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Abstract

Motivation: Integration of data from different modalities is a necessary step for multi-scale data

analysis in many fields, including biomedical research and systems biology. Directed graphical

models offer an attractive tool for this problem because they can represent both the complex,

multivariate probability distributions and the causal pathways influencing the system. Graphical

models learned from biomedical data can be used for classification, biomarker selection and func-

tional analysis, while revealing the underlying network structure and thus allowing for arbitrary

likelihood queries over the data.

Results: In this paper, we present and test new methods for finding directed graphs over mixed

data types (continuous and discrete variables). We used this new algorithm, CausalMGM, to iden-

tify variables directly linked to disease diagnosis and progression in various multi-modal datasets,

including clinical datasets from chronic obstructive pulmonary disease (COPD). COPD is the third

leading cause of death and a major cause of disability and thus determining the factors that cause

longitudinal lung function decline is very important. Applied on a COPD dataset, mixed graphical

models were able to confirm and extend previously described causal effects and provide new

insights on the factors that potentially affect the longitudinal lung function decline of COPD

patients.

Availability and implementation: The CausalMGM package is available on http://www.causalmgm.

org.

Contact: benos@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Commonly studied biological and biomedical data are inherently

multi-modal: they include both discrete variables (e.g. gender, thera-

peutic protocol, disease subtype, polymorphisms, mutations) and

continuous variables (e.g. drug dose, clinical tests, gene expression,

methylation and protein abundance data). The sizes of relevant

databases containing these data have become enormous. In many

problems, the number of potentially relevant variables and cellular

pathways demands the aid of fast, accurate, automated search meth-

ods for predicting causal relations. Directed probabilistic graphical

models (PGMs) can represent these causal relationships based on the

conditional (in)dependencies of the data. In addition, these models

fit a joint probability distribution to high-dimensional observations.

Causal graphs are represented as directed graphs or collections of

directed graphs with identical conditional independencies. The

resulting graphs can provide guidance to experimentalists and clini-

cians and are useful for classification and prediction of clinical out-

comes. A number of methods for learning directed graphs have been

developed in the past, but they typically assume (for proof of asymp-

totic correctness) that all variables are of the same distribution type:

categorical (multinomial), Gaussian, conditional Gaussian or linear

non-Gaussian.

Several groups have developed methods to learn undirected

graphs over mixed data types (Chen et al., 2014; Cheng et al., 2013;

Fellinghauer et al., 2013; Lee and Hastie, 2013; Tur and Castelo,

2012; Yang et al., 2014); and directed graphs over mixed variables

under certain distributional assumptions (Bøttcher, 2001; Romero

et al., 2006). One of the popular methods for learning undirected

mixed graphical models (MGM) is a pseudolikelihood method (Lee

and Hastie, 2013), which we later offered several improvements of

(Sedgewick et al., 2016). A major problem of the undirected (i.e.

non-causal) graphs, apart from the lack of direction of the repre-

sented interactions, is that they are “moralized” graphs; meaning,

the parents of a variable are themselves always connected. This can

create a large number of false positive edges. In biomedical research,

directed causal graphs have been applied to microbiome (Kitsios

et al., 2018) genetics of disease (Zhang et al., 2013). However, in

the latter case the network learning is restricted in the sense that

SNPs can only be parents of other nodes and the comparison is be-

tween different models of disease phenotypes and gene expression

that are led by the SNPs.

The problem of learning directed graphs over mixed data has

been tackled in computer science conferences only recently (Cui

et al., 2016; Raghu et al., 2018a). In this paper, we present and test

new methods for learning directed MGMs. Figure 1 shows how our

approach can be applied to medicine. Patient data are collected from

different scales, including molecular (e.g. omics), tissue, organ and

individual. They are normalized and passed to CausalMGM frame-

work, which consists of two steps. First, we learn the undirected

graph, which we use as a skeleton to perform local directionality

determinations with appropriate conditional independence tests we

present here. The final learned graph can be used in many applica-

tions including identification of causal pathways between the multi-

modal variables, biomarker selection and patient stratification.

We applied CausalMGM on two publicly available datasets con-

sisting of mixtures of multi-modal data (omics, disease). We also

applied it on a comprehensive clinical dataset from patients with

COPD in order to identify the variables that are causally linked to

longitudinal lung function decline. COPD is the third leading cause

of death and a major cause of disability and health care costs in the

US (Kochanek et al., 2011). COPD cases are traditionally defined

using spirometric thresholds of airflow obstruction, i.e. a reduction

in the ratio of forced expiratory volume in one second/forced vital

capacity (FEV1/FVC) < 0.7. Progression is defined by longitudinal

decline in FEV1 (2011; Mannino et al., 2007). Currently, there is no

good way to predict progression (lung function decline over time)

mainly because many of the factors causally linked to it remain un-

known. It is expected that causal modeling over well-phenotyped

COPD cohorts can help our understanding of the factors that shape

COPD progression.

Related work on causal modeling. The problem of learning a

sparse undirected graph structure over mixed data has previously

attracted some attention (Bøttcher, 2001; Chen et al., 2014; Cheng

et al., 2013; Fellinghauer et al., 2013; Lee and Hastie, 2013;

Romero et al., 2006; Tur and Castelo, 2011; Yang et al., 2014). The

Tur and Castelo method is suitable for studying expression quantita-

tive trait loci (eQTLs), but it does not allow for analysis of down-

stream discrete clinical variables, because it cannot learn

connections between categorical variables. Few proposals suggest a

node-wise regression approach for learning networks over a variety

of distributions of continuous and discrete variables (Chen et al.,

2014; Cheng et al., 2013; Fellinghauer et al., 2013).
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Fig. 1. Schematic view of CausalMGM and its applications
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The idea of using an undirected method to estimate a superstruc-

ture of the true graph, and then restricting the search space of a

directed search algorithm to the superstructure has previously been

studied for continuous, possibly non-Gaussian data with linear

interactions between nodes (Loh and Bühlmann, 2014). Like our

proposed method, Loh and Bühlmann first find an undirected graph

which serves as an estimate of the moralization of the true graph.

The two primary differences between this study and our methods

are that Loh and Bühlmann only look at continuous data in their

study, and that the directed search is a score-based method while we

focus on constraint-based directed search methods here. Another re-

cent method is Copula PC (Cui et al., 2016), which uses a two-step

approach. First, it assumes that discrete variables come from con-

tinuous latent variables and estimates the latent variables. In the se-

cond step, it runs PC (or Rank PC for non-parametric estimation) to

find the directed graph. The success of this method depends on how

well the continuous-to-discrete approximation works on a given

dataset.

2 Materials and methods

2.1 Datasets
We compared CausalMGM to other methods on simulated data (see

Supplementary Material) and tested it in three biological and clinical

datasets: (i) TCGA breast cancer, (ii) Lung Genomics Resource

Consortium (LGRC) and (iii) Pittsburgh Specialized Center of

Clinically Oriented Research (SCCOR). The TCGA and LGRC

serve as proof-of-principle, showing that CausalMGM can recover

known interactions between gene expression and clinical variables.

The SCCOR dataset includes only clinical data from 385 COPD

patients that had completed the baseline and a 2-year follow up

visit, and we used it to identify which factors measured in visit-1 are

directly linked to lung function decline, observed two years later. All

datasets are described in detail in the Supplementary Material.

2.2 Undirected graph learning
Learning a stable, undirected graph over mixed data is the first step

of CausalMGM. For this, we used the method we describe in

Sedgewick et al., 2016 (see also, Supplementary Material). In our

experiments with synthetic data, we learned MGM graphs across a

range of edge sparsity penalties: seven values evenly spaced on the

log2 scale over the range 0:05 � k � 0:4. For the high dimension-

al data, we added two values to extend this range to k � 0:8.

2.3 Directed graph search methods
Given an edge scoring method, graph search algorithms are efficient

heuristics to search the exponential space of all possible graph con-

figurations. Here we test two popular algorithms, PC-stable and

CPC-stable (Colombo and Maathuis, 2014) (description in

Supplementary Material). In this paper, we present a likelihood ratio

test (LRT) based procedure for conditional independence testing of

mixed data types. In addition, instead of starting from a fully con-

nected graph, our method first calculates an undirected graph as in

(Sedgewick et al., 2016) and uses it as starting point for PC-stable

and CPC-stable. We call these algorithm variants MGM-PCS and

MGM-CPCS, respectively.

2.4 Stability selection
Besides our StEPS subsampling procedure for selecting the parame-

ters for stable MGM graphs (Sedgewick et al., 2016), we also tested

CPSS (Shah and Samworth, 2013). CPSS is a variation of the

Stability Selection (Meinshausen and Bühlmann, 2010) that both

loosens the assumptions on the edge selection procedure, and tight-

ens the bounds on the error rate, allowing for a less stringent thresh-

old. Besides the obvious benefit of tighter bounds, the loose

assumptions are especially attractive to us, as we would like to be

able to substitute a variety of algorithms without worrying about

violating the theoretical framework of the method. This method

works by learning networks over subsamples of the data and count-

ing how many times a (directed) edge appears. Rather than calculat-

ing network instabilities from these empirical edge probabilities,

edges are selected by simply thresholding the probabilities. The

threshold is calculated from the number of subsamples, the average

number of selected edges and the number of variables using Shah

and Samworth’s procedure. The user specifies an error control rate

where errors are defined as edges that have a lower than random

probability of being selected in a given subsample. We ran CPSS in

conjunction with MGM-PCS and MGM-CPCS with a ¼ 0:05 and

k ¼ 0:1 for the LD dataset and with k ¼ 0:2 for the HD dataset

with error rates q 2 f0:001; 0:01; 0:05; 0:1g.

2.5 Edge recovery evaluation
To evaluate network estimation performance, we compare the

Markov equivalence classes of the estimated and true networks.

Markov equivalence classes represent the variable independence and

conditional relationships for an acyclic directed graph by removing

the direction from edges that are free to point in either direction

without altering the independence relationships in the network. For

example, directed graphs X ! Y ! Z and X  Y  Z both have

the Markov equivalence class X� Y � Z while the graph X !
Y  Z (v-structure) would remain the same when converted to a

Markov equivalence class. Thus, Markov equivalent graphs share

the same variables, have the same adjacencies and imply the same in-

dependence and conditional independence relations among their

variables. We also consider performance on skeleton estimation,

(i.e. node adjacencies, without edge orientations).

We use standard classification statistics to evaluate the recov-

ery of the undirected adjacencies from the skeleton of the true

graph. Precision, also known as true discovery rate or positive

predictive value is the proportion of predicted edges that are

found in the true graph. Recall, also known as sensitivity or true

positive rate, is the proportion of edges in the true graph that

were found in the predicted graph. For direction recovery, we

use these same statistics applied to the recovery of only the

directed edges in the Markov equivalence class of the true graph.

So, in the context of direction recovery, precision is the number

of directed edges in the predicted graph that are found in the

true graph out of the total number of directed edges in the pre-

dicted graph. Bi-directed edges are treated as undirected edges

for these statistics because they do not give an indication of

which edge direction is more likely.

We use the Matthews correlation coefficient (MCC) (Matthews,

1975) as a measure for overall recovery performance that strikes a

balance between precision and recall. The MCC is a formulation of

Pearson’s product-moment correlation for two binary variables (i.e.

true edge indicators and predicted edge indicators). In addition, we

use the structural Hamming distance (SHD) (Tsamardinos et al.,

2006) as a combined measure of adjacency and direction recovery.

The SHD is the minimum number of edge insertions, deletions and

directions changes, where only undirected edges are inserted or

deleted, to get from the true Markov equivalence class to the esti-

mated equivalence class.
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3 Results

One of the important components of constraint based methods for

learning a graph is the edge scoring. This is typically achieved with a

hypothesis test for conditional dependence of two variables, X and

Y, given a conditioning set of variables, S. The null hypothesis is

that X and Y are independent given S, which is denoted by

X ?Y j S. By definition, if this null hypothesis is true:

P X; Yð jSÞ ¼ P XSð ÞPðYjSÞ

Rearranging, we find:

P Xð jSÞ ¼ P X; Yð jSÞ
P Yð jSÞ

¼ P XY; Sð Þ

So, in order to test X ?Y j S, it suffices to test if P XSð Þ ¼
P Xð jY; SÞ which is done via likelihood ratio test (LRT) of two

regressions. This test is known to follow the chi-squared

distribution.

2 ln
L hXYSð Þ
L hXSð Þ

� �
� X2ðdXdYÞ
� �

where h represents the regression coefficients to model X given S

with and without Y as an additional independent variable. This test

is used by PC-stable (Colombo and Maathuis, 2014) but we modify

it to accommodate mixed data types. Specifically, we define the

degrees of freedom, dX and dY , of each variable to be (i) 1 if the vari-

able is continuous and (ii) the number of categories minus 1 if the

variable is categorical. Although this description uses regressions

with X as the dependent variable, the same reasoning allows us to

use Y as the dependent variable instead.

The regressions in this test allow us to formulate this test so that

any of the variables can be continuous or categorical. We preform

linear or multinomial logistic regressions if the dependent variable is

continuous or categorical, respectively. Because of this, if X and Y

are of different variable types, we have a choice of whether X or Y

should be the independent variable that determines whether we per-

form logistic or linear regressions. Our own experiments (see

Supplementary Material) and observations in previous studies (Chen

et al., 2014) suggest that a linear regression will give a more accurate

test result than a logistic regression for these continuous-discrete

edges. To handle any dependent categorical variables in the regres-

sion, we convert each k-level categorical variable to k-1 binary

variables.

It is also possible to conduct these tests by regressing Y and S

onto X and using a t-test to determine if the regression coefficient of

Y is significantly different from 0. In the continuous setting, the

t-test and LRT give virtually identical results, but not with discrete

or mixed data. If Y is categorical this procedure requires performing

a test on each dummy variable associated with Y and then combin-

ing them using Fisher’s method. The main advantage of using t-tests

over the LRT that it only requires one regression instead of two, so

it is significantly faster. The downside is that in our experiments we

found that it had less power to detect true edges (Supplementary Fig.

S1) and was less robust at low sample sizes, particularly on edges

that required a logistic regression. Because of this, we will work ex-

clusively with the LRT based test here.

3.1 Evaluation on simulated data
In order to determine the limitations of the algorithms, we per-

formed experiments using two different dataset sizes and randomly

drawn DAG structures. In addition, since optimal parameter setting

is a difficult problem that may depend on the needs and goals of the

user, we studied a range of possible parameter settings to show the

relationship between these settings and edge recovery performance.

3.1.1 Adjacency recovery

Supplementary Figure S2A shows the adjacency recovery perform-

ance of PC-stable, MGM-PCS and CPSS on the HD dataset. CPC-

stable and MGM-CPCS are not shown because they have the same

adjacency predictions as the PC algorithms. Settings of k < 0.2 for

the MGM-PCS algorithm are omitted because they extensively over-

lap with the PC-stable curves. Despite the apparent overlap, these

denser MGM structures do cause a slight decrease in the precision of

MGM-PCS compared to PC-stable, although this difference is not

significant at any of the tested settings. For example, at a ¼ 0:05

and k ¼ 0:14, MGM-PCS has an average precision of 0.739 (stand-

ard error of 0.0057) compared to PC-stable which achieves mean

precision of 0.744 (standard error is 0.0055). We expect that in the

limit of k ! 0, MGM-PCS becomes equivalent to PC-stable. On

the other extreme, the highest settings of lambda result in very

sparse initial graphs, which have good precision but poor recall. In

general, we see that adding the MGM step increases precision of the

PC-stable procedure, at a small cost to recall, depending on the

sparsity parameter setting. We see a similar trend in the LD dataset

as well (Supplementary Fig. S2B). In addition, all of our algorithms

have both lower precision and recall on edges involving discrete var-

iables, which suggests that they are more difficult to learn. These

observations differ from the LD setting where we actually achieve

the best recall on these dd edges, although still diminished precision

compared to cc and cd. In the LD datasets, Copula PC performs

very poorly on edges with discrete variables, which could be attrib-

uted to its assumption of monotonic relations (which are not always

present in categorical data). We note that Copula PC is unable to es-

timate its correlation matrix in settings where p>n, so it was

excluded from the HD results. Finally, these results show that CPSS

is a good option for users that want to ensure very high precision in

their network estimates, especially in LD datasets and is certainly

preferable to using an overly sparse setting of lambda.

3.1.2 Directionality recovery

Next, we evaluated how well each algorithm was able to recover the

directions of the edges of the true Markov equivalence class. For

these tests, the positive class consists of all estimated directed edges

and the negative class is both undirected edges and the absence of an

edge. So, an estimated edge is only considered a true positive if it

correctly identifies both the existence and the orientation of the

edge. Figure 2A shows these results across all of the algorithms.

Starting from an (undirected) MGM graph increases direction recov-

ery performance in PC-stable. The main reason for this improve-

ment appears to be the fact that PC-stable alone returns a large

number of bidirected edges and only finds a small number of edges

with a single direction. Bidirected edges are returned when the

v-structure orientation rule in step-2 of PC-stable implies both direc-

tions for an edge. We treat these as undirected edges in our statistics.

Starting from an MGM graph reduces the number of bidirected

edges and increases the number of directed edge predictions. This is

evident by the large increase in directed edge recall, but this comes

at the price of reduced precision for higher independence test thresh-

olds, a 2 f0:05; 0:1g.
Figure 2B gives a detailed view of the direction recovery per-

formance of CPC-stable, MGM-CPCS and CPSS. As with adjacency

recovery, we see that as we increase lambda we achieve higher
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precision at the cost of recall. The reduced recall in k 2 f0:28; 0:4g
is only slight combined with a significant increase in precision. We

can also see that our heuristic for adapting CPSS to directed network

recovery is perhaps too conservative as the recall is greatly reduced

while precision is near perfect. Indeed, with this set up CPSS predicts

the directions of less than 10 edges on average, for the most lenient

error rate, q ¼ 0:05, so it does not seem to be a useful option for

edge direction predictions.

Overall, direction recovery is difficult in high dimensions and in-

corporation of prior information can help (Manatakis et al., 2018).

While the MGM-PCS method approaches direction recall of 0.3,

this is paired with abysmal precision of less than 0.5. CPC-stable

and MGM-CPCS give us reasonable precision, but they are able to

recall less than 15% of true directed edges. We use a strict heuristic

to adapt CPSS to the problem of direction estimation that produces

extremely high precision.

3.1.3 Combined measures of network recovery

The Structural Hamming Distance (SHD) is a combined measure of

adjacency and direction that gives us an alternative network estima-

tion metric that does not necessitate balancing precision versus re-

call. Table 1 shows the “best case” performance of the algorithms,

where the parameter settings are chosen to maximize the SHD both

averaged over all edges and broken down by each edge type. Since

SHD is a distance measure, smaller values indicate better perform-

ance. By this measure, MGM-PCS and MGM-CPCS both signifi-

cantly outperform their counterparts on the HD data. We see a

similar trend in the LD data (Supplementary Fig. S3), where MGM-

PCS performs significantly better than PC-stable, while MGM-

CPCS has a slight but non-significant advantage over CPC-stable.

Since the best-case performance will be difficult to achieve when

the true graph is unknown, especially in this setting where a robust

parameter setting scheme is not readily available, we also show

SHD performance versus the number of predicted graph edges.

These results, presented in Figure 3, show that for parameter settings

for MGM-CPCS that produce similar numbers of edge predictions

to CPC-stable, the hybrid algorithm can improve SHD performance.

Very sparse settings of k result in networks with a large SHD be-

cause so many edges are missing compared to the true graph. These

too-sparse settings of the MGM are evident from the number of pre-

dicted edges, however, so they should be easy for a user to identify.

3.1.4 Run time comparisons

We compared the running times of our algorithms at various param-

eter settings. In the HD dataset MGM-PCS and MGM-CPCS are sig-

nificantly faster than PC-stable for sparser settings of k, but

Fig. 2. Precision-Recall curves of edge direction recovery on high-dimension-

al dataset. (A) Full range of algorithms and edge types. (B) Detail view of CPC-

stable and MGM-CPC-stable performance averaged over all edge types.

Parameter range: 0.2 � k � 0.8; 0.01 � a � 0.1. Bars correspond to one stand-

ard error

Table 1. Parameter settings with the best SHD performance by

edge type in high-dimensional dataset

Algorithm a k Edge type SHD

PC-Stable 0.01 none all 600.95 (2.25)

(PCS) 0.01 none cc 130.00 (2.340)

0.01 none cd 308.40 (4.20)

0.001 none dd 160.45 (3.24)

MGM-PCS 0.01 0.14 all 567.75 (3.34)

0.05 0.14 cc 108.45 (2.21)

0.01 0.14 cd 294.70 (3.74)

0.001 0.1 dd 157.30 (3.28)

CPC-Stable 0.01 none all 588.10 (2.37)

(CPCS) 0.05 none cc 111.60 (2.44)

0.01 none cd 307.05 (4.18)

0.01 none dd 160.80 (2.85)

MGM-CPCS 0.1 0.4 all 564.90 (4.46)

0.1 0.57 cc 107.05 (2.32)

0.1 0.4 cd 296.70 (4.17)

0.1 0.4 dd 157.05 (3.25)

Note: k and a refer to the parameter threshold values for the undirected

graph (skeleton) and the directionality step, respectively. cc, cd, and dd refer

to the type of edge (continuous-continuous, cont.-discrete, and discr.-discr.).

all refers to the average performance.

Fig. 3. Structural Hamming Distance on high dimensional dataset for CPC-sta-

ble and MGM-CPCS. The lower the SHD, the closer the predicted graph is to

the true graph. Parameter range: 0.2 � k � 0.8 and 0.01 � a � 0.1
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significantly slower for low values of a and low values of k (Fig. 4).

In the LD data (Supplementary Fig. S4), all MGM-based methods

are faster than the generic algorithms at all parameter settings and

Copula PC is the slowest. We note that our undirected MGM learn-

ing method is not parallelized, but the directed learning steps are.

A fully parallelized CausalMGM could result in even larger speed

improvements. The edge convergence approach we use to learning

the undirected MGM is essential to this performance improvement.

3.2 Evaluation on real data
3.2.1 Application to breast cancer data (TCGA)

We applied MGM-PCS to gene expression and clinical data from

breast cancer patients in TCGA (Cancer Genome Atlas, 2012). For

the analysis, we used the 500 genes with the highest variance across

samples. We also included the clinical variables for hormone recep-

tor status, node and tumor staging codes and PAM50 subtype.

PAM50 is a subtyping scheme that uses gene expression patterns

from 50 genes to categorize tumors (Parker et al., 2009), thirteen

of which were in the high variance set. We ran MGM-PCS with

a sparsity of k ¼ 0.2 (selected based on stability of edges across

subsamples) and the default a ¼ 0.05. The output network

(Supplementary Fig. S5) had eight genes connected to the PAM50

variable, three of which were among the 13 included in the analysis

(Fisher’s test, P¼1.8e-3).

In addition, we find a number of predicted edges that are sup-

ported by biological knowledge. Each clinical variable correspond-

ing to receptor status (ER, PR, HER2; determined through

immunohistochemistry) was linked to the gene expression profile of

that receptor: progesterone receptor with PGR1, HER2 with ERBB2

and estrogen receptor with ESR1. GATA3 is linked to ESR1, which

agrees with (Cimino-Mathews et al., 2013) that found GATA3 to be

central in luminal (i.e. estrogen receptor positive) breast cancer. The

lymph node stage variable, which indicates degree of lymph node

metastasis, in our predicted network was only linked to the expres-

sion of E-cadherin gene (CDH1). Hypermethylation and decreased

expression of CDH1 has been linked to infiltrating breast cancer

(Caldeira et al., 2006).

3.2.2 Application to chronic lung disease -omics and clinical data

As a second test, we applied MGM-PCS to high-variance mRNA ex-

pression profiles from the LGRC cohort, which includes clinical

data and –omics data from surgical excess tissue specimens

of patients with COPD and idiopathic pulmonary fibrosis (IPF).

We used a stability-based method, CPSS, to estimate an upper

bound for the false discovery rate of our edge predictions.

Supplementary Figure S6 shows a subnetwork including all first and

second neighbors of eight clinical variables included in the dataset

for edges with false positive rate, q<10%.

We found Gender to be strongly associated with a cluster of Y-

chromosome genes, as well as height and weight (Supplementary

Fig. S6, bottom right). The spirometry tests FEV1 and FVC are used

by clinicians for making diagnosis (mostly, as their ratio), so it is

expected to find them directly linked in this dataset. However, we

find that these variables are separated from diagnosis by several

mRNA expression variables. Since the diagnosis variable is differen-

tial for either COPD or IPF disease, this probably indicates that

there is not as much variability in these two measurements with re-

spect to COPD and IPF. We note, however, that one of the key vari-

ables that separates the FEV1 and FVC from diagnosis is the

expression of the FREM3 gene, which is an extracellular matrix pro-

tein, typically associated with IPF. In this case, FREM3 is also one

of the genes that have been linked to COPD susceptibility

(Lamontagne et al., 2013). Among the variables directly linked to

diagnosis, we note the expression of FIGF and the cigarette smoking

history. FIGF (synonym of VEGF), a growth factor, is a key mol-

ecule in many fibrotic diseases (Wernig et al., 2017). Smoking his-

tory is a known risk factor for both diseases, so it is unexpected that

is associated to the diagnosis variable. This is probably because the

risk associated to smoking is different in the two diseases: in COPD

25% of the patients have never smoked (Prevention, 2012), while in

IPF this percentage is higher (Baumgartner et al., 1997). Our graph

shows that cigarette smoking is causally linked to CYP1A1 (cigar-

ette smoking is the parent of CYP1A1). CYP1A1 is upregulated in

smokers (Anttila et al., 2001) and it is known to convert polycyclic

aromatic hydrocarbons, found in cigarette smoke, into carcinogens

(Walsh et al., 2013), which induce lung remodeling similar to that

observed in IPF.

3.2.3 Novel baseline factors that are directly linked to

longitudinal lung function decline in COPD patients

We applied MGM-PCS to the clinical SCCOR dataset to identify the

baseline variables that are directly (causally) linked to the 2-yr lung

function decline in COPD patients. Given the substantial variation

in longitudinal decline in lung function, identification of baseline

subject attributes that are connected to disease activity is useful for

developing prediction models and offers mechanistic insights and

risk factors of progression, which could be used to develop personal-

ized approaches to disease management or treatment. The SCCOR

dataset we included 281 variables that recorded a variety of clinical,

environmental, psychological and patients’ history data in visit-1

(baseline). We ran MGM-PCS on this dataset and we added a vari-

able measuring the lung function decline between visit-1 and visit-2

(“FEV1 progression”). The first and second neighbors around this

variable are presented in Figure 5. This network offers face validity

by identifying variables as direct connectors that are expected to

be associated with lung function decline, that being continued

tobacco exposure “Smoker” and bronchodilator reversibility

“FEV1%DBD”(Anthonisen et al., 2002; Tashkin et al., 1996). Other

connectors are novel, more provocative and offer unique perspec-

tive. Notably three markers of non-pulmonary co-morbidities are

direct connectors to FEV1 Progression: “Creatinine: (a biomarker of

renal dysfunction), “Exercise Systolic BP (Systolic blood pressure at

Fig. 4. Average running times with 95% confidence interval error bars of

search algorithms on high dimensional data. Each row of columns corre-

sponds to a different setting of a and each column corresponds to a different

setting of k. Directed search steps were run in parallel on a 4-core laptop
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end of 6-min walk exercise) and “GERD” (history of gastroesopha-

geal reflux disease). While each has been previously linked with

COPD or its exacerbations (Chandra et al., 2012; Divo et al., 2012;

Hersh et al., 2013; Ramos et al., 2014), such a dominant association

with lung function decline is not well described. Such associations

however are consistent with a systems biology mechanistic model of

COPD, whereby activity and interaction in multiple organs rather

than a single organ centric approach better defines the potential

underlying mechanisms and impact on the patient (Agusti et al.,

2011).

Creatinine, for example, is directly connected to FEV1 decline

and is also a hub in our network. The connections within this hub

may offer further insights into the mechanistic associations between

renal and lung disease. Renal dysfunction and elevated creatinine

levels has been associated with pulmonary emphysema severity,

which is supported by the direct connection to “DLCO” (Chandra

et al., 2012), a marker of parenchymal emphysema or pulmonary

vascular dysfunction. Further, recent studies propose a mechanistic

link between emphysema and renal dysfunction through RAGE

(Chandra et al., 2017; Polverino et al., 2017; Sukkar et al., 2012;

Yonchuk et al., 2015), the receptor of which (sRAGE) is a direct

connector to Creatinine in our network. The Creatinine hub, is fur-

ther linked to a number of other important variables and confound-

ers, including the blood biomarker CCP (Clara cell protein) whose

association to COPD has been previously reported (Lomas et al.,

2008). In fact, the interaction between CCP and RAGE identified in

our network provides incentive to explore relationships between

these molecular pathways. Other direct links to Creatinine including

“Cardiac issue” and “Arrhythmia”, attributes from the subject

medical history, may be indicators of a common vascular mechanis-

tic systems link. The Direct link of TNFa, another blood biomarker,

with disease progression is of both prognostic and mechanistic inter-

est. TNFa is a representative biomarker for TH1 inflammatory path-

ways commonly linked with COPD (Hodge et al., 2007). In fact,

TNF modulation has been tested as a therapy in COPD, but with

mixed results (Rennard et al., 2007).

Another direct connector to FEV1 progression, “Exercise

Systolic BP” may also reflect the vascular/endothelial processes com-

mon to pulmonary and systemic processes. The common linkage of

CCP between this and the other direct connector, Creatinine is of

further interest. We note, though, that the causal direction might be

predicted wrongly in these associations. “GERD” the final comor-

bidity variable as a direct connector to lung function progression is

of potential interest in either causal direction, as gastroesophageal

reflux has known potential impacts on lung function and lung func-

tion decline associated with lung hyperinflation can alter trans-

diaphragmatic pressure gradients leading to reflux. The direct

connection of “Pulmonary Artery Enlargement” with FEV1 progres-

sion is of particular interest given the secondary linkage of this

measure with indicators of COPD exacerbation in the past year,

that being “Unscheduled MD or ER Visit” and “Antibiotics”.

Previously, a high-profile publication connected pulmonary arterial

enlargement to COPD (Wells et al., 2012).

Finally, three other pulmonary physiology variables are linked

directly to COPD progression: “FRC%” (Functional Residual

Capacity), FVC% (forced vital capacity) and PIF (peak inspiratory

flow rate). All of these are measures that are directly or indirectly

linked to air trapping and lung hyperinflation but are independently
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1210 A.J.Sedgewick et al.



measured attributes. To our knowledge, the direct association of

these measures with FEV1 decline has not previously been defined.

These results are significant, not only because this combination

of factors can determine and predict COPD progression; but because

for the first time we are able to build a causal network of COPD

that combines heterogeneous types of information such as measure-

ments of lung function, symptoms, systemic comorbidities and

blood biomarkers with environmental exposures such as ongoing to-

bacco exposure. Other environmental or psychological variables,

while not linked to COPD progression directly, were part of the

larger network. A variable describing whether the patient has been

diagnosed with depression or is on anti-depression medication, for

example, was found to be linked to pack years of smoking. The

associations found in this network are particularly notable in that

they extend previous work describing the important link between

non-pulmonary organ comorbidities and lung function impairment,

supporting the systems biology paradigm in understanding lung dis-

ease activity (Agusti et al., 2011; Divo et al., 2012).

4 Conclusions and future work

We have presented a new, fast method for learning a causal graph

over variables of mixed type (continuous and discrete). This work

offers a number of new advances. First, it expands our previous

work on undirected graphs (Sedgewick et al., 2016) to directed

graphs over mixed data; by developing new conditional independ-

ence tests. Second, it performs an extensive test of the new set of

methods (CausalMGM) to existing state-of-the-art methods in both

low- and high-dimensional datasets. Third, its application to three

biomedical datasets identifies known and discovers new causal inter-

actions between clinical and other variables.

CausalMGM follows a two-step approach in which a stable, un-

directed graph is learnt by optimizing conditional-Gaussian pseudo-

likelihood over mixed data types. The undirected graph is then used

as the skeleton to run local directed graph searches. We have shown

that CausalMGM can efficiently reconstruct graphs from simulated

data (high- and low-dimensional) with high precision, although re-

call is more challenging (see also, Raghu et al., 2018b). As expected,

recovering edges or directions involving categorical variables was

more difficult in high-dimensional settings, but this trend was sur-

prisingly not obvious in the low-dimensional setting. In many cases,

our hybrid searches are faster and perform better than the directed

search steps by themselves. In the worst case, our hybrid algorithms

do no worse than the single algorithms searches and are slightly

slower. The search for the undirected graph is O(n2) and the subse-

quent orientation step is exponential to the number of neighbors for

each pair of connected variables; which depends on the sparsity of

the undirected graph. CausalMGM algorithms can easily scale to

few thousand variables.

Directed MGMs are promising tools for exploratory biomedical

research (see results in TCGA breast cancer and LGRC datasets).

Our results on the SCCOR clinical data are also significant, because

not only we did find a combination of factors that can determine

and predict COPD progression, but also for the first time we are

able to build a causal network of COPD that combines heteroge-

neous types of information such as measurements of lung function,

symptoms, systemic comorbidities and blood biomarkers with envir-

onmental exposures such as ongoing tobacco exposure. Other envir-

onmental or psychological variables, while not linked to COPD

progression, were part of the larger network. The associations

found in this network are particularly notable in that they extend

previous work describing the important link between non-

pulmonary organ comorbidities and lung function impairment, sup-

porting the systems biology paradigm in understanding lung disease

(Agusti et al., 2011).
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