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MIXED GENERALIZED FRACTIONAL BROWNIAN MOTION

SHAYKHAH ALAJMI AND EZZEDINE MLIKI*

ABSTRACT. To extend several known centered Gaussian processes, we intro-
duce a new centered mixed self-similar Gaussian process called the mixed
generalized fractional Brownian motion, which could serve as a good model
for a larger class of natural phenomena. This process generalizes both the
well-known mixed fractional Brownian motion introduced by Cheridito [7]
and the generalized fractional Brownian motion introduced by Zili [29]. We
study its main stochastic properties, its non-Markovian and non-stationarity
characteristics and the conditions under which it is not a semimartingale. We
prove the long-range dependence properties of this process.

1. Introduction

Fractional Brownian motion on the whole real line (fBm for short) BH =
{BHE t € R} of Hurst parameter H is the best known centered Gaussian pro-
cess with long-range dependence. Its covariance function is

Cov(B{', B{T) = [t + s — |t — s["], (L.1)

1
2
where H is a real number in (0,1) and the case H = % corresponds to the Brow-
nian motion. It is the unique continuous Gaussian process starting from zero,
the self-similarity and stationarity of the increments are two main properties for
which fBm enjoyed successes as modeling tool in finance and telecommunications.
Researchers have applied fractional Brownian motion to a wide range of problems,
such as bacterial colonies, geophysical data, electrochemical deposition, particle
diffusion, DNA sequences and stock market indicators [20, 22]. In particular,
computer science applications of fBm include modeling network traffic and gener-
ating graphical landscapes [21]. The fBm was investigated in many papers (e.g.
[2, 12, 16, 17, 18, 19]). The main difference between fBm and regular Brownian
motion is that the increments in Brownian motion are independent, increments
for fBm are not.

In [4], the authors suggested another kind of extension of the Brownian motion,
called the sub-fractional Brownian motion (sfBm for short), which preserves most
properties of the fBm, but not the stationarity of the increments. It is a centered
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Gaussian process {# = {¢ff, t > 0}, defined by:

H:BtH'f‘Bft

¢! t>0

\/i ’ — Y
where H € (0,1). The case H = 3 corresponds to the Brownian motion.

The sfBm is intermediate between Brownian motion and fractional Brownian
motion in the sense that it has properties analogous to those of {Bm, self-similarity,
not Markovian but the increments on nonoverlapping intervals are more weakly
correlated, and their covariance decays polynomially at a higher rate in comparison
with fBm (for this reason in [4] is called sfBm). So, the sfBm does not generalize
the fBm. The sfBm was investigated in many papers (e.g. [3, 4, 24, 26]).

An extension of the sfBm was introduced by Zili in [28] as a linear combina-
tion of a finite number of independent sub-fractional Brownian motions. It was
called the mixed sub-fractional Brownian motion (msfBm for short). The msfBm
is a centered mixed self-similar Gaussian process and does not have stationary
increments. The msfBm do not generalize the fBm.

In [29], Zili introduced new model called the generalized fractional Brownian
motion (gfBm for short) which is an extension of both sub-fractional Brownian
motion and fractional Brownian motion. A gfBm with parameters a,b, and H, is
a process Z = {Zf(a,b),t > 0} defined by

ZH(a,b) = aBF +bBY,, t>0. (1.3)

The gfBm was investigated in [10, 30]. The gfBm generalize the sfBm but not the
mixed fractional Brownian motion.

The mixed fractional Brownian motion (mfBm for short) is a linear combina-
tion between a Brownian motion and an independent fractional Brownian motion
of Hurst parameter H. It was introduced by Cheridito [7] to present a stochastic
model of the discounted stock price in some arbitrage-free and complete finan-
cial markets. The mfBm is a centered Gaussian process starting from zero with
covariance function

(1.2)

b2
Cov(NH (a,b), NH (a,b)) = a®*(t A s) + 0} (" + s — |t — s*H) | (1.4)

with H € (0,1). When @ = 1 and b = 0, the mfBm is the Brownian motion and
when @ = 0 and b = 1, is the fBm. We refer also to [1, 7, 9, 25, 27] for further
information on this process.

In this paper, we introduce a new stochastic model, which we call the mixed
generalized fractional Brownian motion.

Definition 1.1. A mized generalized fractional Brownian motion (mgfBm for
short) of parameters a,b,c and H € (0, 1) is a centered Gaussian process

M (a,b,¢c) = {M(a,b,c), t >0},
defined on a probability space (2, F,P), with the covariance function

Clt9) = ¥ ns) + SR 4 2) el 42 - )

where t As =2 (t+s—[t—s]).

£ — 5", (15)
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The mgfBm is completely different from all the extensions mentioned above.
The process M (a,b,c) is motivated by the fact that this process already intro-
duced for specific values of a, b and ¢. Indeed M*(a,b,0) is the mixed fractional
Brownian motion and M*(0,b,c), is the generalized fractional Brownian motion.
This why we will name M (a,b, c) the mixed generalized fractional Brownian mo-
tion. It allows to deal with a larger class of modeled natural phenomena, including
those with stationary or non-stationary increments.

Our goal is to study the main stochastic properties of this new model, pay-
ing attention to the long-range dependence, self-similarity, increment stationary,
Markovity and semi-martingale properties.

2. The Main Properties

Existence of the mixed generalized fractional Brownian motion M (a,b, c) for
any H € (0,1) can be shown in the following way: consider the process

M (a,b,c) = aB; +bBF +¢BY,, t>0, (2.1)
where B = {B;, t € R} is a Brownian motion and Bf = {Bf ¢t € R} is an
independent fractional Brownian motion with Hurst parameter H € (0,1).

Using (1.1) and since B and B are independent we obtain the following lemma.

Lemma 2.1. For all s, t > 0, the process (2.1) is a centered Gaussian process
with covariance function given by (1.5).

Proof. Let s, t > 0 and C(t,s) = Cov (MtH(a, b,c), MH (a,b, c)) . Then
C(t,s) = Cov((aBy+bB{" +cBY,), (aBs +bBY +cB™,))
= a®(tAs)+b2Cov(BE, BE) + beCov(BE, BE,) + cbCov(B,, BH)
+c?Cov(BY,, BY)

b2 be
= d*(tAs)+ 5 (7 + 2 — |t — s + 5 (27 + 27 — |t + s?H)

b 2
+% (" + 7 — | — (t+s)*7) + 5 (7 + 2 — | — (¢t —s)?")
b2 b? b2 be be
_ 2 0" om 0" om 97\, 2H | YCom | Y€ om
= a(t/\s)+2t t5s Q\t s +2t t5s
b 2 b2 2
= a*(tAhs)+ %(t”f + %) — be|t + s]2H — (7—50)|t — s|?H,
Hence the covariance function of the process (2.1) is precisely C(t, s) given by
(1.5). Therefore the M (a,b, c) exists. O

Remark 2.1. Some special cases of the mized generalized fractional Brownian
motion:
(1) Ifa=0,b=1,c =0, then M*(0,1,0) is a fBm.
(2) Ifa=0,b=c= %, then MH (0, % %) is a sfBm.
(3) Ifa=1,b=0,c=0, then MH (1,0, ) is a Bm.
(4) Ifa =0, then MH(0,b,c), is a gfBm
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(5) If ¢ =0, then M*H (a,b,0), is a mfBm.
(6) If b= c, then M (a, %, %), is a smfBm.

So the mixed generalized fractional Brownian motion is, at the same, a gener-
alization of the fractional Brownian motion, sub-fractional Brownian motion, the
sub-mixed fractional Brownian motion, generalized fractional Brownian motion,
mixed fractional Brownian motion and of course of the standard Brownian motion.

Proposition 2.1. The mgfBm satisfies the following properties:
(1) For allt >0,
E (MF (a,b,0))" = a®t + (b° + & — (227 — 2)be) 2.
(2) Let0<s<tanda(t,s)=FE (MtH(a, b,c) — MSH(a,b,c))2). Then
E (M (a,b,c) — M (a,b, c))2 = |t — s| — 2% pe(t?H 4 s*H)
+(02 + A)|t — s + 2bc|t + s|*H.
(3) We have for all 0 < s < t,
a*(t = 5) + Vp.e.) (t — )27 < alt,s) < a®(t =) + Vip,e.m) (t — 5)°7,
where

Vo) = (b2 + ¢ = 2bc(22H 71 — 1)) 1e(b, e, H) + (b + %) 1p(b, ¢, H),

V(b,c7H) = (b2 + 02) 1c(CL, b7 H) + (b2 + Cz - 2bc(22H71 - 1)) l'D(b7 c, H)7

C={(bc,H) € R?x]0,1[; (H > % be > 0) or (H < % be < 0)},

and
1 1
D = {(b,c, H) € R*x]0,1[; (H > 3 be< 0) or (H < 3 be= 0)}.

Proof. (1) It is a direct consequence of (1.5).
(2) Let 0 < s <tand a(t,s) = E(M{(a,b,c) — M (a,b, c))Q. Then
alt,s) = E(M(a,b,¢)" +E (M (a,b,¢))? = 2B (M (a,b,c) M (a,b,c))
= a’t+ 0" 4 2bct®? — 22 et + PP+ aPs + 07?4 2bes?H
— 22 pes? 4 22H _202(t A s) — D2PH — 2?4 12|t — s|PH
—bet?H — bes?H 4 beft 4 s|2H — bt — cbs?H 4 cb|t + s|?H — 221
_2RH 2 g2l
= a®(t+s) — 22Hbe(t?H 4+ s2H) — 242 (t A s) + (b2 4+ A)|t — s|*H
+2bclt + s|?H
= a®|t —s| — 22Hbe(t*H + ) + (b2 + )|t — s + 2bclt + s|*".
(3) It is a direct consequence of the second item of Proposition 2.1 and Lemma

3 in [29].
O



MIXED GENERALIZED FRACTIONAL BROWNIAN MOTION 5

Proposition 2.2. For all (a,b,c) € R®\ {(0,0,0)} and H € (0,1) \ {3}, the
mgfBm is not a self-similar process.

Proof. This follows from the fact that, for fixed h > 0, the processes
{M,g(a7 b,c), t > O} and {hHMtH (a,b,c), t > O} are Gaussian, centered,
but don’t have the same covariance function. Indeed

2
C (ht,hs) = a®(ht A hs)+ % ((ht)*" + (hs)*" — |ht — hs|*H)
+% ((ht)*" + (hs)*™ — |t + hs|*")
+%b ((Rt)*™ 4 (hs)*™ — | = (ht + hs)[*")
2
C
+5 ((ht)*" + (hs)*™ — | — (ht — hs)|*H)
= a®(ht A hs) + f(ht)w + E(hs)m - ﬁ|hzf — hs|*H
B 2 2 2
b b b b b
+§c(ht)2H + Ec(hs)2H - 5c|ht + hs|* 4 Ec(ht)2H + g(hs)zh’
b 2 2 2
ot 4 s S ()2 4 S (hs)H — S|kt — sl
2
= a’h(tAs)+ pen L J;C) (&) + (s)*) — ben®" |t + 521
2 2
_h2H(b _|2_C )|t _ 8|2H.
On the other hand,
Cov (hHMtH(a7 b,c), k7 M (a,b, c)) = WHCo (MtH(a, b,c), M (a,b, c))
= a®h?H(tAs)

2
Lp2H (b;C) (tZH +SQH)

—bch?H |t + 5|1

—h2H (b2 + 62)
2
Then the mgfBm is not a self-similar process for all (a,b,c) € R*\ {(0,0,0)}. O

[t — 5|

Remark 2.2. As a consequence of Proposition 2.2, we see that:
(1) MH(0,b,c) is a self-similar process for all (b,c) € R2.
(2) M%(a, b,c) is a self-similar process for all (a,b,c) € R3.

Now, we will study the Markovian property.

Theorem 2.1. Assume H € (0,1)\ {3},a € R and (b,c) € R*\ {(0,0)}. Then
M*H (a,b,c) is not a Markovian process.

Proof. The process M (a,b,c) is a centered Gaussian. Then, if M/ (a,b,c) is a
Markovian process, according to Revuz and Yor [23], for all s < ¢t < u, we would
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have
C(s,u)C(t,t) = C(s,t)C(¢t,u).

We will only prove the theorem in the case where a # 0, the result with a = 0 is
known in [29]. For the proof we follow the proof of Proposition 1 given in [29].
Using Proposition 2.1, we get

C(s,u) = a%—i—@(uQH—i—sQH)—bc\u—&—sPH—MW—SFH,
Ct,t) = da’t+ (b +c — (22" —2)be) 27
C(s,t) = a%—i—%(ﬁ}l—&—s%{)—bc|t+s\2H—@|t—s\2H7
C(t,u) = a’t+ %(u%{—i—t%{) — belu + t]*H — @m-ﬂﬂf.
In the particular case where 1 < s =/t < t < u = t2, we have
CWHLE) = dt7 + %(t4H + 7y — be|t? 4¢3 2 — ®*+c) ;Cz) [t2 — ¢3)2H
Ct,t) = a’t+ (b®+c—(2°" —2)be) 27,
C(Vi,t) = a4 %(tﬂl +tH) —beft + 1227 — EE+ ) ;r ) It —t2|2H
C(t,t*) = d*t+ %(#H + t2H) — be|t? + 2 — ®*+) ; ) 12 — ¢22H,

Then by using that,
C(\/{f, tz)c(tv t) = C(\/Za t)C(t, t2)7
we have

b 2 b2 2
l:aQté—i-( _;C) (t4H+tH)_bc|t2+t%|2H_( ;C )|t2_t;|2H:|

x [a®t+ (b% + 2 — (227 — 2)be) 2]

b 2 b2 2
= [aQté IChy J;C) 27 1) — bt + 227 — '+ _gc )|t—t§|2H}
b 2 b2 2
N [a2t+ (bt —;c) (tHH 4 25y — pe|t? 4 ¢2H — "+ ;C )|t2 —t§|2H} .

It follows that

b 2 b2 2
[a%% 1 iH <( ZC) (14 ¢73H) _be|l + = 3|2H — "+ ;rc )|1 t3|2H)]

x [a®t+ (0% + & — (2°7 — 2)be) 2]

b 2 b2 2
- [aQt%th?H <( +20) (1+t*H)—bc|1+t*%|2H—7( ;C )|1t5|2H>}

b 2 b2 2
x {a2t+t4H <( +20) (1+t’2H)fbc\1+t’1|2H—7( ;C )|1t1|2H)] .
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Hence
a't? 4+ a? (0P + & — (22— 2)be) 213
+ a’ ((b+2c)2(1 3T —befl ¢ E P w+e) 302) 11— t—2|2H)
X t4H+1
+ (m;)z(l+t_3H)—bc|1+t_3|2H—(bz;cz)|1—t‘§|2H)
x (b4 - (221 — 2)bc) T
S BRI ((b+2c)2(1 o) pefy 4o - ) : i t‘1|2H>
x i3
+ a? ((b+20)2(1 +t7 ) el 72 2H — B+ ;FCZ) 11— t%|2H)
X t2H+1
+ <(bJ;C)2 L+t el 3 PH - ol ; al = t§|2H>

b 2 b2 2
<( J;C) (1+t—2H)7bc|1+t71|2H7( ;C )|1t1|2H) JOH

Take t7 as a common factor, we get

a? (0% +c* — (227 — 2)bc) A+

2 2 2
_|_a2 ((b—;C) (1—|—t_3H) _bcll+t—%|2H - (b _|2_C )|1 —t_3|2H> p—2H+1
b 2 b2 2
(P oy o gt 2 ‘;C)l—tiw)

x (b* 4+ ¢® — (22 — 2)bc)

2 2, 2
— g2 (aH;C) (1+t72H)_bc|1+t71|2H_ (b ‘;C )|1_t1|2H) (2H+S

b 2 b2 2
—|—a2<( 20) (1+t7H)_bC|1+t7%|2H_( ;LC )1—t5|2H> f4H+1

b 2 b2 2
+<( J;C) (1+t’H)fbc\1+t*%|2H77( JQFC >|1t§|2H>

b 2 b2 2
(b+¢) (1+t—2H)7bC|1+t71|2H7( tc )|1t12H>.

X
2 2
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Therefore
a?® (b + ¢ — (227 — 2)bc) ¢+

1 3
ta? [2<b £ (14 ) —be (14 2017 4 HEH ~ 1) 4 o(177))

1
—S B+ ) (1 —2Ht"3 + H(2H — 1)t ™3 + o(t_3)) {2H+

+ B(b + 0 (14473 e (14 207} + HEH = 1)t +o(t™))

f%(bQ +?) (1 —9Ht% 4 H(2H — 1)t + o(t*S))

x[b? 4+ ¢ — (227 — 2)b(]

1
= a? [Q(b +e)? (L4+¢72) —be (1+2Ht™ + H(2H — 1)t 2 4+ o(t?))
1 .
—5(1)2 +c*) (1—2Ht ' + H(2H — 1)t % +o(t™?)) } 2+

+a? [;(b +e)? 1+t ") —be (1 +2HtYV?2 L HQH — 1)t + o(t_l))

1
fi(b2 +&) (1-2Ht 7 + H2H — 1)t~ + o(t*1)> A

1 :
{50+ (1+¢) —be (1 YOHEE ¢+ HEQH - 1)+ o(fl))

(
(

P (1 —2H1"® + H(2H — 1)t 7' + O(t_l))
(

1
x| 5+ ) (1+t72") —be (1+2Ht™ "+ H2H — 1)t > 4+ o(t™?))
f%(bz +c%) (1—2Ht '+ H(2H — 1)t 2 4+ o(t™?)) } :

First case: 0 < H < %, a # 0 and b+ ¢ # 0. By Taylor’s expansion we get, as
t — oo,

a? (b2 42— (22H — 2)be) tAH a2%(b 4 ¢)2 B
+%(b b2 4 ¢ — (22H — )bt
~ aQ%(b +o)2 s 4 aQ%(b + )2 PHHL i(b + ¢)tt3,
Therefore
a® (b? + ¢ — (227 — 2)be) t~4H+3 4 %(b +¢)2[b? + & — (221 — 2)bcJt =31

1 1 f
~ a0+ )2+ 4 FIGROR S
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which is true if and only if

b—c)? b—c)?
( ) — (222 —92)bc =0 and a2< ) —a?(2*7 — 2)be = 0.
2 2
However, it is easy to check that
b—c)? b—c)?
Q722H72b0>0 and azﬂfa222H72bc>0,
2 2

for fixed ¢, b and every real a.

Second case: 0 < H < %7 a # 0 and b+ ¢ = 0. By Taylor’s expansion we get, as

t — oo,
a?[b? 4+ 2 — (228 — 2)bc]t_4H+% +a® [-2Hbe + (b* + ¢*)H] t=2H =3
+ [-2Hbe + (b* + ) H] x [b% + 2 — (227 - 2)bc] t=3
~ a*[-2Hbc+ (b*> + *)H] i [—2Hbc + (b* + ¢*)H| gty
+ [~2Hbe + (87 + A H] 3.
Hence

[ + ¢ — (221 = 2)be]t 42
+[~2Hbe + (8 + AV H] x 1+ — (227 —2)be] 172
~ a? [~2Hbe+ (8 + AV H| 45 4 [—2Hbe + (8 + ) H] 173,

which is true if and only if b = ¢ = 0. This is a contradiction.
Third case: % < H<1l,a# 0and b—c # 0. By Taylor’s expansion we get, as
t — oo,

a?[b? + @ — (227 — )bt 2 4 2H(b — )2t 23
FH(b —)?[b? + ¢ — (227 — 2)be]t 2
~ d?H(b— )% 273 £ 2H(b— )2t 41+ L H2(b—c)% 3.
Then
a?[b? + 2 — (22 — bt *HH3 4 H(b— ¢)2[b? + @ — (22 — 2)be]t 2
~ d?H(b— o)t 4 H+s L H2(b—o)% 3,

which is true if and only if

V(1 —H)+ A1 —H)+ (2—2*" +2H)bc] = 0.

However, it is easy to check that b2(1 — H) + c¢*(1 — H) + (2 — 22# + 2H)bc > 0
for fixed ¢, b and every real a.

Fourth case: % < H <1,a%# 0and b—c=0. By Taylor’s expansion we get, as
t — oo,

L1
a® (0* + ¢ — (227 — 2)be) 2 4 50+ e)?[b? + ¢ — (227 — 2)bcJt3H
1 1
~ a2§(b 4 o)A Z(b + )t 38,

which is true if and only if 2 — 22# = 0. This contradicts the fact that H # % (]
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Let us check the mixed self-similarity property of the mgfBm. This property
was introduced in [27] for the mfBm and investigated to show the Hélder continuity
of the mfBm. See also [11] for the sfBm case.

Proposition 2.3. For any h > 0, {Mﬁ(a, b, c)} 2 {MtH(ah%,bhH, chH)} , where
A
= "to have the same law”.

Proof. For fixed h > 0, the processes { M} (a,b,¢)} and { M/ (ah=,bhT ch™)} are
Gaussian and centered. Therefore, one only have to prove that they have the same
covariance function. But, for any s, ¢t > 0, since B and B are independent, then

2 2
C (ht,hs) = a*h(tAs)+ w [P (21 4 2 — |t — s|21)]
+be [R2H (PH + s2H — |t 4 s*H)]

Cov (MtH (ah®,bhH  ch®), MH (ah*  bhH, chH)) .

O

Proposition 2.4. For all a € R and (b,c) € R?\ {(0,0)}, the increments of the
mgfBm are not stationary.

Proof. Let a € R and (b,c) € R?\ {(0,0)}. For a fixed t > 0 consider the processes
{P;, t > 0} define by P, = M1 (a,b,c) — M (a,b,c). Using Proposition 2.1, we
get
Cou(P,P) = E (M (a.b.¢)~ M (a,b,c)’
= a*(t+s+s) — 22Hbe((t + 5)* + s2H) — 24%s
+(0% + At + 5 — 5| 4 2be|t + s+ s[*H
= a®(t+2s) — 22Hbe((t + 5)*H + s*) — 2a%s + (b% + )t
+2bclt + 25|
Using Proposition 2.1, we get
Cov(M{(a,b,c), M/ (a,b,c)) = a®t + (b* + & — (227 — 2)be) 2.
Since both processes are centered Gaussian, the inequality of covariance functions
implies that P; does not have the same distribution as M/ (a,b,c). Thus, the

incremental behavior of M (a,b,c) at any point in the future is not the same.
Hence the increments of M (a,b, c) are not stationary. O

Remark 2.3. As a consequence of Proposition 2.4, we see that:

(1) the increments of M (0,b,c) are not stationary for all (b,c) € R?\{(0,0)}.
(2) the increments of M* (a,b,0) are stationary for all (a,b) € R2.

Proposition 2.5. (1) Let H € (0,1). The mgfBm admits a version whose

sample paths are almost Holder continuous of order strictly less than %/\H.

(2) When b or ¢ not zero and H € (0,1) \ {3} the mgfBm is not a semi-
martingale.
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Proof. (1) Let s, t > 0 and a = 2. The proof follows by Kolmogorov criterion
from Lemma 3 in [29] and using Proposition 2.1 we get

E (M (a,b,c) — M (a,b,¢)|*) = a®t —s| —2°"be(t*! + 1)
+(b% + )|t — s|*H + 2bc|t + s>
S Ca‘t_ 8|(X(%/\H)’

where C, = (a2 + v(b, e, H)) and v ¢, fr) is given in Lemma 3 in [29].
(2) Suppose first that H < % We get from Proposition 2.1

Oé(t, 5) > ’Y(b,c,H) (t - S)2H'
Since 2H < 1 and 7(p,c, 7y > 0 then the assumption of Corollary 2.1 in [5]

is satisfied, and consequently the mgfBm is not a semi-martingale.
Suppose now that H > % We get from Proposition 2.1

G2 (t = 8) + Ao, (t — )™ < alt,5) < (a2 + Voo, )t — )12,
then
Vibse,in) (t = )T < alt, s) < (a® + vem) (t — ).
Since 1 < 2H < 2 and v ¢ i) > 0 then the assumption of Lemma 2.1 in

[5] is satisfied, and consequently the mgfBm is not a semi-martingale.
O

3. Long-range Dependence of the mgfBm Increments

Definition 3.1. We say that the increments of a stochastic process X are long-
range dependent if for every integer p > 1, we have

ZRX<p7p+n) = 00,

n>1
where
Rx(p,p+n) = E(Xp41 — Xp)(Xpint1 — Xpin)) -
This property was investigated in many papers (e.g. [3, 6, 8, 12, 20]).

Theorem 3.1. For every a € R and (b,c) € R?\ {(0,0)}, the increments of
M*(a,b,c) are long-range dependent if and only if H > % and b # c .
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Proof. For all n > 1 and p > 1, we have
Ry (p,p+n)
= E((M}(a,bc)— M (a,bc)) (M), 1(a,b,c) — MM, (a,b,c)))
= F (szH(a, b, c)MZfinH(a, bc)) —E (M;il(a,b, C)M]ﬂn(a7 b,c))
—E (M (a,b,c)M[ . 1 (a,b,c)) + E (M} (a,b,c) M}, (a,b,c))
= Clp+Lp+n+1)—Clp+1L,p+n)—C(p,p+n+1)+C(p,p+n)

— ¥ +1)+(b+c)2 ((p+1)2 D2HY _ pe(2 o)2H
= a*(p 5 (p+ 1)+ +n+1)*) —be(2p+n+2)
b? + 2 b+ c)?
_( 5 )n2H_a2(p+1)_( 5 ) ((p+1)2H+<p+n)2H)
2 .2
+be(2p +n + 1) + wm- 11252 —a?p
b 2
_% (p2H+(p+n+1)2H) —|—bc(2p+n—|—1)2H
2, 2
L) ;C)|n—|—1|2H.
Hence
2 .2
Ry (p,p+mn) = W((n+1)2H—2nH+(n—l)2H)

—be ((2p+n+2)2" —2(2p+n+1)2" + (2p+n)*H).

Then for every integer p > 1, by Taylor’s expansion, as n — co, we have

1 2H 1 2H
<1+) _2+<1_>
n n
2+ 2\ W+ 1 o\ 24
(1+ Pt ) —2<1+ Pt >+(1+p)
n n n

= H2H - 1)n*"72(b - ¢)?
—4H(2H — 1)(H — 1)be(2p + 1)n?773(1 4 o(1)).

If b # ¢, we see that as n — oo,
Rur(p,p+n) = H2H — 1)n*7=2(b — ¢)2.

b% + 2
n2H

Ry(p,p+n) = 5

—ben?H

Then
1
E Ru(p,p+n)=00 < 2H-2>-1 & H> .

n>1 2
If b = ¢, then, as n — oo,

Ry (p,p+n) ~4H(2H — 1)(H — 1)a®(2p + 1)n2H73.
For every H € (0,1), we have 2H — 3 < —1 and, consequently,

ZRM(p,p+n) < 0.

n>1
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Remark 3.1. (1) For alla € R and b € R\ {0}, the increments of

10.

11.

12.

13.

14.

15.

16.

M*(a,b,0) are long-range dependent if and only if H > %

(2) Ifb=c= %, the increments of M (0, %, %) are short-range dependent
if and only if H € (0,1). But if b # ¢, the increments of M (0,b,¢) are
long-range dependent if and only if H > %

(3) From [4], the increments of M (0, %, %) on intervals [u,u + 7], [u +
r,u+ 2r] are more weakly correlated than those of M*(0,1,0).

(4) From [30], If H > 1, b*+¢® = 1 and bc > 0, the increments of M™(0,b, c)
are more weakly correlated than those of M (0,1,0), but more strongly

H 11
correlated than those of M* (0, 75 E)

(5) From [30], If H > %, (be <0 and (b—c)? < 1) or (be > 0 and b*>+c? < 1),

the increments of M (0,b,c) are more strongly correlated than those of
H H 11
both M*(0,1,0) and M™ (0, ok E)
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