {T*ev + keu , Eu\ |, (5.13)

Blh(u, v) = |[TEU - Ev , PjvJ - [Teu - e, , E,] \, (5.14)

Cu(u, v) = |{NE, , IIvWi}an, — {Ne, , Eu]g(5.15)

Dih{u,v) = \[MEU jPjVjjan, — \Meu , E-,]d at j, (5.16)

where eu - u* — u, = v* — v, Eu = Ui — IIhux , and Ey = Vi — P,v, , and Eu and
ET as defined in (4.12).

Proof: Relations (5.13)-(5.16) easily follow from the observation

tti = UhUi + uT , Vi = P;V! + vr for every Ui E E V, (5.17)

where uT and \T are elements of spaces orthogonal to 11 and V respectively.
Corollary 5.1. Definitions (5.7)-(5.10) are also equivalent to

Ahl(u, v) = \{T*E, + kEu , + {T*P,v + kUhu, Eu}\, (5.18)

Bih{u, v) = |[TEU - Ew , v] + [TUhu - P,v, E,]\, (5.19)

Chl{u,y) = \{NE, ,Ul}aB, + {tfP.v.&J.,,.!, (5.20)

Bn(«, v) = |[MEU , vjao, + [Mnhu, Ey,]aBl|. (5.21)

From (5.13)-(5.16), it is clear that the lack-oj-consistency Ahl(u, v) and Blh(u, v)
depend on the interpolation errors. This fact is emphasized in Theorem 5.1.

Theorem 5.1. Let the interpolation errors Eu and Ev be such that Eu , Ev , TEU ,
and T*E, approach zero with h and I. Then the approximations (4.3) and (4.4) are
weakly consistent with (4.1) and (4.2).

Proof: It is sufficient to show that the lack-of-consistency (5.7)-(5.10) are bounded
by the interpolation errors. Indeed, by replacing ut by and v, by P;V! in (5.7)
and (5.8) (i.e. En = 0, E, = 0), we obtain

Ahl(u, v) = \{T*E, + kEu , U}\, U E 3K0h, (5.22)

Blh{u, v) = |[TEU - Ey , V]|, V£M„'. (5.23)

Now, by using the Schwarz inequality, (5.22) and (5.23) become

Au(u, v) < (|||r*£T||| + k infill) \\\U\\\, (5.24)
B»(u,v) < (lirs.ll + \\E,\\) ||V||. (5.25)
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Since U and V are arbitrary elements of 01XoA and 91 ,/ respectively, choose ||C/|| < M,
and 11 V| [ < N. This completes the proof.

Close examination of (5.22) and (5.23) suggests the following set of lack-of-con-
sistency functions:

Ahl(u, v) = Ilh(T*E, + kEu) = nhT*Ew , (5.26)

Blk(u, v) = Pt(TEu - E,) = PtTEu . (5.27)

It is clear that

\\\Ahl(u, v)||| = |||I*,(v)||| < \\\T*EV\\\, (5.28)

\\Bih(u, v)11 = \\Blh(u)\\ < \\TEU\\. (5.29)
By comparing the approximate problems (4.7) and (4.8) with the strongly-posed
boundary-value problem (2.1) and its adjoint, an alternate definition of consistency
can be given.

Strongly consistent approximation. The discrete system (5.1) and (5.2) shall be
referred to as strongly consistent with (2.3) if

lim Ehl{u) = lim |||Q/,i(nftu) — IIaQm||| =0, u £ 11, (5.30)
h,l->0 h,l~* 0

lim F„(v) = lim ||B,*(P,v) - P(,Rv|| = 0, vGU (5.31)
fc,Z-»0 h,l~* 0

Here Qki , Q, Rn , and R are the operators defined in (4.9)-(4.11) and Ehl(u) and Flh(v)
are lack-oj-consistency junctions. Here it must be pointed out that the discrete operators
Qhi and Rlh are associated with the mixed problem (2.3), and quite different from the
discrete operators associated with the primal and dual problems.

It is convenient to define

Qhl = n bT^P.T, Rlh = PtTUkT*, (5.32)

Q = T*T, R = TT*. (5.33)
Theorem 5.2. Suppose that the interpolation errors Eu = u — IIam, and E, =

v — P,v, and the operators Q0hi and Rlh are such that

lim T*ETu = 0, lim TEt.v = 0, (5-34)
h->0 l—*0

lim QhiEu = 0, lim RihEv = 0, (5.35)
h,l-> 0 h,l~* 0

uniformly, where ETu = Tu — PiTu, and Er., = T*\ — nh(T*v). Then the approxima-
tions (4.3) and (4.4) are strongly consistent with (4.1) and (4.2).

Proof: Note that

Ehl(u) = WQaJUu - UkQu\\\ = 11\QkJlhu - n^lll

= HI-0*.^. - UJ*ETu\\\ < Hltolll + III^JII (5.36)
and

F,h(v) = ||/2«vP,v - P,fiv|| = ||5,*P,v - Pfiv||

= ||-RlhE, - P,TEt.t|| < \\RnEv\\ + \\TEt,v\\. (5.37)
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Now, by hypothesis, the right-hand sides of (5.36) and (5.37) vanish as h and I approach
zero, imploying (5.10) and (5.31).

6. Stability, existence and uniqueness of mixed approximations. The growth of
round-off errors in the numerical solution of (4.3) and (4.4) is related to the notion of
stability. For arbitrary choices of the mesh parameters h and I, it may not be possible
to bound the round-off errors. This suggests that there be some criteria to select the
mesh parameters h and I so that the numerical scheme is stable. In this section the
concept of stability as applied to mixed approximation is discussed.

Guided by the form of the approximate equations (4.7) and (4.8), the following
definitions of stability are introduced:

Weak stability. The mixed approximation scheme in (4.7) and (4.8) shall be
referred to a weakly stable if positive constants 71 and hi exist such that

IIIQhOMIII > Ti 11Infill tiGn, (6.1)
||flu(P«v)|| > Ml ||P«V|| v£<U, (6.2)

where Qki and Rih are given by (4.9) and (4.10).
The approximate scheme (4.5) and (4.6) suggest another definition of stability.
Strong stability. The mixed approximation scheme (4.5) and (4.6) shall be referred

to strongly stable if there exist positive constants y2 and n2 such that

|||n*r*P,v||| > 72 ||P(V|| vet), (6.3)

||P;rnAM|| > M2 HMD «en. (6.4)
Define

Thl* = n„T*Pl , Tlh = P,Tn„ (6.5)

Now suppose that P,v = E<i 6AwA, and Uhu = E<* a"<P« ■ Then

n hT*p,v = E b, E ir*",?.!/ = E E Ta*VW
Ac* a A

and
|||n,r*piV|||2 = E E bAbrTa**G°%*r, (6.6)

a J3 A , r

where Ta*A is given by (3.3). Also,

||P,TIM|2 = E Z (6.7)
a,0 A.T

||Pv||2 = Z b,bTH'r; |||n,M|||2 = (&8)
A , T a .13

where T„ A, HAV and GaS are defined in (3.3). Similarly,

Qhluhu = nKT*p,Tnku + mhu

= EI a"[TVa , 0ja]jT*(04, +
a ,/S A a

= E E a'[TVa <p0}/ + k E a"Oaf/
a , /3 A , r a , (3

= E (E 7YA#Ar7Vr + kGa,)aa/ (6.9)
a,0 A , T
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and
fl.iP.v = £ (£ Ta**G"0T„-T + kHAT)b.«r . (6.10)

A , T a ,0

Thus the stability conditions (6.1) and (6.2) are equivalent to

£ (£ T„"Ai/Arr/r + (fc - > o, (6.ii)
a .0 A , T

£ (£ Ta*AG"'Tir + (k - ^)HAr)b,or > 0, (6.12)
A , F a , 0

and the stability conditions (6.3) and (6.4) are equivalent to

£ (E Ta*AGa0T,*T - y22HAT)bAbT > 0, (6.13)
A , T a,0

E (E 7YAtfAr7yr - ^*Gaf)a'af > 0. (6.14)
a ,/3 A , T

It is convenient to define the following matrices:

H = [H*r], G = [GJ, M = nVA], N = [Ta*% (6.15)

Then (6.11)-(6.14) imply the following fundamental result.
Theorem 6.1. Let the following matrices be positive definite:

MrH_1N + (k - ti)G, k > 0, (6.16)

NtG_1M + (k - Ml)H, k > 0. (6.17)

Then the mixed approximations (4.7) and (4.8) are iveakly stable. Moreover, if the
matrices

ITG-'N - 72H (6.18)
MtH_1M - jU22G (6.19)

are positive definite, the mixed approximations (4.7) and (4.8) are strongly stable.
Since G and H are the fundamental (Gram) matrices, they are always positive

definite. Consequently, from (6.16) and (6.17) it is clear that 1c has the stabilizing effect
on the system.

Existence and uniqueness of solutions. The stability conditions (6.1)-(6.4) can be
used to establish the existence and uniqueness proofs for approximate solutions of (4.5)
and (4.6). We shall prove here the existence and uniqueness in the case of weak stability.

Theorem 6.2. Let the mixed approximation (4.7) and (4.8) be weakly stable in
the sense of (6.1) and (6.2). Then the approximate scheme (5.8) is unique^ solvable.
Moreover, if the operator Tlh = PiTHh is bounded above

c ||P,rn*/|| < |||n„/||| < |||/|||, c = constant (6.20)

then the approximate scheme (4.7) is uniquely solvable.
Proof: From (4.8) and the assumed stability condition (6.1),

Ill/Ill > IllnJUl = \\\QklU*\\\ > 7i \\\U*\\\. (6.21)
Thus, Q,a is bounded and hence (see Naylor and Sell [26, p. 244]) invertible. This implies
that (4.8) has at least one solution. Note from (6.21) that (4.8) has only the trivial
solution if / is identically zero. This proves unique solvability of (4.8).
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To prove unique solvability of (4.7) note from (6.2) and (6.20) that

Ill/Ill > c HP.rnJll = c ||JZIAV*|| > Cfii ||V*|| (6.22)
This completes proof of the theorem.

7. Convergence of mixed finite-element solutions. Thus far the notions of con-
sistency and stability of mixed approximations are discussed. Now the more important
issue of convergence is to be resolved based on the knowledge of previous sections.
Convergence proof based on the assumption of stability will be given. A more direct
proof of convergence, without using the stability concept, is given in [27],

Theorem 7.1 (Convergence Theorem I). The mixed finite-element approximations
(4.3) and (4.4) are convergent; that is, |||e„||| and ||e„|| approach zero as h and I tend
to zero in some manner, if the interpolation errors E*, Ev*, TEU* and T*EV* vanish
as h and I approach zero and the following sets of conditions hold:

Case k = 0. The approximate scheme is strongly stable in the sense of (6.3) and
(6.4).

Case k > 0. The approximate scheme is weakly stable in the sense of (6.1) and
(6.2) and the operators Qhl and Rlk of (5.32) are continuous in the topologies induced
by the norms |||-||| and l|-|| respectively.

Proof: Case k = 0. Using the triangular inequality,

llklll = |||u* - + Ib.M* - U*III,
< \\\EU*\\\ + 11 |n„M* - [7*111, (7.1)

and

INI < \\E,*W + ||PiV* - V*||. (7.2)
In view of stability conditions (7.3) and (7.4),

72 ||P,v* - v*|| < 11|nAT*(PiV* - v*)||| = |||n4r*(P,v* - v*)|||
< |||r*£y*|||.

Hence,

Similarly,

< \\Er*\\ + — |||r*Sv*|||. (7.3)
72

llle.HI < infill + 1 IIP.7W - U*)\\
M2

= |||S„*||| + - \\P,(Tnhu* - v*)||
M2

< infill +7(Ikll + ||rjs?/||)
M2

< infill + - ||J?T*|| + — \ \\T*EV*\\\ + - ||7!BU*||. (7.4)
M 2 M272 M2

Eqs. (7.3) and (7.4) imply, in view of the assumptions on the interpolation errors,
that |||eu||| and ||e»|| approach zero as h and I tend to zero.
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Case lc > 0. From the stability condition (6.1),

ti |||IW - u*HI < |||Q*,n*(u* - [7*)|||.
From (4.8) Q*,II*17* = -IIJ = nh(T*Tu + ku) = nkQu*,

71 |||IW - C7*|II < - n„Qw*||| = Ehl(u*), (7.5)

and by assumed continuity of Qhl (see (5.36)), we have

7i |||n»M* - u*III < a IIIe* 111+ ||| w|||
and

Now, using (6.2),

Again, from (4.7),

so that

llklll < (l + -) |||K*||| + 1 |||T*Et*|||. (7.6)v 7i' 7i

Ml ||p;V* - v*|| < ||fl„P,(v* - V*)||.

= -P,Tn„/ = P^II^T + /c)u*,

Ml ||P,v* - V*|| < IKP^n.T* + /c)P,v* - PtTnk(T*v* + 7cm*) 11
= ||p,rn,r* pv* + /cP,t.eu*||

< 0 I \E* 11 + k \\TE*\\
and

I |®v 11 < (l - -) Pv*|| + - IWII. (7.7)
\ Hi/ Mi

Eqs. (7.6) and (7.7) prove convergence of e„ and ev .
Corollary 7.1. Let the assumptions of Theorem 7.1 hold. Then the mixed

approximations (4.3) and (4.4) are weakly consistent if k = 0, and strongly consistent
for k > 0.

The proof of this corollary follows directly from Theorem 5.1. In conventional
methods of numerical analysis (for example, finite-differences), for consistent schemes
stability implies convergence. With the particular definitions of consistency and stability
given here for mixed finite-element schemes, it seems such conclusions cannot be drawn.
However, for consistent mixed finite-element schemes, stability implies the following
inequalities:

Theorem 7.2. Let the mixed approximation scheme (4.3) and (4.4) be weakly
consistent for k = 0 and strongly consistent for k > 0. Then strong stability implies
convergence of |||eu||| and ||ev|| for k = 0, and weak stability implies convergence of
11 |e„||| for lc > 0.

Proof: Consider the case k = 0. From the strong stability condition (6.3) and (6.4),

M2 IIIeu* - [7*||| < HP.TcrLu* - [7*) 11 = ||p,(rn*«* - v*)||
= I \P,{THhu* - Tu*) + P,v* — V*||

= \\-PtTE* + P,v* - V*||
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and
72 ll-Piv* - v*|| < |||niT'*(P;v* — v*)|j| = llln^-EVIII.

In view of (5.28) and (5.29),

72 ||P,V* - V*|| < \\Ahl(v)*\\ (7.8)
and

m2 11|nAw* - U*\\\ < ||5„(tt)*|| + - ||i«(v)*|| (7.9)
72

which proves the assertion.
For k > 0 the result follows from (7.5).
A more interesting result can be obtained using (4.13)-(4.18) and some additional

assumptions, which are stated in the hypothesis of the following theorem.
Theorem 7.3 (Convergence Theorem II). Let U* and V* be the mixed finite-

element solutions satisfying (4.3) and (4.4), and suppose that there exist positive con-
stants 7 and /i independent of h and I, such that

[P.Te. , Teu] > 7 ||Te„||2, (7.10)

{IIhT*e,,T*ey] > n \\\T*er\\\\ (7.11)

Then the mixed approximations (4.3) and (4.4) are convergent for all k > 0, provided
the interpolation errors E*, E*, TEU*, and T*EV* vanish as h and I approach zero.

Proof: Since U* and V* satisfy (4.3) and (4.4), relations (4.13)-(4.18) hold for
k > 0. Now suppose that k = 0. Then (4.15) becomes

UjT*eu) = 0. (7.12)

From (7.12) and (4.13) it follows that

Uh[T*{PlTeu + E*)] = 0, [P,Te», TU] + [E*, TU] = 0
where U £ Stic4 such that

MU = 0 on dfi, and U = 0 on dQ2 ■ (7.13)

Then

7 \\Teu\\2 < [PlTeu , Teu] = [E*, TE*} + [P.Te, , TE*] - [E*, Teu]

< 6 \\Teu\\ +^(||SV*|| + |\TEU* 11)2 + \\EV*\\-\\TE*\\

where e is an arbitrary positive constant. Choose C\ such that Ci = 7 — e > 0 and
Di - l/4« > 0 .Then

Cx ||Teu||2 < Dxdl^ll + ||Ti?u*||)2 + \\E,*\\-\\TE„*\\
< (Dx + 1)(2 \\ES\\-\\TE*\\ + H^ll2 + \\TEU*\\2)
= (Z>! + 1X11^11 + || TE*W)\

lirc.ll < (^i)1/2(||£v*|| + \\TE*W). (7.14)
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To prove convergence of ev , note that

||P,v* - V*||2 = [f\v* - V*,P,v* - V*]

= [P,v* - V*,P,v* - TU*]

= j|Pi~v* - TU*|| < ||£?v*|| + Hre.ll
Hence,

Il6.ll < 2 ||£v|| + (^J:)1/2(l^v*|| + lira?.*11). (7.15)

Now suppose that k > 0. From (4.13) and (4.13) and (4.15), it can be shown that
[P,Te. , Teu) + k{eu , eu] = /c{e„ ,£?„*} + [PlTeu , TEU*] + [E*} TE*} - [E,*, Teu\
and

7 ||re„||2 + k 11 |e„|||2 < fc(a 11 |e„| 112 + ^ infill2)

+ e I |7Te„| I2 + £ (||£?v*|| + ||ra„*11)2 + ||jE?v*||-||ra„*||

where 5 and e are arbitrary positive constants. Choose o = \, and e = 7/2.

y ||Te.||2 + k |||e„|||2 < k \\\EU*\\\2 + -(||£?v*|| + ||ra„*||)2 + 2 \\EV*\\-\\TEU*\\.
7

Let

C2 = min (7, 1); D, = 1 + 1/7. (7.16)

Then

HTe.ll + k |||c„||| < ((2D2/C2))1/2(k |pu*||| + ||i?T*|| + ||TE*\\). (7.17)

Similarly, from (4.14) and (4.16), the following result can be obtained:

|||r*e»||| + k ||ev|| < ((2Z)3/C3))1/2(/c ||£t*|| + k |p„*||| + |||r*tf/|||) (7.18)

where

C3 = min (m, 1); D = 1 + 1/V (7.19)

Thus, 111e„111, 11T*e„|I, ||eT||, and |||T*eT||| approach zero as h and I tend to zero. This
completes the proof of the theorem.

It must be observed that Theorem 7.3 assures convergence of not only eu and eT
but also of Teu and T*ev . This indicates that Teu and T*e, converge at the same rate
as TE * and TE*, respectively. Intuitively, the errors e„ and e„ may approach zero
at the rate of E* and Ev*, respectively. In that case, faster convergence of e„ and e, is
established by Theorem 7.3.

8. Some error estimates. Consider the case in which
•U = W2k(U), V = WY(n) (8.1)

where W*(12) is the Hilbert space of order k, and let
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(P. = the space of polynomial of degree s on S2 C E"; h, p = finite-element
mesh parameters (see [28]) of approximations U*(x) £ 3TCr/ of u*(x); (8.2)
I, a = finite-element mesh parameters of approximations V*(x) £ 91//'
of v*(x).

Let the inner products in 11 = 17/(0) and V = TfV(Q) be defined by

jui ,u2} = (uy ,u2)w,Ha) = / 23 D'^D'uzdx, (8.3)
J fi |«|<*

[Vi , V2] = (Vi , v2)^,,(B, = f X) D\1D\2 bx. (8.4)
^ 0 || a<q

Assume that

an/ = <P,(0), %Hl = (Pr(8), s < k,r < q. (8.5)

In most of the applications the operators T and T* are differential operators of the form

Tim) = £ o„(x)D", T(m)* = £ (—l)""Z)>„(x)) (8.6)
I o| <m | a I <m

where m < s, r.
Now assume that there exist interpolants U = Uku and V = P,v

||n»w tllljfjmjn) ^ G \u\wtk + nn(h /p )> (8-7)

I|P;v — v| 1^,1.(0) < D |v|w-„r + i{fl)(r+1/am), (8.8)

where nA and P, are projection operators such that Jlhu = u and P,v = v for all u £ <3\
and v G (P, , and C and 5 are constants independent of the mesh parameters. Inter-
polation formulas of the type (8.7) and (8.8) are derived by Ciarlet and Raviant [28, 29].
If the coefficients a satisfy the condition

£ IM>"w|L(B> < c z ||Z)^||Ll(fl> , (8.9)
I al <,m | a! <m

then

< c IMU.- , m<k (8.10)
for every u £ W2(ti). Moreover, if the estimate (8.7) holds, then

l|r(-X||L.<D, < cK- |«k..+.(B, (8.ii)p
holds for any u £ W2+1(Q.), m < s + 1.

Similar results can be obtained for T*:

I\T{m)*Ev\|w* <n> 5: D _ |v|w-tr+i( n) . (8.12)
d

It can be shown, in a similar way, that

| n) < C* 0+m + a) , (8.13)
p

||r-*^IU..,0) < D*1^ |v|„.,+.(B) . (8.14)
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Now error estimates for mixed finite-element solutions can be derived using (8.11)—(8.14).
Theorem 8.1. Consider a mixed finite-element approximation based on poly-

nomial bases for which the relations (8.7) and (8.8) hold for the spaces defined in (8.5).
Then the following error estimates hold, if the conditions of Theorem 7.1 are satisfied.

Case k = 0.

IklU.'.o, < (cP-k + |w*u,.+.(n)

+ - IDa~' + — a—*) |v* | war + i( n, , (8.15)
M2 \ 72 /

< {Da~Q + |v*U.,+,(B) . (8.16)

Case k > 0.

II II ^ (■, , eLVKl1 i *i >D1V+1 1*16u ^ I 1 "t" JC k \U Wn* + 1(SJ) k + m V F.' + 'IO) I (8.17)V y J p 71 a

I |ev| ITT a" ( !!) ̂  fl "I a" iV* I W2' + > ( n> -{ C* a + m |u*|tF,,* + »( S!) • (8.18)\ Mi/ a Mi P

Pi-oof: The proof is straightforward. These estimates can be derived directly
from (7.3), (7.4), (7.6) and (7.7) with interpolation errors (8.7), (8.8), (8.13), and (8,14).

It is clear from above estimates that the errors depend on both sets of mesh
parameters.

Corollary 8.1. Let the conditions of Theorem 8.1 hold, and let p = vth and
a = v2l. Then

Case k = 0.

eu\\w.no> < vich~k + ^ A"—V+1 |u*\w,.+
\ \1>2 /

( 0)

ev\\wann) ^ v2\Dl Q +

M2 \ 72
+ + —v2rm-k)r1 |v*|„.—«□,, (8.19)

\ 72 /

z—*)r + l |v*|ir3r+i(n> , (8.20)
72

rate of convergence for u

= min (s + 1 — g — m, r + 1 — k — m, s + 1 — k, r + 1 — q), (8.21)

rate of convergence for v = min (r + 1 — m — 1c, r + 1 — q).
Case k > 0.

l|e.|U.»(o, < (l + -)cVlh'+1~k |«*U..+.(0) + ^ lr+1'k-m |v*Uar+,(fl) , (8.22)
\ 7i' 7i

I|e»||ir,«(o) < (l + -)dv2V+1-° |v*|w.r+,(B) + ^ |u*|^,+1(!1) , (8.23)
\ Mi/ Mi
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rate of convergence for u = min (s + 1 — Jc, r + 1 — k — m), (8.24)
rate of convergence for v = min (r + 1 — g, s + 1 — q — m).

Theorem 8.2. Let the conditions of Theorem 7.3 hold. Then the following error
estimates hold:

Case k = 0.

IM,™ < ((Z)lCt + , (8.25)

\\T*ev\\w^{a) < 2D |v*|jp,r+i(o) "H ||^u||wi«(n) • (8.26)

Case k > 0.

||7TcM|U..ta, < (^) I (fcCp-4 + C*p~"'m)hs+1 |w*l »( 0)

+ D^ |v*U., + ,(n)] , (8.27)

\\T*ev\\Wl,(a) < (j^y\(kDa-° + D*ak-m)lr-k-m\1r +1 | *|
|V llTar + iCC)

+ kCp'kh'+1 Iti^lwv + no)]. (8.28)

The rates of convergence from (8.25) and (8.26) for Tu and T*v are, respectively
(for Ic > 0),

a = min (r + 1 - q, s + 1 - q - m, s + 1 - k), 2g^

e = min (r + 1 — g,r+l — k — m, s + 1 — k).

The convergence rates for Teu and T*e, seem to be of the same order as compared to
those of e„ and ev in (8.24). Thus, the error estimates obtained from Theorem 7.3 are
sharper.

9. Numerical results. There exists ample literature on numerical analysis of mixed
finite-element models. For example, Herrmann [1, 30] and Hellan [2] have developed
mixed plate bending elements, and later Backlund [6] (see also Conner [31] and Visser
[4]) used these elements in the analysis of elastic and elastoplastic plates in bending.
Dunham and Pister [5] employed the Hellinger-Reissner (mixed) variational principle
to construct mixed finite-element models of linear elastic problems. It was observed
that the mixed models are particularly effective in capturing steep stress or displacement
gradients that can occur near singularities in boundary-value problems. In recent times
there has appeared a vast literature on the closely related idea of the hybrid finite-
element method [8, 9, 10] applied to stress concentration problems. In all these works,
numerical examples have been presented with extremely good results; however, these
do not contain any information on the behavior of the error (in energy).

The primary purpose of the examples presented here is to demonstrate, numerically,
that the mixed models yield higher accuracies for certain quantities (e.g., stresses),
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and to give precise rates of convergence for the mixed finite-element solutions. In
particular, the error in energy norm (or L2-norm) is computed in each example to find
the rates of convergence. For simplicity, only one-dimensional, second- and fourth-order
equations are considered here.

1. Second-order differential equation. Consider the boundary-value problem

( — d2u/dx2) u + x = 0, 0 < x < 1 (9.1)

subjected to the boundary conditions u(0) = u'( 1) = 0. Clearly, (9.1) is of the general
form (2.1) with T and T* given by

T = —T* = d/dx, M = N = 1, gy = g2 = 0 (9.2)

and the inner products {• , • j and [ • , • ] are defined

{iii ,u2}= / «iU2 dx) [tf! , v2\ = / VyV2dx.
Jo Jo

(9.3)

The following sets of basis functions are selected for the problem at hand:

f>i(x) = 1 — (x/h), 0 < x < h

<pa(x) = (x/h) - (a - 2), (a - 2)h < x < (a - l)h . „ «
(a = 2, ■ • • , N e — 1),

= a — (x/h), (a — l)h < x < ah

Vn(x) = | - (N. - 2), (N. -2)h<x< (N. - 1 )h, (9.4)

and similar expressions for wA, A = 1, ■ • • , M, are taken with h replaced by I. Here
N, is the number of nodes (or (N, — 1) is the number of elements) in approximation
by <ps and M, is the the number of nodes in approximation by cos; i.e., h = \/(Ne — 1)
and I = 1 /(M, — 1). Let the ratio of the meshes be denoted by v = h/l. The fundamental
matrices Ga$ and HAT are given by

where

[G„,] = h[G\, [HAr] = l[G] (9.5)

2 1
\ \
1 4 1

\\s

1 4 1

1 4 1
w

1 4 1
\\

1 2
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Also, j„ and gA are given by

\u\ = £

i
6

12

608 - 1)

6 (N. - 2)

. 32V, - 4

A I9 =2 (9.6)

The matrices (7VA — Ma'A) and (Ta*& + Na'A) of (3.8) and (3.30) are given in
Table I. Note that (7VA — I„'A) = (Ta*A + Na'A). Here it is assumed that v is an
integer. When v is not an integer, it is not possible to compute the matrices (Ta "A — Ma "A)
and (TUA* + A'„'A) for arbitrary Ne and M, . Mixed finite-element solutions u* and v*,
for different values of v, are obtained and compared with the exact solutions (see Figs.

TABLE I. The matrix (Ta-A — Ma-A) for any integer value of v.

(:7YA - Ma )
(MeXNe)

a = v a = v-\-l 2v 2^+1 3v 3^+1 Ne
ii ii ii
ii ii ii
ii ii ii

— ! ... - — o • • • o   o ()•••• o21 I I 21

=A o h ... h A o ... o o • ■ • • o2II I U I I 21

0 0 • ■ • 0 — — ... —— o — • • ■ - — o • • • 021 I II I 21

■ ... -^ 0 h .... h A o .... 0
11 l 21

n ~h _ h h h_
: "' 0 21 i i i i 21

... o 0 0 • • • ■ o —— —- • • • • —- —U U U 21 I I 21.

9.1 and 9.2). It must be noticed that the mixed solutions are less stable and more in-
accurate as the mesh ratio v = l/h increases. This can be explained in view of the stability
conditions (6.1)-(6.4). A close examination of the matrix in Table I reveals that as
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v increases the sum of the off-diagonal terms increases, and consequently the matrix
Ka/3 of (3.13) becomes ill-conditioned. Moreover, the error on the boundary is more
sensitive to the mesh ratio, with the error increasing with the mesh ratio. For v = 1,
the solutions U* and V* are plotted against the primal and exact solutions in Fig. 10.3
and against the dual and exact solutions in Fig. 9.4. For v = 1 the matrix in Table I
takes the simple form

"l -1 0
\ \

1 0 -1
\ s

0 1
(TV4 + Na'A) = (7Ya - Ma'A) = i

0-1
\ ^

1 0 -1
\ \

0 1 1.

The broken line in Fig. 9.3 is the solution V = clU*/dx obtained by differentiating U*;
the broken curve in Fig. 9.4 is the solution U = JY V* dx obtained by integrating V*.
Thus, the solution V, in the case of the primal problem, is discontinuous and the solu-
tion U, in the case of the dual problem, is in error.

o.i

0.2

0.3

Fig. 9.1. Mixed finite-element solutions u for various values of the mesh ratio v.
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o.o

0.2

0.3

Fig. 9.2. Mixed finite-element solutions v for various values of the mesh ratios v.

0 . 1 0 .2 0 .3 0.4 0 .5 0.6 0 .7 0.8 0 .9 1.0

0.1

0 . 2

0.3

exact solution

o o mixed finite element solution

primal solution

Fig. 9.3. Comparison of mixed and primal solutions with exact solutions.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0

0.1

0.2

exact solution

0-3 o o mixed finite element solution

dual solution

Fig. 9.4. Comparison of mixed and dual solutions with exact solutions.

The error in energy is computed for v = 1 case and plotted against the mesh size h.
In this case, where same basis (or trial) functions (linear polynomials) are employed
to approximate u and v, the rates of convergence for U* as well as for V* is 2. In Fig. 9.1,
the value of A- is 1. The same problem is solved with k = 0, and same rates of convergence
are obtained in this case also (with the same basic functions).

2. Fourth-order differential equation. Consider the fourth-order equation

(d*u/dx4) + x2 = 0, 0 < x < 1, (9.7)

w(0) = u(l) = 0; (d2u/dx2)(0) = (d2u/dx2)( 1) = 0.

In this case the basis functions are cubic polynomials:

Vl° = 1 - 3(|)2 + 2(f)3, 0 < x < h,

0
<Pa = 3^| - (a - 2)J - 2^| (a - 2)J , (a - 2)h < x < (a - 1 )h

[!-<■»-«]= 1 - 3 1 - (a - 1) +2 f-(«-l) (a — l)/l < X < ah

(a = 2,3, ,2V.- 1)
~i 2 r ~i 3

0   Q
<PN e — O X {N, - 2) J2 - 2^| - (iV. - 2)]', (N. - 2 )h <x< (Ne - 1 )h,h

hJ \h.2(r + 7 I , 0<x< h (9.8a)- {i

- "[{f - <° - •»} - 2{f -(" - "I*+ {l -(" -
-'({; - <«"2) - if - (a - 2)

, (a — 1 )h < X < ah

, (a — 2)li < x < (a — 1 )h
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- h[{i -<w- -2)}' - {f - <"■ -2)
(N. - 2)h < x < (N. - 1 )ft. (9.8b)

The fundamental matrices Gap and H*T in this case (for v = 1) are given by

to. j - Jo
156 54 22h -13 h

\ \ \ \
54 312 54 13ft 0 -13ft

\ \
54 13ft

54 312 54 13ft 0 -13ft
\ \ \ \

54 156 13ft -22 ft

22 ft 13ft 4ft2 -3ft2
\ \ \ \

-13ft 0 13ft -3ft2 8ft2 -3ft2
\ \

-13ft -3ft2

-13ft 0 13ft -3ft2 8ft2 -3ft2
\ \ \ \

-13ft -22 ft -3ft2 4ft2__
= [ffarL (9.9)

The matrices (Ta*A + Ar„'A), and /„ are computed to be
1

30ft2
36ft -36ft 33ft2 3ft2

(7VA + iVa-A) =

-36ft 72 ft -36ft -3ft2 0 3ft2
\ \ '•

-36ft _ _ -3ft2_ ' ' 3ft2

-36ft 72 ft -36ft -3ft2 0 3ft2
\ \ \ \

-36ft 36ft -3ft2 -33ft2

33ft2 -3ft2 4ft3 -ft3
\ \ \ \

3ft2 0 -3ft2 -ft3 8ft3 -ft3
\ \

3ft2_ • -3ft2 -ft3_ '• -ft3

\ \
3ft2 0 -3ft2 -ft3 8ft3 -ft3

\ \ \ \
3ft2 -33ft2 -ft3 4ft3_

(9.10)
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and

where
ha

U = (0 (9.11)

f, = 15 ' P ~
7 3

= ^ (30/32 - 60/3 + 34), jS = 2, 3, • • • , N. - 1,

= ^ (15AT,2 - 39N. + 26), 0 = Nt ,

/o = go ' 0=1,

= ^ (-15/?2 + 620 - 62), 0 = 2, 3, • ■ • , tf. - 1,

= ^ (15iVea - 39N, + 26), 0 = Ne .

The mixed finite-element solutions U* and V* are plotted against the exact solu-
tions in Fig. 9.5. The rates of convergence in this case, where the same basis (cubic)

0.2 0.4 0.6 0.8 1.0 x

0.3

02

Fig. 9.5. Comparison of mixed finite-element solutions with exact solutions.
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functions are employed, are 4. It is also noted that the first derivatives of U* and V*
are approximated very closely to the exact derivatives.
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