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Abstract. We consider mixed finite element methods for second order elliptic equations on
nonmatching multiblock grids. A mortar finite element space is introduced on the nonmatching
interfaces. We approximate in this mortar space the trace of the solution, and we impose weakly
a continuity of flux condition. A standard mixed finite element method is used within the blocks.
Optimal order convergence is shown for both the solution and its flux. Moreover, at certain dis-
crete points, superconvergence is obtained for the solution and also for the flux in special cases.
Computational results using an efficient parallel domain decomposition algorithm are presented in
confirmation of the theory.
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multiblock, nonconforming grids

AMS subject classifications. 65N06, 65N12, 65N15, 65N22, 65N30

PII. S0036142996308447

1. Introduction. Mixed finite element methods have become popular due to
their local (mass) conservation property and good approximation of the flux variable.
In many applications the complexity of the geometry or the behavior of the solution
may warrant using a multiblock domain structure, wherein the domain is decomposed
into nonoverlapping blocks or subdomains with grids defined independently on each
block. Typical examples include modeling faults and wells in subsurface applications.
Faults are natural discontinuities in material properties. Locally refined grids are
needed for accurate approximation of high gradients around wells.

In this work we consider second-order linear elliptic equations that in porous
medium applications model single phase Darcy flow. We solve for the pressure p and
the velocity u satisfying

u = −K∇p in Ω,(1.1)

∇ · u = f in Ω,(1.2)

p = g on ∂Ω,(1.3)

where Ω ⊂ Rd, d = 2 or 3, is a multiblock domain, and K is a symmetric, uni-
formly positive definite tensor with L∞(Ω) components representing the permeability

∗Received by the editors August 23, 1996; accepted for publication (in revised form) May 25,
1999; published electronically April 11, 2000. The first, third, and fourth authors were partially
supported by the Department of Energy.

http://www.siam.org/journals/sinum/37-4/30844.html
†Texas Institute for Computational and Applied Mathematics (TICAM) and Department of Math-

ematics, The University of Texas at Austin, Austin, TX 78712 (arbogast@ticam.utexas.edu).
‡Lucent Technologies Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

(cowsar@research.bell-labs.com).
§TICAM, Department of Aerospace Engineering and Engineering Mechanics, and Department

of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX 78712
(mfw@ticam.utexas.edu). This author was partially supported by the National Science Foundation.

¶TICAM, The University of Texas at Austin, Austin, TX 78712 (yotov@math.pitt.edu). Current
address: Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260.

1295



1296 T. ARBOGAST, L. C. COWSAR, M. F. WHEELER, AND I. YOTOV

divided by the viscosity. The Dirichlet boundary conditions are considered merely
for simplicity. To present our ideas more clearly, we also suppose that the problem
is at least H3/2+ε-regular for some ε > 0. We have H2-regularity, for example, if
f ∈ L2(Ω), g ∈ H3/2(Ω), the components of K ∈ C0,1(Ω̄), and Ω is convex or ∂Ω is
smooth enough (see [21, 22, 19]). (Strictly speaking, this simplification excludes point
or line sources and discontinuous K.)

A number of papers deal with the analysis and the implementation of the mixed
methods applied to the above problem on conforming grids (see, e.g., [28, 26, 25, 8,
6, 7, 10, 14, 24, 29, 15, 17, 2, 1] and [27, 9]). Mixed methods on nested locally refined
grids are considered in [16, 18]. These works apply the notion of “slave” or “worker”
nodes to force continuity of fluxes across the interfaces. The results rely heavily on
the fact that the grids are nested and cannot be extended to nonmatching grids.

In the present work we employ a partially hybridized form [4, 9] of the mixed
method to obtain accurate approximations on nonmatching grids. We assume that Ω
is a union of nonoverlapping polygonal blocks, each covered by a conforming, affine fi-
nite element partition. Lagrange multiplier pressures are introduced on the interblock
boundaries [4, 9, 20]. Since the grids are different on the two sides of the interface,
the Lagrange multiplier space can no longer be the normal trace of the velocity space.
A different boundary space is needed, which we call a mortar finite element space,
using terminology from previous works on Galerkin and spectral methods (see [5] and
references therein). As we show later in the analysis, the method is optimally con-
vergent if the boundary space has one order higher approximability than the normal
trace of the velocity space. Moreover, superconvergence for the pressure and, in the
case of rectangular grids, for the velocity is obtained at certain discrete points. (See
also [3] for a similar technique that avoids the use of a mortar space at the expense
of losing strict mass conservation.)

We allow the mortar space to consist of either continuous or discontinuous piece-
wise polynomials and obtain the same order of convergence in both cases. The method
using discontinuous mortars provides better local mass conservation across the inter-
faces, but numerical observations suggest that this may lead to slightly bigger numer-
ical error.

The method presented here has also been considered in [30] in the case of the
lowest order Raviart–Thomas spaces [26, 25]. Here we take a somewhat different
approach in the analysis, which allows us to relax a condition on the mortar grids
needed to obtain optimal convergence and superconvergence. The relaxed condition
is easily satisfied in practice.

An attractive feature of the scheme is that it can be implemented efficiently in
parallel using nonoverlapping domain decomposition algorithms. In particular, we
modify the Glowinski–Wheeler algorithm [20, 13] to handle nonmatching grids. Since
this algorithm uses Lagrange multipliers on the interface, the only additional cost is
computing projections of the mortar space onto the normal trace of the local velocity
spaces and vice-versa.

The rest of the paper is organized as follows. The mixed finite element method
with mortar elements is presented in the next section. In section 3 we construct a
projection operator onto the space of weakly continuous (with respect to the mortars)
velocities and analyze its approximation properties. Sections 4 and 5 are devoted
to the error analysis of the velocity and the pressure, respectively. In section 6 the
method is reformulated as an interface problem. A substructuring domain decom-
position algorithm for the solution of the interface problem is discussed in section 7.
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Numerical results confirming the theory are presented in section 8.

2. Formulation of the method. A weak solution of (1.1)–(1.3) is a pair u ∈
H(div; Ω), p ∈ L2(Ω) such that

(K−1u,v) = (p,∇ · v)− 〈g,v · ν〉∂Ω, v ∈ H(div; Ω),(2.1)

(∇ · u, w) = (f, w), w ∈ L2(Ω).(2.2)

It is well known (see, e.g., [9, 27]) that (2.1)–(2.2) has an unique solution.
Let Ω = ∪n

i=1Ωi be decomposed into nonoverlapping subdomain blocks Ωi, and
let Γi,j = ∂Ωi ∩ ∂Ωj , Γ = ∪n

i,j=1Γi,j , and Γi = ∂Ωi ∩ Γ = ∂Ωi\∂Ω denote interior
block interfaces. Let

Vi = H(div; Ωi), V =

n⊕

i=1

Vi,

Wi = L2(Ωi), W =

n⊕

i=1

Wi = L2(Ω).

If the solution (u, p) of (2.1)–(2.2) belongs to H(div; Ω)×H1(Ω), it is easy to see that
it satisfies, for 1 ≤ i ≤ n,

(K−1u,v)Ωi
= (p,∇ · v)Ωi

− 〈p,v · νi〉Γi
− 〈g,v · νi〉∂Ωi\Γ, v ∈ Vi,(2.3)

(∇ · u, w)Ωi
= (f, w)Ωi

, w ∈Wi,(2.4)

where νi is the outer unit normal to ∂Ωi (see also [9, pp. 91–92]). We will further
assume that these problems posed over each Ωi are at least H

3/2+ε-regular.
Let Th,i be a conforming, quasi-uniform finite element partition of Ωi, 1 ≤ i ≤ n,

allowing for the possibility that Th,i and Th,j need not align on Γi,j . Let Th = ∪n
i=1Th,i.

Let

Vh,i ×Wh,i ⊂ Vi ×Wi

be any of the usual mixed finite element spaces (i.e., the Raviart, Thomas, and Nedelec
(RTN) spaces [28, 26, 25]; Brezzi, Douglas, and Marini (BDM) spaces [8]; Brezzi,
Douglas, Fortin, and Marini (BDFM) spaces [7]; Brezzi, Douglas, Durán, and Fortin
(BDDF) spaces [6], or Chen and Douglas (CD) spaces [10]). We assume that the
order of the spaces is the same on every subdomain. Let

Vh =

n⊕

i=1

Vh,i, Wh =

n⊕

i=1

Wh,i.

Although the normal components of vectors in Vh are continuous between elements
within each block Ωi, there is no such restriction across Γ. Recall that

∇ · Vh,i =Wh,i,

and that there exists a projection Πi of (H
1/2+ε(Ωi))

d∩Vi onto Vh,i (for any ε > 0),
satisfying among other properties that for any q ∈ (H1/2+ε(Ωi))

d ∩ Vi,

(∇ · (Πiq − q), w)Ωi
= 0, w ∈Wh,i,(2.5)

〈(q −Πiq) · νi,v · νi〉∂Ωi
= 0, v ∈ Vh,i.(2.6)
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Note that, since q ∈ (H1/2+ε(Ωi)), q · ν|e ∈ Hε(e) for any element face (or edge) e;
therefore Πiq is well defined.

Remark 2.1. Our H3/2+ε-regularity assumption ensures that we can apply Πi to
the flux arising from our elliptic problem. We note in passing that Mathew [23] shows
that if q ∈ (Hε(Ωi))

d, 0 < ε < 1, and ∇ · q = 0, then Πiq is well defined and

‖Πiq‖0,Ωi
≤ C‖q‖ε,Ωi

,(2.7)

‖Πiq − q‖0,Ωi
≤ Chε‖q‖ε,Ωi

,(2.8)

where ‖ · ‖r is the H
r-norm. His argument, given for Raviart–Thomas spaces, can

be trivially extended (see also [21, Section 1.5]) to show that, for any of the mixed
spaces under consideration, Πiq is well defined for any q ∈ (Hε(Ωi))

d ∩ Vi and

‖Πiq‖0,Ωi
≤ C(‖q‖ε,Ωi

+ ‖∇ · q‖0,Ωi
).(2.9)

Thus we could reduce our regularity requirements, at the expense of greatly increasing
technical aspects of the analysis largely unrelated to those of the mortar element
techniques.

Let the mortar interface mesh Th,i,j be a quasi-uniform finite element partition of
Γi,j . Denote by Λh,i,j ⊂ L2(Γi,j) the mortar space on Γi,j , containing at least either
the continuous or discontinuous piecewise polynomials of degree k+1 on Th,i,j , where
k is associated with the degree of the polynomials in Vh · ν. More precisely, if d = 3
and e is a triangle of the mesh, we take Λh,i,j |e = Pk+1(e), the set of polynomials of
degree less than or equal to k on e. If e is a rectangle, we take Λh,i,j |e = Qk+1(e), the
set of polynomials on e for which the degree in each variable separately is less than
or equal to k. Now let

Λh =
⊕

1≤i<j≤n

Λh,i,j

be the mortar finite element space on Γ. In the following we treat any function µ ∈ Λh

as extended by zero on ∂Ω. An additional assumption on the space Λh and hence
Th,i,j will be made below in (2.14) and (3.18). We remark that Th,i,j need not be
conforming if a discontinuous space is used.

In the mixed finite element approximation of (2.1)–(2.2), we seek uh ∈ Vh, ph ∈
Wh, λh ∈ Λh such that, for 1 ≤ i ≤ n,

(K−1uh,v)Ωi
= (ph,∇ · v)Ωi

− 〈λh,v · νi〉Γi
− 〈g,v · νi〉∂Ωi\Γ, v ∈ Vh,i,(2.10)

(∇ · uh, w)Ωi
= (f, w)Ωi

, w ∈Wh,i,(2.11)

n∑

i=1

〈uh · νi, µ〉Γi
= 0, µ ∈ Λh.(2.12)

Strictly within each block Ωi, we have a standard mixed finite element method, and
(2.11) enforces local conservation over each grid cell. Moreover, since uh · ν is con-
tinuous on any element face (or edge) e �⊂ Γ ∪ ∂Ω, we have local mass conservation
across interior element faces. From (2.3) we see that λh approximates the pressure
p on the block interfaces Γ. Equation (2.12) enforces weak continuity of flux across
these interfaces (weakly with respect to the mortar space Λh).

For each subdomain Ωi, define a projection Qh,i : L
2(Γi)→ Vh,i · νi|Γi

such that,
for any φ ∈ L2(Γi),

〈φ−Qh,iφ,v · νi〉Γi
= 0, v ∈ Vh,i.(2.13)

Let, for φ ∈ L2(Γ), Qhφ =
⊕n

i=1
Qh,iφ.
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Lemma 2.1. Assume that for any φ ∈ Λh,

Qh,iφ = 0, 1 ≤ i ≤ n, implies that φ = 0.(2.14)

Then there exists a unique solution of (2.10)–(2.12).
Remark 2.2. Condition (2.14) says that the mortar space cannot be too rich

compared to the normal traces of the subdomain velocity spaces. A richer Λh gives
a better local mass conservation across Γ, by (2.12); however, if the space is too rich,
i.e., too much local mass conservation across Γ is demanded, unique solvability is lost.
(See also Remark 3.1 below.)

Proof. Since (2.10)–(2.12) is a square system, it is enough to show uniqueness.
Let f = 0, g = 0. Setting v = uh, w = ph, and µ = −λh, adding (2.10)–(2.12)
together, and summing over 1 ≤ i ≤ n implies that uh = 0. Denote, for 1 ≤ i ≤ n,

ph,i =
1

|Ωi|

∫

Ωi

ph dx, Qh,iλh =
1

|∂Ωi|

∫

∂Ωi

Qh,iλh ds,

and consider the auxiliary problem

−∇ · ∇ϕi = ph − ph,i in Ωi,

−∇ϕi · ν = −
(
Qh,iλh −Qh,iλh

)
on ∂Ωi,

where λh = 0 on ∂Ω ∩ ∂Ωi. Note that the problem is well-posed and regular with ϕi

determined up to a constant. Setting v = −Πi∇ϕi in (2.10), we have

(ph, ph − ph,i)Ωi
+
〈
Qh,iλh,Qh,iλh −Qh,iλh

〉
∂Ωi

= 0,

implying

ph|Ωi
= ph,i, Qh,iλh = Qh,iλh.

Since now (2.10) is

ph|Ωi
(1,∇ · v)Ωi

−Qh,iλh〈1,v · ν〉∂Ωi
= 0,

the divergence theorem implies ph|Ωi
= Qh,iλh.

Since λh = 0 on ∂Ω, ph|Ωi
= Qh,iλh = 0 for those domains i with ∂Ωi ∩ ∂Ω �= ∅.

For any j such that ∂Ωi ∩ ∂Ωj = Γi,j �= ∅, (2.13) implies that

0 = Qh,iλh|Γi,j
=

1

|Γi,j |

∫

Γi,j

λh ds = Qh,jλh|Γi,j
.

We conclude that Qh,iλh = 0 for all 1 ≤ i ≤ n; hence, ph = 0 and λh = 0 by the
hypothesis of the lemma.

Remark 2.3. This proof could be simplified by using the Π0 projection operator
defined in the next section.

3. The space of weakly continuous velocities. We first introduce some pro-
jection operators needed in the analysis. Let Ph be the L

2(Γ) projection onto Λh

satisfying for any ψ ∈ L2(Γ)

〈ψ − Phψ, µ〉Γ = 0, µ ∈ Λh.
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For any ϕ ∈ L2(Ω), let ϕ̂ ∈Wh be its L
2(Ω) projection satisfying

(ϕ− ϕ̂, w) = 0, w ∈Wh.

These projections and Π and Qh,i defined earlier have the following approximation
properties, wherein l is associated with the degree of the polynomials in Wh:

‖ψ − Phψ‖−s,Γi,j
≤ C‖ψ‖r,Γi,j

hr+s, 0 ≤ r ≤ k + 2, 0 ≤ s ≤ k + 2,(3.1)

‖ϕ− ϕ̂‖0 ≤ C‖ϕ‖rh
r, 0 ≤ r ≤ l + 1,(3.2)

‖q −Πiq‖0,Ωi
≤ C‖q‖r,Ωi

hr, 1 ≤ r ≤ k + 1,(3.3)

‖∇ · (q −Πiq)‖0,Ωi
≤ C‖∇ · q‖r,Ωi

hr, 0 ≤ r ≤ l + 1,(3.4)

‖ψ −Qh,iψ‖−s,Γi,j
≤ C‖ψ‖r,Γi,j

hr+s, 0 ≤ r ≤ k + 1, 0 ≤ s ≤ k + 1,(3.5)

‖(q −Πiq) · νi‖−s,Γi,j
≤ C‖q‖r,Γi,j

hr+s, 0 ≤ r ≤ k + 1, 0 ≤ s ≤ k + 1,(3.6)

where ‖ · ‖r is the H
r-norm and ‖ · ‖−s is the norm of H−s, the dual of Hs (not Hs

0).
Moreover, from (2.5)–(2.6),

∇ ·Πiq = ∇̂ · q,(3.7)

(Πiq) · νi = Qh,i(q · νi).(3.8)

Bounds (3.1), (3.2), and (3.4)–(3.6) are standard L2-projection approximation results
[11]; bound (3.3) can be found in [9, 27]. We use the nonstandard trace theorem

‖q‖r,Γi,j
≤ C‖q‖r+1/2,Ωi

in this paper; it can be found in [21, Theorem 1.5.2.1].
Let

Vh,0 =

{
v ∈ Vh :

n∑

i=1

〈v|Ωi
· νi, µ〉Γi

= 0 ∀ µ ∈ Λh

}

be the space of weakly continuous velocities, with respect to the mortar space. Then
the mixed method (2.10)–(2.12) can be rewritten in the following way. Find uh ∈
Vh,0, ph ∈Wh such that

(K−1uh,v) =

n∑

i=1

(ph,∇ · v)Ωi
− 〈g,v · ν〉∂Ω, v ∈ Vh,0,(3.9)

n∑

i=1

(∇ · uh, w)Ωi
= (f, w), w ∈Wh.(3.10)

The above form of the scheme will be used for analysis only. It is not necessarily suit-
able for computing, since it is difficult to construct a basis for the weakly continuous
velocity space Vh,0.

Our goal for the rest of this section is to construct a projection operator Π0 onto
Vh,0 with optimal approximation properties such that, for any q ∈ (H1(Ω))d,

(∇ · (Π0q − q), w)Ω = 0, w ∈Wh.(3.11)
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By an abuse of notation, define

Vh · ν = {(φL, φR) ∈ L2(Γ)× L2(Γ) : φL|Γi,j
∈ Vh,i · νi and

φR|Γi,j
∈ Vh,j · νj ∀ 1 ≤ i < j ≤ n}

and

Vh,0 · ν = {(φL, φR) ∈ L2(Γ)× L2(Γ) : ∃ v ∈ Vh,0 such that

φL|Γi,j
= v|Ωi

· νi and φR|Γi,j
= v|Ωj

· νj ∀ 1 ≤ i < j ≤ n}.

Henceforth, for any φ = (φL, φR) ∈ (L
2(Γ))2, we write φ|Γi,j

= (φi, φj), 1 ≤ i < j ≤ n.
Define a projection Qh,0 : (L

2(Γ))2 → Vh,0 · ν such that, for any φ ∈ (L2(Γ))2,

n∑

i=1

〈φi − (Qh,0φ)i, ξi〉Γi
= 0, ξ ∈ Vh,0 · ν.(3.12)

Lemma 3.1. Assume that (2.14) holds. For any φ ∈ (L2(Γ))2, there exists

λh ∈ Λh such that on Γi,j, 1 ≤ i < j ≤ n,

Qh,iλh = Qh,iφi − (Qh,0φ)i,(3.13)

Qh,jλh = Qh,jφj − (Qh,0φ)j ,(3.14)

〈λh, 1〉Γi,j
= 1

2
〈φi + φj , 1〉Γi,j

.(3.15)

Proof. Consider the following auxiliary problem. Given φ ∈ (L2(Γ))2, find ψh ∈
Vh · ν and λh ∈ Λh such that

n∑

i=1

〈φi − ψh,i − λh, ξi〉Γi
= 0, ξ ∈ Vh · ν,(3.16)

n∑

i=1

〈ψh,i, µ〉Γi
= 0, µ ∈ Λh.(3.17)

To show existence and uniqueness of a solution of (3.16)–(3.17), take φ = 0, ξ = ψh,
and µ = λh to conclude that ψh = 0. Now (3.16) and (2.14) imply that λh = 0.

With ξ ∈ Vh,0 · ν in (3.16) we have

n∑

i=1

〈φi − ψh,i, ξi〉Γi
= 0.

Also, from (3.17), ψh ∈ Vh,0 · ν. Therefore ψh = Qh,0φ. Equation (3.16) now implies
(3.13) and (3.14). Since any constant function is in Vh,i · νi, Vh,j · νj , and Λh,i,j , we
have

2〈λh, 1〉Γi,j
= 〈Qh,iλh, 1〉Γi,j

+ 〈Qh,jλh, 1〉Γi,j

= 〈Qh,iφi − (Qh,0φ)i, 1〉Γi,j
+ 〈Qh,jφj − (Qh,0φ)j , 1〉Γi,j

= 〈Qh,iφi, 1〉Γi,j
+ 〈Qh,jφj , 1〉Γi,j

= 〈φi + φj , 1〉Γi,j
,

and (3.15) follows.
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The next lemma shows that, under a relatively mild assumption on the mortar
space Λh, Qh,0 has optimal approximation properties for normal traces:

φ = (u · νi,u · νj) = (u · νi,−u · νi).

Lemma 3.2. Assume that there exists a constant C, independent of h, such that

‖µ‖0,Γi,j
≤ C(‖Qh,iµ‖0,Γi,j

+ ‖Qh,jµ‖0,Γi,j
) ∀ µ ∈ Λh, 1 ≤ i < j ≤ n.(3.18)

Then, for any φ such that φ|Γi,j
= (φi,−φi), there exists a constant C, independent

of h, such that


 ∑

1≤i<j≤n

‖Qh,iφi − (Qh,0φ)i‖
2
−s,Γi,j




1/2

≤ C
∑

1≤i<j≤n

‖φi‖r,Γi,j
hr+s,

0 ≤ r ≤ k + 1, 0 ≤ s ≤ k + 1.(3.19)

Remark 3.1. Condition (3.18) implies the solvability condition (2.14), which is
simply (3.18) wherein we allow C to vary with h. So (3.18) strengthens (2.14) so that
it holds uniformly as h tends to zero. This is not a very restrictive condition, and it is
easily satisfied in practice. It can be shown [30] that (3.18) holds for both continuous
and discontinuous mortar spaces, if the mortar grid on each interface is a coarsening
by two in each direction of the trace of either one of the subdomain grids. This choice
is reminiscent of the one in the case of standard or spectral finite element subdomain
discretizations [5].

Proof. By Lemma 3.1, there is a λh ∈ Λh such that

Qh,iλh = Qh,iφi − (Qh,0φ)i.(3.20)

Since
∑n

i=1
〈(Qh,0φ)i, λh〉Γi

=
∑n

i=1
〈φi, λh〉Γi

= 0,

n∑

i=1

‖Qh,iλh‖
2
0,Γi

=

n∑

i=1

〈Qh,iλh, λh〉Γi

=

n∑

i=1

〈Qh,iφi − φi, λh〉Γi

≤

(
n∑

i=1

‖Qh,iφi − φi‖
2
0,Γi

)1/2 ( n∑

i=1

‖λh‖
2
0,Γi

)1/2

≤ C

(
n∑

i=1

‖Qh,iφi − φi‖
2
0,Γi

)1/2 ( n∑

i=1

‖Qh,iλh‖
2
0,Γi

)1/2

,

by (3.18), and (3.19) with s = 0 follows from (3.20) and (3.5).
On any interface Γi,j take any ρ ∈ Hs(Γi,j), 0 ≤ s ≤ k + 1, and write

〈Qh,iλh, ρ〉Γi,j
= 〈λh,Qh,iρ− ρ〉Γi,j

+ 〈λh, ρ〉Γi,j

≤ C‖λh‖0,Γi,j
hs‖ρ‖s,Γi,j

+ 〈λh, ρ〉Γi,j
.(3.21)

The last term is

〈λh, ρ〉Γi,j
= 〈λh, ρ−

1

2
(Qh,iρ+Qh,jρ)〉Γi,j

+ 1

2
〈λh,Qh,iρ+Qh,jρ〉Γi,j

(3.22)

≤ C‖λh‖0,Γi,j
hs‖ρ‖s,Γi,j

+ 1

2
〈λh,Qh,iρ+Qh,jρ〉Γi,j

.
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Using Lemma 3.1, for the last term in (3.22) we have

〈λh,Qh,iρ+Qh,jρ〉Γi,j

= 〈Qh,iλh,Qh,iρ〉Γi,j
+ 〈Qh,jλh,Qh,jρ〉Γi,j

= 〈φi − (Qh,0φ)i,Qh,iρ〉Γi,j
+ 〈φj − (Qh,0φ)j ,Qh,jρ〉Γi,j

= 〈φi − (Qh,0φ)i,Qh,iρ− Phρ〉Γi,j
+ 〈φj − (Qh,0φ)j ,Qh,jρ− Phρ〉Γi,j

≤ Chr‖φi‖r,Γi,j
hs‖ρ‖s,Γi,j

, 0 ≤ r ≤ k + 1.(3.23)

Combining (3.21)–(3.23) with (3.18), we obtain (3.19).
We are now ready to construct our projection. For any q ∈ (H1/2+ε(Ωi))

d ∩ Vi,
define

Π0q|Ωi
= Πi(q+ δqi),

where δqi solves

δqi = −∇πi in Ωi,(3.24)

∇ · δqi = 0 in Ωi,(3.25)

δqi · νi = −Qh,iq · νi + (Qh,0q · ν)i on Γi,(3.26)

δqi · νi = 0 on ∂Ωi ∩ ∂Ω,(3.27)

wherein, on any Γi,j , q · ν|Γi,j
= (q · νi,q · νj). Note that the Neumann problems

(3.24)–(3.27) are well-posed, since (3.15) and (3.13) imply that

〈Qh,iq · νi − (Qh,0q · ν)i, 1〉Γi
= 0.

Also, note that the piecewise constant Neumann data are in H1/2−ε(∂Ωi), so δqi ∈
(Hr(Ωi))

d, where r = 1 − ε if we have enough regularity but at least r ≥ 1/2 + ε;
thus, Πi can be applied to δqi.

We first notice that by (3.8),

n∑

i=1

〈(Π0q) · νi, µ〉Γi
=

n∑

i=1

〈(Qh,0q · ν)i, µ〉Γi
= 0 ∀ µ ∈ Λh;

therefore Π0q ∈ Vh,0. Also, by (3.7),

(∇ ·Π0q, w)Ωi
= (∇ ·Πiq, w)Ωi

+ (∇ ·Πiδq, w)Ωi
= (∇ · q, w)Ωi

∀ w ∈Wh,i.

It remains to estimate the approximability of Π0. Since on Ωi

Π0q − q = Πiq − q+Πiδqi,

with (3.3) we need only bound the correction Πiδqi. By elliptic regularity [21, 22],
for any 0 ≤ s ≤ 1/2,

‖δqi‖1/2−s,Ωi
≤ C

∑

j

‖Qh,iq · νi − (Qh,0q · ν)i‖−s,Γi,j
.(3.28)

We now have

‖Πiδqi‖0,Ωi
≤ ‖Πiδqi − δqi‖0,Ωi

+ ‖δqi‖0,Ωi

≤ Ch1/2‖δqi‖1/2,Ωi
+ ‖δqi‖0,Ωi

≤ C
∑

j

{‖Qh,iq · νi − (Qh,0q · ν)i‖0,Γi,j
h1/2

+‖Qh,iqi · νi − (Qh,0q · ν)i‖−1/2,Γi,j
},(3.29)
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using an estimate by Mathew [23] for any divergence-free vector ψ

‖Πiψ − ψ‖0,Ωi
≤ Chε‖ψ‖ε,Ωi

, 0 < ε < 1.

Note that the result in [23] is for Raviart–Thomas spaces but can be trivially extended
to any of the mixed spaces under consideration. Together with Lemma 3.2, (3.29) gives

‖Π0q −Πq‖0 ≤ C

n∑

i=1

‖q‖r+1/2,Ωi
hr+1/2, 0 ≤ r ≤ k + 1,(3.30)

and, with (3.3),

‖Π0q − q‖0 ≤ C

n∑

i=1

‖q‖r,Ωi
hr, 1 ≤ r ≤ k + 1.(3.31)

4. Error estimates for the velocity. We start this section with a lemma
needed later in the analysis.

Lemma 4.1. For any function v ∈ Vh,i,

‖v · ν‖0,∂Ωi
≤ Ch−1/2‖v‖0,Ωi

.

Proof. All spaces under consideration admit nodal bases that include the degrees
of freedom of the normal traces on the element boundaries. Since for any element E
and any of its faces (or edges) e, |e| ≤ Ch−1|E|, the lemma follows.

4.1. Optimal convergence. Subtracting (3.9)–(3.10) from (2.3)–(2.4) gives the
error equations

(K−1(u − uh),v) =

n∑

i=1

((p− ph,∇ · v)Ωi
− 〈p,v · νi〉Γi

) v ∈ Vh,0,(4.1)

n∑

i=1

(∇ · (u − uh), w)Ωi
= 0, w ∈Wh.(4.2)

We first notice that (4.2) implies that

∇ · (Π0u − uh) = ∇ · (Πu − uh) = 0.(4.3)

We now take v = Π0u − uh to get

(K−1(Π0u − uh),Π0u − uh)

=

n∑

i=1

〈Php− p, (Π0u − uh) · νi〉Γi
+ (K−1(Π0u − u),Π0u − uh)

≤
n∑

i=1

‖Php− p‖0,Γi
‖(Π0u − uh) · νi‖0,Γi

+ (K−1(Π0u − u),Π0u − uh)

≤ C

(
n∑

i=1

‖p‖r+1,Ωi
hr+1/2‖Π0u − uh‖0,Ωi

h−1/2 +

n∑

i=1

‖u‖r,Ωi
hr‖Π0u − uh‖0

)
,

1 ≤ r ≤ k + 1,

(4.4)
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where we used (3.1), Lemma 4.1, and (3.31) for the last inequality. With (4.3)–(4.4),
(3.4), and (3.31), we have shown the following theorem.

Theorem 4.2. For the velocity uh of the mixed method (2.10)–(2.12), if (2.14)
holds, then there exists a positive constant C independent of h such that

‖∇ · (u − uh)‖0 ≤ C

n∑

i=1

‖∇ · u‖r,Ωi
hr, 1 ≤ r ≤ l + 1.

Moreover, if (3.18) holds,

‖u − uh‖0 ≤ C

n∑

i=1

(‖p‖r+1,Ωi
+ ‖u‖r,Ωi

)hr, 1 ≤ r ≤ k + 1.

4.2. Superconvergence. In this subsection we restrict to the case of diagonal
tensor K and RTN spaces on rectangular type grids. In this case superconvergence
of the velocity is attained at certain discrete points. To show this we modify the last
inequality in (4.4). In particular, (3.1) gives, for 1 ≤ r ≤ k + 1,

n∑

i=1

‖Php− p‖0,Γi
‖(Π0u − uh) · νi‖0,Γi

≤ C

n∑

i=1

‖p‖r+3/2,Ωi
hr+1‖Π0u − uh‖0,Ωi

h−1/2,

and (3.30) gives, for 1 ≤ r ≤ k + 1,

(K−1(Π0u −Πu),Π0u − uh) ≤ C

n∑

i=1

‖u‖r+1/2,Ωi
hr+1/2‖Π0u − uh‖0,

which, combined with the estimate (see [24] and [15, Theorem 3.1])

(K−1(Πiu − u),Π0u − uh)Ωi
≤ C‖u‖r+1,Ωi

hr+1‖Π0u − uh‖0,Ωi
, 0 ≤ r ≤ k + 1,

implies

‖Π0u − uh‖0 ≤ C

n∑

i=1

(‖p‖r+3/2,Ωi
+ ‖u‖r+1/2,Ωi

)hr+1/2, 1 ≤ r ≤ k + 1.(4.5)

This estimate implies superconvergence along the Gaussian lines. Consider (for d = 3)
an element E = [a1, b1] × [a2, b2] × [a3, b3]. Denote by g

i
1, . . . , g

i
k+1, i = 1, 2, 3, the

Gaussian points on [ai, bi], i.e., the roots of the Legendre polynomials of degree k+1
on [ai, bi]. As in [17, 15], for a vector q = (q1, q2, q3), define

|||q1|||
2
1,E =

k+1∑

j2=1

Aj2(b2 − a2)

k+1∑

j3=1

Aj3(b3 − a3)

∫ b1

a1

|q1(x1, g
2
j2 , g

3
j3)|

2 dx1,

|||q2|||
2
2,E =

k+1∑

j1=1

Aj1(b1 − a1)

k+1∑

j3=1

Aj3(b3 − a3)

∫ b2

a2

|q2(g
1
j1 , x2, g

3
j3)|

2 dx2,

|||q3|||
2
3,E =

k+1∑

j1=1

Aj1(b1 − a1)

k+1∑

j2=1

Aj2(b2 − a2)

∫ b3

a3

|q3(g
1
j1 , g

2
j2 , x3)|

2 dx3,
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where Aji , ji = 1, . . . , k + 1 are the coefficients of Gaussian quadrature in [−1, 1].
Define

|||q|||2 =
3∑

i=1

∑

E∈Th

|||qi|||
2
i,E .

Note that, for q ∈ Vh, |||q||| is equal to the L
2-norm of q.

Theorem 4.3. Assume that the tensor K is diagonal and the mixed finite element

spaces are RTN on rectangular type grids. For the velocity uh of the mixed method

(2.10)–(2.12), if (3.18) holds, then there exists a positive constant C independent of h

such that

|||u − uh||| ≤ C

n∑

i=1

(‖p‖r+3/2,Ωi
+ ‖u‖r+1/2,Ωi

)hr+1/2, 1 ≤ r ≤ k + 1.

Proof. By the triangle inequality,

|||u − uh||| ≤ |||u −Πu|||+ |||Πu −Π0u|||+ |||Π0u − uh|||.

The theorem follows from (3.30), (4.5), and the bound (see [15])

|||u −Πu|||Ωi
≤ C‖u‖r+1,Ωi

hr+1, 1 ≤ r ≤ k + 1.

5. Error estimates for the pressure. In this section we use a duality ar-
gument to derive a superconvergence estimate for p̂ − ph. We will assume full H

2-
regularity of the problem on Ω for simplicity (reduced superconvergence is obtained
for reduced regularity, as can be seen in the argument below). Let ϕ be the solution
of

−∇ ·K∇ϕ = −(p̂− ph) in Ω,

ϕ = 0 on ∂Ω.

By elliptic regularity,

‖ϕ‖2 ≤ C‖p̂− ph‖0.(5.1)

Take v = Π0K∇ϕ in (4.1) to get

‖p̂− ph‖
2
0 =

n∑

i=1

(p̂− ph,∇ ·Π0K∇ϕ)Ωi

=

n∑

i=1

((K−1(u − uh),Π0K∇ϕ)Ωi
+ 〈p− Php,Π0K∇ϕ · νi〉Γi

).(5.2)

The first term on the right can be manipulated as

n∑

i=1

(K−1(u − uh),Π0K∇ϕ)Ωi

=

n∑

i=1

((K−1(u − uh),Π0K∇ϕ−K∇ϕ)Ωi
+ (u − uh,∇ϕ)Ωi

)



MIXED METHODS ON NONMATCHING GRIDS 1307

=

n∑

i=1

((K−1(u − uh),Π0K∇ϕ−K∇ϕ)Ωi

+(∇ · (u − uh), ϕ− ϕ̂)Ωi
− 〈(u − uh) · νi, ϕ− Phϕ〉Γi

)(5.3)

≤ C

n∑

i=1

(‖u − uh‖0,Ωi
h+ ‖∇ · (u − uh)‖0,Ωi

h+ ‖(u − uh) · νi‖0,Γi
h3/2)‖ϕ‖2,Ωi

using (3.31), (3.2), and (3.1) for the last inequality with C = C(maxi ‖K‖1,∞,Ωi
).

The last term on the right is

‖(u − uh) · νi‖0,Γi
h3/2

≤ (‖(u −Πiu) · νi‖0,Γi
+ ‖(Πiu − uh) · νi‖0,Γi

)h3/2

≤ C


hr

∑

j

‖u‖r,Γi,j
+ h−1/2‖Πiu − uh‖0,Ωi


h3/2

= C


∑

j

‖u‖r,Γi,j
hr+3/2 + ‖Πiu − uh‖0,Ωi

h


 , 0 ≤ r ≤ k + 1,(5.4)

using (3.6) and Lemma 4.1.
For the second term on the right in (5.2) we have

〈p− Php,Π0K∇ϕ · νi〉Γi

= 〈p− Php, (Π0K∇ϕ−ΠiK∇ϕ) · νi + (ΠiK∇ϕ−K∇ϕ) · νi +K∇ϕ · νi〉Γi

≤
∑

j

‖p− Php‖0,Γi,j
(‖δ(K∇ϕ)i · νi‖0,Γi,j

+ ‖(ΠiK∇ϕ−K∇ϕ) · νi‖0,Γi,j
)

+
∑

j

‖p− Php‖−1/2,Γi,j
‖K∇ϕ · νi‖1/2,Γi,j

.

With (3.1), (3.26), (3.19), and (3.6) we have

‖p− Php‖0,Γi,j
≤ C‖p‖r+1/2,Γi,j

hr+1/2, 0 ≤ r ≤ k + 1,

‖p− Php‖−1/2,Γi,j
≤ C‖p‖r+1/2,Γi,j

hr+1, 0 ≤ r ≤ k + 1,

‖δ(K∇ϕ)i · νi‖0,Γi
≤ C‖ϕ‖2,Ωi

h1/2,

‖(ΠiK∇ϕ−K∇ϕ) · νi‖0,Γi
≤ C‖ϕ‖2,Ωi

h1/2;

therefore,

〈p− Php,Π0K∇ϕ · νi〉Γi
≤ Chr+1‖p‖r+1,Ωi

‖ϕ‖2,Ωi
, 0 ≤ r ≤ k + 1.(5.5)

A combination of (5.1)–(5.5), Theorem 4.2, and (3.3) gives the following theorem.
Theorem 5.1. For the pressure ph of the mixed method (2.10)–(2.12), if (3.18)

holds, then there exists a positive constant C, independent of h, such that

‖p̂− ph‖0 ≤ C

n∑

i=1

(‖p‖r+1,Ωi
+ ‖u‖r,Ωi

+ ‖∇ · u‖r,Ωi
)hr+1,

‖p− ph‖0 ≤ C

n∑

i=1

(‖p‖r+1,Ωi
+ ‖u‖r,Ωi

+ ‖∇ · u‖r,Ωi
)hr,

where 1 ≤ r ≤ min(k + 1, l + 1).
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6. An interface operator. In this section we introduce a reduced problem
involving only the mortar pressure. This reduced problem arose naturally in the work
of Glowinski and Wheeler [20] on substructuring domain decomposition methods for
mixed finite elements. It is closely related to the interelement multiplier formulation
of Arnold and Brezzi [4]. The reason to consider the interface operator is twofold.
First, we use it to derive a bound on the error in the mortar space. Second, it is the
basis for our parallel domain decomposition implementation.

6.1. The reduced problem. Define a bilinear form dh : L
2(Γ) × L2(Γ) → R

for λ, µ ∈ L2(Γ) by

dh(λ, µ) =

n∑

i=1

dh,i(λ, µ) = −
n∑

i=1

〈u∗
h(λ) · νi, µ〉Γi

,

where u∗
h(λ) is a component of the solution (u

∗
h(λ), p

∗
h(λ)) ∈ Vh×Wh of, for 1 ≤ i ≤ n,

(K−1u∗
h(λ),v)Ωi

= (p∗h(λ),∇ · v)Ωi
− 〈λ,v · νi〉Γi

, v ∈ Vh,i,(6.1)

(∇ · u∗
h(λ), w)Ωi

= 0, w ∈Wh,i.(6.2)

Define a linear functional gh : L
2(Γ)→ R by

gh(µ) =

n∑

i=1

gh,i(µ) =

n∑

i=1

〈ūh · νi, µ〉Γi
,

where (ūh, p̄h) ∈ Vh ×Wh solve, for 1 ≤ i ≤ n,

(K−1ūh,v)Ωi
= (p̄h,∇ · v)Ωi

− 〈g,v · νi〉∂Ωi\Γ, v ∈ Vh,i,(6.3)

(∇ · ūh, w)Ωi
= (f, w)Ωi

, w ∈Wh,i.(6.4)

It is straightforward to show (see [20]) that the solution (uh, ph, λh) of (2.10)–(2.12)
satisfies

dh(λh, µ) = gh(µ), µ ∈ Λh,(6.5)

with

uh = u∗
h(λh) + ūh, ph = p∗h(λh) + p̄h.(6.6)

Lemma 6.1. The interface bilinear form dh(·, ·) is symmetric and positive semi-

definite on L2(Γ). If (2.14) holds, then dh(·, ·) is positive definite on Λh.

Proof. With v = u∗
h(µ) in (6.1) for some µ ∈ L2(Γ), we have

dh,i(µ, λ) = −〈λ,u∗
h(µ) · νi〉Γi

= (K−1u∗
h(λ),u

∗
h(µ))Ωi

= dh,i(λ, µ),(6.7)

which shows that dh(·, ·) is symmetric and

dh,i(µ, µ) = (K
−1u∗

h(µ),u
∗
h(µ))Ωi

≥ 0.(6.8)

For µ ∈ Λh, if (2.14) holds, the argument from Lemma 2.1 shows that dh(µ, µ) = 0
implies µ = 0.
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6.2. Error estimates for the mortar pressure. Denote by ‖ · ‖dh
the semi-

norm induced by dh(·, ·) on L
2(Γ), i.e.,

‖µ‖dh
= dh(µ, µ)

1/2, µ ∈ L2(Γ).

Theorem 6.2. For the mortar pressure λh of the mixed method (2.10)–(2.12), if
(3.18) holds, then there exists a positive constant C, independent of h, such that

‖p− λh‖dh
≤ C

n∑

i=1

(‖p‖r+1,Ωi
+ ‖u‖r,Ωi

)hr, 1 ≤ r ≤ k + 1,(6.9)

‖Php− λh‖dh
≤ C

n∑

i=1

(‖p‖r+1,Ωi
+ ‖u‖r,Ωi

)hr, 1 ≤ r ≤ k + 1.(6.10)

In the case of diagonal tensor K and RTN spaces on rectangular type grids,

‖p− λh‖dh
≤ C

n∑

i=1

(‖p‖r+3/2,Ωi
+ ‖u‖r+1/2,Ωi

)hr+1/2, 1 ≤ r ≤ k + 1,(6.11)

‖Php− λh‖dh
≤ C

n∑

i=1

(‖p‖r+3/2,Ωi
+ ‖u‖r+1/2,Ωi

)hr+1/2, 1 ≤ r ≤ k + 1.(6.12)

Proof. With (6.8) we have

‖p− λh‖dh
≤ C‖u∗

h(p)− u∗
h(λh)‖0,(6.13)

using that u∗
h(·) depends linearly on its argument. Define, for µ ∈ L2(Γ),

uh(µ) = u∗
h(µ) + ūh, ph(µ) = p∗h(µ) + p̄h,

and note that (uh(µ), ph(µ)) ∈ Vh ×Wh satisfy, for 1 ≤ i ≤ n,

(K−1uh(µ),v)Ωi
= (ph(µ),∇ · v)Ωi

− 〈µ,v · ν〉Γi

− 〈g,v · ν〉∂Ωi\Γ, v ∈ Vh,i,(6.14)

(∇ · uh(µ), w)Ωi
= (f, w)Ωi

, w ∈Wh,i.(6.15)

We now have

‖u∗
h(p)− u∗

h(λh)‖0 = ‖uh(p)− uh(λh)‖0

= ‖uh(p)− uh‖0

≤ ‖uh(p)− u‖0 + ‖u − uh‖0.(6.16)

Bound (6.9) now follows from (6.13), (6.16), Theorem 4.2, and the standard mixed
method estimate for (2.3)–(2.4) and (6.14)–(6.15) [28, 26, 14],

‖uh(p)− u‖0,Ωi
≤ C(‖p‖r+1,Ωi

+ ‖u‖r,Ωi
)hr, 1 ≤ r ≤ k + 1.

To show (6.11), we modify (6.16) to become

‖uh(p)− uh‖0 ≤ ‖uh(p)−Πu‖0 + ‖Πu −Π0u‖0 + ‖Π0u − uh‖0.(6.17)
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Bound (6.11) now follows from (6.13), (6.17), (3.30), (4.5), and a superconvergence
estimate for the standard mixed method [15] (see also [24, 17])

‖uh(p)−Πiu‖0,Ωi
≤ C‖u‖r+1,Ωi

hr+1, 1 ≤ r ≤ k + 1.

To prove (6.10) and (6.12), note that, by (6.1),

(K−1u∗
h(Php− p),u∗

h(Php− p))Ωi
= −〈Php− p,u∗

h(Php− p) · ν〉Γi

≤
∑

j

‖Php− p‖0,Γi,j
‖u∗

h(Php− p) · ν‖0,Γi,j

≤ C
∑

j

‖p‖r,Γi,j
hr‖u∗

h(Php− p)‖0,Ωi
h−1/2, 0 ≤ r ≤ k + 2,

using (3.1) and Lemma 4.1 for the last inequality. Therefore, with (6.8),

‖Php− p‖dh
≤ C

n∑

i=1

‖p‖r+3/2,Ωi
hr+1/2, 0 ≤ r ≤ k + 1.(6.18)

Bounds (6.10) and (6.12) follow from (6.9) and (6.11), respectively, using the triangle
inequality and (6.18).

Remark 6.1. In the case of the lowest order RTN spaces, it is proven in [12] that,
for any φ ∈ Λh, dh,i(φ, φ) is equivalent to |I∂ΩiQh,iφ|

2
1/2,∂Ωi

, where I∂Ωi is an inter-
polation operator onto the space of continuous piecewise linears on ∂Ωi. Therefore
‖ · ‖dh

can be characterized as a certain discrete H1/2-seminorm on Γ (see [30]). This
is also in accordance with the numerically observed O(h2) convergence for the mortars
in a discrete L2-norm (see section 8).

7. A substructuring domain decomposition algorithm. In this section
we discuss implementation of a parallel domain decomposition algorithm for solv-
ing the resulting linear system. We apply a substructuring algorithm by Glowinski
and Wheeler [20] to the lowest order RTN discretization on nonmatching multiblock
rectangular type grids. In our case we solve an interface problem in the space of mor-
tar pressures. We use the conjugate gradient method to solve the interface problem
(6.5). Note that Lemma 6.1 guarantees convergence of the iterative procedure in Λh.

Every iteration of the conjugate gradient requires an evaluation of the bilinear
form dh(·, ·), and therefore, solving subdomain problems (6.1)–(6.2) with a given
Dirichlet data in the mortar space Λh. Because of the property

dh,i(λ, µ) = dh,i(Qh,iλ,Qh,iµ),

the subdomain solves only use projections of the mortar data onto the local spaces.
Therefore, no change in the local solvers is needed for the implementation. Moreover,
the conjugate gradient is performed in the space

{(φL, φR) ∈ (L
2(Γ))2 : φL|Γi,j

∈ Qh,iΛh and φR|Γi,j
∈ Qh,jΛh, 1 ≤ i < j ≤ n}.

The conjugate gradient residual is the jump in the fluxes across subdomain boundaries.
The jump is computed after projecting the local boundary fluxes onto the mortar
space, as indicated by

dh(λ, µ) = −
n∑

i=1

〈u∗
h(λ) · νi, µ〉Γi

= −
n∑

i=1

〈Phu∗
h(λ) · νi, µ〉Γi

, λ, µ ∈ Λh.

Therefore the only additional computational cost compared to the case of matching
grids is computing the projections Qh,i : Λh → Vh,i · νi and Ph : Vh,i · νi → Λh.
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Fig. 8.1. Initial nonmatching grids for Example 1.

8. Numerical results. In this section we present three numerical tests confirm-
ing the theoretical convergence rates. All examples are on the unit square, use only
the lowest order RTN spaces on rectangles (so k = l = 0), and use a diagonal K.

In Example 1 we solve a problem with known analytic solution

p(x, y) = x3y4 + x2 + sin(xy)cos(y)

and tensor coefficient

K =

(
(x+ 1)2 + y2 0

0 (x+ 1)2

)
.

The boundary conditions are Dirichlet on the left and right edge and Neumann on
the rest of the boundary. The domain is divided into four subdomains with interfaces
along the x = 1/2 and y = 1/2 lines. The initial nonmatching grids are shown in
Figure 8.1. We test both continuous and discontinuous mortars. The initial mortar
grids on all interfaces have 4 elements with 5 degrees of freedom in the continuous
case and 2 elements with 4 degrees of freedom in the discontinuous case, therefore
satisfying the solvability condition (2.14).

Convergence rates for this test case are given in Table 8.1. The rates were estab-
lished by running the test case and 4 levels of grid refinement (we halve the element
diameters for each refinement) and computing a least squares fit to the error. We ob-
serve numerically convergence rates corresponding to those predicted by the theory.
The pressure error, |||p− ph|||, is the discrete L

2-norm induced by the midpoint rule
on Th. It is O(h

2)-close to ‖p̂ − ph‖0, which itself is superconvergent of O(h
2) from

Theorem 5.1. The discrete velocity error |||u − uh||| is superconvergent of O(h
3/2)

by Theorem 4.3. Finally, the discrete interface pressure error |||p − λh||| is actually
computed by summing over blocks i the discrete L2-norm of p − Qh,iλh induced by
the midpoint rule on the traces of Th,i on ∂Ωi ∩ Γ. This is essentially the L

2-norm,
and thus we might expect it to be 1/2 power of h better than ‖p − λh‖dh

, since the
latter is essentially an H1/2-seminorm by Remark 6.1. Since Theorem 6.2 implies
that ‖p − λh‖dh

is superconvergent of O(h3/2), we might expect to see |||p − λh|||
converging as O(h2); indeed we do.

The computed pressure and velocity with continuous and discontinuous mortars
on the first level of refinement are shown in Figure 8.2. Although both solutions look
the same, Table 8.1 indicates that they differ. This can also be seen in Figure 8.3,
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Table 8.1

Discrete norm errors and convergence rates for Example 1.

Continuous mortars Discontinuous mortars
1/h |||p− ph||| |||u − uh||| |||p− λh||| |||p− ph||| |||u − uh||| |||p− λh|||

8 9.62E-03 2.95E-02 1.31E-02 9.52E-03 4.12E-02 1.36E-02
16 2.41E-03 8.54E-03 3.31E-03 2.40E-03 1.36E-02 3.45E-03
32 6.04E-04 2.42E-03 8.30E-04 6.03E-04 4.55E-03 8.68E-04
64 1.51E-04 6.66E-04 2.08E-04 1.51E-04 1.54E-03 2.19E-04
128 3.91E-05 1.88E-04 5.39E-05 3.75E-05 5.29E-04 5.35E-05

Rate O(h1.99) O(h1.83) O(h1.99) O(h2.00) O(h1.57) O(h2.00)

A. Continuous mortars. B. Discontinuous mortars.

Fig. 8.2. Computed pressure (shade) and velocity (arrows) for Example 1.

where the magnified numerical error is shown. The error in the continuous mortar
case is concentrated at the cross points, where the only discontinuities in the mor-
tar space occur. The error in the discontinuous mortar case is distributed along the
interfaces and is somewhat larger. We should point out, however, that the discontin-
uous mortars provide flux continuity in a more local sense, as indicated by the flux
matching condition (2.12).

In Example 2 we test a problem with a discontinuous coefficient. We choose
K = I for 0 ≤ x < 1/2 and K = 10 ∗ I for 1/2 < x ≤ 1. The solution

p(x, y) =

{
x2y3 + cos(xy), 0 ≤ x ≤ 1/2,(

2x+9

20

)2
y3 + cos

(
2x+9

20
y
)
, 1/2 ≤ x ≤ 1

is chosen to be continuous and to have continuous normal flux at x = 1/2. The
domain has two subdomains with an interface along x = 1/2. The initial grids are
4× 8 on the left and 4× 11 on the right. Continuous mortars on a grid of 7 elements
with 8 degrees of freedom or discontinuous mortars on a grid of 4 elements with 8
degrees of freedom are introduced on the interface. Convergence rates for the test
case are given in Table 8.2; again they agree with the theory, even though K is mildly
discontinuous.

In Example 3 we compare the mortar element mixed method on locally refined
grids to the “slave” or “worker” nodes local refinement technique [16, 18]. In the
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A. Continuous mortars. B. Discontinuous mortars.

Fig. 8.3. Pressure and velocity error for Example 1.

Table 8.2

Discrete norm errors and convergence rates for Example 2 (discontinuous K).

Continuous mortars Discontinuous mortars
1/h |||p− ph||| |||u − uh||| |||p− λh||| |||p− ph||| |||u − uh||| |||p− λh|||

8 3.20E-04 1.60E-02 3.32E-04 3.38E-04 3.27E-02 1.22E-03
16 8.38E-05 4.27E-03 8.18E-05 8.55E-05 1.13E-02 3.17E-04
32 2.12E-05 1.18E-03 2.01E-05 2.14E-05 3.93E-03 8.01E-05
64 5.35E-06 3.41E-04 4.89E-06 5.34E-06 1.37E-03 2.01E-05
128 1.38E-06 1.05E-04 1.15E-06 1.35E-06 4.82E-04 5.02E-06

Rate O(h1.97) O(h1.81) O(h2.04) O(h1.99) O(h1.52) O(h1.98)

latter, the fine grid interface fluxes within a coarse cell are forced to be equal to the
coarse grid flux. We note that this scheme can be recovered as a special case of the
mortar element method with discontinuous mortars, if the trace of the fine grid is a
refinement by two of the interface grid. Indeed, in this case the flux matching condition
(2.12) becomes a local condition over two (four if d = 3) fine grid boundary elements
and forces all fine grid fluxes to be equal to the coarse grid flux. Our theory also
recovers the convergence and superconvergence results derived by Ewing and Wang
[18]. In the mortar method, however, the flux continuity condition can be relaxed by
choosing a coarser mortar space. In this case the fine grid fluxes are not forced to be
equal and approximate the solution better. Our numerical experience shows that this
may reduce the flux error on the interface by up to a factor of two.

We solve a problem on locally refined grids with solution and coefficient

p(x, y) = x3y2 + sin(xy) and K =

(
10 + 5cos(xy) 0

0 1

)
.

The domain is divided into four subdomains with interfaces along the x = 1/2 and
y = 1/2 lines. The domains are numbered starting from the lower left corner and
first increasing x. The initial grids are 4 × 4 on Ω1–Ω3 and 16 × 16 on Ω4. We use
discontinuous piecewise linear mortars on the nonmatching interface. We report the
numerical error on the grid and three levels of refinement for two cases. If the coarse
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Table 8.3

Discrete norm errors and convergence rates for Example 3 (locally refined grids).

Discontinuous mortars “Slave” nodes
1/h |||p− ph||| |||u − uh||| |||p− λh||| |||p− ph||| |||u − uh||| |||p− λh|||

8 1.12E-3 6.70E-2 3.80E-3 1.30E-3 1.45E-1 5.74E-3
16 2.67E-4 2.48E-2 1.03E-3 2.90E-4 5.00E-2 1.39E-3
32 6.57E-5 9.77E-3 2.72E-4 6.86E-5 1.74E-2 3.41E-4
64 1.64E-5 3.62E-3 6.93E-5 1.66E-5 6.09E-3 8.42E-5

Rate O(h2.03) O(h1.40) O(h1.93) O(h2.09) O(h1.52) O(h2.03)

A. Discontinuous mortars. B. “Slave” nodes.

Fig. 8.4. Pressure and velocity error for Example 3 (locally refined grids).

grid is n × n, we take a mortar grid with n − 1 elements in the first case and 2n
elements in the second case, which is equivalent to the “slave” nodes method. The
results are summarized in Table 8.3. The pressure and velocity error on the first level
of refinement are shown in Figure 8.4.
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