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MIXED GENERALIZED FRACTIONAL BROWNIAN MOTION

SHAYKHAH ALAJMI AND EZZEDINE MLIKI*

Abstract. To extend several known centered Gaussian processes, we intro-
duce a new centered mixed self-similar Gaussian process called the mixed
generalized fractional Brownian motion, which could serve as a good model
for a larger class of natural phenomena. This process generalizes both the
well-known mixed fractional Brownian motion introduced by Cheridito [7]
and the generalized fractional Brownian motion introduced by Zili [29]. We
study its main stochastic properties, its non-Markovian and non-stationarity
characteristics and the conditions under which it is not a semimartingale. We
prove the long-range dependence properties of this process.

1. Introduction

Fractional Brownian motion on the whole real line (fBm for short) B
H =

{BH

t
, t 2 R} of Hurst parameter H is the best known centered Gaussian pro-

cess with long-range dependence. Its covariance function is

Cov(BH

t
, B

H

s
) =

1

2
[|t|2H + |s|2H � |t� s|2H ], (1.1)

where H is a real number in (0, 1) and the case H = 1
2 corresponds to the Brow-

nian motion. It is the unique continuous Gaussian process starting from zero,
the self-similarity and stationarity of the increments are two main properties for
which fBm enjoyed successes as modeling tool in finance and telecommunications.
Researchers have applied fractional Brownian motion to a wide range of problems,
such as bacterial colonies, geophysical data, electrochemical deposition, particle
di↵usion, DNA sequences and stock market indicators [20, 22]. In particular,
computer science applications of fBm include modeling network tra�c and gener-
ating graphical landscapes [21]. The fBm was investigated in many papers (e.g.
[2, 12, 16, 17, 18, 19]). The main di↵erence between fBm and regular Brownian
motion is that the increments in Brownian motion are independent, increments
for fBm are not.

In [4], the authors suggested another kind of extension of the Brownian motion,
called the sub-fractional Brownian motion (sfBm for short), which preserves most
properties of the fBm, but not the stationarity of the increments. It is a centered
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Gaussian process ⇠H =
�
⇠
H

t
, t � 0

 
, defined by:

⇠
H

t
=

B
H

t
+B

H

�tp
2

, t � 0, (1.2)

where H 2 (0, 1). The case H = 1
2 corresponds to the Brownian motion.

The sfBm is intermediate between Brownian motion and fractional Brownian
motion in the sense that it has properties analogous to those of fBm, self-similarity,
not Markovian but the increments on nonoverlapping intervals are more weakly
correlated, and their covariance decays polynomially at a higher rate in comparison
with fBm (for this reason in [4] is called sfBm). So, the sfBm does not generalize
the fBm. The sfBm was investigated in many papers (e.g. [3, 4, 24, 26]).

An extension of the sfBm was introduced by Zili in [28] as a linear combina-
tion of a finite number of independent sub-fractional Brownian motions. It was
called the mixed sub-fractional Brownian motion (msfBm for short). The msfBm
is a centered mixed self-similar Gaussian process and does not have stationary
increments. The msfBm do not generalize the fBm.

In [29], Zili introduced new model called the generalized fractional Brownian
motion (gfBm for short) which is an extension of both sub-fractional Brownian
motion and fractional Brownian motion. A gfBm with parameters a, b, and H, is
a process ZH =

�
Z

H

t
(a, b), t � 0

 
defined by

Z
H

t
(a, b) = aB

H

t
+ bB

H

�t
, t � 0. (1.3)

The gfBm was investigated in [10, 30]. The gfBm generalize the sfBm but not the
mixed fractional Brownian motion.

The mixed fractional Brownian motion (mfBm for short) is a linear combina-
tion between a Brownian motion and an independent fractional Brownian motion
of Hurst parameter H. It was introduced by Cheridito [7] to present a stochastic
model of the discounted stock price in some arbitrage-free and complete finan-
cial markets. The mfBm is a centered Gaussian process starting from zero with
covariance function

Cov(NH

t
(a, b), NH

s
(a, b)) = a

2(t ^ s) +
b
2

2

�
t
2H + s

2H � |t� s|2H
�
, (1.4)

with H 2 (0, 1). When a = 1 and b = 0, the mfBm is the Brownian motion and
when a = 0 and b = 1, is the fBm. We refer also to [1, 7, 9, 25, 27] for further
information on this process.

In this paper, we introduce a new stochastic model, which we call the mixed
generalized fractional Brownian motion.

Definition 1.1. A mixed generalized fractional Brownian motion (mgfBm for
short) of parameters a, b, c and H 2 (0, 1) is a centered Gaussian process

M
H(a, b, c) = {MH

t
(a, b, c), t � 0},

defined on a probability space (⌦,F ,P), with the covariance function

C(t, s) = a
2(t ^ s) +

(b+ c)2

2
(t2H + s

2H)� bc(t+ s)2H � (b2 + c
2)

2
|t� s|2H , (1.5)

where t ^ s = 1
2 (t+ s� |t� s|) .
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The mgfBm is completely di↵erent from all the extensions mentioned above.
The process M

H(a, b, c) is motivated by the fact that this process already intro-
duced for specific values of a, b and c. Indeed M

H(a, b, 0) is the mixed fractional
Brownian motion and M

H(0, b, c), is the generalized fractional Brownian motion.
This why we will name MH(a, b, c) the mixed generalized fractional Brownian mo-
tion. It allows to deal with a larger class of modeled natural phenomena, including
those with stationary or non-stationary increments.

Our goal is to study the main stochastic properties of this new model, pay-
ing attention to the long-range dependence, self-similarity, increment stationary,
Markovity and semi-martingale properties.

2. The Main Properties

Existence of the mixed generalized fractional Brownian motion M
H(a, b, c) for

any H 2 (0, 1) can be shown in the following way: consider the process

M
H

t
(a, b, c) = aBt + bB

H

t
+ cB

H

�t
, t � 0, (2.1)

where B = {Bt, t 2 R} is a Brownian motion and B
H = {BH

t
, t 2 R} is an

independent fractional Brownian motion with Hurst parameter H 2 (0, 1).

Using (1.1) and since B and B
H are independent we obtain the following lemma.

Lemma 2.1. For all s, t � 0, the process (2.1) is a centered Gaussian process

with covariance function given by (1.5).

Proof. Let s, t � 0 and C(t, s) = Cov
�
M

H

t
(a, b, c),MH

s
(a, b, c)

�
. Then

C(t, s) = Cov
� �

aBt + bB
H

t
+ cB

H

�t

�
,
�
aBs + bB

H

s
+ cB

H

�s

� �

= a
2(t ^ s) + b

2
Cov(BH

t
, B

H

s
) + bcCov(BH

t
, B

H

�s
) + cbCov(BH

�t
, B

H

s
)

+c
2
Cov(BH

�t
, B

H

�s
)

= a
2(t ^ s) +

b
2

2

�
t
2H + s

2H � |t� s|2H
�
+

bc

2

�
t
2H + s

2H � |t+ s|2H
�

+
cb

2

�
t
2H + s

2H � |� (t+ s)|2H
�
+

c
2

2

�
t
2H + s

2H � |� (t� s)|2H
�

= a
2(t ^ s) +

b
2

2
t
2H +

b
2

2
s
2H � b

2

2
|t� s|2H +

bc

2
t
2H +

bc

2
s
2H

= a
2(t ^ s) +

(b+ c)2

2
(t2H + s

2H)� bc|t+ s|2H � (b2 + c
2)

2
|t� s|2H .

Hence the covariance function of the process (2.1) is precisely C(t, s) given by
(1.5). Therefore the M

H(a, b, c) exists. ⇤
Remark 2.1. Some special cases of the mixed generalized fractional Brownian

motion:

(1) If a = 0, b = 1, c = 0, then M
H(0, 1, 0) is a fBm.

(2) If a = 0, b = c = 1p
2
, then M

H(0, 1p
2
,

1p
2
) is a sfBm.

(3) If a = 1, b = 0, c = 0, then M
H(1, 0, 0) is a Bm.

(4) If a = 0, then M
H(0, b, c), is a gfBm.
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(5) If c = 0, then M
H(a, b, 0), is a mfBm.

(6) If b = c, then M
H(a, bp

2
,

bp
2
), is a smfBm.

So the mixed generalized fractional Brownian motion is, at the same, a gener-
alization of the fractional Brownian motion, sub-fractional Brownian motion, the
sub-mixed fractional Brownian motion, generalized fractional Brownian motion,
mixed fractional Brownian motion and of course of the standard Brownian motion.

Proposition 2.1. The mgfBm satisfies the following properties:

(1) For all t � 0,

E
�
M

H

t
(a, b, c)

�2
= a

2
t+

�
b
2 + c

2 � (22H � 2)bc
�
t
2H

.

(2) Let 0  s < t and ↵(t, s) = E
�
M

H

t
(a, b, c)�M

H

s
(a, b, c))2

�
. Then

E
�
M

H

t
(a, b, c)�M

H

s
(a, b, c)

�2
= a

2|t� s|� 22Hbc(t2H + s
2H)

+(b2 + c
2)|t� s|2H + 2bc|t+ s|2H .

(3) We have for all 0  s < t,

a
2(t� s) + �(b,c,H)(t� s)2H  ↵(t, s)  a

2(t� s) + ⌫(b,c,H)(t� s)2H ,

where

�(b,c,H) = (b2 + c
2 � 2bc(22H�1 � 1))1C(b, c,H) + (b2 + c

2)1D(b, c,H),

⌫(b,c,H) = (b2 + c
2)1C(a, b,H) + (b2 + c

2 � 2bc(22H�1 � 1))1D(b, c,H),

C = {(b, c,H) 2 R2⇥]0, 1[; (H >
1

2
, bc � 0) or (H <

1

2
, bc  0)},

and

D = {(b, c,H) 2 R2⇥]0, 1[; (H >
1

2
, bc  0) or (H <

1

2
, bc � 0)}.

Proof. (1) It is a direct consequence of (1.5).

(2) Let 0  s < t and ↵(t, s) = E
�
M

H

t
(a, b, c)�M

H

s
(a, b, c)

�2
. Then

↵(t, s) = E
�
M

H

t
(a, b, c)

�2
+ E

�
M

H

s
(a, b, c)

�2 � 2E
�
M

H

t
(a, b, c)MH

s
(a, b, c)

�

= a
2
t+ b

2
t
2H + 2bct2H � 22Hbct

2H + c
2
t
2H + a

2
s+ b

2
s
2H + 2bcs2H

�22Hbcs
2H + c

2
s
2H � 2a2(t ^ s)� b

2
t
2H � b

2
s
2H + b

2|t� s|2H

�bct
2H � bcs

2H + bc|t+ s|2H � cbt
2H � cbs

2H + cb|t+ s|2H � c
2
t
2H

�c
2
s
2H + c

2|t� s|2H

= a
2(t+ s)� 22Hbc(t2H + s

2H)� 2a2(t ^ s) + (b2 + c
2)|t� s|2H

+2bc|t+ s|2H

= a
2|t� s|� 22Hbc(t2H + s

2H) + (b2 + c
2)|t� s|2H + 2bc|t+ s|2H .

(3) It is a direct consequence of the second item of Proposition 2.1 and Lemma
3 in [29].

⇤
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Proposition 2.2. For all (a, b, c) 2 R3 \ {(0, 0, 0)} and H 2 (0, 1) \ { 1
2}, the

mgfBm is not a self-similar process.

Proof. This follows from the fact that, for fixed h > 0, the processes�
M

H

ht
(a, b, c), t � 0

 
and

�
h
H
M

H

t
(a, b, c), t � 0

 
are Gaussian, centered,

but don’t have the same covariance function. Indeed

C (ht, hs) = a
2(ht ^ hs) +

b
2

2

�
(ht)2H + (hs)2H � |ht� hs|2H

�

+
bc

2

�
(ht)2H + (hs)2H � |ht+ hs|2H

�

+
cb

2

�
(ht)2H + (hs)2H � |� (ht+ hs)|2H

�

+
c
2

2

�
(ht)2H + (hs)2H � |� (ht� hs)|2H

�

= a
2(ht ^ hs) +

b
2

2
(ht)2H +

b
2

2
(hs)2H � b

2

2
|ht� hs|2H

+
bc

2
(ht)2H +

bc

2
(hs)2H � bc

2
|ht+ hs|2H +

bc

2
(ht)2H +

bc

2
(hs)2H

�bc

2
|ht+ hs|2H +

c
2

2
(ht)2H +

c
2

2
(hs)2H � c

2

2
|ht� hs|2H

= a
2
h(t ^ s) + h

2H (b+ c)2

2

�
(t)2H + (s)2H

�
� bch

2H |t+ s|2H

�h
2H (b2 + c

2)

2
|t� s|2H .

On the other hand,

Cov
�
h
H
M

H

t
(a, b, c), hH

M
H

s
(a, b, c)

�
= h

2H
Cov

�
M

H

t
(a, b, c),MH

s
(a, b, c)

�

= a
2
h
2H(t ^ s)

+h
2H (b+ c)2

2

�
t
2H + s

2H
�

�bch
2H |t+ s|2H

�h
2H (b2 + c

2)

2
|t� s|2H .

Then the mgfBm is not a self-similar process for all (a, b, c) 2 R3 \ {(0, 0, 0)}. ⇤

Remark 2.2. As a consequence of Proposition 2.2, we see that:

(1) M
H(0, b, c) is a self-similar process for all (b, c) 2 R2

.

(2) M
1
2 (a, b, c) is a self-similar process for all (a, b, c) 2 R3

.

Now, we will study the Markovian property.

Theorem 2.1. Assume H 2 (0, 1) \
�

1
2

 
, a 2 R and (b, c) 2 R2 \ {(0, 0)} . Then

M
H(a, b, c) is not a Markovian process.

Proof. The process M
H(a, b, c) is a centered Gaussian. Then, if MH

t
(a, b, c) is a

Markovian process, according to Revuz and Yor [23], for all s < t < u, we would
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have

C(s, u)C(t, t) = C(s, t)C(t, u).

We will only prove the theorem in the case where a 6= 0, the result with a = 0 is
known in [29]. For the proof we follow the proof of Proposition 1 given in [29].
Using Proposition 2.1, we get

C(s, u) = a
2
s+

(b+ c)2

2
(u2H + s

2H)� bc|u+ s|2H � (b2 + c
2)

2
|u� s|2H ,

C(t, t) = a
2
t+

�
b
2 + c

2 � (22H � 2)bc
�
t
2H

,

C(s, t) = a
2
s+

(b+ c)2

2
(t2H + s

2H)� bc|t+ s|2H � (b2 + c
2)

2
|t� s|2H ,

C(t, u) = a
2
t+

(b+ c)2

2
(u2H + t

2H)� bc|u+ t|2H � (b2 + c
2)

2
|u� t|2H .

In the particular case where 1 < s =
p
t < t < u = t

2, we have

C(
p
t, t

2) = a
2
t
1
2 +

(b+ c)2

2
(t4H + t

H)� bc|t2 + t
1
2 |2H � (b2 + c

2)

2
|t2 � t

1
2 |2H ,

C(t, t) = a
2
t+

�
b
2 + c

2 � (22H � 2)bc
�
t
2H

,

C(
p
t, t) = a

2
t
1
2 +

(b+ c)2

2
(t2H + t

H)� bc|t+ t
1
2 |2H � (b2 + c

2)

2
|t� t

1
2 |2H ,

C(t, t2) = a
2
t+

(b+ c)2

2
(t4H + t

2H)� bc|t2 + t|2H � (b2 + c
2)

2
|t2 � t

1
2 |2H .

Then by using that,

C(
p
t, t

2)C(t, t) = C(
p
t, t)C(t, t2),

we have

a
2
t
1
2 +

(b+ c)2

2
(t4H + t

H)� bc|t2 + t
1
2 |2H � (b2 + c

2)

2
|t2 � t

1
2 |2H

�

⇥
⇥
a
2
t+

�
b
2 + c

2 � (22H � 2)bc
�
t
2H
⇤

=


a
2
t
1
2 +

(b+ c)2

2
(t2H + t

H)� bc|t+ t
1
2 |2H � (b2 + c

2)

2
|t� t

1
2 |2H

�

⇥

a
2
t+

(b+ c)2

2
(t4H + t

2H)� bc|t2 + t|2H � (b2 + c
2)

2
|t2 � t

1
2 |2H

�
.

It follows that

a
2
t
1
2 + t

4H

✓
(b+ c)2

2
(1 + t

�3H)� bc|1 + t
� 3

2 |2H � (b2 + c
2)

2
|1� t

� 3
2 |2H

◆�

⇥
⇥
a
2
t+

�
b
2 + c

2 � (22H � 2)bc
�
t
2H
⇤

=


a
2
t
1
2 + t

2H

✓
(b+ c)2

2
(1 + t

�H)� bc|1 + t
� 1

2 |2H � (b2 + c
2)

2
|1� t

� 1
2 |2H

◆�

⇥

a
2
t+ t

4H

✓
(b+ c)2

2
(1 + t

�2H)� bc|1 + t
�1|2H � (b2 + c

2)

2
|1� t

�1|2H
◆�

.
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Hence

a
4
t
3
2 + a

2
�
b
2 + c

2 � (22H � 2)bc
�
t
2H+ 1

2

+ a
2

✓
(b+ c)2

2
(1 + t

�3H)� bc|1 + t
� 3

2 |2H � (b2 + c
2)

2
|1� t

� 3
2 |2H

◆

⇥ t
4H+1

+

✓
(b+ c)2

2
(1 + t

�3H)� bc|1 + t
� 3

2 |2H � (b2 + c
2)

2
|1� t

� 3
2 |2H

◆

⇥
�
b
2 + c

2 � (22H � 2)bc
�
t
6H

= a
4
t
3
2 + a

2

✓
(b+ c)2

2
(1 + t

�2H)� bc|1 + t
�1|2H � (b2 + c

2)

2
|1� t

�1|2H
◆

⇥ t
4H+ 1

2

+ a
2

✓
(b+ c)2

2
(1 + t

�H)� bc|1 + t
� 3

2 |2H � (b2 + c
2)

2
|1� t

� 3
2 |2H

◆

⇥ t
2H+1

+

✓
(b+ c)2

2
(1 + t

�H)� bc|1 + t
� 3

2 |2H � (b2 + c
2)

2
|1� t

� 3
2 |2H

◆

⇥
✓
(b+ c)2

2
(1 + t

�2H)� bc|1 + t
�1|2H � (b2 + c

2)

2
|1� t

�1|2H
◆
t
6H

.

Take t
6H as a common factor, we get

a
2
�
b
2 + c

2 � (22H � 2)bc
�
t
�4H+ 1

2

+a
2

✓
(b+ c)2

2
(1 + t

�3H)� bc|1 + t
� 3

2 |2H � (b2 + c
2)

2
|1� t

� 3
2 |2H

◆
t
�2H+1

+

✓
(b+ c)2

2
(1 + t

�3H)� bc|1 + t
� 3

2 |2H � (b2 + c
2)

2
|1� t

� 3
2 |2H

◆

⇥
�
b
2 + c

2 � (22H � 2)bc
�

= a
2

✓
(b+ c)2

2
(1 + t

�2H)� bc|1 + t
�1|2H � (b2 + c

2)

2
|1� t

�1|2H
◆
t
�2H+ 1

2

+a
2

✓
(b+ c)2

2
(1 + t

�H)� bc|1 + t
� 1

2 |2H � (b2 + c
2)

2
|1� t

� 1
2 |2H

◆
t
�4H+1

+

✓
(b+ c)2

2
(1 + t

�H)� bc|1 + t
� 1

2 |2H � (b2 + c
2)

2
|1� t

� 1
2 |2H

◆

⇥
✓
(b+ c)2

2
(1 + t

�2H)� bc|1 + t
�1|2H � (b2 + c

2)

2
|1� t

�1|2H
◆
.
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Therefore

a
2
�
b
2 + c

2 � (22H � 2)bc
�
t
�4H+ 1

2

+a
2


1

2
(b+ c)2

�
1 + t

�3H
�
� bc

⇣
1 + 2Ht

� 3
2 +H(2H � 1)t�3 + �(t�3)

⌘

�1

2
(b2 + c

2)
⇣
1� 2Ht

� 3
2 +H(2H � 1)t�3 + �(t�3)

⌘�
t
�2H+1

+


1

2
(b+ c)2

�
1 + t

�3H
�
� bc

⇣
1 + 2Ht

� 3
2 +H(2H � 1)t�3 + �(t�3)

⌘

�1

2
(b2 + c

2)
⇣
1� 2Ht

� 3
2 +H(2H � 1)t�3 + �(t�3)

⌘�

⇥[b2 + c
2 � (22H � 2)bc]

= a
2


1

2
(b+ c)2

�
1 + t

�2H
�
� bc

�
1 + 2Ht

�1 +H(2H � 1)t�2 + �(t�2)
�

�1

2
(b2 + c

2)
�
1� 2Ht

�1 +H(2H � 1)t�2 + �(t�2)
� �

t
�2H+ 1

2

+a
2


1

2
(b+ c)2

�
1 + t

�H
�
� bc

⇣
1 + 2Ht

�1/2 +H(2H � 1)t�1 + �(t�1)
⌘

�1

2
(b2 + c

2)
⇣
1� 2Ht

� 1
2 +H(2H � 1)t�1 + �(t�1)

⌘�
t
�4H+1

+


1

2
(b+ c)2

�
1 + t

�H
�
� bc

⇣
1 + 2Ht

� 1
2 +H(2H � 1)t�1 + �(t�1)

⌘

�1

2
(b2 + c

2)
⇣
1� 2Ht

� 1
2 +H(2H � 1)t�1 + �(t�1)

⌘�

⇥

1

2
(b+ c)2

�
1 + t

�2H
�
� bc

�
1 + 2Ht

�1 +H(2H � 1)t�2 + �(t�2)
�

�1

2
(b2 + c

2)
�
1� 2Ht

�1 +H(2H � 1)t�2 + �(t�2)
� �

.

First case: 0 < H <
1
2 , a 6= 0 and b + c 6= 0. By Taylor’s expansion we get, as

t ! 1,

a
2
�
b
2 + c

2 � (22H � 2)bc
�
t
�4H+ 1

2 + a
2 1

2
(b+ c)2t�5H+1

+
1

2
(b+ c)2[b2 + c

2 � (22H � 2)bc]t�3H

⇡ a
2 1

2
(b+ c)2t�4H+ 1

2 + a
2 1

2
(b+ c)2t�5H+1 +

1

4
(b+ c)4t�3H

.

Therefore

a
2
�
b
2 + c

2 � (22H � 2)bc
�
t
�4H+ 1

2 +
1

2
(b+ c)2[b2 + c

2 � (22H � 2)bc]t�3H

⇡ a
2 1

2
(b+ c)2t�4H+ 1

2 +
1

4
(b+ c)4t�3H

,
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which is true if and only if

(b� c)2

2
� (22H � 2)bc = 0 and a

2 (b� c)2

2
� a

2(22H � 2)bc = 0.

However, it is easy to check that

(b� c)2

2
� (22H � 2)bc > 0 and a

2 (b� c)2

2
� a

2(22H � 2)bc > 0,

for fixed c, b and every real a.
Second case: 0 < H <

1
2 , a 6= 0 and b + c = 0. By Taylor’s expansion we get, as

t ! 1,

a
2[b2 + c

2 � (22H � 2)bc]t�4H+ 1
2 + a

2
⇥
�2Hbc+ (b2 + c

2)H
⇤
t
�2H� 1

2

+
⇥
�2Hbc+ (b2 + c

2)H
⇤
⇥
⇥
b
2 + c

2 � (22H � 2)bc
⇤
t
� 3

2

⇡ a
2
⇥
�2Hbc+ (b2 + c

2)H
⇤
t
�2H� 1

2 + a
2
⇥
�2Hbc+ (b2 + c

2)H
⇤
t
�4H+ 1

2

+
⇥
�2Hbc+ (b2 + c

2)H
⇤2

t
� 3

2 .

Hence

a
2[b2 + c

2 � (22H � 2)bc]t�4H+ 1
2

+
⇥
�2Hbc+ (b2 + c

2)H
⇤
⇥
⇥
b
2 + c

2 � (22H � 2)bc
⇤
t
� 3

2

⇡ a
2
⇥
�2Hbc+ (b2 + c

2)H
⇤
t
�4H+ 1

2 +
⇥
�2Hbc+ (b2 + c

2)H
⇤2

t
� 3

2 ,

which is true if and only if b = c = 0. This is a contradiction.
Third case: 1

2 < H < 1, a 6= 0 and b � c 6= 0. By Taylor’s expansion we get, as
t ! 1,

a
2[b2 + c

2 � (22H � 2)bc]t�4H+ 1
2 + a

2
H(b� c)2t�2H� 1

2

+H(b� c)2[b2 + c
2 � (22H � 2)bc]t�

3
2

⇡ a
2
H(b� c)2t�2H� 1

2 + a
2
H(b� c)2t�4H+ 1

2 +H
2(b� c)4t�

3
2 .

Then

a
2[b2 + c

2 � (22H � 2)bc]t�4H+ 1
2 +H(b� c)2[b2 + c

2 � (22H � 2)bc]t�
3
2

⇡ a
2
H(b� c)2t�4H+ 1

2 +H
2(b� c)4t�

3
2 ,

which is true if and only if
⇥
b
2(1�H) + c

2(1�H) + (2� 22H + 2H)bc
⇤
= 0.

However, it is easy to check that b2(1 �H) + c
2(1 �H) + (2 � 22H + 2H)bc > 0

for fixed c, b and every real a.
Fourth case: 1

2 < H < 1, a 6= 0 and b � c = 0. By Taylor’s expansion we get, as
t ! 1,

a
2
�
b
2 + c

2 � (22H � 2)bc
�
t
�4H+ 1

2 +
1

2
(b+ c)2[b2 + c

2 � (22H � 2)bc]t�3H

⇡ a
2 1

2
(b+ c)2t�4H+ 1

2 +
1

4
(b+ c)4t�3H

,

which is true if and only if 2� 22H = 0. This contradicts the fact that H 6= 1
2 . ⇤
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Let us check the mixed self-similarity property of the mgfBm. This property
was introduced in [27] for the mfBm and investigated to show the Hölder continuity
of the mfBm. See also [11] for the sfBm case.

Proposition 2.3. For any h > 0,
�
M

H

ht
(a, b, c)

 4
=
n
M

H

t
(ah

1
2 , bh

H
, ch

H)
o
, where

4
= ”to have the same law”.

Proof. For fixed h > 0, the processes {MH

ht
(a, b, c)} and {MH

t
(ah

1
2 , bh

H
, ch

H)} are
Gaussian and centered. Therefore, one only have to prove that they have the same
covariance function. But, for any s, t � 0, since B and B

H are independent, then

C (ht, hs) = a
2
h(t ^ s) +

(b2 + c
2)

2

⇥
h
2H

�
t
2H + s

2H � |t� s|2H
�⇤

+bc
⇥
h
2H

�
t
2H + s

2H � |t+ s|2H
�⇤

= Cov

⇣
M

H

t
(ah

1
2 , bh

H
, ch

H),MH

s
(ah

1
2 , bh

H
, ch

H)
⌘
.

⇤

Proposition 2.4. For all a 2 R and (b, c) 2 R2 \ {(0, 0)}, the increments of the

mgfBm are not stationary.

Proof. Let a 2 R and (b, c) 2 R2 \{(0, 0)}. For a fixed t � 0 consider the processes
{Pt, t � 0} define by Pt = M

H

t+s
(a, b, c) �M

H

s
(a, b, c). Using Proposition 2.1, we

get

Cov(Pt, Pt) = E
�
M

H

t+s
(a, b, c)�M

H

s
(a, b, c)

�2

= a
2(t+ s+ s)� 22Hbc((t+ s)2H + s

2H)� 2a2s

+(b2 + c
2)|t+ s� s|2H + 2bc|t+ s+ s|2H

= a
2(t+ 2s)� 22Hbc((t+ s)2H + s

2H)� 2a2s+ (b2 + c
2)t2H

+2bc|t+ 2s|2H .

Using Proposition 2.1, we get

Cov(MH

t
(a, b, c),MH

t
(a, b, c)) = a

2
t+

�
b
2 + c

2 � (22H � 2)bc
�
t
2H

.

Since both processes are centered Gaussian, the inequality of covariance functions
implies that Pt does not have the same distribution as M

H

t
(a, b, c). Thus, the

incremental behavior of MH(a, b, c) at any point in the future is not the same.
Hence the increments of MH(a, b, c) are not stationary. ⇤

Remark 2.3. As a consequence of Proposition 2.4, we see that:

(1) the increments of M
H(0, b, c) are not stationary for all (b, c) 2 R2\{(0, 0)}.

(2) the increments of M
H(a, b, 0) are stationary for all (a, b) 2 R2

.

Proposition 2.5. (1) Let H 2 (0, 1). The mgfBm admits a version whose

sample paths are almost Hölder continuous of order strictly less than
1
2^H.

(2) When b or c not zero and H 2 (0, 1) \ { 1
2} the mgfBm is not a semi-

martingale.
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Proof. (1) Let s, t � 0 and ↵ = 2. The proof follows by Kolmogorov criterion
from Lemma 3 in [29] and using Proposition 2.1 we get

E
�
|MH

t
(a, b, c)�M

H

s
(a, b, c)|↵

�
= a

2|t� s|� 22Hbc(t2H + s
2H)

+(b2 + c
2)|t� s|2H + 2bc|t+ s|2H

 C↵|t� s|↵( 1
2^H)

,

where C↵ =
�
a
2 + ⌫(b, c,H)

�
and ⌫(b,c,H) is given in Lemma 3 in [29].

(2) Suppose first that H <
1
2 . We get from Proposition 2.1

↵(t, s) � �(b,c,H)(t� s)2H .

Since 2H < 1 and �(b,c,H) > 0 then the assumption of Corollary 2.1 in [5]
is satisfied, and consequently the mgfBm is not a semi-martingale.
Suppose now that H >

1
2 . We get from Proposition 2.1

a
2(t� s) + �(b,c,H)(t� s)2H  ↵(t, s)  (a2 + ⌫(b,c,H))(t� s)1^2H

,

then

�(b,c,H)(t� s)2H  ↵(t, s)  (a2 + ⌫(b,c,H))(t� s)2H .

Since 1 < 2H < 2 and ⌫(b,c,H) > 0 then the assumption of Lemma 2.1 in
[5] is satisfied, and consequently the mgfBm is not a semi-martingale.

⇤

3. Long-range Dependence of the mgfBm Increments

Definition 3.1. We say that the increments of a stochastic process X are long-

range dependent if for every integer p � 1, we have

X

n�1

RX(p, p+ n) = 1,

where

RX(p, p+ n) = E ((Xp+1 �Xp)(Xp+n+1 �Xp+n)) .

This property was investigated in many papers (e.g. [3, 6, 8, 12, 20]).

Theorem 3.1. For every a 2 R and (b, c) 2 R2 \ {(0, 0)}, the increments of

M
H(a, b, c) are long-range dependent if and only if H >

1
2 and b 6= c .
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Proof. For all n � 1 and p � 1, we have

RM (p, p+ n)

= E
� �

M
H

p+1(a, b, c)�M
H

p
(a, b, c)

� �
M

H

p+n+1(a, b, c)�M
H

p+n
(a, b, c)

� �

= E
�
M

H

p+1(a, b, c)M
H

p+n+1(a, b, c)
�
� E

�
M

H

p+1(a, b, c)M
H

p+n
(a, b, c)

�

�E
�
M

H

p
(a, b, c)MH

p+n+1(a, b, c)
�
+ E

�
M

H

p
(a, b, c)MH

p+n
(a, b, c)

�

= C(p+ 1, p+ n+ 1)� C(p+ 1, p+ n)� C(p, p+ n+ 1) + C(p, p+ n)

= a
2(p+ 1) +

(b+ c)2

2

�
(p+ 1)2H + (p+ n+ 1)2H

�
� bc(2p+ n+ 2)2H

� (b2 + c
2)

2
n
2H � a

2(p+ 1)� (b+ c)2

2

�
(p+ 1)2H + (p+ n)2H

�

+bc(2p+ n+ 1)2H +
(b2 + c

2)

2
|n� 1|2H � a

2
p

� (b+ c)2

2

�
p
2H + (p+ n+ 1)2H

�
+ bc(2p+ n+ 1)2H

+
(b2 + c

2)

2
|n+ 1|2H .

Hence

RM (p, p+ n) =
(b2 + c

2)

2

�
(n+ 1)2H � 2nH + (n� 1)2H

�

�bc
�
(2p+ n+ 2)2H � 2(2p+ n+ 1)2H + (2p+ n)2H

�
.

Then for every integer p � 1, by Taylor’s expansion, as n ! 1, we have

RM (p, p+ n) =
b
2 + c

2

2
n
2H

"✓
1 +

1

n

◆2H

� 2 +

✓
1� 1

n

◆2H
#

�bcn
2H

"✓
1 +

2p+ 2

n

◆2H

� 2

✓
1 +

2p+ 1

n

◆
+

✓
1 +

2p

n

◆2H
#

= H(2H � 1)n2H�2(b� c)2

�4H(2H � 1)(H � 1)bc(2p+ 1)n2H�3(1 + �(1)).
If b 6= c, we see that as n ! 1,

RM (p, p+ n) ⇡ H(2H � 1)n2H�2(b� c)2.

Then
X

n�1

RM (p, p+ n) = 1 , 2H � 2 > �1 , H >
1

2
.

If b = c, then, as n ! 1,

RM (p, p+ n) ⇡ 4H(2H � 1)(H � 1)a2(2p+ 1)n2H�3
.

For every H 2 (0, 1), we have 2H � 3 < �1 and, consequently,
X

n�1

RM (p, p+ n) < 1.
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⇤
Remark 3.1. (1) For all a 2 R and b 2 R \ {0}, the increments of

M
H(a, b, 0) are long-range dependent if and only if H >

1
2 .

(2) If b = c = 1p
2
, the increments of M

H(0, 1p
2
,

1p
2
) are short-range dependent

if and only if H 2 (0, 1). But if b 6= c, the increments of M
H(0, b, c) are

long-range dependent if and only if H >
1
2 .

(3) From [4], the increments of M
H(0, 1p

2
,

1p
2
) on intervals [u, u + r], [u +

r, u+ 2r] are more weakly correlated than those of M
H(0, 1, 0).

(4) From [30], If H >
1
2 , b

2+c
2 = 1 and bc � 0, the increments of M

H(0, b, c)
are more weakly correlated than those of M

H(0, 1, 0), but more strongly

correlated than those of M
H(0, 1p

2
,

1p
2
).

(5) From [30], If H � 1
2 , (bc  0 and (b�c)2  1) or (bc � 0 and b

2+c
2  1),

the increments of M
H(0, b, c) are more strongly correlated than those of

both M
H(0, 1, 0) and M

H(0, 1p
2
,

1p
2
).
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