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ABSTRACT

This paper studies the consensus problem of a second-order nonlinear multi-agent system with directed topologies. A distributed control pro-
tocol is proposed for each agent using the relative states among neighboring agents. A mixed H∞ and passivity-based control is maneuvered
to deal the bounded disturbances enduring in the system. Based on the theory of the sampled-data control technique and Lyapunov stability
theory, some novel conditions are given to realize the consensus of a class of second-order multi-agent nonlinear systems. A new set of delay
dependent sufficient conditions is derived in terms of linear matrix inequalities, which guarantees that all agents asymptotically converge to
the convex hull with the prescribedH∞ and passive performance. Finally, an example with simulation results is given to verify the theoretical
results.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5135567., s

I. INTRODUCTION

The multi-agent system, which is composed of multiple inter-
acting agents, is becoming one of the most discussed control sys-
tem models, where the main attribute is communication among
individual agents.1–7 While the first-order multi-agent system is
receiving more focus due to its applications in a wider area such
as voltage control,8 biological networking,9 cybersecurity,10 model-
ing business processes,11 multi-face tracking,12 energy control,13,14

power system,15 and robotics,16 the researchers have realized that
the second-order multi-agent system is equally important.17–20

We know that the system’s performance declines if nonlin-
ear dynamics prevail in the system. Despite the other challenges,
nonlinear dynamics have to be contemplated while designing the
multi-agent system, as they are inherent in any practical system.
The consensus problem for a class of second-order nonlinear multi-
agent systems is investigated in Refs. 21–23. When we consider a
multi-agent system, there may arise various sources that cause dis-
turbances as well as uncertainties in the dynamics of the agents,
which are additional reasons for the system’s performance decli-
nation. From a detailed study on the research treatises, H∞-based
and passivity-based controls have been proven to be two appropriate

controllers in preparing the system to be robust against exoge-
nous disturbances and uncertainties. Recently, a control strategy
called mixed H∞ and passivity-based control24–28 has been used
for minimizing the effects of disturbances in the system. Using
this strategy, we can also execute the aforementioned control
schemes individually by switching the value of a particular param-
eter, whenever required. This reduces the cost and time of imple-
menting and designing separate control schemes for a considered
system.

In systems science, a sampled-data system is a control sys-
tem29 in which a continuous-time plant is controlled with a dig-
ital device. Under periodic sampling, the sampled-data system is
time-varying but also periodic. Thus, it may be modeled by a sim-
plified discrete-time system obtained by discretizing the plant.30–35

The sampling issues and mixed H∞ and passivity with a nonlinear
second order multi-agent consensus control are not yet considered
in the literature.

Although the dynamics of the multi-agent system32 have been
investigated by many researchers, few of them have addressed the
problem of sampled-data driven mixed H∞ and passivity-based
control for second-order multi-agent systems. Motivated by these
considerations, in this paper, we investigate the mixed H∞ and
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passivity analysis using a sampled-data control for second-order
multi-agent systems. More precisely, a second-order multi-agent
consensus control is designed based on the linear matrix inequalities
(LMI) based conditions, which guarantees the stability of the non-
linear system with mixed H∞ and passivity performance. The main
contributions of this paper can be summarized as follows: The
analysis of the mixed H∞ and passivity performance index level
γ to deal the external disturbance is proposed for the first time to
nonlinear second-order multi-agent systems. A novel idea of the
sampled-data controller is designed for the nonlinear second-order
multi-agent system using the time delay concept, which takes into
account the effects of inter-sampling behavior and has no degrada-
tion of closed-loop performance. It has been found that both the real
and imaginary parts of the eigenvalues of the Laplacian matrix of
the network play key roles in reaching second-order consensus in
general.

Notations. Throughout this paper, the following notations are

used:MT andM−1 represent the transpose and inverse of matrixM,
respectively; Rn represents the n-dimensional Euclidean space; Z+

denotes the set of positive integers; Rn×n represents the set of all
n × n real matrices; P > 0 (P < 0) means that P is a posi-
tive (negative) definite matrix; I and 0 represent identity matrix
and zero matrix with appropriate dimensions; diag{⋅} stands for a
block-diagonal matrix; and sym (A) is defined as A + AT . In the
symmetric block matrices or long matrix expressions, we use an
asterisk (∗) to represent a term that is induced by symmetry. ∥⋅∥
and ⊗ represent the Euclidean norm and the Kronecker product,
respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

We denote a weighted digraph by G = (V, E, A), where V = 1,
2, . . ., n is the set of nodes or vertices with n ≥ 2, node i represents the
ith agent; E ⊆ V × V is the set of edges, and an edge of G is denoted
by an order pair (i, j); and A = [aij] is an n × n-dimensional weighted
adjacency matrix with aii = 0. Say, (i, j) ∈ E if aji > 0. The set of neigh-
bors of the ith agent is denoted by N i = j ∈ V : (j, i) ∈ E. If (i, j) is
an edge of G, node i is called the parent of node j. A directed tree
is a directed graph, where every node, except one special node with-
out any parent, which is called the root, has exactly one parent, and
the root can be connected to any other nodes through paths. The
n × n-dimensional Laplacian matrix L(G) = [lij] of digraph G is
defined by lii = ∑n

k≙1 aik and lij = −aij for i ≠ j. It is easy to see that
L(G) has at least one zero eigenvalue and L(G)1 = 0.

Consider a system composed of n agents. The information
exchange between agents is modeled by a weighted digraph G. Each
agent is regarded as a node and the (i, j), i, j = 1, . . ., n, element aij
of the adjacent matrix denotes the weight on information link (j, i).
The dynamics of the ith agent are described by

ẋi(t) = vi(t),

v̇i(t) = ui(t) + fi(xi, vi) + di(t),
(1)

where xi ∈ R, vi ∈ R, and ui ∈ R represent the position, veloc-
ity, and control input of the ith agent, respectively. fi ∈ R is a
smooth function, and di(t) ∈ R represents the unknown external
disturbance.

We consider that both information on the relative position and
velocity of agents at the discrete sampling instants can be obtained.
The protocol can be proposed as

ui(t) = −α
N

∑
j≙1,j≠i

aij(xi(tk) − xj(tk))

−β
N

∑
j≙1,j≠i

aij(vi(tk) − vj(tk)), t ∈ ∥tk, tk+1), (2)

where α and β are the coupling strengths, τ = tk+1 − tk is the sampling
interval, and tk’s are the sampling instants satisfying 0 = t0 < t1 < ⋯
< tk <⋯. We present a time-varying piecewise-continuous delay τ(t)
= t − tk, t ∈ (tk, tk+1) and τ̇(t) = 1 for t ≠ tk and τ(t) ≤ τ.

Remark II.1. In engineering practice, the usage of computer con-
trol is in peak, which makes the closed-loop system a sampled-data
one that contains both discrete and continuous time signals. This
aroused our interest to propose a sampled-data control for a nonlinear
second-order multi-agent system, which takes into account the effects
of inter-sampling behavior and has no degradation of closed-loop
performance.

Then, systems (1) with (2) can be framed as

ẋi(t) = vi(t), (3)

v̇i(t) = −α N

∑
j≙1

lij(xj(t − τ(t)) − β N

∑
j≙1

lij(vj(t − τ(t))
+ fi(xi, vi) + di(t), t ∈ ∥tk, tk+1). (4)

Let Φi(t) = ∥xTi , vTi ∥T , Φ(t) = ∥ΦT
1 (t),ΦT

2 (t), . . . ,ΦT
N(t)∥T ,

x(t) = ∥xT1 (t), xT2 (t), . . . , xTN(t)∥T , and v(t) = ∥vT1 (t), vT2 (t), . . . ,
vTN(t)∥T . Now by employing the concept of the Kronecker product,
Eq. (3) can be obtained as

Φ̇(t) = (IN ⊗ A)Φ(t) − (L⊗ B)Φ(t − τ(t))
+ (IN ⊗ C)Φ(t, f (t)) + (IN ⊗ C)d(t), (5)

where

A = [0 1
0 0
], B = [0 0

α β
], and C = [1

0
].

(A1) The nonlinear wave forceΦ(t, f (t)) in (5) is uniformly bounded
and satisfies the following constraint ∥Φ(t, f (t))∥ ≤ α1∥Φ(t)∥,
where α1 is a positive scalar.

Lemma II.2. The Laplacian matrix L has a simple eigenvalue 0,
and all the other eigenvalues have positive real parts if and only if the
directed network has a directed spanning tree. In addition, there exist

p = ∥p1 . . . pN∥T ∈ RN satisfying pT1N = 1.

Lemma II.3. Suppose that the network G contains a directed

spanning tree. There exist nonsingular matrix Q such that L = QJ̄QT ,
with J̄ being the upper triangular real Jordan canonical form of
L, and the Jordan blocks associated with the real eigenvalues of
L are consistent with the normal forms. In addition, Q satisfies

PTQ = C[1, 0, . . ., 0], C ≠ 0.
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Lemma II.4 (Ref. 36). For any constant matrix M > 0, the fol-
lowing inequality holds for all continuously differentiable function φ
in ∥a, b∥→ R

n:

(b − a)∫ b

a
φT(s)(IN ⊗M)φ(s)ds

≥ (∫ b

a
φ(s)ds)T(IN ⊗M)(∫ b

a
φ(s)ds) + 3θT(IN ⊗M)θ,

(b − a)2
2 ∫ b

a
∫ b

s
φT(s)(IN ⊗M)φ(s)ds

≥ (∫ b

a
∫ b

s
φ(s)ds)T(IN ⊗M)(∫ b

a
∫ b

s
φ(s)ds)

+2θT1 (IN ⊗M)θ1,
where θ ≙ ∫baφ(s)ds − 2

b−a ∫ba∫bsφ(u)duds and θ1 ≙ −∫ba∫bsφ(u)duds
+ 3

b−a ∫ba∫bs ∫buφ(v)dvduds.
Lemma II.5 (Ref. 37). For any constant matrix R > 0, the fol-

lowing inequality holds for all continuously differentiable function ω
in ∥a, b∥→ R

n:

∫ b

a
ω̇T(s)(IN ⊗ R)ω̇(s)ds ≥ 1

b − a(ω(b) − ω(a))T(IN ⊗ R)
× (ω(b) − ω(a)) + 3

b − aΘT(IN ⊗ R)Θ,
where Θ ≙ ω(b) + ω(a) − 2

b−a ∫baω(s)ds.
Definition II.6 (Ref. 24). Second-order nonlinear multi-agent

time-delay system (8) is said to be asymptotically stable with mixed
H∞ and passivity-performance γ if the system with d(t) ≡ 0 is stable
and under zero initial condition, there exists a scalar γ > 0 such that

{∫ t∗

0
(−γ−1θz(α)Tz(α) + 2(1 − θ)z(α)Td(α))dα}
≥ −γ∫ t∗

0
d(α)Td(α)dα (6)

for all t∗ > 0 and any non-zero d(t) ∈ L2∥0,∞), where θ ∈ [0, 1]
denotes a weighting parameter that defines the trade-off between H∞

and passivity-performance.

Note II.7. It has to be stated that when θ = 1, system (8) reduces
to the H∞ norm constraint and when θ = 0, system (8) reduces to the
passivity condition.

III. MAIN RESULT

From Lemma II.2, let ξ̄ ≙ (Q−1 ⊗ I2)ξ, where Q satisfies QJ̄QT

≙ L, with J̄ being the upper triangular real Jordan canonical form
of L. Obviously, it can be verified from Lemmas II.2 and II.3 that
J̄ ≙ diag{0, Ĵ}. Then, system (5) can be written as

φ̇(t) ≙ Aφ(t), (7)

Φ̇(t) ≙ (IN−1 ⊗ A)Φ(t) − (Ĵ ⊗ B)Φ(t − τ(t))
+ (IN−1 ⊗ C)(Φ(t, f (t)) + d(t)). (8)

In this paper, the controlled output function z(t) can be defined as

z(t) ≙ Φ(t). (9)

It can be easily followed from Lemmas II.2 and II.3 that system
(7) has zero solution. Therefore, the consensus problem of system
(5) can be transformed into the asymptotic stability problem of
system (8).

Theorem III.1. Suppose that the network G contains a directed

spanning tree, then (8) reaches consensus, if α and β satisfy
β2

α> maxi∈F
lm2(λi)

Re(λi)∥λi∥
2 , and there exist matrices P > 0, R > 0, Q > 0,

M > 0, and S > 0 such that the following LMIs hold:

⎡⎢⎢⎢⎢⎢⎣
Ξ11×11 Ξ̂1 Ξ̂2∗ −(IN−1 ⊗ R) 0∗ ∗ −(IN−1 ⊗M)

⎤⎥⎥⎥⎥⎥⎦
< 0, (10)

where Ξ1,1 ≙ 2((IN−1 ⊗P)(IN−1 ⊗A))− 3
τ
(IN−1 ⊗M)− 3

τ
(IN−1 ⊗R)

+ τ(IN−1 ⊗ Q) + τ2

2
(IN−1 ⊗ S) − 1

τ
(IN−1 ⊗M) − 1

τ
(IN−1 ⊗ R) + ρα21,

Ξ1,3 ≙ (IN−1⊗P)(Ĵ⊗B)− 3
τ
(IN−1⊗M)− 3

τ
(IN−1⊗R)+ 1

τ
(IN−1⊗M)

+ 1
τ
(IN−1⊗R), Ξ1,4 ≙ 6

τ2
(IN−1⊗M)+ 6

τ2
(IN−1⊗R), Ξ1,9 = (IN−1 ⊗ P)

(IN−1 ⊗ C), Ξ1,10 ≙ (IN−1 ⊗ P)(IN−1 ⊗ C) − (1 − θ)(IN−1 ⊗ C)T ,
Ξ1,11 ≙ √θ(IN−1 ⊗ C)T , Ξ2,2 ≙ − 3

τ
(IN−1 ⊗M) − 1

τ
(IN−1 ⊗M), Ξ2,3

≙ − 3
τ
(IN−1 ⊗ M) + 1

τ
(IN−1 ⊗ M)T , Ξ2,5 ≙ 6

τ2
(IN−1 ⊗ M), Ξ3,3

≙ − 3
τ
(IN−1 ⊗ M) − 3

τ
(IN−1 ⊗ M)T − 3

τ
(IN−1 ⊗ R) − 1

τ
(IN−1 ⊗ M)

− 1
τ
(IN−1 ⊗M) − 1

τ
(IN−1 ⊗ R), Ξ3,4 ≙ 6

τ2
(IN−1 ⊗M) + 6

τ2
(IN−1 ⊗ R),

Ξ3,5 ≙ 6
τ2
(IN−1 ⊗ M), Ξ4,4 ≙ − 3

τ
(IN−1 ⊗ Q) − 12

τ3
(IN−1 ⊗ M)

− 12
τ3
(IN−1 ⊗ R) − 1

τ
(IN−1 ⊗Q), Ξ4,7 ≙ 6

τ2
(IN−1 ⊗Q), Ξ5,5 ≙ − 3

τ
(IN−1⊗ Q) − 12

τ3
(IN−1 ⊗ M) − 1

τ
(IN−1 ⊗ Q), Ξ5,6 ≙ 6

τ2
(IN−1 ⊗ Q), Ξ6,6≙ − 12

τ3
(IN−1⊗Q)− 2(IN−1⊗ S), Ξ6,8 ≙ 6

τ2
(IN−1⊗ S), Ξ7,7 ≙ − 12

τ3
(IN−1⊗ Q), Ξ8,8 ≙ − 18

τ2
(IN−1 ⊗ S), Ξ9,9 = −ρI, Ξ10,10 = Ξ11,11 = −γI, Ξ1

≙ ∥(IN−1 ⊗A)T(IN−1 ⊗ R) 0n (Ĵ ⊗ B)T(IN−1 ⊗ R) 05n (IN−1 ⊗C)T
(IN−1 ⊗ R) (IN−1 ⊗ C)T(IN−1 ⊗ R)∥T , Ξ2 ≙ ∥(IN−1 ⊗ A)T(IN−1⊗M) 0n (Ĵ ⊗ B)T(IN−1 ⊗M) 05n (IN−1 ⊗ C)T(IN−1 ⊗M) (IN−1⊗ C)T(IN−1 ⊗M)∥T .

Proof: By Theorem 1 in Ref. 22, we can conclude (IN−1 ⊗ A)

− (Ĵ ⊗ B) is Hurwitz stable if and only if
β2

α
> maxi∈F

lm2(λi)

Re(λi)∥λi∥
2 .

In order to prove that the LMI (10) is stable, we construct the
Lyapunov–Krasovskii functional (LKF) candidate for system (8) in
the following form:

V(t) ≙ ΦT(t)(IN−1 ⊗ P)Φ(t) + (t − (t − tk))
× ∫ t

tk

Φ̇
T(s)(IN−1 ⊗ R)Φ̇(s)ds

+ ∫ 0

−τ
∫ t

t+β
Φ

T(s)(IN−1 ⊗Q)Φ(s)dsdβ
+ ∫ 0

−τ
∫ t

t+β
Φ̇

T(s)(IN−1 ⊗M)Φ̇(s)dsdβ
+ ∫ 0

−τ
∫ 0

θ
∫ t

t+β
Φ

T(s)(IN−1 ⊗ S)Φ(s)dsdβdθ. (11)
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Calculating the derivatives V̇(t) along the trajectories of system (8),
we have

V̇(t) ≙ ΦT(t)(IN−1 ⊗ P)Φ̇(t) + (t − (t − tk))Φ̇T(s)(IN−1 ⊗ R)Φ̇(t)
− ∫ t

tk

Φ̇
T(s)(IN−1 ⊗ R)Φ̇(s)ds + τΦT(t)(IN−1 ⊗Q)Φ(t)

− ∫ t

t−τ
Φ

T(s)(IN−1 ⊗Q)Φ(s)ds + τΦ̇T(t)(IN−1 ⊗M)Φ̇(t)
− ∫ t

t−τ
Φ̇

T(s)(IN−1 ⊗M)Φ̇(s)ds + τ2

2
Φ

T(t)(IN−1 ⊗ S)Φ(t)
− ∫ 0

−τ
∫ t

t+θ
Φ

T(s)(IN−1 ⊗ S)Φ(s)dsdθ. (12)

Using the notion of time delay, the integral terms in (12) can be
written as

−∫ t

t−τ
Φ

T(s)(IN−1 ⊗Q)Φ(s)ds ≙ −∫ t−τ(t)

t−τ
Φ

T(s)(IN−1 ⊗Q)Φ(s)ds
− ∫ t

t−τ(t)
Φ

T(s)(IN−1 ⊗Q)Φ(s)ds,
(13)

−∫ t

t−τ
Φ̇

T(s)(IN−1 ⊗M)Φ̇(s)ds ≙ −∫ t−τ(t)

t−τ
Φ̇

T(s)(IN−1 ⊗M)Φ̇(s)ds
− ∫ t

t−τ(t)
Φ̇

T(s)(IN−1 ⊗M)Φ̇(s)ds.
(14)

Applying Lemma II.4 to the right hand to the integral terms in (13),
we can obtain

−∫ t−τ(t)

t−τ
Φ

T(s)(IN−1 ⊗Q)Φ(s)ds
≤ −1

τ
(∫ t−τ(t)

t−τ
Φ(s)ds)T(IN−1 ⊗Q)(∫ t−τ(t)

t−τ
Φ(s)ds)

− 3

τ
Θ

T
2 (IN−1 ⊗Q)Θ2,

−∫ t

t−τ(t)
Φ

T(s)(IN−1 ⊗Q)Φ(s)ds

≤ −1
τ
(∫ t

t−τ(t)
Φ(s)ds)T(IN−1 ⊗Q)(∫ t

t−τ(t)
Φ(s)ds)

− 3

τ
Θ

T
1 (IN−1 ⊗Q)Θ1,

where Θ1 ≙ ∫tt−τ(t)Φ(s)ds − 2
τ ∫0−τ(t) ∫tt+θΦ(s)dsdθ and Θ2

≙ ∫t−τ(t)t−τ Φ(s))ds − 2
τ ∫−τ(t)−τ ∫tt+θΦ(s)dsdθ.

By using Lemma II.5 to the right hand side of integral terms in
(14), we have

−∫ t−τ(t)

t−τ
Φ̇

T(s)(IN−1 ⊗M)Φ̇(s)ds
≤ −1

τ
(∫ t−τ(t)

t−τ
Φ̇(s)ds)T(IN−1 ⊗M)(∫ t−τ(t)

t−τ
Φ̇(s)ds)

− 3

τ
Θ

T
4 (IN−1 ⊗M)Θ4,

−∫ t

t−τ(t)
Φ̇

T(s)(IN−1 ⊗M)Φ̇(s)ds
≤ −1

τ
(∫ t

t−τ(t)
Φ̇(s)ds)T(IN−1 ⊗M)(∫ t

t−τ(t)
Φ̇(s)ds)

− 3

τ
Θ

T
3 (IN−1 ⊗M)Θ3,

where Θ3 ≙ Φ(t) + Φ(t − τ(t)) − 2
τ ∫tt−τ(t)Φ(s)ds and Θ4

≙ Φ(t − τ(t)) +Φ(t − τ) − 2
τ ∫t−τ(t)t−τ Φ(s)ds.

Furthermore, applying Lemma II.5 to the following integral
present in (12), we can obtain

−∫ t

tk

Φ̇
T(s)(IN−1 ⊗ R)Φ̇(s)ds ≤ −1

τ
(Φ(t) −Φ(tk))T

×(IN−1 ⊗ R)(Φ(t)Φ(tk)) − 3

τ
Θ

T
5 (IN−1 ⊗ R)Θ5, (15)

where Θ5 ≙ Φ(t) +Φ(tk) − 2
τ ∫ttk Φ(s)ds.

Also,

−∫ 0

−τ
∫ t

t+θ
Φ

T(s)(IN−1 ⊗ S)Φ(s)dsdθ
≤ − 2

τ2
(∫ 0

−τ
∫ t

t+θ
Φ(s)ds)T(IN−1 ⊗ S)(∫ 0

−τ
∫ t

t+θ
Φ(s)ds)

+2Θ
T
6 (IN−1 ⊗ S)Θ6,

where Θ6 ≙ −∫0−τ∫tt+θφ(u)duds + 3
τ ∫0−τ∫tθ∫tt+βφ(v)dvdβdθ.

From assumption (A1), for any scalar ρ > 0, we can obtain

ρ(α21ΦT(t)Φ(t) −ΦT(t, f (t))Φ(t, f (t))) ≥ 0. (16)

Then, we have V̇(t) ≤ ξT(t)Ωξ(t), where
ξT(t) ≙ [ΦT(t)ΦT(t − τ)ΦT(t − τ(t)) ∫ t

t−τ(t)
Φ

T(s)ds
×∫ t−τ(t)

t−τ
Φ

T(s)ds∫ −τ(t)

−τ
∫ t

t+θ
Φ

T(s)dsdθ
×∫ 0

−τ(t)
∫ t

t+θ
Φ

T(s)dsdθ
×∫ 0

−τ
∫ 0

θ
∫ t

t+β
Φ

T(s)dsdβdθ ΦT(t, f (t))],
with

Ω ≙
⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ξ9×9 Ξ1 Ξ2∗ −(IN−1 ⊗ R) 0∗ ∗ −(IN−1 ⊗M)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (17)

AIP Advances 10, 015148 (2020); doi: 10.1063/1.5135567 10, 015148-4

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

where Ξ1,1 ≙ 2((IN−1 ⊗ P)(IN−1 ⊗ A)) − 3
τ
(IN−1 ⊗ M) − 3

τ
(IN−1

⊗R)+τ(IN−1⊗Q)+ τ2

2
(IN−1⊗S)− 1

τ
(IN−1⊗M)− 1

τ
(IN−1⊗R)+ρα21,

Ξ1,3 ≙ (IN−1⊗P)(Ĵ⊗B)− 3
τ
(IN−1⊗M)− 3

τ
(IN−1⊗R)+ 1

τ
(IN−1⊗M)

+ 1
τ
(IN−1⊗R), Ξ1,4 ≙ 6

τ2
(IN−1⊗M)+ 6

τ2
(IN−1⊗R), Ξ1,9 = (IN−1 ⊗ P)

(IN−1 ⊗C), Ξ2,2 ≙ − 3
τ
(IN−1⊗M)− 1

τ
(IN−1⊗M), Ξ2,3 ≙ − 3

τ
(IN−1⊗M)

+ 1
τ
(IN−1 ⊗ M)T , Ξ2,5 ≙ 6

τ2
(IN−1 ⊗ M), Ξ3,3 ≙ − 3

τ
(IN−1 ⊗ M)

− 3
τ
(IN−1⊗M)T− 3

τ
(IN−1⊗R)− 1

τ
(IN−1⊗M)− 1

τ
(IN−1⊗M)− 1

τ
(IN−1⊗R),

Ξ3,4 ≙ 6
τ2
(IN−1 ⊗ M) + 6

τ2
(IN−1 ⊗ R), Ξ3,5 ≙ 6

τ2
(IN−1 ⊗ M), Ξ4,4≙ − 3

τ
(IN−1 ⊗Q) − 12

τ3
(IN−1 ⊗M) − 12

τ3
(IN−1 ⊗R) − 1

τ
(IN−1 ⊗Q), Ξ4,7≙ 6

τ2
(IN−1⊗Q), Ξ5,5 ≙ − 3

τ
(IN−1⊗Q)− 12

τ3
(IN−1⊗M)− 1

τ
(IN−1⊗Q),

Ξ5,6 ≙ 6
τ2
(IN−1 ⊗ Q), Ξ6,6 ≙ − 12

τ3
(IN−1 ⊗ Q) − 2(IN−1 ⊗ S), Ξ6,8≙ 6

τ2
(IN−1 ⊗ S), Ξ7,7 ≙ − 12

τ3
(IN−1 ⊗ Q), Ξ8,8 ≙ − 18

τ2
(IN−1 ⊗ S), Ξ9,9

= −ρI, Ξ1 ≙ ∥(IN−1⊗A)T(IN−1⊗R) 0n (Ĵ⊗B)T(IN−1⊗R) 05n (IN−1⊗C)T(IN−1⊗R)∥T , Ξ2 ≙ ∥(IN−1⊗A)T(IN−1⊗M) 0n (Ĵ⊗B)T(IN−1⊗M) 05n (IN−1 ⊗ C)T(IN−1 ⊗M)∥T .
Clearly, a sufficient condition for V̇(t) < 0 is Ω < 0, which can

be guaranteed by the condition (10). Therefore, system (8) is asymp-
totically stable when d(t) = 0, i.e., the states of agents asymptotically
converge to the convex hull.

In the upcoming part of this paper, we will be discussing the
mixed H∞ and passive performance of the closed-loop system (8)
with nonzero disturbance d(t). For this, a similar method as in sta-
bility analysis will be followed with the LKF (11) and by considering
an index Jzw(t) for system (8) as

Jzw(t) ≙{∫ t∗

0
[γ−1θz(α)Tz(α) − 2(1 − θ)z(α)Td(α))dα

− γd(α)Td(α)dα]}, t
∗ ≥ 0.

Under zero initial condition, it is easy to see that

Jzw(t) ≙{∫ t∗

0
[γ−1θz(α)Tz(α) − 2(1 − θ)z(α)Td(α))dα

− γd(α)Td(α)dα + V(s)]ds}
≤{∫ t

0
ξT1 (s)Φξ1(s)ds},

where ξT1 (t) ≙ ∥ξT(t) dT(t)∥T and

Φ ≙ [Ω + γ−1θ(IN−1 ⊗ C)T(IN−1 ⊗ C) Ξ1,10∗ −γI] < 0,
with Ξ1,10 ≙ (IN−1⊗P)(IN−1⊗C)−(1−θ)(IN−1⊗C)T . Furthermore,
from Schur complement and (10), consequently Jzw(t) < 0 for all
t > 0. Therefore, for any non-zero d(t) ∈ L2∥0,∞), (6) holds
for all t∗ > 0. Therefore by Definition II.6, it is concluded that
the multi-agent system (8) attains consensus with mixed H∞ and
passivity-based performance γ.

Remark III.2. In Theorem III.1, we have considered the
Lyapunov–Krasovskii functional (11) which is a time dependent func-
tional, wherein the complete information about the actual sam-
pling pattern is used in its construction. An interesting feature of

this Lyapunov–Krasovskii functional is that it can effectively deal
the second-order multi-agent system with a sampled-data controller.
Theorems III.1 imply that our sampled-data control design problem
can be reduced to a simple LMI problem, which can be solved very
efficiently via various powerful LMI optimization algorithms.

Remark III.3. It should be pointed out that one of the major
contributions of this paper is the mixed H∞ and passivity based
sampled-data consensus controller design for nonlinear second-order
multi-agent systems. In conjunction with the consensus of the second-
order nonlinear multi-agent system with a sampled-data controller,
exogenous disturbance attenuation is carried out with mixed H∞ and
passivity analysis, where the H∞ and passivity performances are com-
bined in a unified framework, which will cut off the cost and time
during analysis. When in need, the two individual cases can also be
examined with the proposed algorithm.

Remark III.4. It is well known that the computational complex-
ity of LMI based conditions is decided by the number of decision
variables used in the Lyapunov–Krasovskii functional and the slack
variables arising in the mathematical derivation of the results. As we
know that more number of decision variables will increase the compu-
tational burdens, but the net result will be less conservative. It should
be mentioned that it is possible to get more less conservative results by
using some integral zero inequality approach, which will be addressed
in the future work.

IV. NUMERICAL SIMULATION

In this section, we provide an example to demonstrate the
effectiveness of the proposed method.

Example IV.1. Let us consider a multi-agent system with four
agents, where the interaction topology is shown in Fig. 1. Furthermore,
the Laplacian matrix is

L ≙
⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 −1−1 2 −1 0
0 0 1 −1−1 −1 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let α = 3, β = 2, θ = 0.3, and the sampling interval bound be τ
= 0.3. By solving the LMI in Theorem III.1 via Matlab LMI toolbox,

FIG. 1. Topology structure of systems with a directed spanning tree.
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FIG. 2. Responses of position and velocity states of agents, when h = 0.3, α = 3,
and β = 2. (a) Unforced system and (b) forced system.

the minimum mixed H∞ and passivity-performance is obtained as

γmin = 0.7630 and the condition in Theorem III.1 of
β2

α
> l2(μi)

β(μi)∣μi ∣2
,

i ≙ 2, 3, 4 is satisfied. The maximal allowable sampling interval bound
can be obtained as 0.3. The initial conditions for the agents are set

as x(0) = (2, −1, 1.5, 1.8)T and v(0) = (1.8, 2, 1.2, 1.5)T and the

FIG. 3. Disturbance d(t).

disturbance signal as

d(t) ≙ {0.05 sin(t), 0 ≤ t ≤ 20
0, otherwise.

Figures 2(a) and 2(b) show the plots of position and velocity
states of 4 agents for an unforced and forced system. The response
of the disturbance signal is depicted in Fig. 3. When we observe
Fig. 2(b), we can comprehend easily that the agents are able to
reach consensus as proved in Theorem III.1, which manifests that
the consensus of the second-order nonlinear multi-agent system is
achieved. Comparing Figs. 2(a) and 2(b), it is obvious that the con-
sensus problem for a second-order multi-agent system with non-
linear dynamics and external disturbance can be solved effectively
using the proposed mixed H∞ and passivity-based sampled-data
control.

V. CONCLUSIONS

In this paper, the communication predicaments of agents of
a second-order multi-agent system such as disturbances and non-
linear dynamics are considered. Following the concept of time-
varying delay, a sampled-data control is proposed which is effective
in the solvability of consensus problem. Furthermore, we exploit a
mixedH∞ and passivity-based control for a second-order nonlinear
multi-agent system. The specified performance index is guaranteed
when the system experiences bounded energy disturbances. Corre-
spondingly, an example is given to prove the effectiveness of the
proposed control method. In the future work, a robust adaptive
output feedback scheme is expected to be developed for the nonlin-
ear second-order multi-agent system with unknown model dynam-
ics and unknown disturbances under consensus sampled-data
control.
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