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Abstract. We calculate the E-polynomials of certain twisted GL(n,C)-
character varieties Mn of Riemann surfaces by counting points over finite
fields using the character table of the finite group of Lie-type GL(n,Fq)
and a theorem proved in the appendix by N. Katz. We deduce from this
calculation several geometric results, for example, the value of the topo-
logical Euler characteristic of the associated PGL(n,C)-character variety.
The calculation also leads to several conjectures about the cohomology
of Mn: an explicit conjecture for its mixed Hodge polynomial; a conjec-
tured curious hard Lefschetz theorem and a conjecture relating the pure part
to absolutely indecomposable representations of a certain quiver. We prove
these conjectures for n = 2.
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1 Introduction

Let g ≥ 0 and n > 0 be integers. Let ζn ∈ C be a primitive n-th root of
unity. Abbreviating [A, B] = ABA−1B−1 and denoting the identity matrix
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In ∈ GL(n,C) we define

Mn := {A1, B1, . . . , Ag, Bg ∈ GL(n,C)|
[A1, B1] . . . [Ag, Bg] = ζn In}//GL(n,C) (1.1.1)

an affine GIT quotient by the conjugation action of GL(n,C). It is a twisted
character variety of a genus g closed Riemann surface Σ; its points can be
thought of twisted homomorphisms of π1(Σ) → GL(n,C) modulo conju-
gation. It is a non-singular affine variety of dimension dn := n2(2g − 2) + 2
by Theorem 2.2.5.

One of the goals of this paper is to find the Poincaré polynomial
P(Mn; t) = ∑

i bi(Mn)ti which encodes the Betti numbers bi(Mn) of Mn .
They were calculated for n = 2 by Hitchin [40] and for n = 3 by
Gothen [24]. To be precise, Hitchin and Gothen work with a certain mod-
uli space of Higgs bundles on Σ, which is known to be diffeomorphic to
Mn by non-abelian Hodge theory [40,64]. On the other hand, the Poincaré
polynomial of the U(n)-character variety N d

n of Σ, where GL(n,C) is
replaced by U(n) in the above definition and ζn = exp( d

n 2πi), were ob-
tained by Harder–Narasimhan [28], using the Weil conjectures proved by
Deligne [10], and by Atiyah–Bott [2] using gauge theory. An explicit closed
formula for the Poincaré polynomial of the U(n)-character varieties was
given by Zagier [67].

Other motivations to study the cohomology of character varieties are dis-
cussed in [31], which also announces many of the results of this paper. Char-
acter varieties appear in the Geometric Langlands program of Beilinson–
Drinfeld [3]. Recently, many new ideas relating physics, in particular
mirror symmetry, to the Geometric Langlands program have been dis-
cussed by Kapustin–Witten in [46]. One can expect [31,33] that the re-
sults of this paper will have analogues for SL(n,C) character varieties
reflecting the expected relationship between certain Hodge numbers of
PGL(n,C) and SL(n,C) character varieties dictated by mirror symmetry
considerations.

In this paper we study the mixed Hodge polynomials H(Mn; q, t) and
uncover a surprising amount of structure governing them. The mixed
Hodge polynomial is a common deformation of the Poincaré polynomial
P(Mn; t) = H(Mn; 1, t) and the so-called E-polynomial E(Mn; q) =
qdn H(Mn; 1/q,−1) and is defined using Deligne’s construction of mixed
Hodge structures on the cohomology of a complex algebraic variety [8,9]
(see Subsect. 2.1).

We explicitly calculate the E-polynomial of Mn in terms of a generating
function using arithmetic algebraic geometry. One key result used in this
calculation is Theorem 6.1.2.3 of Katz in the appendix, which basically
says that if the number of points of a variety over every finite field Fq is
a polynomial in q then this polynomial agrees with the E-polynomial of the
variety.

Another ingredient is a well-known character formula, Theorem 2.3.2,
which counts the number of solutions of certain equations in a finite group.
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Similar counting formulas go back to the birth of character theory of finite
groups by Frobenius [18] in 1896. Combining these and Corollary 3.5.1 we
get

E(Mn; q) =
∑

χ∈Irr(GL(n,Fq))

|GL(n,Fq)|2g−2

χ(In)
2g−1

χ(ζn In). (1.1.2)

The character table of GL(n,Fq) was determined by Green [22] in 1955.
Using Green’s results, the evaluation of the formula (1.1.2) is carried out
in Sect. 3. The calculation makes non-trivial use of the inclusion–exclusion
principle for the poset of finite set partitions. The end result is an ex-
pression for the E-polynomials in terms of an explicit generating func-
tion in Theorem 3.5.2. An important consequence of our Theorem 3.5.2
is that the number of points of the variety Mn over the finite field Fq is
a polynomial in q. For example, for n = 2 we prove in Corollary 3.6.1
that

E(M2; q)/(q − 1)2g = (q2 − 1)2g−2 + q2g−2(q2 − 1)2g−2

− 1

2
q2g−2(q − 1)2g−2 − 1

2
q2g−2(q + 1)2g−2.

(1.1.3)

An interesting topological outcome of our calculation is the precise
value of the Euler characteristic of our character varieties. The variety Mn
is cohomologically a product of (C×)2g and the PGL(n,C)-character var-
iety M̃n := Mn//(C

×)2g, which is defined as the quotient of Mn by the
natural action of the torus (C×)2g on Mn . Therefore, the Euler character-
istic of Mn is 0 due to the fact that the Euler characteristic of the torus
(C×)2g is 0. However the Euler characteristic of M̃n is more interesting (see
Subsect. 3.7):

Corollary 1.1.1. Let g > 1. The Euler characteristic of the PGL(n,C)-
character variety M̃n is µ(n)n2g−3, where µ is the Möbius function.

The last result of the first part of this paper is a formula for the number
of points on the untwisted GL(n) character variety (which is defined by
replacing ζn I by I in the definition (1.1.1)) over a finite field Fq. Our
explicit generating function formula in Theorem 3.8.1 could be interesting
to compare with recent work of Liebeck–Shalev [49] studying asymptotics
of the same quantities.

The second part of this paper concerns the mixed Hodge polynomial
of Mn . In Conjecture 4.2.1 we give a formula for it as a natural t-deformation
of our calculation of the E-polynomial of Mn . Here we only give our
conjecture in the case g = 1. In this case we know a priori that our character
variety is M1 = (C×)2, the 2-torus (see Theorem 2.2.17). Therefore our
conjecture becomes a purely combinatorial statement.
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Conjecture 1.1.2. The following combinatorial identity holds:

∑

λ

∏ (z2a+1 − w2l+1)2

(z2a+2 − w2l)(z2a − w2l+2)
T |λ|

= exp

(
∑

k≥1

(zk − wk)2

(z2k − 1)(1 − w2k)(1 − T k)

T k

k

)

,

where the sum on the left hand side is over all partitions λ, and the product
is over all boxes in the Ferrers diagram of λ, and a and l are its arm and
leg-length, as defined in Subsect. 2.4.

This yet unproven identity is reminiscent of the Macdonald identities and
the Weyl–Kac character formula; it is conceivable that it has a representation
theory interpretation. For example, the corresponding formula in the g = 0
case will be proved as Theorem 4.3.1 using a result of Garsia–Haiman [20]
obtained from the study of Macdonald polynomials. This presently mys-
terious link between mixed Hodge polynomials of character varieties and
Macdonald polynomials is further developed in [34,35]. In particular, the
main conjecture of [35] says that the mixed Hodge polynomials of char-
acter varieties of Riemann surfaces with semisimple conjugacy classes at
the punctures are governed by Macdonald polynomials in a simple way, its
structure resembling a topological quantum field theory.

We study many implications of our main Conjecture 4.2.1 and prove
several consistency results. Because we have an explicit description of the
cohomology ring of M2 given in [37,39] we are able to determine the mixed
Hodge polynomial in the n = 2 case and confirm all our conjectures.

Rather than giving a full description of our conjectures for general n
here, we present instead the corresponding theorems in the n = 2 case.

Theorem 1.1.3. The mixed Hodge polynomials of M̃2 and M2 are given by

H(M̃2; q, t) = H(M2; q, t)

(qt + 1)2g

= (q2t3 + 1)2g

(q2t2 − 1)(q2t4 − 1)
+ q2g−2t4g−4(q2t + 1)2g

(q2 − 1)(q2t2 − 1)

− 1

2

q2g−2t4g−4(qt + 1)2g

(qt2 − 1)(q − 1)
− 1

2

q2g−2t4g−4(qt − 1)2g

(q + 1)(qt2 + 1)
.

(1.1.4)

By setting t =−1 in this formula we recover the E-polynomial in (1.1.3).
Thus, by purely cohomological calculations on M2 we derive formula
(1.1.3), which reflects the structure of irreducible characters of GL(2,Fq).
For example, the four terms above correspond to the four types of irreducible
characters of GL(2,Fq). Looking at the other specialization q = 1 gives
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a pleasant formula for the Poincaré polynomial P(M2, t) = H(M2; 1, t),
which agrees with Hitchin’s calculation [40].

Changing q by 1/qt2 in the right hand side of (1.1.4) interchanges the
first two terms and fixes the other two. This implies the following

Corollary 1.1.4. The mixed Hodge polynomial of M̃2 satisfies the following
curious Poincaré duality:

H
(
M̃2; 1/qt2, t

) = (qt)− dim M̃2 H(M̃2; q, t). (1.1.5)

In fact, we can give a geometrical interpretation of this combinatorial
observation. First, H2(M̃2) is one dimensional generated by a class α.
Define the Lefschetz map L : Hi(M̃2) → Hi+2(M̃2) by x �→ α ∪ x. As it
respects mixed Hodge structures and α has weight 4 it defines a map on the
graded pieces of the weight filtration L : GrW

l Hi(M̃2) → GrW
l+4 Hi+2(M̃2).

In Subsect. 5.3 we prove the following curious hard Lefschetz

Theorem 1.1.5. The Lefschetz map

Ll : GrW
6g−6−2l H

i−l(M̃2) −→ GrW
6g−6+2l H

i+l(M̃2)

is an isomorphism.

The agreement of the dimensions of these two isomorphic vector spaces
is equivalent to (1.1.5).

Interestingly, this theorem implies (see Remark 4.2.8) a theorem of [30]
that the Lefschetz map Lk : Hd̃2/2−k(M̃2) → Hd̃2/2+k(M̃2) is injective;
where d̃2 = dim M̃2 = 6g−6. As it is explained in [30] this weak version of
hard Lefschetz applied to toric hyperkähler varieties yields new inequalities
for the h-numbers of matroids. See also [36] for the original argument on
toric hyperkähler varieties. Theorem 1.1.5 can also be thought of as an
analogue of the Faber conjecture [13] on the cohomology of the moduli
space of curves, which is another non-compact variety whose cohomology
ring is conjectured to satisfy a certain form of the hard Lefschetz theorem.

For any smooth variety X there is an important subring of H∗(X),
namely the so-called pure ring PH∗(X) ∼= ⊕

k Wk Hk(X). We denote by
PP(X; t) the Poincaré polynomial of the pure ring. We can obtain PP(X; t)
from H(X; q, t) by taking the monomials which are powers of qt2. In the
case of M2 the pure ring is generated by a single class β ∈ H4(M2) and
with one relation βg = 0, the so-called Newstead relation. Consequently
PP(M2; t) = 1 + t4 + · · · + t4g−4. This implies the following:

Theorem 1.1.6. Let An(q) be the number of absolutely indecomposable
g-tuples of n by n matrices over the finite field Fq modulo conjugation. Then
for n = 2 we have

PP(M2;√
q) = qdn/2 A2(1/q).
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In Subsect. 4.4 we conjecture the same for any n. The function An(q)
is an instance of the A-polynomial defined by Kac [45] for any quiver. The
quiver here is Sg, g loops on one vertex. Kac showed that the A function
is always a polynomial and conjectured it has non-negative coefficients.
When the dimension vector is indivisible this has been proved by Crawley-
Boevey and Van den Bergh [5] by giving a cohomological interpretation of
the A-polynomial. For Sg the result of [5] only applies in the n = 1 case,
since all other dimension vectors are divisible. Our Theorem 1.1.6 shows
a cohomological interpretation for A2(q). For general n Theorem 4.4.1
together with our main Conjecture 4.2.1 will then give a conjectural cohom-
ological interpretation of An(q), implying Kac’s conjecture for Sg.

Theorem 1.1.6 implies that the middle dimensional cohomology
H6g−6(M̃2) has a trivial pure part. It follows that the middle dimensional
compactly supported cohomology also has trivial pure part. This implies
the following theorem, which will be proved in Corollary 5.4.1.

Theorem 1.1.7. The intersection form on middle dimensional compactly
supported cohomology H6g−6

c (M̃2) is trivial or equivalently the forgetful
map H6g−6

c (M̃2) → H6g−6(M̃2) is 0.

This was the main result of [29] and was interpreted there as the vanishing
of “topological L2 cohomology” for M̃2. It is surprising that we can deduce
this result only from the knowledge [37,39] of the structure of the ordinary
cohomology ring H∗(M̃2) and the study of its mixed Hodge structure. In
fact, we only need to know that the famous Newstead relation βg = 0 holds
in H∗(M̃2). See [33] for a more detailed discussion on the background and
various ramifications of Theorem 1.1.7.

The structure of the paper is as follows. In Sect. 2 we collect various
facts which we will need later. In Subsect. 2.1 we define and list properties
of the mixed Hodge polynomials obtained from Deligne’s mixed Hodge
structure. In Subsect. 2.2 we define and prove the basic properties of the
character varieties we study. In Subsect. 2.3 we derive a classical character
formula for the number of solutions of a certain equation over finite groups.
In Subsect. 2.4 we collect the definitions and notations for partitions which
will be used throughout the paper. In Subsect. 2.5 we introduce a formalism
to handle various formal infinite products. Then in Sect. 3 we calculate the
E-polynomial of our variety. In Sect. 4 we formulate our main conjecture
on the mixed Hodge polynomial of our character varieties and derive vari-
ous consequences, several of which we can test for consistency. We also
relate our conjectured mixed Hodge polynomial to Kac’s A-polynomial in
Subsect. 4.4. Finally in Sect. 5 we prove all our conjectures in the n = 2
case.
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2 Preliminaries

2.1 Mixed Hodge polynomials. Motivated by the (then still unproven)
Weil Conjectures and Grothendieck’s “yoga of weights”, which drew co-
homological conclusions about complex varieties from the truth of those
conjectures, Deligne in [8,9] proved the existence of mixed Hodge struc-
tures on the cohomology of a complex algebraic variety.

Proposition 2.1.1 (Deligne [8,9]). Let X be a complex algebraic variety.
For each j there is an increasing weight filtration

0 = W−1 ⊆ W0 ⊆ · · · ⊆ W2 j = H j(X,Q)

and a decreasing Hodge filtration

H j(X,C) = F0 ⊇ F1 ⊇ · · · ⊇ Fm ⊇ Fm+1 = 0

such that the filtration induced by F on the complexification of the graded
pieces GrW

l := Wl/Wl−1 of the weight filtration endows every graded piece
with a pure Hodge structure of weight l, or equivalently for every 0 ≤ p ≤ l
we have

GrWC
l = F pGrWC

l ⊕ Fl−p+1GrWC
l . (2.1.1)

We now list properties of this mixed Hodge structure, which we will
need in this paper. From now on we use the notation H∗(X) for H∗(X,Q).

Theorem 2.1.2. 1. The map f ∗ : H∗(Y ) → H∗(X), induced by an alge-
braic map f : X → Y, strictly preserves mixed Hodge structures.

2. A field automorphism σ : C → C induces an isomorphism H∗(X) ∼=
H∗(Xσ ), which preserves the mixed Hodge structure.

3. The Künneth isomorphism

H∗(X × Y ) ∼= H∗(X) ⊗ H∗(Y )

is compatible with mixed Hodge structures.
4. The cup product

Hk(X) × Hl(X) −→ Hk+l(X)

is compatible with mixed Hodge structures.
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5. If X is smooth W j−1 H j(X) is trivial.
6. If X is smooth the pure part PH∗(X) := ⊕

k Wk Hk(X) ⊂ H∗(X) is
a subring.

7. If X is smooth and i : X → Y is a smooth compactification of X, then
Im(i∗) = PH∗(X).

Using Deligne’s [9, 8.3.8] construction of mixed Hodge structure on
relative cohomology one can define [7] (for a general discussion of this
cf. Note 11 on p. 141 of [19]) a well-behaved mixed Hodge structure on
compactly supported cohomology H∗

c (X) := H∗
c (X,Q). Its basic properties

are as follows (for proofs see [58]):

Theorem 2.1.3. 1. The forgetful map

Hk
c (X) −→ Hk(X)

is compatible with mixed Hodge structures.
2. For a smooth connected X we have Poincaré duality

Hk(X) × H2d−k
c (X) −→ H2d

c (X) ∼= Q(−d) (2.1.2)

is compatible with mixed Hodge structures, where Q(−d) is the pure
mixed Hodge structure onQwith weight 2d and Hodge filtration Fd = Q
and Fd+1 = 0.

3. In particular, for a smooth X, W j+1 H j
c (X) ∼= H j

c (X) .

Definition 2.1.4. Define the mixed Hodge numbers by

h p,q; j(X) := dimC
(
GrF

p GrW
p+q H j(X)C

)
,

and the compactly supported mixed Hodge numbers by

h p,q; j
c (X) := dimC

(
GrF

p GrW
p+q H j

c (X)C
)
.

Form the mixed Hodge polynomial:

H(X; x, y, t) :=
∑

h p,q; j(X)x p yqt j ,

the compactly supported mixed Hodge polynomial:

Hc(X; x, y, t) :=
∑

h p,q; j
c (X)x p yqt j ,

and the E-polynomial of X:

E(X; x, y) := Hc(X; x, y,−1).
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(2.1.2) implies the following

Corollary 2.1.5. For a smooth connected X of dimension d we have

Hc(X; x, y, t) = (xyt2)d H(X; 1/x; 1/y; 1/t).

Remark 2.1.6. By definition E(X; 1, 1) = Hc(X; 1, 1,−1) is the Euler
characteristic of X.

Remark 2.1.7. For our varieties Mn we will find in Corollary 4.1.11 that
only Hodge type (p, p) can be non-trivial in the mixed Hodge structure, in
other words h p,q; j = 0 unless p = q. Hence, H(Mn; x, y, t) only depends
on xy and t. To simplify our notation we will denote by

H(Mn; q, t) := H(Mn;√
q,

√
q, t) (2.1.3)

and

E(Mn; q) := E(Mn;√
q,

√
q).

It is in fact the E-polynomial which could sometimes be calculated
using arithmetic algebraic geometry. Here we explain a theorem of Katz
(for details see the appendix). The setup is the following. Let X be a variety
over C. By a spreading out of X we mean a separated scheme X over
a finitely generated Z-algebra with an embedding ϕ : R ↪→ C, such that the
extension of scalars Xϕ

∼= X. We say that X has polynomial count1 if there
is a polynomial PX(t) ∈ Z[t] and a spreading out X such that for every
homomorphism φ : R → Fq to a finite field, the number of Fq-points of the
scheme Xφ is

#Xφ(Fq) = PX(q).

Then we have the following (cf. Theorem 6.1.2.3)

Theorem 2.1.8 (Katz). Let X be a variety over C. Assume X has poly-
nomial count with count polynomial PX(t) ∈ Z[t], then the E-polynomial
of X is given by:

E(X; x, y) = PX(xy).

Remark 2.1.9. Informally this means that if we can count the number of
solutions of the equations defining our variety overFq , and this number turns
out to be some universal polynomial evaluated at q, then this polynomial
determines the E-polynomial of the variety.

In fact it is enough for this to be true for all finite fields of all but finitely
many characteristics. We illustrate this in a simple example.

1 A similar property for smooth and proper schemes was studied in [65].
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Example 2.1.10. Fix a non-zero integer m ∈ Z and let X be the scheme
over Z determined by the equation

xy = m. (2.1.4)

The extension of scalars Xφ of X determined by a ring homomorphism
φ : Z→ Fq is given by the same equation (2.1.4) now viewed over Fq. It is
easy to count solutions to (2.1.4). Let p be the characteristic of Fq (so that
q is a power of p). Then

#Xφ(Fq) =
{

2q − 1 p | m
q − 1 otherwise.

(2.1.5)

Therefore X/Z is fiberwise polynomial-count but not strongly polynomial-
count (for precise definitions see the appendix). This is not a contradiction
to Theorem 6.1.4 of the appendix; if we extend scalars to Z[ 1

m ] then we
eliminate the primes dividing m and find that in all cases #Xφ(Fq) = q − 1,
hence X has polynomial count. In fact, X/Z[ 1

m ] is just isomorphic to
Gm/Z[ 1

m ].
Example 2.1.11. To illustrate Katz’s theorem further, we consider the var-
iety X = C×. First we determine its mixed Hodge polynomial (cf. proof of
Theorem 9.1.1 in [9]). The only question is to decide the Hodge numbers
on the one-dimensional H1(C∗). Because h0,1;1 = h1,0;1 and h2,0;1 = h0,2;1
we must have h1,1;1(C×) = 1 and the mixed Hodge polynomial is

H(C×; x, y, t) = 1 + xyt. (2.1.6)

Consequently, the compactly supported mixed Hodge polynomial is

Hc(C
×; x, y, t) = t + xyt2,

by Corollary 2.1.5. Therefore the E-polynomial is

E(C×; x, y) = xy − 1.

We can obtain the variety C× by extension of scalars Z ⊂ C from the
group scheme Gm over Z. The counting polynomial of this scheme is the
polynomial PC×(q) = q − 1 = #Gm(Fq), which is consistent with Katz’s
theorem above.

2.2 Character varieties. Here we define the character varieties and list
their basic properties.

Let g ≥ 0, n > 0 be integers. LetK be an algebraically closed field with
ζn ∈ K a primitive n-th root of unity. The existence of such ζn is equivalent
to the condition

char(K) � n (2.2.1)

which we henceforth assume. Examples to bear in mind are K = C and the
algebraic closure of a finite field K = Fq, where q = pr is a prime power,
with p � n.
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Denote by In ∈ GL(n,K) the identity matrix, [A, B] := ABA−1 B−1 ∈
SL(n,K), the commutator. The group GL(n,K) acts by conjugation on
GL(n,K)2g:

σ : GL(n,K) × GL(n,K)2g −→ GL(n,K)2g

(h, (A1, B1, . . . , Ag, Bg)) �−→ (
h−1 A1h, h−1 B1h, . . . , h−1 Agh, h−1 Bgh

)
.

As the center of GL(n,K) acts trivially, this action induces an action

σ̄ : PGL(n,K) × GL(n,K)2g −→ GL(n,K)2g (2.2.2)

of PGL(n,K). Let µ : GL(n,K)2g → SL(n,K) be given by

µ(A1, B1, . . . , Ag, Bg) := [A1, B1] . . . [Ag, Bg].
We define

Un := µ−1(ζn In). (2.2.3)

Clearly the PGL(n,K)-action (2.2.2) will leave the affine variety Un
invariant. Thus we have a PGL(n,K) action on Un:

σ̄ : PGL(n,K) × Un −→ Un. (2.2.4)

The categorical quotient

πn : Un −→ Mn (2.2.5)

exists by [56, Theorem1.1] (cf. also [57, §3]) in the sense of geometric
invariant theory [56]. Explicitly we have

Mn = Spec
(
K[Un]PGL(n,K)

)

and πn is induced by the obvious embedding of K[Un]PGL(n,K) ⊂ K[Un].
We call Mn a twisted GL(n,K)-character variety of a closed Riemann
surface of genus g. We will use the notation Mn/K for the variety Mn ,
when we want to emphasize the ground field K.

Example 2.2.1. When g = 0 Mn is clearly empty, unless n = 1 when it is
a point.

Example 2.2.2. When n = 1, SL(1,K) and PGL(1,K) are trivial, and so
M1 = GL(1,K)2g ∼= (K×)2g is a torus. The mixed Hodge polynomial of
Mn/C then is

H(M1/C; x, y, t) = (1 + xyt)2g (2.2.6)

by Theorem 2.1.2.3 and (2.1.6).

Remark 2.2.3. It will be important for us to have a spreading out Xn/R
of the variety Mn/C over a finitely generated Z-algebra R. Clearly Un
can be defined to be an affine scheme over R := Z[ζn]. Using Seshadri’s
extension of geometric invariant theory quotients for schemes [63], we can
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take the categorical quotient by the conjugation action of the reductive
group scheme PGL(n, R). Explicitly, Xn = Spec

(
R[Un]PGL(n,R)

)
. As the

embedding φ : R → C is a flat morphism, [63, Lemma 2] implies that

R[Un]PGL(n,R) ⊗R C = C[Un]PGL(n,C),

thus Xn is the required spreading out of Mn/C. Roughly speaking the
scheme Xn/R will be our bridge between the varieties Mn/C and Mn/Fq.

We have the following immediate

Corollary 2.2.4. The mixed Hodge polynomial H(Mn/C; x, y, t) does not
depend on the choice of the primitive n-th root of unity ζn ∈ C.

Proof. As Mn/C can be obtained by base change from Xn/R with φ :
R → C, we see that the Galois conjugate Mσ

n for any field automorphism
σ : C→ C can be obtained from the same scheme Xn/R by extension of
scalars σφ : R → C. Now Theorem 2.1.2.2 implies the corollary. ��
Theorem 2.2.5. The variety Mn is non-singular.

Proof. Because of Example 2.2.1 we can assume g > 0 for the rest of the
proof.

We first pr ove that the affine subvariety Un ⊂ (GL(n,K))2g is non-singu-
lar. By definition it is enough to show that at a solution s = (A1, B1, . . . ,
Ag, Bg) of the equation

[A1, B1] . . . [Ag, Bg] = ζn In (2.2.7)

the derivative of µ on the tangent spaces

dµs : Ts(GL(n,K)2g) −→ Tζn In SL(n,K)

is surjective. So take (X1, Y1, . . . , Xg, Yg) ∈ Ts(GL(n,K)2g) ∼= gl(n,K)2g.
Then differentiate µ to get:

dµs(X1, Y1, . . . , Xg, Yg)

=
g∑

i=1

[A1, B1] . . . [Ai−1, Bi−1]Xi Bi A−1
i B−1

i [Ai+1, Bi+1] . . . [Ag, Bg]

+
g∑

i=1

[A1, B1] . . . [Ai−1, Bi−1]AiYi A−1
i B−1

i [Ai+1, Bi+1] . . . [Ag, Bg]

−
g∑

i=1

[A1, B1] . . . [Ai−1, Bi−1]Ai Bi A−1
i Xi A−1

i B−1
i [Ai+1, Bi+1] . . . [Ag, Bg]

−
g∑

i=1

[A1, B1] . . . [Ai−1, Bi−1]Ai Bi A−1
i B−1

i Yi B
−1
i [Ai+1, Bi+1] . . . [Ag, Bg],
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where we used the product rule for matrix valued functions, in particular that
dνA(X) = −A−1XA−1 for the derivative of the function ν : GL(n,K) →
GL(n,K) defined by ν(A) = A−1 at A ∈ GL(n,K) and X ∈ TAGL(n,K) ∼=
gl(n,K). Using (2.2.7) for each of the four terms, we get:

dµs(X1, Y1, . . . , Xg, Yg) =
g∑

i=1

( fi(Xi) + gi(Yi)), (2.2.8)

where we define linear maps fi : gl(n,K) → sl(n,K) and gi : gl(n,K) →
sl(n,K) by

fi(X) = ζn[A1, B1] . . . [Ai−1, Bi−1]
(
XA−1

i − Ai Bi A−1
i X B−1

i A−1
i

)

× ([A1, B1] . . . [Ai−1, Bi−1])−1

and

gi(X) = ζn[A1, B1] . . . [Ai−1, Bi−1]
× (

AiYi B
−1
i A−1

i − Ai Bi A−1
i B−1

i Yi Ai B−1
i A−1

i

)

× ([A1, B1] . . . [Ai−1, Bi−1])−1.

Assume that Z ∈ sl(n,K) such that

Tr(Zdµs(X1, Y1, . . . , Xg, Yg)) = 0 (2.2.9)

for all Xi and Yi . By (2.2.8) this is equivalent to

Tr(Zfi(Xi)) = Tr(Zgi(Xi)) = 0

for all i and Xi ∈ GL(n,K). We show by induction on i that this implies
that Z commutes with Ai and Bi . Assume we have already proved this for
j < i and calculate

0 = Tr(Zfi(Xi)) = Tr
((

A−1
i Z − B−1

i A−1
i Z Ai Bi A−1

i

)
Xi

)

for all Xi , thus Z commutes with Ai Bi A−1
i . Similarly we have

0 = Tr(Zgi(Xi)) = Tr
((

B−1
i A−1

i Z Ai − Ai B−1
i A−1

i Z Ai Bi A−1
i B−1

i

)
Xi

)
,

which implies that Z commutes with Ai Bi Ai B−1
i A−1

i . Thus Z commutes
with Ai and Bi . The next lemma proves that this implies that Z has to be
central. Because Z was traceless, we also get Z = 0 by (2.2.1). Thus there
is no non-zero Z such that (2.2.9) holds for all Xi and Yi . Again because of
(2.2.1) this implies that dµ is surjective at any solution s of (2.2.7). Thus
Un is non-singular.

Lemma 2.2.6. Suppose Z ∈ gl(n,K) commutes with each of the 2g matri-
ces A1, B1, . . . , Ag, Bg ∈ GL(n,K), which solve (2.2.7). Then Z is central.
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Proof. If Z is not central and λ is an eigenvalue then E = ker(Z − λIn)
is a proper subspace of Kn. Because Ai and Bi all commute with Z, they
preserve E. Let Ãi = Ai |E and B̃i = Bi|E . Then restricting (2.2.7) to E we
get

[ Ã1, B̃1] . . . [ Ãg, B̃g] = ζn IE .

As the determinant of a commutator is 1, the determinant of the right hand
side has to be 1. But this implies ζdim E

n = 1, which is a contradiction as ζn
is a primitive n-th root of unity. The lemma follows. ��

This lemma also proves that if g ∈ GL(n,K) is not central then it acts
set-theoretically freely on the solution space of (2.2.7). We can also deduce
the following more general

Corollary 2.2.7. The action σ̄ of PGL(n,K) on Un, defined in (2.2.4), is
scheme-theoretically free ([56, Definition 0.8 (iv)]).

Proof. The statement says that the map Ψ := (σ̄, p2) : PGL(n,K)×Un →
Un × Un is a closed immersion. We prove it by an argument similar to the
proof of [60, Lemma 6.5].

To prove this consider the map Φ : Un × Un → HomK(gl(n,K),
gl(n,K)2g), defined by

Φ((A1, B1, . . . , Ag, Bg),( Ã1, B̃1, . . . , Ãg, B̃g))(h)

= (h A1 − Ã1h, . . . , h Bg − B̃gh).

We show that Φ(x, y) has a non-trivial kernel if and only if (x, y) ∈ Un×Un

is in the image of Ψ, i.e., there is an h̄ ∈ PGL(n,K) such that y = h̄x. The
if part is clear. For the other direction assume that Φ(x, y) has a non-trivial
kernel, i.e., 0 �= h ∈ gl(n,K), such that Φ(x, y)(h) = 0. Then the matrices
A1, B1, . . . , Ag, Bg, which solve (2.2.7), will leave ker(h) invariant. As in
the proof of Lemma 2.2.6 this implies that ker(h) is trivial i.e., h is invertible.
So indeed ker(Φ(x, y)) �= 0 implies that there exists h̄ ∈ PGL(n,K) such
that y = h̄x. We also get that in this case dim(ker Φ(x, y)) = 1 as the
action σ̄ is set-theoretically free.

Now we fix a basis for gl(n,K), and take the closed subscheme given by
the vanishing of all n2 × n2 minors in the entries of the matrices Φ(x, y) ∈
HomK(gl(n,K), gl(n,K)2g). This shows that the image of Ψ is a closed
subscheme Z of Un × Un.

Moreover on the Zariski open subscheme of Z where a given (n2 − 1)×
(n2 − 1) minor of Ψ(x, y) is non-zero, we can solve algebraically for the
unique h̄ ∈ PGL(n,K) such that y = h̄x, giving us locally an inverse
Z → Un ×Un to Ψ; showing that Ψ is an isomorphism onto its image. The
corollary follows. ��

In particular Ψ is a closed map. Consequently the action is closed so [56,
Amplification 1.3, Proposition 0.9] imply
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Corollary 2.2.8. The categorical quotient (Mn, πn) is a geometric quotient
and πn in (2.2.5) is a PGL(n,K)-principal bundle, in particular πn is flat.

Because the geometrical fibres of the flat morphism πn are non-singular
(they are all isomorphic to PGL(n,K)) πn is a smooth morphism by [55,
Theorem III.10.3’]. By [26, Corollary 17.16.3] a smooth surjective morph-
ism locally has an étale section, so étale-locally the principal bundle πn :
Un → Mn is trivial. As Un is non-singular, we get that Mn is also non-
singular. ��

We will see in Corollary 3.5.5 that our varieties Un and Mn are con-
nected. Here we can determine their dimension.

Corollary 2.2.9. For g > 0 the dimension of (each connected component
of) Mn is dn := n2(2g − 2) + 2.

Proof. From the previous proof we see that the dimension of (each con-
nected component of) Un is

dim(GL(n,K)2g) − dim(SL(n,K)) = 2gn2 − (n2 − 1).

Because πn is flat we have to subtract dim(PGL(n,K)) = n2 − 1 from this
to get the dimension of Mn proving the claim. ��
Definition 2.2.10. The torus (K×)2g acts on Un ⊂ GL(n,K)2g by the
following formula:

τ : (K×)2g × GL(n,K)2g →GL(n,K)2g (2.2.10)
((λ1,. . ., λ2g), (A1, B1,. . ., Ag, Bg)) �→ (λ1 A1, λ2 B1,. . ., λ2g−1 Ag, λ2g Bg).

This action commutes with the action σ̄ . Thus (K×)2g acts on Mn . We call
the categorical quotient

M̃n := Mn//(K
×)2g ∼= Un//(PGL(n,K) × (K×)2g)

the twisted PGL(n,K)-character variety of the genus g Riemann surface Σ.

Remark 2.2.11. M̃n could be considered as a component of the variety
of homomorphisms of π1(Σ) into PGL(n,K) modulo conjugation, this
motivates its name.

Theorem 2.2.12. The variety M̃n is an orbifold. Each connected com-
ponent of M̃n has dimension d̃n = (n2 −1)(2g−2). Moreover whenK = C
its cohomology satisfies

H∗(Mn/C) = H∗(M̃n/C) ⊗ H∗(M1/C),

and the mixed Hodge polynomial satisfies:

H(Mn/C; x, y, t) = H(M̃n/C; x, y, t)(1 + xyt)2g. (2.2.11)
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Proof. Let µ′ : SL(n,K)2g → SL(n,K) be given by

µ′(A1, B1, . . . , Ag, Bg) := [A1, B1] . . . [Ag, Bg].
We define

U′
n := (µ′)−1(ζn In). (2.2.12)

The PGL(n,K)-action (2.2.2) on SL(n,K)2g ⊂ GL(n,K)2g will leave the
affine variety U′

n invariant. We have the categorical quotient

π ′
n : U′

n −→ M′
n, (2.2.13)

defining the twisted SL(n,K)-character variety M′
n. Exactly as in the

GL(n,K) case we can argue that U′
n and M′

n are non-singular, π ′
n is

a PGL(n,K)-principal bundle and the components of M′
n have dimension

dim(SL(n,K)2g) − dim SL(n,K) − dim PGL(n,K) = (n2 − 1)(2g − 2).

We denote by µn the group scheme of n-th roots of unity. µ
2g
n ⊂ (K×)2g

acts on U′
n ⊂ Un ⊂ GL(n,K)2g induced from the action (2.2.10). It

commutes with the action σ̄ in (2.2.4) and so µ
2g
n also acts on M′

n . Note that
the map SL(n,K)×K× → GL(n,K) given by multiplication is the categor-
ical quotient of the action of the subgroup scheme µn = {(ζd

n In, ζ
−d
n ), d =

1, . . . , n} ⊂ SL(n,K) ×K× on SL(n,K) ×K×. Therefore we can identify
Un = (U′

n × (K×)2g)//µ
2g
n and taking quotients we have

Mn
∼= (

M′
n × (K×)2g

)
//µ2g

n . (2.2.14)

In particular we see that the categorical quotient

M̃n = Mn//(K
×)2g ∼= (

M′
n × (K×)2g

)
//

(
µ2g

n × (K×)2g
) ∼= M′

n//µ
2g
n

(2.2.15)

is an orbifold of dimension (n2 − 1)(2g − 2).
When we take cohomologies in (2.2.14) we get:

H∗(Mn/C) = (
H∗(M′

n/C× M1/C
))µ

2g
n = H∗(M′

n/C
)µ

2g
n ⊗ H∗(M1/C)

= H∗(M̃n/C) ⊗ H∗(M1/C),

by (2.2.15), the Künneth theorem, the fact that µ
2g
n acts trivially on

H∗(M1/C) and the observation of Grothendieck [25] that the rational co-
homology of a quotient of a smooth variety by a finite group like (2.2.15) and
(2.2.14) is the invariant part of the cohomology of the space. The theorem
follows. ��

For g = 1 we now determine our varieties Mn and M̃n explicitly.
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Lemma 2.2.13. Let H ⊂ GL(n,K) be the subgroup generated by A, B ∈
GL(n,K) satisfying

[A, B] = ζn In, (2.2.16)

where In is the identity matrix. Then the corresponding action of H on Kn

is irreducible.

Proof. The proof is the same as in the proof of Lemma 2.2.6. ��
Lemma 2.2.14. With the notation of the previous Lemma 2.2.13 we have

An = αIn, Bn = βIn, α, β ∈ K×. (2.2.17)

Proof. From (2.2.16) we easily deduce that

A jBk = ζ jk
n BkA j , j, k ∈ Z. (2.2.18)

In particular, An and Bn are in the center of H and our claim follows from
Schur’s lemma and Lemma 2.2.13. ��
Lemma 2.2.15. There exists a unique solution, up to conjugation, to the
equations

An = Bn = In, [A, B] = ζn In, A, B ∈ GL(n,K), (2.2.19)

where In is the identity matrix.

Remark 2.2.16. The group H generated by the matrices in the hypothesis of
the lemma is a finite Heisenberg group. The lemma is a version of the Stone–
von-Neumann theorem on the uniqueness of the Heisenberg representation.

Proof. Let v ∈ Kn be an eigenvector of A, say Av = ζv with ζn = 1. Then
ABv = ζnBAv = ζζn Bv and Bv is also an eigenvector of A. Repeating the
process we see that Bkv is an eigenvector of A for all k ∈ Z.

Since the action of H is irreducible by Lemma 2.2.13 we must have that
v, Bv, . . . , Bn−1v is a basis of Kn (their span is clearly stable under H).
Replacing v by an appropriate vector Bkv if necessary we may assume
that ζ = 1. Hence in this basis A is the diagonal matrix with entries
1, ζn, ζ

2
n , . . . , ζn−1

n along the diagonal and B is the permutation matrix cor-
responding to the n-cycle (12 · · · n). It is easy to verify that these particular
matrices are indeed solutions to (2.2.19) and we have shown all pairs of
matrices satisfying (2.2.19) are conjugate to these proving our claim. ��
Theorem 2.2.17. The orbits of the action of GL(n,K) acting on the solu-
tions to

[A, B] = ζn In, A, B ∈ GL(n,K)
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by conjugation are in bijection with K× × K× via (A, B) �→ (α, β) where
An = αIn, Bn = βIn. Consequently Mn

∼= K× × K× and M̃n is a point
when g = 1.

Proof. Consider the action of (K×)2 on Mn induced by (2.2.10). Let
x0 ∈ Mn be the point corresponding to the unique PGL(n,K) orbit in Un
of pairs of matrices (A, B) solving (2.2.19). Then for such a pair of ma-
trices τ(λ1, λ2)(A, B) = (λ1 A, λ2 B) will give a solution of (2.2.16), such
that (2.2.17) will hold with α = λn

1 and β = λn
2. Because of the unique-

ness of x0, we see that the action of (K×)2 on Mn is transitive. There-
fore M̃n is a point. The stabilizer of x0 is µ2

n ⊂ (K×)2. It follows that
Mn

∼= (K×)2//µ2
n

∼= K× × K×, and the isomorphism Mn → K
× × K× is

given by the map in the theorem. ��

2.3 Counting solutions to equations in finite groups. We collect in this
section various known results about counting solutions to equations in finite
groups that we will need. These and similar results have appeared in the
literature in many places see for example [62,17,53]. Interestingly, the first
application in Frobenius’s [18] of 1896, where he introduced characters of
finite groups, were formulas of similar type. (Those that relate to a Riemann
sphere with punctures.)

These counting formulas arise naturally, when considering Fourier trans-
form on finite groups. This point of view will be discussed in [34], where
it is shown that the counting formulas below and the one in [32] have the
same origin.

Let G be a finite group. For a function

f : G −→ C

we define
∫

G
f(x)dx := 1

|G|
∑

x∈G

f(x)

Given a word w ∈ Fn , where Fn = 〈X1, . . . , Xn〉 is the free group in
generators X1, . . . , Xn , and a function f on G as above we define

{ f, w} :=
∫

Gn
f(w(x1, . . . , xn))dx1 . . . dxn, (2.3.1)

where w(x1, . . . , xn) is a shorthand for φ(w) ∈ G with φ : Fn → G the
homomorphism mapping each Xi to xi .

Lemma 2.3.1. With the above notation we have for any z ∈ G and χ any
irreducible character of G

∫

Gn
χ(w(x1, . . . , xn)z)dx1 . . . dxn = {χ,w}χ(z)

χ(1)
. (2.3.2)
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Proof. Consider the linear endomorphism of the vector space V of a repre-
sentation ρ of G with character χ

W := 1

|G|n
∑

(x1,...,xn)∈Gn

ρ(w(x1, . . . , xn)).

Changing each xi in the sum defining W by zxi z−1 for some z ∈ G
does not change the sum. On the other hand, w(zx1z−1, . . . , zxnz−1) =
zw(x1, . . . , xn)z−1, hence W = ρ(z)Wρ(z)−1. In other words, W is G-
linear. By Schur’s lemma W is a scalar; taking traces we find that

W = {χ,w}
χ(1)

idV .

Multiplying both sides by ρ(z) on the right and taking traces again we
obtain (2.3.2). ��
Proposition 2.3.2. With the above notation let N(z) be the number of solu-
tions to

w(x1 · · · xn)z = 1, (x1, . . . , xn) ∈ Gn, (2.3.3)

then

N(z) = |G|n−1
∑

χ

{χ,w}χ(z) (2.3.4)

where the sum is over all irreducible characters of G.

Proof. Write the delta function on G

δ(x) =
{

1 x = 1
0 otherwise

as a linear combination of the irreducible characters of G

δ =
∑

χ

cχχ, (2.3.5)

where

cχ = (χ, δ) =
∫

G
χ(x)δ(x)dx = χ(1)

|G| .

On the other hand,

N(z) = |G|n
∫

Gn
δ(w(x1, . . . , xn)z)dx1 . . . dxn,

which combined with (2.3.5) and (2.3.2) yields our claim. ��
Consider now words wi ∈ 〈X(i)

1 , . . . , X(i)
ni

〉 in disjoint set of variables for
i = 1, . . . , k and let w = w1 · · · wk ∈ 〈X(1)

1 , . . . , X(1)
n1

, X(2)
1 , . . . , X(2)

n2
, . . . 〉.
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From Lemma 2.3.1 it follows by induction that

{χ,w} = {χ,w1} · · · {χ,wk}
χ(1)k−1

. (2.3.6)

As an application, consider w = [x, y] = xyx−1 y−1. It is not hard to
verify that

{χ,w} = 1

χ(1)
.

Indeed, consider the linear endomorphism of the vector space V of a represen-
tation ρ of G with character χ

W := 1

|G|
∑

x∈G

ρ(xyx−1).

By changing variables in the sum we see that Wρ(z) = ρ(z)W for all z ∈ G.
Hence, by Schur’s lemma W is a scalar; taking traces we find that

W = χ(y)

χ(1)
idV .

Now we note that {χ,w} is the trace of

1

|G|
∑

y∈G

Wy−1 = 1

χ(1)|G|
∑

y

χ(y)ρ(y)−1

and our claim follows. We conclude from Proposition 2.3.2 that for any2

g ∈ Z≥0

#
{
(x1, y1, . . . , xg, yg) ∈ G2g

∣
∣[x1, y1] · · · [xg, yg]z = 1

}

=
∑

χ

( |G|
χ(1)

)2g−1

χ(z). (2.3.7)

Remark 2.3.3. For z = 1 the quantity in (2.3.7) equals # Hom(Γg, G) where
Γg is the fundamental group of a genus g Riemann surface. Hence we have

# Hom(Γg, G) = |G|
∑

χ

( |G|
χ(1)

)2g−2

, (2.3.8)

which, in particular, implies the remarkable fact that |G| always divides
# Hom(Γg, G) for g > 0.

2.4 Partitions. We collect in this section some notation and concepts
on partitions that we will need later. The main reference is Macdonald’s
book [50].

2 In this paper we avoid the use of the notation N as the notion of natural numbers is
different for the two authors. Instead we use the notation Z≥0 and Z>0 respectively.
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Let Pm be the set of all partitions λ of a non-negative integer m = |λ|
(where for m = 0 we only have the zero partition {0}) and P = ⋃

m Pm . We
write a partition of n as λ = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0), so that

∑
λi = n.

The Ferrers diagram d(λ) of λ is the set of lattice points

{(i, j) ∈ Z≤0 × Z≥0 : j < λ−i+1}. (2.4.1)

The arm length a(z) and leg length l(z) of a point z ∈ d(λ) (sometimes
called a box) denote the number of points strictly to the right of z and
below z, respectively, as indicated in this example:

• • • • •
• z• • • • a(z)

• • • •
• • •
• l(z)

where λ = (5, 5, 4, 3, 1), z = (−1, 1), a(z) = 3 and l(z) = 2. The hook
length then is defined as

h(z) = l(z) + a(z) + 1. (2.4.2)

Given two partitions λ,µ ∈ P we define

〈λ,µ〉 =
∑

j≥1

λ′
jµ

′
j , (2.4.3)

where λ′ = (λ′
1, λ

′
2, . . . ) and µ′ = (µ′

1, µ
′
2, . . . ) are the dual partitions.

For λ = (λ1, λ2, . . . ) ∈ P we define

n(λ) :=
∑

i≥1

(i − 1)λi (2.4.4)

then

〈λ, λ〉 = 2n(λ) + |λ|. (2.4.5)

Let the hook polynomial be (see [50, p. 152])

H̃λ(q) =
∏

(qh − 1), (2.4.6)

where for the product is taken for the set of boxes d(λ) in the Ferrers diagram
of λ and we let h = h(z) denote the hook length of a box z ∈ d(λ) as defined
in (2.4.2).

It will be convenient for us to work with Laurent polynomials in q
1
2 and

scale the hook polynomial by an appropriate power of q. Concretely, we let

Hλ(q) := q− 1
2 〈λ,λ〉 ∏

(1 − qh). (2.4.7)
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Hence with this normalization we have

Hλ(q
−1) = (−1)|λ|Hλ′(q) (2.4.8)

since
∑

h = n(λ) + n(λ′) + |λ|. (2.4.9)

For a non-negative integer g and a partition λ we define

Hλ(z, w) :=
∏ (z2a+1 − w2l+1)2g

(z2a+2 − w2l)(z2a − w2l+2)
(2.4.10)

a rational function in z, w, where the product runs over the boxes in d(λ)
with a and l the corresponding arm and leg length. (Typically g will be fixed
and hence there is no need to indicate it in the notation. Also the context
should make clear whether Hλ represents the one and two variable version.)

We note the following easily checked properties of Hλ.

1.

Hλ(
√

q, 1/
√

q) = Hλ(q)2g−2; (2.4.11)

2.

Hλ(−z,−w) = Hλ(z, w), Hλ(w, z) = Hλ′(z, w); (2.4.12)

3. Hλ has a Laurent series expansion in z and w−1

Hλ =
∑

i≥i0, j≥0

∗i, j z
jw−i ∈ Z[[z, w−1]][w] (2.4.13)

with i0 = −(2g − 2)〈λ, λ〉.
(To verify the last statement, for example, write

Hλ(z, w) = w(2g−2)〈λ,λ〉 ∏ (1 − z2a+1/w2l+1)2g

(1 − z2a+2/w2l)(1 − z2a/w2l+2)

and expand each factor of the denominator in a geometric series.)

2.5 Formal infinite products. We will need the following formal manipu-
lations of infinite products. For a discussion for general λ-rings see [23]
whose notation we will follow.

We first define the crucial maps Exp and Log that we need. Let K :=
k(x1, . . . , xN ) be the field of rational functions in the indeterminates x1, . . . ,
xN over a ground field k of characteristic zero. In the ring K [[T ]] of formal
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power series in another indeterminate T with coefficients in K we consider
the following map

Exp : TK [[T ]] −→ 1 + TK [[T ]] (2.5.1)

V �−→ exp
( ∑

r≥1

1

r
V

(
xr

1, . . . , xr
N , T r

))
. (2.5.2)

The map Exp has an inverse Log which we now define. Given F ∈
1 + TK [[T ]] let Un ∈ K be the coefficients in the expansion

log(F) =:
∑

n≥1

Un(x1, . . . , xN )
T n

n
.

Define

Vn(x1, . . . , xN ) := 1

n

∑

d|n
µ(d)Un/d

(
xd

1 , . . . , xd
N

)
, (2.5.3)

where µ is the ordinary Möbius function, and set

Log(F) :=
∑

n≥1

Vn(x1, . . . , xN )T n.

We now prove that Exp and Log are indeed inverse maps.
Let V = ∑

n≥1 Vn(x1, . . . , xN )T n ∈ TK [[T ]] then

log(Exp(V )) =
∑

n,r≥1

Vn
(
xr

1, . . . , xr
N

)T nr

r

=
∑

n≥1

1

n

∑

d|n
dVd

(
xn/d

1 , . . . , xn/d
N

)
T n

so that

Un(x1, . . . , xN ) =
∑

d|n
dVd

(
xn/d

1 , . . . , xn/d
N

)
.

By Möbius inversion this equality is equivalent to (2.5.3). Therefore Log ◦
Exp(V ) = V and similarly Exp ◦ Log(F) = F for F ∈ 1 + TK [[T ]].

Note that Exp and Log work the same way if we replace K [[T ]] by
S[[T ]] where

S := k[[x1, . . . , xN ]][x−1
1 , . . . , x−1

N

]

is a Laurent series ring.
The connection with infinite products is the following one. We clearly

have that Exp(V + W ) = Exp(V ) Exp(W ) and

Exp(xmT n) = (1 − xm T n)−1, m = (m1, . . . , mN ) ∈ ZN , n ∈ N,
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where xm := xm1
1 · · · xmN

N . Now suppose that the coefficients in V =∑
n≥1 Vn(x1, . . . , xN )T n ∈ TK [[T ]] have a Laurent expansion

Vn(x1, . . . , xN ) =
∑

m

am,nxm, m = (m1, . . . , mN ) ∈ ZN , am,n ∈ k

(2.5.4)

in S. Then formally we may write

Exp(V ) =
∏

m,n

(1 − xm T n)−am,n ; (2.5.5)

or, in other words, for F ∈ 1 + TS[[T ]] we may think of the coefficients in
Log(F) = ∑

m,n am,nxmT n ∈ TS[[T ]] as the exponents of a formal infinite
product expansion of F of the form (2.5.5).

In fact, we may actually replace k by Z. Let

R := Z[[x1, . . . , xN ]][x−1
1 , . . . , x−1

N

]
.

Then from (2.5.5) we see that Exp maps TR[[T ]] to 1 + TR[[T ]].
Similarly, Log maps 1 + TR[[T ]] to TR[[T ]]. Indeed, we claim that any

F ∈ 1 + TR[[T ]] can be written as a formal infinite product

F =
∏

m,n

(1 − xm T n)−am,n , am,n ∈ Z. (2.5.6)

We may in fact find the exponents am,n recursively as follows. Order the m’s,
say lexicographically. Start with n = 1 and let m0 be the smallest m such
that am,1 �= 0. Consider F(1 − xm0 T )am0,1 ∈ 1 + TR[[T ]]; its coefficient
of xm0 T is zero by construction. Repeat the process with this series. In the
limit we get a series say F1 ∈ 1 + TR[[T ]] whose coefficient of T is zero.
Now set n = 2 and start all over again with F1. In the limit we end up with
the constant series 1 from which we obtain an expression of the desired
form (2.5.6). Clearly Log(F) = ∑

m,n am,nxm T n hence, in particular, the
exponents am,n are uniquely determined by F.

Usually given F = Exp(V ) with V ∈ TK [[T ]] we have more than one
choice for what Laurent series ring to consider for the expansion (2.5.4) of
the coefficients of V . This may result in at first puzzlingly different infinite
products for the same series F.

A typical example is the following. Let V = T/(1 − q). If we expand it
in a Laurent series in q we have

V = T
∑

n≥0

qn in Z[[q, T ]]

and hence

F := Exp(T/(1 − q)) =
∏

n≥0

(1 − qnT )−1, in Z[[q, T ]].
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On the other hand V = −Tq−1/(1 − q−1) and hence if we expand it in
a Laurent series in q−1 we find

V = −T
∑

n≥1

q−n in Z[[q−1, T ]]

and hence also

F =
∏

n≥1

(1 − q−nT ), in Z[[q−1, T ]]. (2.5.7)

This observation becomes important, for example, when comparing results
from different sources.

3 E-polynomial of Mn

3.1 The irreducible characters of the general linear group over a finite
field. Throughout this section Gn will denote the group GL(n,Fq) for
a fixed n ∈ Z>0 and finite field Fq of cardinality q. We now recall the
description of the irreducible characters of Gn following [50].

Fix an algebraic closure Fq of Fq. For each r ∈ Z>0 let Fqr be the unique
subfield of Fq of cardinality qr . Let Frobq ∈ Gal(Fq/Fq) be the Frobenius
automorphism x �→ xq . Then Fqr is the fixed field of Frobr

q. For r, s ∈ Z>0

with r|s we have the norm map Ns,r : Fqs → Fqr , which is surjective.
Let Γr be the character group of F×

qr . Composition with Ns,r, when r|s,
gives an injective map Γr → Γs. Let

Γ = lim−→ Γr

be the direct limit of the Γr via these maps. The Frobenius automorphism
Frobq acts on Γ by γ �→ γ q. The fixed group of Frobr

q is the image of Γr
in Γ, which, abusing notation, we also denote by Γr .

Let Pm(Γ) be the set of all maps Λ : Γ → P which commute with
Frobq and such that

|Λ| :=
∑

γ∈Γ

|Λ(γ)| = m.

Set P (Γ) := ⋃
m Pm(Γ). Given Λ ∈ Pm(Γ) we let Λ′ ∈ Pm(Γ) be the

function with values Λ′(γ) := (Λ(γ))′.
For γ ∈ Γ we let {γ } be its orbit in Γ under Frobq and d(γ) be its degree

(the size of the orbit). Given Λ ∈ Pm(Γ) we let md,λ be the multiplicity of
(d, λ) in Λ, where d ∈ Z>0 and 0 �= λ ∈ P . I.e.,

md,λ := #{{γ }|d(γ) = d,Λ(γ) = λ};
for convenience we also set md,0 = 0 for all d. We will call the collection
of multiplicities {md,λ} the type of Λ and denote it by τ(Λ). We will write

|τ| := |Λ| =
∑

d,λ

md,λd|λ|.
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There is a canonical bijection Λ �→ χΛ between Pn(Γ) and the irredu-
cible characters of Gn. Under this correspondence, the dimension of the
irreducible representation associated to Λ is

χΛ(1) =
n∏

i=1

(qi − 1)/
∏

{γ }
q−n(Λ(γ)′)

γ H̃Λ(γ)(qγ ) (3.1.1)

where the product is taken over orbits {γ } of Frobq in Γ and qγ := qd(γ).
Moreover, the value of χΛ on any central element αIn with α ∈ F×

q and
In ∈ Gn the identity matrix is given by

χΛ(α) = ∆Λ(α)χΛ(1), (3.1.2)

where

∆Λ =
∏

γ∈Γ

γ |Λ(γ)| ∈ Γ1. (3.1.3)

In particular, note that χΛ(1) only depends on the type τ of Λ; we may
hence write it as χτ(1). Let

Hτ (q) :=
∏

{γ }
HΛ(γ)(qγ ) =

∏

d,λ

Hλ(q
d)md,λ (3.1.4)

where τ = τ(Λ). Since

|Gn| = q
1
2 n(n−1)

n∏

i=1

(qi − 1)

we have
|Gn|
χτ(1)

= (−1)nq
1
2 n2

Hτ ′(q) (3.1.5)

where τ ′ := τ(Λ′).
Remark 3.1.1. With the above description the Alvis–Curtis duality [1,6]
for characters of GL(n,Fq) is simply given by Λ �→ Λ′. In particular, as
polynomials in q

q
n(n−1)

2 χΛ(1)(q−1) = χΛ′(1)(q).

3.2 Counting solutions on the general linear group. We now apply the
results of Subsect. 2.3 to Gn = GL(n,Fq) using the results of Subsect. 3.1.
We specialize (2.3.7) to this case and where z = αIn with α ∈ F×

q . In the
resulting sum on the right hand side we collect all irreducible characters of
the same type τ and obtain

|Gn|
( |Gn|

χτ(1)

)2g−2 ∑

τ(Λ)=τ

∆Λ(α). (3.2.1)
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Our next goal is to compute the sum in the case that α is a primitive n-th
root of unity. We will see that a tremendous cancelation takes place and
only relatively few Λ’s give a non-zero contribution.

Assume then that Fq contains a primitive n-th root of unity ζn and let

Cτ :=
∑

τ(Λ)=τ

∆Λ(ζn). (3.2.2)

To simplify the notation let

Nn(q) := #{x1, y1, . . . , xg, yg ∈ GL(n,Fq)|[x1, y1] · · · [xg, yg]ζn = 1}.
(3.2.3)

At this point we have in combination with (3.1.5)

1

|Gn| Nn(q) =
∑

|τ |=n

Cτ

(
q

1
2 n2

Hτ ′(q)
)2g−2

. (3.2.4)

Our next task is to compute Cτ ; we will find that Cτ is a constant times
(q − 1), independent of the choice of ζn . In particular, this will show that
Nn(q)/|Gn| is a polynomial in q.

3.3 General combinatorial setup. To compute Cτ we will use the inclu-
sion–exclusion principle on a certain partially ordered set. We first describe
a slightly more general setup.

Let I := {1, 2, . . . , m} and let Π(I ) be the poset of partitions of I ; it
consists of all decompositions π of I into disjoint unions of non-empty sub-
sets I = ∐

j I j ordered by refinement, which we denote by ≤. Concretely,
π ≤ π ′ in Π(I ) if every subset in π is a subset of one in π ′. We call the I j’s
the blocks of π.

The group S(I ) of permutations of I acts on Π(I ) in a natural way
preserving the ordering ≤; for ρ ∈ S(I ) let Π(I )ρ be the subposet of Π(I )
of elements fixed by ρ.

For π ∈ Π(I ) let J be the set of its blocks and write I = ⊔
j∈J I j . It

will be convenient to also think of π as the surjection π : I → J that takes
i to j where I j is the unique block containing i. Then the blocks I j are just
the fibers of this map. For π ∈ Π(I )ρ the blocks of π are permuted by ρ.
Denote by ρπ the induced permutation in S(J).

Fix a variety X defined over Fq and let (I, X) := X I be the variety of
maps ξ : I → X. We have a natural injection S(I ) ↪→ Aut((I, X)). For
ρ ∈ S(I ) we let (I, X)ρ be the twist of (I, X) by ρ. Its Fq-points consists of
the maps

ξ : I −→ X(Fq), ξ ◦ ρ = Frobq ◦ ξ.

Also let (I, X)′
ρ ⊆ (I, X)ρ be the open subset of injective maps ξ : I → X.

For π ∈ Πρ(I ) we let (π, X)ρ ⊆ (I, X)ρ be the closed subset of maps
ξ : I → X which are constant on the blocks of π. (This notation is
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consistent with our previous one if we think of I as the partition where
every block has size 1, the unique minimal element of Π(I )ρ.) There is
a natural isomorphism

ιπ : (J, X)ρπ
−→ (π, X)ρ

ξ �−→ ξ ◦ π

Finally, we let (π, X)′
ρ ⊂ (π, X)ρ be the image of (J, X)′

ρπ
under ιπ .

Concretely, π prescribes some equalities on the values of ξ : I → X (it is
constant on the blocks of I ) and ξ ∈ (π, X)′

ρ if and only if these are the only
equalities among these values. It follows that

(I, X)ρ =
⊔

π

(π, X)′
ρ, (3.3.1)

where π runs through the partitions in Π(I )ρ. More generally,

(π∗, X)ρ =
⊔

π≤π∗
(π, X)′

ρ, (3.3.2)

for any π∗ ∈ Π(I )ρ.
Now take X to be a commutative algebraic group over Fq. In particular,

all the (π, X)ρ are subgroups of (I, X)ρ and ιπ is a group isomorphism. Fix
n ∈ Z>0. Assume that there exists a character ϕ : X(Fq) → µn of exact
order n. Let

Φ : (I, X)ρ −→ µn

ξ �−→ ϕ
(∏

i∈I

ξ(i)η(i)
)
,

where η : I → Z>0 is compatible with ρ, i.e., η ◦ ρ = η (or, equivalently,
η is constant on the orbits of ρ) and

∑
i η(i) = n. Then Φ is a well defined

character on (I, X)ρ (the argument of ϕ is in X(Fq) by the compatibility
of ξ and η with ρ).

For π ∈ Π(I )ρ and j ∈ J define ηπ( j) := ∑
i∈Ij

η(i). It is easy to check
that ηπ is compatible with ρπ , i.e., ηπ ◦ ρπ = ηπ and also

∑
j∈J ηπ( j) = n.

Let Φπ be the analogue of Φ for (J, X)ρπ
constructed using ηπ . Then

Φπ = Φ ◦ ιπ . (3.3.3)

We will see in the next section that what we need is to compute the following
sum

S′(I ) :=
∑

ξ

Φ(ξ), (3.3.4)

where ξ runs over (I, X)′
ρ(Fq). Thanks to (3.3.2) we can calculate S′(I )

using the inclusion–exclusion principle on the poset Π(I )ρ:

S′(I ) =
∑

π∈Π(I )ρ

µρ(π)S(π), (3.3.5)
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where

S(π) :=
∑

ξ

Φ(ξ), (3.3.6)

with ξ running over (π, X)ρ(Fq), and where µρ is the Möbius function
of Π(I )ρ.

The advantage of (3.3.6) over (3.3.4) is that it is a complete character
sum and, hence, vanishes unless the character is trivial. Using (3.3.3) we
get

S(π) =
∑

ξ

Φπ(ξ), (3.3.7)

with ξ running over (J, X)ρπ
(Fq). We can now factor S(π) as a product over

the orbits of ρπ . Each factor is a complete character sum of the form

∑

x∈F×
qa

ϕb ◦ NFqa /Fq(x),

where a and b are, respectively, the size and the common value of ηπ of the
corresponding orbit of ρπ . Since ϕ has exact order n, by assumption, the
character ϕb ◦ NFqa /Fq is trivial if and only if n|b; this can only happen if
|J| = 1 because

∑
j∈J ηπ( j) = n and ηπ( j) > 0.

It follows that S(π) = 0 unless π is the trivial partition I = I , the
unique maximal element in Π(I )ρ; in this case, S(π) = |X(Fq)| since
(π, X)ρ(Fq) = X(Fq). In order to conclude the calculation we need to know
the value of µρ at the maximal element of Π(I )ρ. For simplicity denote
this by µ̄ρ. Its value was computed by Hanlon [27]. Abusing notation let ρ
also denote the partition of m determined by its cycle structure and write it
in multiplicity notation (1m1 2m2 · · · ) where md is the number of cycles of
size d in ρ. Then we have

µ̄ρ =
{
µ(d)(−d)md−1(md − 1)! ρ = (dmd )

0 otherwise,
(3.3.8)

where µ is the ordinary Möbius function. (To be sure, ρ = (dmd ) means
that ρ consists only of md cycles of size d for some d.) Putting this together
with (3.3.5) we finally obtain

S′(I ) =
{|X(Fq)|µ(d)(−d)md−1(md − 1)! ρ = (dmd )

0 otherwise.
(3.3.9)

Note that the value of S′(I ) does not actually depend on the actual charac-
ter ϕ.
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Example 3.3.1. To illustrate the previous calculation consider the simplest
case where ρ is the identity, i.e., assume the action of Frobenius is trivial.
The situation is the following. Let X be a finite abelian group, ϕ : X → µn
be a character of exact order n and (n1, . . . , nm) be positive integers such
that n1 + · · · + nm = n. Then (3.3.9) reduces to

∑

xi �=xj

ϕ
(
xn1

1 · · · xnm
m

) = |X|(−1)m−1(m − 1)!,

which is not hard to prove directly.

3.4 Calculation of Cτ . We now apply the general setup of the previous
section to compute Cτ . We start by describing all Λ ∈ Pn(Γ) with a given
type τ .

For each d ∈ Z>0 and 0 �= λ ∈ P let md,λ be the multiplicity of (d, λ)
in τ . Let

md :=
∑

λ

md,λ, m :=
∑

d

md,

then the support of Λ, i.e., those γ ∈ Γ with Λ(γ) �= 0, has size m.
Let I := {1, 2, . . . , m} as in the previous section and fix an element

ρ ∈ S(I ) whose cycle type has md cycles of length d for each d ∈ Z>0. Fix
also a map

ν : I −→ P \ {0}
which is constant on orbits of ρ, i.e., ν ◦ ρ = ν, and such that for any
λ ∈ P \ {0} and d ∈ Z>0 there are exactly md,λ orbits of size d.

Given an injective map

ξ : I −→ Γ, ξ ◦ ρ = Frobq ◦ ξ (3.4.1)

there is a uniquely determined Λ ∈ P (Γ) satisfying

Λ ◦ ξ = ν.

To check that it is indeed in P (Γ) note that

(Λ ◦ Frobq) ◦ ξ = Λ ◦ ξ ◦ ρ = ν ◦ ρ = ν = Λ ◦ ξ

hence Λ ◦ Frobq = Λ. Note also that by construction τ(Λ) = τ and

n := |Λ| =
∑

d,λ

dmd,λ|λ| =
∑

i∈I

|ν(i)|.

It is clear that every Λ ∈ Pn(Γ) with τ(Λ) = τ arises in this manner
(ξ is just a labelling of the support of Λ and ν fixes its values) but typically
in more than one way. More precisely, the assignment ξ �→ Λ is a zτ to 1
map, where zτ is the order of the subgroup consisting of the elements of
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S(I ) which commute with ρ and preserve ν. It is straightforward to check
that

zτ =
∏

d,λ

dmd,λmd,λ! =
∏

d

dmd
∏

λ

md,λ!

Take now X = Gm in the previous section. We may (non-canonically)
identify Γ with X(Fq); then the injective maps ξ of (3.4.1) above correspond
to the elements of (I, X)′

ρ. Let ϕ : Gm(Fq) → µn correspond to the order n
homomorphism Γ1 → µn given by evaluation at ζn ∈ F×

q . Let η : I → Z>0

be defined by η(i) := |ν(i)|. Note that
∑

i

η(i) = n.

Then if ξ corresponds to Λ as above we have

Φ(ξ) = ∆Λ(ζn)

and therefore

Cτ = 1

zτ

S′(I ).

Hence by (3.3.9)

Cτ =
{

(−1)md−1(q − 1)
µ(d)

d
(md−1)!∏

λ md,λ! ρ = (dmd )

0 otherwise
(3.4.2)

independently of the choice of ζn.

3.5 Main formula. Let

En(q) := Nn(q)

|PGL(n,Fq)| . (3.5.1)

As we remarked at the end of 3.2 En is a polynomial in q. To see this it is
enough to plug in (3.4.2) into (3.2.4).

Theorem 3.5.1. The variety Mn/C has polynomial count and its E-poly-
nomial satisfies

E(Mn/C; x, y) = En(xy).

Proof. From the definition (2.2.3) of Un it is clear that it can be viewed as
a closed subscheme X of GL(n)2g over the ring R := Z[ζn,

1
n ]. Note that

we have extended the base ring in Remark 2.2.3. Let ϕ : R → C be an
embedding, then X is a spreading out of Un/C.
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For every homomorphism

φ : R −→ Fq (3.5.2)

the image φ(ζn) is a primitive n-th root of unity in Fq, because the identity

n−1∏

i=1

(
ζ i

n − 1
) = n

guarantees that 1 − ζ i
n is a unit in R for i = 1, . . . , n − 1, and therefore

cannot be zero in the image. (This is why we have extended our ring R from
the one in Remark 2.2.3.) Hence all of our previous considerations apply to
compute #Xφ(Fq) = Nn(q).

On the other hand the group scheme PGL(n, R) acts on X by conjuga-
tion. We define the affine scheme Y = Spec(R[X]PGL(n,R)) over R. Because
ϕ : R → C is a flat morphism [63, Lemma 2] implies that Y is a spreading
out of Mn/C over R.

Now take an Fq-point of the scheme Yφ, obtained from Y by the exten-
sions of scalars in (3.5.2). By [44, Lemma 3.2] the fiber over it in Xφ(Fq) is
non-empty and an orbit of PGL(n,Fq). The same argument as in the proof of
Theorem 2.2.5 shows that PGL(n,Fq) acts freely on Xφ(Fq). Consequently

#Yφ(Fq) = #Xφ(Fq)

#PGL(n,Fq)
= Nn(q)

|PGL(n,Fq)| = En(q).

Thus Mn/C has polynomial count. Now the theorem follows from The-
orem 6.1.2.3. ��

Let us write

En(q) :=
∑

k

en
k qk.

We also consider the following normalized version of En

En(q) := q− 1
2 dn En(q) :=

∑

k

en
k qk (3.5.3)

a Laurent polynomial in Z[q, q−1].
It will be more convenient to work with the following modified quantity

Vn(q) := q

(q − 1)2
En(q)= q−(g−1)n2

(q − 1)2
En(q)=q−(g−1)n2 Nn(q)

(q − 1)|GL(n,Fq)| ,
(3.5.4)

(recall that dn = dim(Mn) = (2g − 2)n2 + 2). For g > 0 this is a Laurent
polynomial in Z[q, q−1]; for g = 0 we have N1(q) = 1 and Nn(q) = 0 for
n > 1. In this case V1 = q/(q − 1)2 = ∑

n≥1 nqn is a power series in Z[[q]]
and Vn = 0 for n > 1. Also E1 = E1 = 1 and En = En = 0 for n > 1.
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By the formalism of Subsect. 2.5 if we let

V :=
∑

n≥1

Vn(q)T n, Vn(q) =:
∑

k∈Z
vn

k qk, vn
k ∈ Z

then

Exp(V ) =
∏

n≥1

∏

k∈Z
(1 − qkT n)−vn

k . (3.5.5)

Define

E :=
∑

n≥1

En(q)T n,

and so by (3.5.4)

q

(q − 1)2
E = V. (3.5.6)

Taking Exp of (3.5.6) we get

Exp(V ) =
∏

j,n≥1

∏

k∈Z
(1 − qk+ j T n)− je n

k . (3.5.7)

The main result is the following

Theorem 3.5.2. For every g ≥ 0 we have
∑

λ∈P

Hλ(q)2g−2T |λ| =
∏

j,n≥1

∏

k∈Z
(1 − qk+ j T n)− je n

k . (3.5.8)

Proof. Take the logarithm of the left hand side and write the resulting
coefficient of T n as Un(q)/n. Using the multinomial theorem we find that

Un

n
=

∑

mλ

(−1)m−1(m − 1)!
∏

λ

H (2g−2)mλ

λ

mλ! , m =
∑

λ

mλ (3.5.9)

where the sum is over all mλ ∈ Z≥0 satisfying
∑

λ

mλ|λ| = n. (3.5.10)

On the other hand comparing (3.5.9) with (3.2.4) after plugging in the
value of Cτ from (3.4.2) we obtain

Vn(q) := 1

n

∑

d|n
Un/d(q

d)µ(d). (3.5.11)
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An application of the (usual) Möbius inversion shows that

Un(q) :=
∑

d|n
dVn/d(q

d).

We have then
∑

n≥1

Un(q)
T n

n
=

∑

n,r≥1

1

r
Vn(q

r)T nr

which together with (3.5.5) and (3.5.7) imply our claim. ��
The following is an immediate corollary of this result:

Corollary 3.5.3 (Curious Poincaré duality).

En(q
−1) = En(q) (3.5.12)

Proof. Inverting q in (3.5.8) does not change the left hand side by (2.4.8).
Hence looking at the right hand side we see that en

−k = en
k , which is

equivalent to our claim. ��
Remark 3.5.4. We should point out that the above duality satisfied by En
is ultimately a direct consequence of the Alvis–Curtis duality (3.1.1) for
characters of GL(n,Fq).

Corollary 3.5.5. The variety Mn/C is connected.

Proof. The statement is clear for g = 0, 1 by Example 2.2.1 and The-
orem 2.2.17. Therefore we can assume g > 1 for the rest of the proof.

Corollary 2.2.9 says that each connected component of Mn has dimen-
sion dn . Thus the leading coefficient of E(Mn/C; q) is the number of com-
ponents of Mn. By Theorem 3.5.1 E(Mn/C; q) = En(q), so it is enough to
determine the leading coefficient of En(q).

For this recall the definition of Un(q) from (3.5.9). It is a Laurent poly-
nomial in q. In order to determine its lowest degree term, we see that the
lowest degree term of the summands in (3.5.9) are

n(−1)m−1 (m − 1)!
∏

λ mλ! q−(g−1)
∑

λ〈λ,λ〉mλ.

Lemma 3.5.6. The maximum of
∑

λ〈λ, λ〉mλ under the constraint (3.5.10)
occurs only when mλ = 1 for λ = (1n) and mλ = 0 otherwise.

Proof. To see this recall (2.4.3) that

〈λ, λ〉 =
∑

i

λ′2
i .
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Consider a point in the simplex ∆ : ∑
i xi = n, xi ≥ 0 in Rn with∑

λ mλmi(λ
′) coordinates equal to i. (Here mi(λ

′) is the multiplicity of i
in λ′.) It now suffices to notice that the maximum distance to the origin on ∆
occurs at a vertex. ��

The lemma implies that the lowest degree term of Un(q) is nq−(g−1)n2
.

Formula (3.5.11) now implies that the lowest degree term of Vn(q) is
q−(g−1)n2

. The definition (3.5.4) gives that the constant term of the poly-
nomial En(q) is 1. By (3.5.12) the leading term of En(q) is qdn . The corollary
follows. ��

3.6 Special cases. We first work out the E-polynomial of Mn when n =
1, 2 from our generating function (3.5.8). Evaluating (3.5.9) we get that
U1(q) = q−(g−1)(1 − q)2g−2. A short calculation yields E1(q) = (1 − q)2g,
so by Theorem 3.5.1

E(M1; x, y) = (1 − xy)2g,

which is consistent with (2.2.6).
For n = 2 we again evaluate (3.5.9) to get

U2(q)

2
= −1

2
H2(2g−2)

(1) (q) + H2g−2
(11) (q) + H2g−2

(2) (q)

substituting the hook polynomials (2.4.7) we get

U(2)

2
= 1

2
q2g−2(1 − q)4g−4 + q−4g−4(1 − q)2g−2(1 − q2)2g−2

+ q−(2g−2)(1 − q)2g−2(1 − q2)2g−2.

Using (3.5.11) combined with (3.5.6), (3.5.3), and Theorem 3.5.1 we get

Corollary 3.6.1. The E-polynomial of M2/C is

E(M2/C; x, y) = E2(xy),

where

E2(q) = −1

2
q(2g−2)(1 − q)4g−2 + (1 − q)2g(1 − q2)2g−2

+ q2g−2(1 − q)2g(1 − q2)2g−2 − 1

2
q2g−2(1 − q)2(1 − q2)2g−2.

It is also instructive to consider the special cases g = 0, 1 of the theorem
in detail. For g = 0 the identity (3.5.8) becomes

∑

λ∈P

Hλ(q)−2T |λ| =
∏

j≥1

(1 − q j T )− j . (3.6.1)
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This formula follows from known combinatorial identities. Indeed

sλ = ±qn(λ)Hλ(q)−1

where sλ is the Schur function associated to λ evaluated at xi = qi−1 (see [50,
I.3 ex. 2]) and

Hλ(q) =
∏

(1 − qh)

is the hook polynomial. Plugging in xj = Tq j in the second formula of [50,
§I.4 ex. 2] yields (3.6.1). This agrees with our previous calculation: en

k = 1
for n = 1, k = 0 and zero otherwise.

For g = 1 the identity (3.5.8) becomes

∑

λ∈P

T |λ| =
∏

n≥1

∏

r>0

∏

s≥0

(1 − qr+sT n)2

(1 − qr+s−1T n)(1 − qr+s+1T n)
, (3.6.2)

which by (3.5.5) simplifies to
∑

n≥0

p(n)T n =
∏

n≥1

(1 − T n)−1

where p(n) is the number of partitions of n (this is an identity of Euler).

Remark 3.6.2. We deduce that Vn = 1 for all n, when g = 1. Therefore
E(Mn/C

n; q) = (q − 1)2 and E(M̃n/C
n; q) = 1. Because M̃n is zero

dimensional by Theorem 2.2.12 it follows that M̃n is a point (cf. The-
orem 2.2.17).

3.7 Euler characteristic. We now prove Corollary 1.1.1.

Proof. By (2.2.11), the E-polynomial of M̃n/C is given by

E(M̃n/C; x, y) = E(Mn/C; x, y)

(xy − 1)2g
.

By Remark 2.1.6, Theorem 3.5.1 and Theorem 3.5.2 the Euler characteristic
of M̃n/C equals

Nn(q)

(q − 1)2g|PGL(n,Fq)|
∣
∣
∣
∣
q=1

. (3.7.1)

We should point out that the rational function in q in (3.7.1) is actually
a polynomial, the E-polynomial of M̃n/C.

In terms of Vn we get that (3.7.1) equals

Vn(q)

(q − 1)2g−2

∣
∣
∣
∣
q=1

. (3.7.2)
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We certainly have that (q − 1)n divides Hλ(q) for any partition λ of n.
Hence, in the notation of the proof of (3.5.8) (q − 1)(2g−2)n divides Un(q)
(note that by assumption 2g − 2 > 0) and it follows from (3.5.11) that
(q − 1)2g−2 divides Vn(q).

We now see that the only contribution in (3.5.11) to (3.7.2) can come
from the term d = n and

Vn(q)

(q − 1)2g−2

∣
∣
∣
∣
q=1

= µ(n)U1(qn)

n(q − 1)2g−2

∣
∣
∣
∣
q=1

.

But U1(q) = (q − 1)2g−2 since H(1)(q) = q − 1 for the unique partition (1)

of 1. We conclude that the Euler characteristic of M̃n/C is µ(n)n2g−3

finishing the proof. ��

3.8 The untwisted case. From the above calculation we may now actually
deduce the number of solutions to the untwisted equation (see Remark 2.3.3)

# Hom(Γg,GL(n,Fq))

= #{x1, y1, . . . , xg, yg ∈ GL(n,Fq)|[x1, y1] · · · [xg, yg] = 1}.
Assume g > 0 since otherwise Γg is trivial. We prove

Theorem 3.8.1. If Γg = π1(Σ) is the fundamental group of a closed Rie-
mann surface of genus g > 0, then, using the formalism of Subsect. 2.5, we
have

∑

n≥0

# Hom(Γg, GL(n,Fq))

q(g−1)n2|GL(n,Fq)| T n = Exp
(
(q − 1) Log

( ∑

λ∈P

Hλ(q)2g−2T |λ|
))

.

(3.8.1)

Remark 3.8.2. This gives an explicit formula for the number of representa-
tions of π1(Σ) to GL(n,Fq). The asymptotics for these numbers as n tends
to infinity has been studied in [49].

Proof. One way to express the main formula (3.5.8) is in terms of zeta
functions of colorings as in [61], whose notation we will follow. We consider
colorings on X = Gm with values on partitions and weight function

W(λ) := H2g−2
λ (q) ∈ Z[q, q−1].

We recognize the left hand side of (3.5.8) as ZC(•, q, T ) with this setup.
Hence the main formula (3.5.8) can be written (in the notation of Sub-
sect. 2.5) as

Log (ZC(•, q, T )) = V =
∑

n≥1

Vn(q)T n. (3.8.2)
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Similarly, by (2.3.8) and (3.1.5) we find that

ZC(Gm, q, T ) =
∑ # Hom(Γg, GL(n,Fq))

q(g−1)n2|GL(n,Fq)| T n. (3.8.3)

In particular this implies that

# Hom(Γg, GL(n,Fq))/|GL(n,Fq)| ∈ Z[q] if g > 0

since W(λ) is a Laurent polynomial. This is consistent with the observation
at the end of Remark 2.3.3 that for g > 0 |G| always divides # Hom(Γg, G).

Using formula [61, (24)] we deduce from (3.8.2) that

Log (ZC(Gm, q, T )) = (q − 1)
∑

n≥1

Vn(q)T n.

If we take Exp of both sides we get

ZC(Gm, q, T ) = Exp((q − 1)V ).

This proves (3.8.1) assuming that Fq contains a primitive n-th root of unity.
However, as we pointed out, the coefficients on the left hand side of (3.8.1)
are Laurent polynomials in q so the statement is true for all q. The theorem
follows. ��

4 Mixed Hodge polynomial of Mn

4.1 Cohomology of Mn . In this section we take K = C. According to
Theorem 2.2.12 H∗(Mn) = H∗(M̃n)⊗ H∗(M1), where M1

∼= (C×)2g, and
the factor H∗(M1) is generated by 2g degree 1 classes εj ∈ H1((C×)2g) for
j = 1, . . . , 2g. By slight abuse of notation we use the same notation for the
corresponding classes in εj ∈ H1(Mn) for j = 1, . . . , 2g.

To get more interesting cohomology classes on Mn , we construct co-
homology classes in H∗(M̃n) ∼= H∗(M′

n)
µ

2g
n . We construct a differentiable

principal bundle over M′
n ×Σ by following [43]. Let Ḡ = PGL(n,C). Any

ρ ∈ U′
n induces a well-defined homomorphism π1(Σ) → Ḡ. Let Σ̃ be the

universal cover of Σ, which is acted on by π1(Σ) via deck transformations.
There is then a free action of π1(Σ) × GL(n,C) on Ḡ × U′

n × Σ̃ given by

(p, g) · (h, ρ, x) = (gρ(p)h, gρg−1, p · x),

where g denotes the image of g in Ḡ. This action commutes with the
action of µ2g on U′

n. The quotient is the desired (µ2g-equivariant) principal
Ḡ-bundle on M′

n, which we denote byU. Like any principal Ḡ-bundle, it has
characteristic classes c̄2(U), . . . , c̄r(U), where c̄i(U) ∈ H2i(M′

n ×Σ)µ
2g
n . In

terms of formal Chern roots ξk, c̄i can be described as the i-th elementary
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symmetric polynomial in the ξk − ζ , where ζ is the average of the ξk. In
particular c̄1 = 0.

Now let σ ∈ H2(Σ) be the fundamental cohomology class, and let
e1, . . . , e2g be a standard symplectic basis of H1(Σ). In terms of these, each
of the characteristic classes has a Künneth decomposition

c̄i(U) = αiσ + βi +
2g∑

j=1

ψi, j e j , (4.1.1)

defining classes αi ∈ H2i−2(M′
n)

µ
2g
n ⊂ H2i−2(Mn), βi ∈ H2i(M′

n)
µ

2g
n ⊂

H2i(Mn), and ψi, j ∈ H2i−1(M′
n)

µ
2g
n ⊂ H2i−1(Mn) for i = 2, . . . , n. In [51]

Markman proves that

Theorem 4.1.1. The classes εj ; αi , ψi, j and βi generate H∗(Mn).

Construction 4.1.2. For what follows we need the following construction.
Let f : Y → X, x ∈ X and F = f −1(x). Then we have the following
commutative diagram

Hi(Y ) ��
i∗F

Hi(F) ��d
Hi+1(Y, F) ��

i∗Y
Hi+1(Y )

Hi+1(X, x)

OO

f ∗
i∗X∼= Hi+1(X).

OO

f ∗
ff

q∗N
N
N
N
N
N
N
N
N
N
N

Here the first row is the cohomology long exact sequence of the pair (Y, F).
The second row is the cohomology long exact sequence of the pair (X, x), the
map i∗X is an isomorphism for the map Hi(X) → Hi(x) is always surjective.
Finally q∗ = f ∗(i∗X)−1 : Hi+1(X) → Hi+1(Y, F). By the commutativity of
the diagram q∗ induces a map ker( f ∗) → ker(i∗Y ) ∼= im(d) ∼= coker(i∗F).
We denote the resulting map

σ f : ker( f ∗) −→ coker
(
i∗F

)
.

We can also give the map σ in terms of cochains. Let x ∈ Ci+1(X)
be a cocycle. Then f ∗(x) will be a cocyle in Ci+1(Y ) vanishing on F. If
[x] ∈ ker( f ∗) then f ∗(x) is exact. Let ỹ ∈ Ci(Y ) be a cochain such that
dỹ = f ∗(x). Let y = i∗F(ỹ) . Then dy = i∗F( f ∗(x)) = 0, so y is a cocycle.
We can define σ([x]) = [y].
Example 4.1.3. When f is a fibration the map σ is called the suspension
map (see [52, §8.2.2 p. 298]). When the fibration is the path fibration of the
space X then Y = PX is the based path space and so contractible, while F
can homotopically be identified with the based loop space ΩX. In this case
the suspension map σ : Hi+1(X) → Hi(ΩX) can be identified with the
map σ = p∗ev∗, where ev : S1 × ΩX → X is the evaluation map and
p : S1 ×ΩX → ΩX is the projection. A particular case of the path fibration
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is the universal bundle: π : EG
G−→ BG for a connected G complex linear

group G. Here G ∼ ΩBG and EG ∼ PBG. The suspension map then is
a map σπ : Hi+1(BG) → Hi(G).

Remark 4.1.4. We will also need an equivariant version of this construction.
If we assume that G is a topological group, which acts on (X, x) and Y in
a way so that f is equivariant, then we have the same diagram and con-
struction above in equivariant cohomology. This way we get the equivariant
map

σ
f

G : kerG(π∗) −→ cokerG
(
i∗F

)
.

In particular, G acts on itself by conjugation and consequently on BG and
EG making the fibration π equivariant. We will then have the equivariant
suspension map

σπ
G : Hi+1

G (BG) −→ Hi
G(G). (4.1.2)

Lemma 4.1.5. When X, Y are complex algebraic varieties and f is alge-
braic then ker( f ∗), coker(i∗F) have natural mixed Hodge structures, and σ
preserves it. Additionally if a complex linear group G acts on (X, x) and Y
so that f is equivariant then kerG( f ∗), cokerG(i∗F) have natural mixed
Hodge structures, and σG preserves it.

Proof. Deligne in [9, Example 8.3.8] constructs a mixed Hodge structure
on relative cohomology, and shows in [9, Proposition 8.3.9] that all maps
in the cohomology long exact sequence of a pair preserve mixed Hodge
structure. The first statement follows.

For the second statement Deligne constructs in [9, Theorem 9.1.1]
a mixed Hodge structure on H∗(BG), by considering a model for BG
as a simplicial scheme. Similarly one can construct the Borel construction
X ×G EG as a simplicial scheme, which will give a mixed Hodge struc-
ture on H∗

G(X) = H∗(X ×G EG) see e.g. [16]. Then we see that all maps
in the equivariant cohomology sequence of a pair preserve mixed Hodge
structures. In turn we get that σG too preserves mixed Hodge structures. ��
Definition 4.1.6. We say that a cohomology class γ ∈ Hi(X) = Hi(X,Q)
or γ ∈ Hi(X;R) has homogenous weight k if its complexification satisfies
γC = γ ⊗ 1 ∈ W2k Hi(X)C ∩ Fk Hi(X;C).

Remark 4.1.7. Note that if γ ∈ Hi(X) and γC ∈ Wl
C ∩ Fm with 2m > l

then GrWC
l ∩ Fm ∩ Fm = 0 by (2.1.1) and γC = γC imply that γC ∈ WC

l−1.
By induction we have γ = 0. Thus we get that

if γ ∈ Hi(X) has homogenous weight k and

γC ∈ Fk+1 or γ ∈ W2k−1 then γ = 0.
(4.1.3)
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In particular, a non-zero cohomology class cannot have different homogen-
ous weights. Moreover as the cup-product preserves mixed Hodge structures
by Theorem 2.1.2.3 we have that if γ1 has homogenous weight l1 and γ2
has homogenous weight l2 then γ1 ∪ γ2 has homogenous weight l1 + l2.
In particular we see that if the cohomology H∗(X) of an algebraic variety
is generated by classes with homogenous weight then the MHS on H∗(X)
will be of type (p, p) i.e.

Wl H
∗(X)C ∩ FmH∗(X;C) = 0, when 2m > l. (4.1.4)

Namely if 0 �= x = ∑
k ak + ibk ∈ Wl H∗(X)C∩ FmH∗(X;C) with ak, bk ∈

H∗(X;R) homogenous of weight k then we can consider kmin := mink{ak +
ibk �= 0} and kmax = maxk{ak + ibk �= 0} and get m ≤ kmin ≤ kmax ≤ l/2
from (4.1.3).

Finally for a complex algebraic map f : X → Y the map f ∗ : H∗(Y ) →
H∗(X) preserves mixed Hodge structures, we have that if α ∈ H∗(Y ) has
homogenous weight l so does f ∗(α).

Now we determine the weights of the universal generators. First we
know from (2.2.6) that the homogenous weight of εj is 1. To determine the
weight of the rest of the universal classes we will use Jeffrey’s [43] group
cohomology description of them as interpreted in [4,54,59].

We note that [43,4,54,59] work with the compact groups SU(n), how-
ever the arguments are correct with complex groups too. Another way to see
that Jeffrey’s formulas (4.1.5), (4.1.6) and (4.1.7) for the universal classes are
valid for G := SL(n,C) is to note that Lemma 4.1.12 below implies that the
natural inclusion map of the twisted SU(n)-character variety into the twisted
SL(n,C)-character variety M′

n induces an isomorphism on (µ2g
n -invariant)

cohomology below degree 2(g − 1)(n − 1)+ 2. Now 2(g − 1)(n − 1)+ 2 is
larger than the degree of any universal class, except possibly of βn (which
has degree 2n), when g = 2. However Jeffrey’s formula for βn is trivially
correct for the complex character varieties as we will see below. Another
difference in our application of [43,4,54,59] is that we work on the level of
cohomology instead of differential forms or cochains, but our cohomologic-
al interpretation of [43,4,54,59] is straightforward using the last paragraph
in Construction 4.1.2.

The easiest is to determine the weight of the βk. By their construction
βk = ck(U|M′

n×{p}) are the Chern classes of the differentiable PGL(n,C)-
bundle U constructed above, restricted to M′

n ×{p}, where p is a point on Σ.
It is straightforward to identify U|M′

n×{p} with the Ḡ-bundle π ′
n : U′

n → M′
n

in (2.2.13), thus

βk = ck
(
U′

n

)
. (4.1.5)

Now π ′
n is an algebraic principal bundle, therefore its Chern classes are

pulled back from H∗(BḠ) by a complex algebraic map. It now follows
from [9, Theorem 9.1.1] that the homogenous weight of βk is indeed k.
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We next determine the weight of the ψk, j . Let c̄k ∈ H2k
G (BḠ) be the

k-th equivariant Chern class of the Ḡ-equivariant bundle π : EḠ → BḠ.
Clearly H∗

G(BḠ) ∼= H∗(B(G �φ Ḡ)), where φ : G → Aut(Ḡ) is given by
conjugation. By [9, Theorem 9.1.1] c̄k has homogeneous weight k. Using
the map (4.1.2) we construct the class ηk

G = σG(c̄k) ∈ H2k−1
G (G). It follows

that ηk
G has homogenous weight k. Let pj : G2g → G be the projection

to the j-th factor, which is equivariant with respect to the conjugation
action of G. Thus p∗

j (η
k
G ) ∈ H2k−1

G (G2g) has homogenous weight k. If i
denotes the G-equivariant embedding of U′

n into G2g, then we have that
i∗p∗

j (η
k
G ) ∈ H2k−1

G (p) has homogenous weight k. Now [59, Theorem 3.2]
implies that

ψk, j = i∗p∗
j

(
ηk

G

) ∈ H2k−1
G

(
U′

n

) ∼= H2k−1(M′
n

)
. (4.1.6)

Thus ψk, j has homogenous weight k as claimed.
To calculate the weight of αk we recall Construction 4.1.2 for the case

Y = G2g, X = G, π = µ′ and x = ζn In ∈ G. Then F = U′
n . This gives

a map σG : kerG(π∗) → cokerG(i∗F). Now it follows from [59, Lemma 2.4]
that

ηk
G ∈ kerG(π∗) ⊂ H2k−1

G (G)

and also by [59, Theorem 3.2] that

σπ
G

(
ηk

G

) = p(αk), (4.1.7)

where

p : H2k−2
G

(
U′

n

) −→ coker2k−2
G

(
i∗F

)

denotes the projection. We know that the homogenous weight of ηk
G is k and

so p(αk) has homogenous weight k. By the previous paragraph im(i∗F) ⊂
H∗

G(U′
n)

∼= H∗(M′
n) is exactly the subring generated by the ψk, j and βk

for k = 2, . . . , n and j = 1, . . . , 2g. This shows in particular that p is an
isomorphism when k = 2. Thus the homogenous weight of α2 ∈ H2(M′

n)
is 2.

We summarize our findings in the following

Proposition 4.1.8. The cohomology classes εj have homogenous weight 1,
while ψk, j , βk have homogenous weight k. Finally α2 has homogenous
weight 2 and p(αk) ∈ coker2k−2

G (i∗F ) have homogenous weight k.

Remark 4.1.9. It is most probably true that αk has homogenous weight k
even for k > 2, the result for p(αk) however will suffice for our pur-
poses. Here we show that p(αk) �= 0. By the previous paragraph im(i∗F) ⊂
H∗

G(U′
n)

∼= H∗(M′
n) is exactly the subring generated by the ψk, j and

βk for k = 2, . . . , n and j = 1, . . . , 2g. Because the degree of αk is
2k − 2 ≤ 2n − 2 ≤ 2(g − 1)(n − 1) Lemma 4.1.12 below implies that
αk /∈ im(i∗F) i.e. p(αk) �= 0.
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Corollary 4.1.10. The pure part PH∗(Mn) = ⊕
k Wk Hk(Mn) is generated

by the classes βi ∈ H2i(Mn) for i = 2, . . . , n.

Proof. The previous proposition shows that among the ψi; j and βi only the
classes βi ∈ H2i(Mn) are pure classes, i.e., have pure homogenous weight i.
This shows that the pure part of the subring im(i∗F) ⊂ H∗

G(U′
n)

∼= H∗(M′
n)

they generate is generated by the βi classes. Moreover the µ
2g
n -invariant

part of cokerG(i∗F ) is generated by the classes p(αi) none of which has
pure homogenous weight. Thus the pure part of H∗(M′

n)
µ

2g
n ∼= H∗(M̃n) is

generated by the classes βi . By Theorem 2.2.12 the result follows. ��
Corollary 4.1.11. The cohomology of Mn is of type (p, p), i.e., h p,q; j(Mn)
= 0 unless p = q. In particular H(Mn; x, y, t) is a polynomial in xy and t.
In the notation of (2.1.3)

H(Mn; x, y, t) = H(Mn; xy, t).

Proof. By Remark 4.1.7 and Proposition 4.1.8 we know that both the µ
2g
n -in-

variant part of cokerG(i∗F ), which is generated by the classes p(αi) and the
subring im(i∗F ) ⊂ H∗

G(U′
n)

µ
2g
n ∼= H∗(M′

n)
µ

2g
n generated by the βi and ψi; j

have MHS of type (p, p) in other words (4.1.4) holds. Thus H∗(M′
n)

µ
2g
n ∼=

H∗(M̃n) has MHS of type (p, p). By Theorem 2.2.12 so does H∗(M). ��
Lemma 4.1.12. There are no relations among the universal generators in
the cohomology of H∗(M′

n) until degree 2(g − 1)(n − 1) + 2.

Proof. This follows from the same statement for the twisted SU(n) character
variety, which in turn follows from [2, (7.16)]. ��

4.2 Main conjecture. Recall the definition of the Hλ from (2.4.10) and
its properties thereafter.

Let Un(z, w) be defined by

log
( ∑

λ

Hλ(z, w)T |λ|
)

=
∑

n≥0

Un(z, w)
T n

n
.

As in (3.5.9) we find that

Un(z, w)

n
=

∑

mλ

(−1)m−1(m − 1)!
∏

λ

Hλ(z, w)mλ

mλ! , m =
∑

λ

mλ

(4.2.1)

where the sum is over all mλ ∈ Z≥0 satisfying
∑

λ

mλ|λ| = n. (4.2.2)
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Expanding Un(z, w) in Laurent series in z, w−1 as in (2.4.13) we see that
the leading term in w−1 of the summand is

n(−1)m−1 (m − 1)!
∏

λ mλ! w(2g−2)
∑

λ〈λ,λ〉mλ.

From Lemma 3.5.6 it follows that the leading term of Un in w−1 is nw(2g−2)n2
.

Let

Vn(z, w) := 1

n

∑

d|n
µ(d)Un/d(z

d, wd). (4.2.3)

By the formalism explained in Subsect. 2.5 we know that

∑

λ

Hλ(z, w)T |λ| = exp

(
∑

k,n≥1

Vn(z
k, wk)

T nk

k

)

. (4.2.4)

From our previous calculation we deduce that the leading term in w−1 of Vn

is w(2g−2)n2
.

Let also

Hn(z, w) := (z2 − 1)(1 − w2)Vn(z, w). (4.2.5)

Both Vn and Hn are rational functions of z and w. We should remark that
by (2.4.11) we have

Vn(
√

q, 1/
√

q) = Vn(q)

and therefore

Hn(
√

q, 1/
√

q) = En(q). (4.2.6)

From (2.4.12) we deduce that

Vn(w, z) = Vn(z, w), Vn(−z,−w) = Vn(z, w)

and

Hn(w, z) = Hn(z, w), Hn(−z,−w) = Hn(z, w). (4.2.7)

We expand Vn and H as Laurent series in z, 1/w

Vn(z, w) =
∑

i≥i0, j≥0

vn
i, j z

jw−i, Hn(z, w) =
∑

i≥−dn , j≥0

h
n
i, j z

jw−i

where i0 = −(2g − 2)n2 and hence i0 − 2 = −dn = − dim(Mn). Our
calculation of leading terms implies that h

n
−dn, j = 1 for j = 0 and is 0

otherwise.
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In terms of these coefficients we can write our generating function as
the infinite products

∑

λ

Hλ(z, w)T |λ| =
∏

n≥1

∏

i≥i0, j≥0

(1 − z jw−i T n)
−vn

i, j

=
∏

n≥1

∏

r>0,s≥0

∏

i≥−dn , j≥0

(1 − z2s+ jw−(2r+i)T n)−h
n
i, j .

(4.2.8)

Our main conjecture is the following

Conjecture 4.2.1

H(Mn; q, t) = (t
√

q)dn Hn

(√
q,

−1

t
√

q

)

. (4.2.9)

Remark 4.2.2. In view of (4.2.6) and (4.2.7) Conjecture 4.2.1 is true spe-
cialized to t = −1 as it reduces to (3.5.8).

Because of the second identity in (4.2.7) and because dn is even by Corol-
lary 2.2.9, we have that the RHS of (4.2.9) is actually a rational function
in q. The geometric Conjecture 4.2.1 implies the following combinatorial
conjectures

Conjecture 4.2.3. 1. Hn(z, w) is a polynomial in z, w.
2. The coefficients (−1) jh

n
i, j of Hn(z,−w) are non-negative integers.

In light of (4.2.7), our main Conjecture 4.2.1 implies the following.

Conjecture 4.2.4 (Curious Poincaré duality).

H

(

Mn; 1

qt2
, t

)

= (qt)−dn H(Mn; q, t)

Remark 4.2.5. When t = −1, this formula specializes to the known Corol-
lary 3.5.12.

Remark 4.2.6. On the level of mixed Hodge numbers this conjecture is
equivalent to

h p,p;k(Mn) = hdn−p,dn−p;dn+k−2p(Mn). (4.2.10)

Because Mn is non-singular, h p,p;k(Mn) = 0 for 2p < k. Dually (4.2.10)
implies that h p,p;k(Mn) = 0 for k > dn . The vanishing of the cohomology
of Mn above middle dimension can be deduced from the fact that Mn
is diffeomorphic to the space of twisted flat GL(n,C)-connections on the
Riemann surface Σ, which is a Stein manifold with its natural hyperkähler
metric [40].
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In particular (4.2.10) implies that the pure mixed Hodge numbers
h p,p;2p(Mn) should be curious Poincaré dual to hdn−p,dn−p;dn(Mn), i.e., to
the mixed Hodge numbers of the middle (top non-vanishing) cohomology
of Mn .

Finally we have a geometric conjecture which would imply the above
curious Poincaré duality. Define the Lefschetz map

L : Hi(M̃n) −→ Hi+2(M̃n)

by x �→ α ∪ x, where α = α2 is the universal class in H2(M̃n) defined
in (4.1.1). As it respects mixed Hodge structures by Theorem 2.1.2.3 and α
has homogenous weight 2 by Proposition 4.1.8 it defines a map on the
graded pieces of the homogenous weight filtration L : GrW

l Hi(M̃n) →
GrW

l+4 Hi+2(M̃n).

Conjecture 4.2.7 (Curious hard Lefschetz). Recall that d̃n = dim(M̃n) =
(n2 − 1)(2g − 2). Then

Ll : GrW
d̃n−2l

Hi−l(M̃n) −→ GrW
d̃n+2l

Hi+l(M̃n)

is an isomorphism.

Remark 4.2.8. Here we prove a consequence of this conjecture. As M̃n is
an orbifold and the non-trivial weights in the weight filtration on H∗(M̃n)

are even by Proposition 4.1.8, we have that for 0 < k ≤ d̃n/2

GrW Hd̃n/2−k(M̃n) =
[d̃n/4−k/2]⊕

j=0

GrW
dn−2k−2 j Hd̃n/2−k(M̃n).

Conjecture 4.2.7 says that the map

Lk+ j : GrW
dn−2k−2 j Hd̃n/2−k(M̃n) −→ GrW

dn+2k+2 j Hd̃n/2+k+ j(M̃n)

is an isomorphism. This implies that

Lk : GrW
dn−2k−2 j Hd̃n/2−k(M̃n) −→ GrW

dn+2k−2 j Hd̃n/2+k(M̃n)

is injective. Thus Conjecture 4.2.7 implies that the map

Lk : Hd̃n/2−k(M̃n) −→ Hd̃n/2+k(M̃n)

is an injection. This statement follows from [30, Corollary 4.3] (cf. also [30,
Remark 4.4]) when applied to the moduli space of Higgs bundles diffeo-
morphic to M̃n .

4.3 Special cases of the main conjecture. First we verify the cases of
n = 1, 2 of Conjecture 4.2.1. From (4.2.3) and (4.2.1)

V1(z, w) = U1(z, w) = (z − w)2g

(z2 − 1)(1 − w2)
.
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By (4.2.5)

H1(z, w) = (z − w)2g.

Thus Conjecture 4.2.1 implies

H1(M1, q, t) = (t
√

q)2g

(√
q + 1

t
√

q

)2g

= (1 + tq)2g,

which checks with (2.2.6).
From (4.2.1) we have

U2(z, w)

2
= −1

2
H

2(2g−2)

(1) (z, w) + H
2g−2
(11) (z, w) + H

2g−2
(2) (z, w).

Combining (4.2.3), (2.4.10) and (4.2.5)

H2(z, w) = −1

2

(z − w)4g

(z2 − 1)(1 − w2)
+ (z3 − w)2g(z − w)2g

(z4 − 1)(z2 − w2)

+ (z − w3)2g(z − w)2g

(z2 − w2)(1 − w4)
− 1

2

(z2 − w2)2g

(z2 + 1)(1 + w2)
.

Substituting z = √
q and w = −1

t
√

q we see that Theorem 1.1.3, proved in
Subsect. 5.2, is equivalent to Conjecture 4.2.1 for n = 2.

Next we consider the special cases of g = 0, 1. For g = 0 we have Mn
is a point for n = 1 and is empty otherwise. Hence

H(Mn; q, t) =
{

1 n = 1
0 otherwise

and according to the conjecture (4.2.1) we find

h
n
i, j =

{
1 n = 1, i = j = 0
0 otherwise

hence, after replacing z2 by z and w2 by w, we should have

∑

λ

1
∏

(za+1 − wl)(za − wl+1)
T |λ| =

∏

r>0,s≥0

(1 − zsw−r T )−1. (4.3.1)

In fact we can prove this identity.

Theorem 4.3.1. The identity (4.3.1) is true.
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Proof. We know from [20, Thm. 3.10 (f)] that

∑

|λ|=n

1
∏

(wl − za+1)(za − wl+1)
=

∑

|λ|=n

zn(λ′)wn(λ)

∏
(1 − zh)(1 − wh)

, (4.3.2)

where h = a + l + 1 is the hook length. On the other hand we know [50,
I.3 ex. 2] that

sλ(1, x, x2, . . . ) = xn(λ)

∏
(1 − xh)

where sλ is the Schur function and hence

sλ(1, 1/x, 1/x2, . . . ) = (−x)|λ|xn(λ′)
∏

(1 − xh)
.

Summing over all n we then find

∑

λ

1
∏

(wl − za+1)(za − wl+1)
T |λ|

=
∑

λ

sλ(1, z, z2, . . . )sλ(T/w, T/w2, T/w3, . . . )

and by Cauchy’s formula [50, I (4.3)] this equals the right hand side
of (4.3.1). ��

Now let us consider the case g = 1. We have that Mn � C× × C× for
all n (see Theorem 2.2.17). Hence

H(Mn; q, t) = (1 + qt)2

and according to Conjecture 4.2.1 we should have

Hn(z, w) = (z − w)2, n ∈ Z>0.

Consequently Conjecture 4.2.1 implies

Conjecture 4.3.2. The following identity holds

∑

λ

∏ (z2a+1 − w2l+1)2

(z2a+2 − w2l)(z2a − w2l+2)
T |λ|

=
∏

n≥1

∏

r>0

∏

s≥0

(1 − z2s+1w−2r+1T n)2

(1 − z2sw−2r+2T n)(1 − z2s+2w−2rT n)
. (4.3.3)

Remark 4.3.3. The conjecture is a purely combinatorial one. The special-
ization z = √

q, w = 1/
√

q is essentially Euler’s identity which we already
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encountered in (3.6.2). We also prove below in Remark 4.4.3 the special-
ization z = 0, w = √

q.
We have checked (4.3.3) numerically up to the T 6 terms. For this it is

more convenient to write in its additive form (4.2.4)

∑

λ

∏ (z2a+1 − w2l+1)2

(z2a+2 − w2l)(z2a − w2l+2)
T |λ|

= exp

(
∑

k≥1

(zk − wk)2

(z2k − 1)(1 − w2k)(1 − T k)

T k

k

)

and check that the coefficient of T n on both sides (as rational functions in
z, w) agree.

4.4 Purity conjecture

Theorem 4.4.1. Let An(q) be the number of absolutely indecomposable
g-tuples of n by n matrices over the finite field Fq modulo conjugation. Then

Hn(0,
√

q) = An(q). (4.4.1)

Proof. It is immediate to verify that

Hλ(0,
√

q) = q(g−1)〈λ,λ〉

bλ(1/q)
, (4.4.2)

where bλ(q) = ∏
i≥1(1 − q) · · · (1 − qmi ) with mi is the multiplicity of i

in λ.
It follows that the left hand side of (4.2.8) for z = 0, w =√

q equals the
left hand side of Hua’s formula [41, Theorem 4.9] for the Sg quiver. On the
right hand side we get

∏

n≥1

∏

r>0,i≥−dn

(1 − q−(r+i)T n)−h
n
2i,0

(note that hi,0 = 0 for i odd thanks to (2.4.12)). By the formalism of (2.5.7)
we may rewrite this as

∏

n≥1

∏

r≥0,i≤dn

(1 − qr+i T n)h
n
−2i,0 .

Comparing with the right hand side of Hua’s formula we deduce that
h−2i,0 = tn

i proving our claim. ��
Remark 4.4.2. Combining Theorem 4.4.1 and Conjecture 4.2.1 is what we
call the purity conjecture: the pure part of the mixed Hodge polynomial of
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the character variety Mn is the reverse of the A-polynomial of the quiver Sg
(a vertex with g loops) with dimension vector n. By a result of Kac [45]
An(q), and therefore also Hn(0,

√
q), is a polynomial in q, which is implied

by Part (1) of Conjecture 4.2.3. Then Part (2) of Conjecture 4.2.3 implies
non-negativity of the coefficients of An (q), which is Conjecture 2 of Kac [45]
for the Sg quiver with dimension n at the vertex. Since Sg with this dimension
vector is divisible (for n > 1) the conjecture is still open (the indivisible
case was proved in [5]). To summarize this discussion we can claim: the
purity conjecture implies Kac’s [45, Conjecture 2] for the quiver Sg. In [34]
a detailed discussion, motivation and the origin for this and more general
purity conjectures will be given.

Remark 4.4.3. For g = 0 Theorem 4.4.1 implies that Hua’s formula [41,
(5.1)] is the specialization of (4.3.1) at z = 0. On the other hand, for
g = 1 the theorem shows that Hua’s formula [41, (5.2)] is the specialization
z = 0, w = √

q of our conjecture (4.3.3).

Proposition 4.4.4. For all n, g > 0 we have that q(g−1)n+1 divides An(q)
and

An(q)

q(g−1)n+1

∣
∣
∣
∣
q=0

= 1.

Proof. This is a consequence of Hua’s formula but for convenience we will
express the result in our notation using (4.4.1). For a partition λ of n > 0
we have from (4.4.2)

Hλ(0,
√

q) = q(g−1)〈λ,λ〉+m

∏
i≥1(q − 1)(q2 − 1) · · · (qmi − 1)

where

m :=
∑

i≥1

(
mi + 1

2

)

with mi = mi(λ) the multiplicity of i in λ. Among all partitions λ of n the
exponent (g − 1)〈λ, λ〉+ m of q takes its minimum value (g − 1)n + 1 only
for λ = (n). In particular, q(g−1)n+1 divides Hλ(0,

√
q) and, moreover,

H(n)(0,
√

q)

q(g−1)n+1

∣
∣
∣
∣
q=0

= −1.

After some calculation we find that

Vn(0,
√

q)

q(g−1)n+1

∣
∣
∣
∣
q=0

= −1,

which combined with (4.2.5) proves our claim. ��
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Remark 4.4.5. One consequence of Proposition 4.4.4 is that the purity con-
jecture or more generally our main Conjecture 4.2.1 implies, that the largest
non-trivial degree of PH∗(Mn) is 2(g − 1)n(n − 1). Interestingly, [12,
Theorem 7 and Proposition 9] proves the same about the “pure ring” of
the twisted U(n)-character variety N d

n , i.e., the subring generated by the
classes βk. This and the known situation for n = 2 (see the next section)
indicates that the “pure ring” of N d

n maybe isomorphic with PH∗(Mn). An
interesting consequence of this would be that the “pure ring” of N d

n is inde-
pendent of d, unlike the whole cohomology H∗(N d

n ), which does depend
on d. Finally, combining the reasoning above with the purity conjecture
suggests that the “pure ring” of N d

n could also be used for a cohomological
interpretation of the A-polynomials An(q), implying [45, Conjecture 2] for
the Sg quiver.

Remark 4.4.6. If we combine the purity conjecture with Remark 4.2.6, we
get that the middle cohomology of Mn should have dimension An(1). We list
below the formulas for the value of An(1) for n = 2, 3 and 4 as a polynomial
in χ = 2g − 2 obtained by computer calculations:

A2(1) = 1

2
χ + 1

A3(1) = 1

2
χ2 + 3

2
χ + 1

A4(1) = 2

3
χ3 + 5

2
χ2 + 17

6
χ + 1.

It is known that the middle cohomology of M2 has dimension g =
1
2(2g − 2)+ 1 by [40] and that the middle Betti number of M3 is 2g2 − g =
1
2(2g − 2)2 + 3

2(2g − 2) + 1 dimensional [24]. For n ≥ 4 the middle Betti
number of Mn is not known. However one can say something about the
leading coefficient of An(1) as a polynomial in χ. In the above formulas
it is nn−3

(n−1)! (a proof of this fact will appear elsewhere). One can also guess
the leading coefficient of dim Hdn(Mn) as a function of χ = 2g − 2. The
dimension dim Hdn(Mn) is exactly the number of fixed point components of
the natural circle-action on the corresponding moduli space of Higgs bun-
dles. These fixed point components are not well understood in general, but
one class of fixed point components, the so-called type (1, 1, . . . , 1) is well
understood (see the proof of [38, Proposition 10.1]). Their number turns out
to be a degree n − 1 polynomial in χ with leading coefficient nn−3

(n−1)! , which
is the volume of a certain skew hypercube, given by inequalities dictated by
the stability condition for Higgs bundles of type (1, 1, . . . , 1), which appear
in the proof of [38, Proposition 10.1]. As the rest of the fixed point compo-
nents are expected to be counted by a polynomial in χ of degree less then
n − 1, the quantity nn−3

(n−1)! should be the leading coefficient of dim Hdn(Mn),
in agreement with the prediction coming from the above conjecture.
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4.5 Intersection form. Another consequence of Conjecture 4.2.1 and
Proposition 4.4.4 is that the d̃n (=middle) dimensional cohomology of M̃n
does not have pure part. This implies the following

Corollary 4.5.1. Conjecture 3.5.2 implies that the intersection form on
Hd̃n

c (M̃n) is trivial. Equivalently the forgetful map H∗
c (M̃n) → H∗(M̃n)

is 0.

Proof. Conjecture 3.5.2 and Proposition 4.4.4 implies that there is no pure
part in Hd̃n (M̃n), consequently all the non-trivial weights in the weight
filtration are > d̃n . Now Poincaré duality (2.1.2) implies that Hd̃n

c (M̃n) has
no pure part either; consequently all the non-trivial weights in the weight
filtration < d̃n. However Theorem 2.1.3.1 shows that the map Hd̃n

c(M̃n) →
Hd̃n(M̃)n preserves the weight filtration. This proves that the map has to
be 0. ��

5 Mixed Hodge polynomial of M2

5.1 Cohomology ring of M2. Here we compute H(M2; q, t) by using the
explicit description of the ring H∗(M2) given

in [37,39]. According to [37] the cohomology ring H∗(M2) is generated
by classes εi ∈ H1(M2), ψi ∈ H3(M2) for i = 1, . . . , 2g and α ∈ H2(M2)
and β ∈ H4(M2). In the notation of (4.1.1) α = α2, ψ j = ψ2, j and β = β2.
The paper [39] then proceeds by determining the relations in these universal
generators. The result is as follows.

Let Γ be the group Sp(2g,Z). Let Λk(ψ) be the kth exterior power of the
standard representation of Γ, with basis ψ1, . . . , ψ2g. Define the primitive
part Λk

0(ψ) to be the kernel of the natural map Λk(ψ) → Λ2g+2−k(ψ) given
by the wedge product with γ g+1−k, where γ = 2

∑g
i=1 ψiψi+g. The prim-

itive part is complementary to γΛk−2(ψ) ⊂ Λk(ψ), and is an irreducible
representation of Γ: this is well-known for Sp(2g,C), and so remains true
for the Zariski dense subgroup Γ. Consequently,

dim
(
Λk

0(ψ)
) =

(
2g
k

)

−
(

2g
k − 2

)

. (5.1.1)

For any g, n ≥ 0, let I g
n be the ideal within the polynomial ring Q[α, β, γ ]

generated by γ g+1 and the polynomials

ρ
n,g
r,s,t =

min(r,s,g−t)∑

i=0

(c − i)! αr−i

(r − i)!
βs−i

(s − i)!
(2γ)t+i

i! , (5.1.2)

where c = r + 3s + 2t − 2g + 2 − n, for all r, s, t ≥ 0 such that

t ≤ g, r + 3s + 3t > 3g − 3 + n and r + 2s + 2t ≥ 2g − 2 + n.
(5.1.3)
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The following is then the main result of [39].

Theorem 5.1.1. As a Γ-algebra,

H∗(M2) = Λ(ε) ⊗
( g⊕

k=0

Λk
0(ψ) ⊗Q[α, β, γ ]/I g−k

k

)
.

Proof. There is a slight difference in the classes ρ
n,g
r,s,t in (5.1.2) and the

classes ρc
r,s,t in [39]. In [39] the sum for i is between 0 and min(r, s, c). First

of all c is unnecessary in the min because s ≤ c by the third inequality in
(5.1.3). Second difference is that in (5.1.2) we have the sum going from 0 to
min(r, s, g − t). So the relations are slightly different, here any monomial
which is divisible by γ g+1 is left out. However as γ g+1 ∈ I g

n the two sets of
polynomials generate the same ideal. ��
Remark 5.1.2. We note that the I g−k

k has the following additive basis: take all
classes ρ

n,g
r,s,t satisfying (5.1.3) and monomials of the form αrβsγ t with t > g.

It is an additive basis because their leading terms in the lexicographical
ordering additively generate an ideal.

For the calculation of the mixed Hodge polynomial of M2 we only need
to know that a monomial basis for Q[α, β, γ ]/I g−k

k is given by αrβsγ t , for

0 ≤ r, 0 ≤ s, 0 ≤ t ≤ g′ and

(r + 3s + 3t ≤ 3g′ − 3 + k or r + 2s + 2t < 2g′ − 2 + k), (5.1.4)

where g′ = g − k.

5.2 Calculation of the mixed Hodge polynomial. We introduce the no-
tation Sg′

k for the set of triples (r, s, t) of non-negative integers satisfying
(5.1.4). To simplify notation we will use g instead of g′ below.

Lemma 5.2.1

∑

(r,s,t)∈Sg
k

arbsct = 1 − cg+1

(1 − a)(1 − b)(1 − c)
−

ak−2bg
(

1 − cg+1

bg+1

)

(1 − a)
(
1 − c

b

)(
1 − b

a2

)

−
(bg+[(k+1)/2]−1 + abg+[k/2]−1)

(
1 − cg+1

bg+1

)

(1 − b)
(
1 − c

b

)(
1 − a2

b

)

− a3g+k−2
(
1 − cg

a3g

)

(1 − a)
(
1 − c

a3

)(
1 − b

a3

) + ak−2bg
(
1 − cg

bg

)

(1 − a)
(
1 − c

b

)(
1 − b

a3

) .

(5.2.1)
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Proof. Fix g. It is clear that Sg
k ⊂ Sg

k+1. Furthermore we can separate
Sg

k+1 \ Sg
k = Rk

1 � Rk
2 into the following two disjoint sets:

Rk
1 := {

(r, s, t) ∈ Z3
≥0

∣
∣r + 3s + 3t = 3g − 3 + k + 1

and r + 2s + 2t > 2g − 2 + k and t ≤ g
}

Rk
2 := {

(r, s, t) ∈ Z3
≥0

∣
∣r + 3s + 3t ≥ 3g − 3 + k + 1

and r + 2s + 2t = 2g − 2 + k and t ≤ g
}
.

We can calculate

∑

(r,s,t)∈Rk
1

arbsct =
g−1∑

t=0

g−1−t∑

s=0

a3g−3+k+1(b/a3)s(c/a3)t

=
g−1∑

t=0

a3g−3+k+1 1 − (b/a3)g−t

1 − b/a3
(c/a3)t

= a3g−3+k+1(1 − (c/a3)g)

(1 − c/a3)(1 − b/a3)
− ak−2bg(1 − (c/b)g)

(1 − b/a3)(1 − c/b)
(5.2.2)

and

∑

(r,s,t)∈Rk
2

arbsct =
g∑

t=0

g−1+[k/2]−t∑

s=g−t

a2g−2+k(b/a2)s(c/a2)t

=
g∑

t=0

a2g−2+k(c/a2)t(b/a2)g−t 1 − (b/a2)[k/2]

1 − (b/a2)

= ak−2bg(1 − (c/b)g+1)(1 − (b/a2)[k/2])
(1 − c/b)(1 − b/a2)

, (5.2.3)

thus
∑

(r,s,t)∈Sg
k+1\Sg

k

arbsct =
∑

(r,s,t)∈Rk
1

arbsct +
∑

(r,s,t)∈Rk
2

arbsct . (5.2.4)

As
∞⋃

k′=k

Sg
k′ = {

(r, s, t) ∈ Z3
≥0

∣
∣t ≤ g

}

we can deduce that
1 − cg+1

(1 − a)(1 − b)(1 − c)
=

∑

(r,s,t)∈∪∞
k′=k

Sg
k′

arbsct

=
∑

(r,s,t)∈Sg
k

arbsct +
∞∑

k′=k

∑

(r,s,t)∈Sg
k′+1

\Sg
k′

arbsct .

Using (5.2.4) and summing up (5.2.2) and (5.2.3) proves the lemma. ��
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We can now prove Theorem 1.1.3.

Proof. By Proposition 4.1.8 we know that the classes α, ψk and β have
homogenous weight 2. Thus γ has homogenous weight 4. As the cup product
is compatible with mixed Hodge structures by Theorem 2.1.2.4 the homo-
genous weights of a monomial in the universal generators will be the sum of
the homogenous weights of the factors (see Remark 4.1.7). Thus a method
to calculate the mixed Hodge polynomial of M2 is to take the monomial
basis of Q[α, β, γ ]/I g−k

k given in (5.1.4) evaluate the homogenous weights
of the individual monomials and sum this up over all monomials.

First we have

Lemma 5.2.2
∑

(r,s,t)∈Sg
k

(q2t2)r(q2t4)s(q4t6)t

= q2g−2t4g−4−2k(1 − q4g−4k+4t2g−2k+2)

(1 − q4t2)(q2 − 1)(q2t2 − 1)

+ 1 − q4g−4k+4t6g−6k+6

(1 − q4t6)(q2t2 − 1)(q2t4 − 1)

− 1

2

q2g−2−kt4g−4−2k(1 − q2g−2k+2t2g−2k+2)

(1 − q2t2)(q − 1)(qt2 − 1)

− 1

2

(−q)2g−2−kt4g−4−2k(1 − q2g−2k+2t2g−2k+2)

(1 − q2t2)(q + 1)(qt2 + 1)
.

Proof. Substitute a = q2t2, b = q2t4, c = q4t6 in (5.2.1). To prove that the
resulting rational function is the same as the one above, one can multiply
over with the denominators and get an identical expression. ��

We can now use the description of the cohomology ring of M2 in The-
orem 5.1.1 to get the mixed Hodge polynomial H(M2; q, t). We have

H(M2; q, t)

(1 + qt)2g
=

g∑

k=0

((
2g
k

)

−
(

2g
k − 2

))

(q2t3)k

×
∑

(r,s,t)∈Sg−k
k

(q2t2)r(q2t4)s(q4t6)t .

Writing in Lemma 5.2.2 and summing it up with k yields exactly The-
orem 1.1.3. ��
Remark 5.2.3. The above proof of Theorem 1.1.3 follows closely the geom-
etry behind the proof of Theorem 5.1.1 in [39]. There certain spaces Hk
of rank 2 Higgs bundles with a pole of order at most k are introduced.
It is shown there that H0

∼= M2 are diffeomorphic, they form a tower:
Hk ⊂ Hk+1 and the direct limit H∞ := ⋃

k=0 Hk is homotopically equiva-
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lent with the classifying space of a certain gauge group. The cohomology
ring H∗(Hk) is also generated by the same classes εi, α,ψi, β. One can
show by the description of their cohomology ring in [39] that there exists an
abstract weight filtration on H∗(Hk) by setting the weight of the universal
generators α,ψi, β be 4, and the weight of εi to be 2. Lemma 5.2.1 then can
be considered as calculating the natural two-variable polynomial associated
to this abstract weight filtration on the Γ-invariant part of H∗(Hk). Similarly
to the calculation above, one can obtain the following formula for the two-
variable polynomial associated to this filtration on the whole cohomology
H∗(Hk):

(q2t3 + 1)2g(qt + 1)2g

(q2t2 − 1)(q2t4 − 1)
+ q2g−2t4g−4+2k(q2t + 1)2g(qt + 1)2g

(q2 − 1)(q2t2 − 1)

− 1

2

q2g−2+kt4g−4+2k(qt + 1)2g(qt + 1)2g

(qt2 − 1)(q − 1)

− 1

2

(−q)2g−2+kt4g−4+2k(qt − 1)2g(qt + 1)2g

(q + 1)(qt2 + 1)
.

This polynomial has some remarkable properties. First we see that in
the k → ∞ limit only the first term survives, which gives the two-variable
rational function associated to this abstract filtration on the cohomology
H∗(H∞) of the classifying space of the gauge group, which is known to be
a free anticommutative algebra on the universal generators εi, α,ψi, β.

Second, the polynomial satisfies a curious Poincaré duality, when re-
placing q by 1/qt2. Thus when we set t = −1 in the above polynomial we
have a palindromic polynomial in q. It has degree 8g − 6 + 2k. We may
therefore expect that there is a character variety version Mk

2 of the Higgs
moduli spaces Hk so that the abstract weight filtration we put on H∗(Hk)
is the actual weight filtration coming from the mixed Hodge structure on
H∗(Mk

2). However if this was the case the E-polynomial of Mk
2 would be of

degree 8g − 6 + 2k, and therefore Mk
2 would have dimension 8g − 6 + 2k.

The dimension of Hk is 8g − 6 + 3k. Therefore what we could expect is
perhaps a deformation retract of Hk being diffeomorphic to a certain char-
acter variety Mk

2 of dimension 8g − 6 + 2k with the above mixed Hodge
polynomial.

Remark 5.2.4. We can now deduce Corollary 1.1.4 by combining The-
orem 1.1.3 and Remark 4.2.

5.3 Curious hard Lefschetz. Define the Lefschetz map L : Hi(M̃2) →
Hi+2(M̃2) by x �→ α ∪ x, where α = α2 is the universal class in H2(M̃2)
defined in (4.1.1). As it respects mixed Hodge structures and α has homo-
genous weight 2 by Proposition 4.1.8 it defines a map on the graded pieces
of the weight filtration L : GrW

l Hi(M̃2) → GrW
l+4 Hi+2(M̃2). We now prove

Theorem 1.1.5.
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Proof. We start with a few lemmas. Let us call the last (in the ordering of
the sum in (5.1.2)) monomial αr0βs0γ t0 appearing in ρ

n,g
r,s,t its tail. Clearly

r0 = r − min(r, s, g − t), s0 = s − min(r, s, g − t) and t0 = t − min(r, s,
g − t). Thus if a monomial αr0βs0γ t0 is the tail of the polynomial ρ

n,g
r,s,t then

r0 = 0 or s0 = 0 or t0 = g. (5.3.1)

Let us denote by T g
n the set of triples (r, s, t) ∈ Z3

≥0 which satisfy (5.1.3).

Lemma 5.3.1. Let r0, s0, t0 ∈ Z≥0, t0 ≤ g and satisfying (5.3.1). Denote
by d the number of polynomials ρ

n,g
r,s,t with (r, s, t) ∈ T g

n and tail αr0βs0γ t0 .
It satisfies

d = min[t0 + 1, max(r0 + 3s0 + 4t0 − (3g − 3 + n), 0),

max(r0 + 2s0 + 3t0 − (2g − 3 + n), 0)]. (5.3.2)

The d × d matrix A = (aij )
d−1
i, j=0 is non-singular, where

aij =
{

0 i + j > t0
(r0+3s0+3t0−2g+2−n+i− j)!2t0−i

(r0+i)!(s0+i)!(t0−i− j )! i + j ≤ t0,

which is the coefficient of αr0+iβs0+iγ t0−i in ρ
n,g
r0+t0− j,s0+t0− j, j .

Proof. To prove the first statement we need to count the number of 0 ≤ i ≤ t0
such that (r0 + i, s0 + i, t0 − i) ∈ T n

g consequently they satisfy

r0 + 3s0 + 3t0 + i > 3g − 3 + n,

thus

t0 ≥ i > 3g − 3 + n − (r0 + 3s0 + 3t0).

Similarly, we have

r0 + 2s0 + 2t0 + i > 2g − 3 + n,

which yields

t0 ≥ i > 2g − 3 + n − (r0 + 2s0 + 2t0).

This proves (5.3.2).
For the second statement consider the matrix B = (bij)

d−1
i, j=0 with bij =

(r0+3s0+3t0−2g+2−n+i− j )!
(t0−i− j )! , if t0 − i − j ≥ 0, and bij = 0 otherwise. As the

matrix B is obtained from A by multiplying the rows and columns by non-
zero constants it is enough to show that B is non-singular. Introduce the
notation (a) j = a(a + 1) . . . (a + j − 1) and (a)0 = 1. Now we can write

bij = (r0 + 3s0 + 3t0 − 2g + 2 − n + i)!(t0 − i − j + 1) j

(r0 + 3s0 + 3t0 − 2g + 2 − n + i − j + 1) j(t0 − i)!
= (r0 + 3s0 + 3t0 − 2g + 2 − n + i)!(t0 − i − j + 1) j

(−1) j(−r0 − 3s0 − 3t0 + 2g − 2 + n − i) j(t0 − i)! ,
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which is valid for any i and j as (t0 − i − j + 1) j = 0 if and only if
t0 − i − j < 0 (note that

t0 − i ≥ t0 − d + 1 ≥ 0

and

r0 + 3s0 + 3t0 − 2g + 2 − n + i − j + 1
≥ r0 + 3s0 + 3t0 − 2g + 2 − n + i − d + 2 > 0

by (5.3.2)). Now multiplying the rows and columns of B by non-zero
constants we get the matrix C = (cij )

d−1
i, j=0 with

cij = (αi − β j ) j

(αi) j
,

where αi = −r0 − 3s0 − 3t0 + 2g − 2 + n − i and β j = −r0 − 3s0 − 4t0 +
2g − 3 + n + j. The determinant of a matrix like C was calculated in [21,
Lemma 19]. Their formula gives

|C| =
d−1∏

i=0

(βi)i

(αi)d−1

∏

0≤i< j<d

(i − j).

Because

βi + i − 1 ≤ −r0 − 3s0 − 4t0 + 2g − 3 + n + 2d − 2 − 1
≤ −r0 − 3s0 − 4t0 + 3g − 5 + n + d < 0

by (5.3.2) we get |C| �= 0 and consequently |A| �= 0. This completes the
proof. ��
Lemma 5.3.2. Let (r0, s0, t0) satisfy (5.3.1) and let

w = 6g − 6 + 2n − (2r0 + 2s0 + 4t0). (5.3.3)

The number of monomials of the form αr0+iβs0+iγ t0−i for which 0 ≤ r0+i <
3g − 3 + n − w and 0 ≤ i ≤ t0 is at least d.

Proof. We distinguish three cases depending on which of the cases of (5.3.1)
is satisfied.

First case is when r0 = 0. The number of monomials of the form
αiβs0+iγ t0−i for which 0 ≤ i < 3g − 3 − n − w and 0 ≤ i ≤ t0 is clearly

min(t0 + 1, 3g − 3 + n − w) = min(t0 + 1, 3g − 3 + n − w)

= min(t0 + 1, 2r0 + 2s0 + 4t0 − (3g − 3 + n))

≥ min(t0 + 1, r0 + 2s0 + 3t0 − (2g − 3 + n))

≥ d

because of (5.3.3), 0 ≤ r0, t0 ≤ g and (5.3.2).
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Second case is when s0 = 0. The number of monomials of the form
αr0+iβiγ t0−i for which r0 + i < 3g − 3 − n − w and 0 ≤ i ≤ t0 is clearly

min(t0 + 1, 3g − 3 + n − w − r0)

= min(t0 + 1, 3g − 3 + n − w − (r0 − s0))

= min(t0 + 1, 2r0 + 2s0 + 4t0 − (3g − 3 + n) − (r0 − s0))

= min(t0 + 1, r + 3s0 + 4t0 − (3g − 3 + n))

≥ d

because of (5.3.3) and (5.3.2).
Finally the third case is when t0 = g. Now the number of monomials of

the form αr0+iβs0+iγ g−i for which r0 + i < 3g − 3 − n − w and 0 ≤ i ≤ t0
is clearly

min(t0+1, 3g − 3 + n − w − r0)

= min(t0 + 1, 3g − 3 + n − w − (r0 + t0 − g))

= min(t0 + 1, 2r0 + 2s0 + 4t0 − (3g − 3 + n) − (r0 + t0 − g))

= min(t0 + 1, r0 + 2s0 + 3t0 − (2g − 3 + n))

≥ d. ��
We say that x ∈ Q[α, β, γ ] has homogenous weight w = w(x) if

it is homogeneous of degree w when α, β, γ are assigned degrees 2, 2
and 4 respectively. Note that all the classes ρ

n,g
r,s,t have homogenous weight

2r + 2s + 4t.

Lemma 5.3.3. Let x ∈ Q[α, β, γ ] have homogenous weight w < 3g−3+n.
Then xα3g−3+n−w ∈ I g

n implies x ∈ I g
n .

Proof. By Remark 5.1.2 we can write

xα3g−3+n−w(x) = γ g+1y +
∑

(r,s,t)∈T g
n (w)

λr,s,tρ
n,g
r,s,t, (5.3.4)

where y ∈ Q[α, β, γ ], λr,s,t ∈ Q and T g
n (w) is the set of non-negative triples

(r, s, t) satisfying (5.1.3) and w(ρ
n,g
r,s,t) = 2r +2s +4t = 6g−6+2n −w =

w(xα3g−3+n−w).
We show that all λr,s,t = 0. Take (r, s, t) ∈ T g

n (w). Let αr0βs0γ t0 be
the tail of ρ

n,g
r,s,t. In particular w(ρ

n,g
r,s,t) = 2r0 + 2s0 + 4t0. According

to Lemma 5.3.1 the number of relations of (r ′, s′, t′) ∈ T g
n (w) with tail

αr0βs0γ t0 is d given by (5.3.2). On the other hand Lemma 5.3.2 implies
that the number of monomials αr0+iβs0+iγ t0−i such that 0 ≤ r0 + i <
3g − 3 + n − w and 0 ≤ i ≤ t0 is at least d. But these monomials do not
appear on the LHS of (5.3.4) because all the terms there are divisible by
α3g−3+n−w. They are only contained in relations with tail αr0βs0γ t0 therefore
Lemma 5.3.1 implies λr,s,t = 0.
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Consequently xα3g−3+n−w(x) = γ g+1y, which implies x is divisible
by γ g+1, thus x ∈ I g

n . Lemma 5.3.3 follows. ��
We can now prove Theorem 1.1.5. By Corollary 1.1.4 (proved in

Remark 5.2.4) we know that

dim
(
GrW

6g−6−2l H
i−l(M̃2)

) = h3g−3−l,3g−3−l;i−l(M̃2)

= h3g−3+l,3g−3+l;i+l(M̃2)

= dim
(
GrW

6g−6+2l H
i+l(M̃2)

)

thus it is enough to show that Ll in the theorem above is an injection.
Now by Theorem 5.1.1 any element z ∈ GrW

6g−6−2l H
i−l(M̃2) can be rep-

resented as z = ∑g
k=0 yk[xk], where yk ∈ Λk

0(ψ) and [xk] ∈ Q[α, β, γ ]/I g−k
k ,

with a representative xk ∈ Q[α, β, γ ] of homogenous weight. As w(yk) =
2k we have w(xk) = 3g − 3 − l − 2k = 3(g − k)− 3 + k − l or equivalently
l = 3(g − k)− 3 + k −w(xk). Assume now that zαl = 0. This would imply
that xkα

l ∈ I g−k
k for all k. By the previous Lemma 5.2.1 xk ∈ I g−k

k and so
z = 0. Theorem 1.1.5 follows. ��

Corollary 4.1.10 implies that the pure part of H∗(M̃2) is g dimensional,
due to the Newstead relation βg = 0 proved in [39]. This combined with
Theorem 1.1.3 and Theorem 4.4.1 proves Theorem 1.1.6.

We know from [40] that the middle cohomology H6g−6(M̃2) is also
g-dimensional. The curious hard Lefschetz map then gives a natural iso-
morphism between the associated graded of the weight filtration on
the vector spaces PH∗(M̃2) and H6g−6(M̃2) (cf. Remark 4.2.6 and
Remark 4.4.6).

5.4 Intersection form. Theorem 1.1.3 and Proposition 4.4.4 implies that
the middle cohomology of M̃2 does not have pure part and as explained in
Corollary 4.5.1 we have

Corollary 5.4.1. The intersection form on H6g−6
c (M̃2) is trivial, i.e., there

are no “topological L2 harmonic forms” on M̃2.

6 Appendix by Nicholas M. Katz: E-polynomials, zeta-equivalence,
and polynomial-count varieties

Given a noetherian ring R, we denote by (Sch/R) the category of separated
R-schemes of finite type, morphisms being the R-morphisms. We denote
by K0(Sch/R) its Grothendieck group. By definition, K0(Sch/R) is the
quotient of the free abelian group on elements [X], one for each separated
R-scheme of finite type, by the subgroup generated by all the relation
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elements

[X] − [Y ], whenever Xred ∼= Yred,

and

[X] − [X \ Z] − [Z], whenever Z ⊂ X is a closed subscheme.

It follows easily that if X is a finite union of locally closed subschemes Zi ,
then in K0(Sch/R) we have the inclusion–exclusion relation

[X] =
∑

i

[Zi] −
∑

i< j

[Zi ∩ Z j] + . . . .

For any ring homomorphism R → R′ of noetherian rings, the “exten-
sion of scalars” morphism from (Sch/R) to (Sch/R′) which sends X/R
to X ⊗R R′/R′, extends to a group homomorphism from K0(Sch/R) to
K0(Sch/R′).

Suppose A is an abelian group, and ρ is an “additive function” from
(Sch/R) to A, i.e., a rule which assigns to each X ∈ (Sch/R) an element
ρ(X) ∈ A, such that ρ(X) depends only on the isomorphism class of Xred ,
and such that whenever Z ⊂ X is a closed subscheme, we have

ρ(X) = ρ(X − Z) + ρ(Z).

Then ρ extends uniquely to a group homomorphism from K0(Sch/R) to A,
by defining ρ(

∑
i[Xi]) = ∑

i ρ(Xi).
When R = C, we have the following simple lemma, which we record

now for later use.

Lemma 6.1.1. Every element of K0(Sch/C) is of the form [S]−[T ], with S
and T both projective smooth (but not necessarily connected) C-schemes.

Proof. To show this, we argue as follows. It is enough to show that for
any separated C-scheme of finite type X, [X] is of this type. For then
−[X] = [T ] − [S], and

[S1] − [T1] + [S2] − [T2] = [S1 � S2] − [T1 � T2],
and the disjoint union of two projective smooth schemes is again one.
(Indeed, if we embed each in a large projective space, say Si ⊂ PNi and pick
a point ai ∈ PNi \ Si , then S1 × a2 and a1 × S2 are disjoint in PN1 × PN2 .)

We first remark that for any X as above, [X] is of the form [V ] − [W]
with V and W affine. This follows from inclusion–exclusion by taking
a finite covering of X by affine open sets, and noting that the disjoint union
of two affine schemes of finite type is again an affine scheme of finite type.
So it suffices to prove our claim for affine X. Embedding X as a closed
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subscheme of some affine space AN and using the relation

[X] = [AN ] − [AN \ X],
it now suffices to prove our claim for smooth quasiaffine X. By resolution,
we can find a projective smooth compactification Z of X, such that Z \ X
is a union of smooth divisors Di in Z with normal crossings. Then by
inclusion–exclusion we have

[X] = [Z] −
∑

i

[Di] +
∑

i, j

[Di ∩ D j] + . . . .

In this expression, each summand on the right hand side is projective and
smooth. Taking for S the disjoint union of the summands with a plus sign
and for T the disjoint union of the summands with a minus sign, we get the
desired expression of our [X] as [S] − [T ], with S and T both projective
and smooth. ��

Now take for R a finite field Fq. For each integer n ≥ 1, the function
on (Sch/Fq) given by X �→ #X(Fqn) is visibly an additive function from
(Sch/Fq) to Z. Its extension to K0(Sch/Fq) will be denoted

γ �−→ #γ(Fqn).

We can also put all these functions together, to form the zeta function. Recall
that the zeta function Z(X/Fq, t) of X/Fq is the power series (in fact it is
a rational function) defined by

Z(X/Fq, t) = exp
( ∑

n≥1

#X(Fqn )tn/n
)
.

Then X �→ Z(X/Fq, t) is an additive function with values in the multiplica-
tive group Q(t)×. We denote by

γ �−→ Zeta(γ/Fq, t)

its extension to K0(Sch/Fq). We say that an element γ ∈ K0(Sch/Fq) is
zeta-trivial if Zeta(γ/Fq, t) = 1, i.e., if #γ(Fqn) = 0 for all n ≥ 1. We say
that two elements of K0(Sch/Fq) are zeta-equivalent if they have the same
zeta functions, i.e., if their difference is zeta-trivial.

We say that an element γ ∈ K0(Sch/Fq) is polynomial-count (or
has polynomial count) if there exists a (necessarily unique) polynomial
Pγ/Fq(t) = ∑

i ai ti ∈ C[t] such that for every finite extension Fqn/Fq, we
have

#γ(Fqn) = Pγ/Fq(q
n).

If γ/Fq has polynomial count, its counting polynomial Pγ/Fq(t) lies in Z[t].
(To see this, we argue as follows. On the one hand, from the series definition
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of the zeta function, and the polynomial formula for the number of rational
points, we have

(td/dt) log(Z(γ/Fq, t)) =
∑

i

aiq
it/(1 − qit).

As the zeta function is a rational function, say
∏

i(1 − αi t)/
∏

j(1 − β j t)
in lowest terms, we first see by comparing logarithmic derivatives that
each of its zeroes and poles is a non-negative power of 1/q. Thus for
some integers bn , the zeta function is of the form

∏
n≥0(1 − qnt)−bn .

Again comparing logarithmic derivatives, we see that we have an = bn
for each n.)

Equivalently, an element γ ∈ K0(Sch/Fq) is polynomial-count if it is
zeta-equivalent to a Z-linear combination of classes of affine spaces [Ai],
or, equivalently, to a Z-linear combination of classes of projective spaces
[Pi] (since [Ai] = [Pi] − [Pi−1], with the convention that P−1 is the empty
scheme). If γ/Fq is polynomial-count, then so is its extension of scalars from
Fq to any finite extension field, with the same counting polynomial. (But
an element γ/Fq which is not polynomial-count can become polynomial-
count after extension of scalars, e.g., a nonsplit torus over Fq, or, even more
simply, the zero locus of a square-free polynomial f(z) ∈ Fq[z] which does
not factor completely over Fq.)

Now let R be a ring which is finitely generated as a Z-algebra. We say
that an element γ ∈ K0(Sch/R) is zeta-trivial if, for every finite field k, and
for every ring homomorphism φ : R → k, the element γφ,k/k in K0(Sch/Fq)
deduced from γ by extension of scalars is zeta-trivial. And we say that two
elements are zeta-equivalent if their difference is zeta-trivial.

We say that an element γ ∈ K0(Sch/R) is strongly polynomial-count
with (necessarily unique) counting polynomial Pγ/R(t) ∈ Z[t] if, for every
finite field k, and for every ring homomorphism φ : R → k, the element
γφ,k/k in K0(Sch/Fq) deduced from γ by extension of scalars is polynomial-
count with counting polynomial Pγ/R(t).

We say that an element γ ∈ K0(Sch/R) is fibrewise polynomial-count if,
for every ring homomorphism φ : R → k, the element γφ,k/k in K0(Sch/Fq)
deduced from γ by extension of scalars is polynomial-count (but we allow
its counting polynomial to vary with the choice of (k, φ)).

All of these notions, zeta-triviality, zeta equivalence, being strongly or
fibrewise polynomial-count, are stable by extension of scalars of finitely
generated rings.

We now pass to the complex numbers C. Given an element γ ∈
K0(Sch/C), by a “spreading out” of γ/C, we mean an element γR ∈
K0(Sch/R), R a subring of C which is finitely generated as a Z-algebra,
which gives back γ/C after extension of scalars from R to C. It is stand-
ard that such spreadings out exist, and that given two spreadings out
γR ∈ K0(Sch/R) and γR′ ∈ K0(Sch/R′), then over some larger finitely
generated ring R′′ containing both R and R′, the two spreadings out will
agree in K0(Sch/R′′).
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We say that an element γ ∈ K0(Sch/C) is zeta-trivial if it admits
a spreading out γR ∈ K0(Sch/R) which is zeta-trivial. One sees easily, by
taking spreadings out to a common R, that the zeta-trivial elements form
a subgroup of K0(Sch/C).

We say that two elements are zeta-equivalent if their difference is zeta-
trivial. We say that an element is strongly polynomial-count, with counting
polynomial Pγ (t) ∈ Z[t], (respectively fibrewise polynomial-count) if it
admits a spreading out which has this property.

Given X/C a separated scheme of finite type, its E-polynomial
E(X; x, y) ∈ Z[x, y] is defined as follows. The compact cohomology groups
Hi

c(Xan,Q) carry Deligne’s mixed Hodge structure, cf. [8] and [9, 8.3.8],
and one defines

E(X; x, y) =
∑

p,q

ep,qx p yq,

where the coefficients ep,q are the virtual Hodge numbers, defined in terms
of the pure Hodge structures which are the associated gradeds for the weight
filtration on the compact cohomology as follows:

ep,q :=
∑

i

(−1)ih p,q
(
gr p+q

W

(
Hi

c(Xan,C)
))

.

Notice that the value of E(X; x, y) at the point (1, 1) is just the (compact, or
ordinary, they are equal, by [48]) Euler characteristic of X. One knows that
the formation of the E-polynomial is additive (because the excision long
exact sequence is an exact sequence in the abelian category of mixed Hodge
structures, cf. [9, 8.3.9]). So we can speak of the E-polynomial E(γ ; x, y)
attached to an element γ ∈ K0(Sch/C).

Theorem 6.1.2. We have the following results.

(1) If γ ∈ K0(Sch/C) is zeta-trivial, then

E(γ ; x, y) = 0.

(2) If γ1 ∈ K0(Sch/C) and γ2 ∈ K0(Sch/C) are zeta-equivalent, then

E(γ1; x, y) = E(γ2; x, y).

In particular, if X and Y in (Sch/C) are zeta-equivalent, then

E(X; x, y) = E(Y ; x, y).

(3) If γ ∈ K0(Sch/C) is strongly polynomial-count, with counting poly-
nomial Pγ (t) ∈ Z[t], then

E(γ ; x, y) = Pγ (xy).
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In particular, if X ∈ (Sch/C) is strongly polynomial-count, with count-
ing polynomial PX(t) ∈ Z[t], then

E(X; x, y) = PX(xy).

Proof. Assertion (2) is an immediate consequence of (1), by the addi-
tivity of the E-polynomial. Statement (3) results from (2) as follows. If
γ ∈ K0(Sch/C) is strongly polynomial-count, with counting polynomial
Pγ (t) = ∑

i ai ti ∈ Z[t], then by definition γ is zeta-equivalent to
∑

i ai[Ai]
∈ K0(Sch/C). So we are reduced to noting that E(Ai; x, y) = xi yi , which
one sees by writing [Ai] = [Pi] − [Pi−1] and using the basic standard fact
that E(Pi; x, y) = ∑

0≤ j≤i x j y j . So it remains only to prove Assertion (1) of
the theorem. By Lemma 6.1.1, every element γ ∈ K0(Sch/C) is of the form
[X]−[Y ], with X and Y are projective smooth C-schemes. So Assertion (1)
results from the following theorem, which is proven, but not quite stated,
in [66]3. (What Wang proves is that “K-equivalent” projective smooth con-
nected C-schemes have the same Hodge numbers, through the intermediary
of using motivic integration to show that K-equivalent projective smooth
connected C-schemes are zeta-equivalent.) ��
Theorem 6.1.3. Suppose X and Y are projective smooth C-schemes which
are zeta-equivalent. Then

E(X; x, y) = E(Y ; x, y).

Proof. Pick spreadings out X/R and Y/R over a common R which are
zeta-equivalent. At the expense of inverting some nonzero element in R, we
may further assume that both X/R and Y/R are projective and smooth, and
that R is smooth over Z. We denote the structural morphisms of X/R and
Y/R by

f : X −→ Spec(R), g : Y −→ Spec(R).

One knows [47, 5.9.3] that, for any finitely generated subring R ⊂ C,
there exists an integer N ≥ 1 such that for all primes � which are prime to N,
there exists a finite extension E/Q�, with ring of integers O and an injective
ring homomorphism from R to O. Fix one such prime number �, which we
choose larger than both dim(X) and dim(Y ), and one such inclusion of R
into O.

Over Spec(R[1/�]), the Q�-sheaves Ri f∗Q� and Rig∗Q� are lisse, and
pure of weight i [11, 3.3.9]. By the Lefschetz Trace Formula and proper base
change, for each finite field k, and for each k-valued point φ of Spec(R[1/�]),
we have

Zeta(Xk,φ/k, t) =
∏

i

det
(
1 − t Frobk,φ

∣
∣Ri f∗Q�

)(−1)i+1

3 It was later stated explicitely by Ito [42, Corollary 6.2].
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and

Zeta(Yk,φ/k, t) =
∏

i

det
(
1 − t Frobk,φ

∣
∣Rig∗Q�

)(−1)i+1

.

By the assumed zeta-equivalence, we have, for each finite field k, and for
each k-valued point φ of Spec(R[1/�]), the equality of rational functions

Zeta(Xk,φ/k, t) = Zeta(Yk,φ/k, t).

Separating the reciprocal zeroes and poles by absolute value, we infer by
purity that for every i, we have

det
(
1 − t Frobk,φ

∣
∣Ri f∗Q�

) = det
(
1 − t Frobk,φ

∣
∣Rig∗Q�

)
.

Therefore by Chebotarev the virtual semisimple representations of
π1(Spec(R[1/�])) given by (Ri f∗Q�)

ss and (Rig∗Q�)
ss are equal:

(
Ri f∗Q�

)ss ∼= (
Rig∗Q�

)ss
.

Now make use of the inclusion of R into O, which maps R[1/�] to E. The
pullbacks XO and YO of X/R and Y/R to O are proper and smooth over O.
Thus their generic fibres, XE and YE are projective and smooth over E, of
dimension strictly less than �, and they have good reduction. Via the chosen
map from Spec(E) to Spec(R[1/�]), we may pull back the representations
Ri f∗Q� and Rig∗Q� of π1(Spec(R[1/�])) to π1(Spec(E)), the galois group
GalE := Gal(Esep/E). Their pullbacks are the etale cohomology groups
Hi(XEsep,Q�) and Hi(YEsep,Q�) respectively, viewed as representations of
GalE . These representations of GalE need not be semisimple, but their
semisimplifications are isomorphic:

Hi(XEsep,Q�)
ss ∼= Hi(YEsep,Q�)

ss.

By a fundamental result of Fontaine–Messing [15, Theorems A and B]
(which applies in the case of good reduction, E/Q� unramified, and di-
mension less than �) and Faltings [14, 4.1] (which treats the general case,
of a projective smooth generic fibre), we know that Hi(XEsep,Q�) and
Hi(YEsep,Q�) are Hodge–Tate representations of GalE , with Hodge–Tate
numbers exactly the Hodge numbers of the complex projective smooth var-
ieties X and Y respectively (i.e., the dimension of the GalE-invariants in
Ha(XEsep,Q�)(b) ⊗ C� under the semilinear action of GalE is the Hodge
number Hb,a−b(X), and similarly for Y ). By an elementary argument of
Wang [66, 5.1], the semisimplification of a Hodge–Tate representation is
also Hodge–Tate, with the same Hodge–Tate numbers. So the theorem of
Fontaine–Messing and Faltings tells us that for all i, Hi(X) and Hi(Y )
have the same Hodge numbers. This is precisely the required statement,
that E(X; x, y) = E(Y ; x, y). ��
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The reader may wonder why we introduced the notion of being fibrewise
polynomial-count, for an element γ ∈ K0(Sch/C). In fact, this notion is
entirely superfluous, as shown by the following Theorem.

Theorem 6.1.4. Suppose γ ∈ K0(Sch/C) is fibrewise polynomial-count.
Then it is strongly polynomial-count.

Proof. Write γ as [X] − [Y ], with X and Y projective smooth C-schemes.
Repeat the first paragraph of the proof of the previous theorem. Extending R
if necessary, we may assume that the element [X/R]−[Y/R] ∈ K0(Sch/R)
is fibrewise polynomial-count. So for each finite field k and each ring
homomorphism φ : R → k, there exists a polynomial Pk,φ = ∑

n an,k,φtn ∈
Z[t] such that

Zeta(Xk,φ/k, t)/Zeta(Yk,φ/k, t) =
∏

n

(1 − (#k)nt)−an,k,φ .

Writing the cohomological expressions of the zeta functions and using
purity, we see that the coefficient an,k,φ is just the difference of the 2n’th �-
adic Betti numbers of Xk,φ⊗k and Yk,φ⊗k, which is in turn the difference of
the ranks of the two lisse sheaves R2n f∗Q� and R2ng∗Q�. This last difference
is independent of the particular choice of (k, φ). ��
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