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MIXED HODGE STRUCTURES ON LOG SMOOTH DEGENERATIONS

TARO FUJISAWA

(Received June 23, 2006, revised June 27, 2007)

Abstract. We introduce the notion of a log smooth degeneration, which is a loga-
rithmic analogue of the central fiber of some kind of degenerations of complex manifolds over
polydiscs. Under suitable conditions, we construct a natural cohomological mixed Hodge com-
plex on the reduction of a compact log smooth degeneration. In particular, we obtain mixed
Hodge structures on the log de Rham cohomologies and E1-degeneration of the log Hodge to
de Rham spectral sequence for a certain kind of compact reduced log smooth degenerations.

Introduction.
(0.1) In this article, we introduce the notion of a log smooth degeneration over the Nk-

log point and of its reduction. For the reduction X of a log smooth degeneration Y over the
Nk-log point ∗k , the main result of this article claims that the relative log de Rham cohomol-
ogy Hn(X,ω·

X/∗k ) carries the natural Q-mixed Hodge structure for every integer n, if X is
compact and if all the irreducible components ofX are Kähler complex manifolds. Moreover,
we obtain E1-degeneration of the log Hodge to de Rham spectral sequence for such X. In the
special case that Y is reduced in addition, we have natural Q-mixed Hodge structures on the
relative log de Rham cohomology groups and E1-degeneration of the log Hodge to de Rham
spectral sequence for Y itself.

(0.2) Let ∆k be the k-dimensional polydisc and Ei the i-th coordinate hyperplane in
∆k for i = 1, . . . , k. We set E = ∑k

i=1Ei as a divisor on ∆k . For a surjective morphism
of complex manifolds f : X → ∆k , a divisor D on X is defined by D = f ∗E. Then the
central fiber f−1(0) is a log smooth degeneration over the Nk-log point if the divisor Dred is
simple normal crossing and if f is log smooth with respect to the log structures associated to
the divisorsD and E. This is a typical example of log smooth degenerations. Here we remark
that we do not assume the morphism f above to be flat nor equi-dimensional.

(0.3) The case of k = 1 in the example above is nothing but the (semi-stable) degen-
eration over the unit disc ∆ in C. In [17], Steenbrink constructed a cohomological mixed
Hodge complex on the reduction of the central fiber (under suitable conditions), and proved
that this cohomological mixed Hodge complex yields the “limiting” mixed Hodge structure
for the unipotent monodromy case. (He also treated the general case in [18].)

The theory of log structure in [10] shed a new light on the subject above. Steenbrink
introduced the notion of log deformation in [19]. A log deformation is a complex space
equipped with a log structure such that it is locally isomorphic, in the sense of log geometry,
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to the central fiber of a semi-stable degeneration over the unit disc in C. He constructed
a Q-cohomological mixed Hodge complex on a proper log deformation in [19] by using
Koszul complex obtained from the log structure. Independently, similar result is obtained
by Kawamata and Namikawa in [15] under the different definition of log structure. They
use the real blow-up for the construction of the Q-structure of the Q-cohomological mixed
Hodge complex in question. The coincidence of the cohomological mixed Hodge complexes
by Steenbrink and by Kawamata-Namikawa is proved by Nakayama and the author in [7].
These results are considered as logarithmic analogues of Steenbrink’s results in [17].

On the other hand, in [5] some of Steenbrink’s results in [17] are generalized by the
present author to a certain case over a higher dimensional polydisc. More precisely, he intro-
duces the notion of a morphism of generalized semi-stable type (which is called a morphism
of semi-stable type in [6]) and constructs a Q-cohomological mixed Hodge complex on its
central fiber under a certain condition. A morphism of semi-stable type over ∆k is the mor-
phism as in (0.2) with the additional condition for D being reduced. Thus the central fiber
of a morphism of semi-stable type is a log smooth degeneration over the Nk-log point. Here
we remark that the additional assumption for D being reduced implies the flatness of the
morphism.

In [14] Kawamata presents a new construction of a cohomological mixed Hodge complex
on the fiber of a weakly semistable morphism. This gives a new and simple proof of the results
obtained in [17] and [5]. He uses the real blow-up, the simplicial method and the weight
filtrations on the relative log de Rham complexes. Here we remark again that the weakly
semistable morphism is equi-dimensional by definition.

(0.4) These results in (0.3) are concerned with flat or equi-dimensional morphisms. In
the context of log geometry, the flatness condition is realized as the exactness (for the defini-
tion of exactness see, e.g., [10, Definition (4.6)]). In fact, the central fibers of the morphisms
in (0.3), on which Q-cohomological mixed Hodge complexes in question were constructed,
are exact over the base points as log complex analytic spaces. Moreover, the log deformation
is exact over the log point.

However, a log smooth degeneration is not necessarily exact over the log point ∗k as sug-
gested in the example (0.2). So the main result of this article is, on the one hand, a logarithmic
analogue of results in Steenbrink [17], Fujisawa [5] and Kawamata [14] in the non-flat case,
on the other hand, a generalization of results in Steenbrink [19], Kawamata-Namikawa [15]
and Fujisawa-Nakayama [7] to the non-exact case over the Nk-log points.

For the case of a proper exact log smooth morphism, the E1-degeneration of the log
Hodge to de Rham spectral sequence is proved by Illusie, Kato and Nakayama in [9] in the
algebraic context. (Kato, Matsubara and Nakayama proved similar results in [11] by a differ-
ent approach.) The E1-degeneration for a log smooth degeneration over the Nk-log point is
an analogue of these results for a non-exact case (see [9, Remarks (7.3)]).

(0.5) Now we roughly describe the contents of this article. Section 1 treats preliminary
results on Koszul complexes. Taking inductive limits of Koszul complexes is a new ingredient
for our construction. In Section 2 we study the relation between Koszul complexes and the
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log de Rham complexes. In Section 3, for later use, we develop the mixed Hodge theory for
a compact Kähler complex manifold equipped with a certain kind of log structures. In Sec-
tion 4 we introduce the notion of a log smooth degeneration over the Nk-log point and of its
reduction. Then we construct a simplicial resolution of the relative log de Rham complex for
the reduction of a log smooth degeneration over ∗k with the nonsingular irreducible compo-
nents. In Section 5 we treat the reduction X of a log smooth degeneration over ∗k satisfying
the condition that X is compact and that all the irreducible components of X are nonsingular
and Kähler. We construct a weak Q-cohomological mixed Hodge complex on X and study
the relation between the underlying C-structure of the weak Q-cohomological mixed Hodge
complex above with the Hodge filtration F and the relative log de Rham complex with the
stupid filtration F . The construction follows the simplicial method as in [2, 3, 4] and [14].
Here we return to El Zein’s method in [3], instead of Kawamata’s approach in [14] which
uses the weight filtrations on the relative log de Rham complexes. Then we obtain the main
results of this article, one of which claims that the relative log de Rham cohomologies carry
the natural Q-mixed Hodge structures, and the other the E1-degeneration of the log Hodge to
de Rham spectral sequence. In Appendix, we try to relax the finiteness assumption in axioms
of cohomological mixed Hodge complexes in [2]. We introduce the notion of a weak Q-
cohomological mixed Hodge complex. Although the conclusions for weak Q-cohomological
mixed Hodge complexes are slightly weaker than for Q-cohomological mixed Hodge com-
plexes, they are sufficient for our purpose in this article.

(0.6) The author would like to thank C. Nakayama for helpful discussion and useful
suggestion.

1. Koszul complexes.
(1.1) In this section we collect several results on Koszul complexes. The basic refer-

ences are [8] and [19]. Moreover, we refer to a previous paper of the present author [5].
(1.2) Let X be a topological space, A a commutative ring and ϕ : E → F a morphism

of A-sheaves on X. For any non-negative integer n, the Koszul complex Kos(ϕ; n) of ϕ is
defined by

Kos(ϕ; n)p =
{
Γn−p(E)⊗ ∧p F for 0 ≤ p ≤ n ,

0 otherwise

with differential d : Kos(ϕ; n)p → Kos(ϕ; n)p+1 given by

d(x
[n1]
1 · · · x[nk]

k ⊗ y) =
k∑
i=1

x
[n1]
1 · · · x[ni−1]

i · · · x[nk]
k ⊗ ϕ(xi) ∧ y ,

where x1, . . . , xk and y are local sections of the sheaves E and
∧p

F , respectively, and
n1, . . . , nk are positive integers with n1 + · · · + nk = n− p.

(1.3) The following properties can be easily proved.
(1.3.1) The Koszul complex is compatible with the extension of the base ring.
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(1.3.2) The Koszul complex is compatible with the pull-back of the morphism of topo-
logical spaces.

(1.3.3) The Koszul complex is functorial in the following sense: for a commutative
diagram

E
ϕ−−→ F� �

E′ ϕ′
−−→ F ′

we have a canonical morphism Kos(ϕ; n) → Kos(ϕ′; n).
Moreover, we have the following proposition (cf. [5, 8, 19]).

PROPOSITION 1.4. In the situation above, we have an isomorphism

Γn−p(Kerϕ)⊗
p∧

Cokerϕ → Hp(Kos(ϕ; n))
for every p if E,F and Cokerϕ are A-flat.

(1.5) For any subsheaf G of F and for an integer m with 0 ≤ m ≤ p, we have a
morphism

m∧
F ⊗ Γn−p(E)⊗

p−m∧
G → Γn−p(E)⊗

p∧
F(1.5.1)

by sending x ⊗ y ⊗ z to y ⊗ x ∧ z, where x, y and z are local sections of the sheaves∧m
F,Γn−p(E) and

∧p−m
G, respectively. Then we define a subsheaf W(G)m Kos(ϕ; n)p

by

W(G)m Kos(ϕ; n)p = image of the morphism (1.5.1) .

If the subsheaf G contains the image of ϕ, these subsheaves for 0 ≤ p ≤ n form a subcom-
plex of Kos(ϕ; n). Thus we define a finite increasing filtration W(G) on the Koszul complex
Kos(ϕ; n).

PROPOSITION 1.6. In the situation above, we assume that the subsheafG contains the
image of the morphism ϕ. The morphism ϕ induces a morphism E → G, which is denoted by
ϕG. Then the morphism (1.5.1) induces an isomorphism of complexes

m∧
(F/G)⊗ Kos(ϕG; n−m)[−m] � GrW(G)m Kos(ϕ; n)

for every integer m with 0 ≤ m ≤ n.

(1.7) Now we fix a global section e of the sheaf Kerϕ. For integers n,m with n ≤ m,
we define a morphism

κ(ϕ; e)m,n : Kos(ϕ; n)p = Γn−p(E)⊗
p∧
F → Γm−p(E)⊗

p∧
F = Kos(ϕ;m)p
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by sending x⊗y to (m−n)!e[m−n]x⊗y for every p with 0 ≤ p ≤ n. These morphisms form
a morphism of complexes

κ(ϕ; e)m,n : Kos(ϕ; n) → Kos(ϕ;m)(1.7.1)

by the fact that e is contained in Kerϕ. Moreover, the data above define an inductive system
of complexes because of the formula

e[a]e[b] =
(
a + b

a

)
e[a+b]

in the divided power envelope.
On the other hand, the morphism (1.7.1) preserves the filtration W(G) for any subsheaf

G of F containing the image of ϕ. Therefore the data W(G)m Kos(ϕ; n) form an inductive
system.

DEFINITION 1.8. We define a complex of A-sheaves Kos(ϕ; ∞; e) by

Kos(ϕ; ∞; e) = lim−→
n

Kos(ϕ; n) .
The canonical morphism Kos(ϕ; n) → Kos(ϕ; ∞; e) is denoted by κ(ϕ; e)n. We omit the
symbol e if there is no danger of confusion. Because the functor of taking inductive limit is
an exact functor,

W(G)m Kos(ϕ; ∞; e) = lim−→
n

W(G)m Kos(ϕ; n)(1.8.1)

is a subcomplex of Kos(ϕ; ∞; e) for every m. Thus we define an increasing filtration W(G)
on Kos(ϕ; ∞; e).

(1.9) By the properties (1.3.1) through (1.3) we have the similar properties for
Kos(ϕ; ∞; e).

PROPOSITION 1.10. For a subsheaf G of F containing the image of ϕ we have an
isomorphism of complexes

m∧
(F/G)⊗ Kos(ϕG; ∞; e)[−m] � GrW(G)m Kos(ϕ; ∞; e)

for every m.

PROOF. By the exactness of taking inductive limit, we have an isomorphism

GrW(G)m Kos(ϕ; ∞; e)→ lim−→
n

GrW(G)m Kos(ϕ; n)
for every m. On the other hand, we have an identification

m∧
(F/G)⊗ Kos(ϕG; n−m)[−m] � GrW(G)m Kos(ϕ; n)

by Proposition 1.6. It is easy to see that the morphism GrW(G)m κ(ϕ; e)n,n′ is identified to the
one id ⊗κ(ϕG; e)n−m,n′−m under the identification above. Thus we obtain the conclusion. �
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(1.11) Now we assume that a global section t of the sheaf F is given in addition. We
define a morphism of A-sheaves

Kos(ϕ; n)p = Γn−p(E)⊗
p∧
F → Γn−p(E)⊗

p+1∧
F = Kos(ϕ; n+ 1)p+1

by sending a local section x ⊗ y to x ⊗ t ∧ y. Thus we obtain a morphism of complexes t∧ :
Kos(ϕ; n) → Kos(ϕ; n + 1)[1]. By composing this morphism and the canonical morphism
κ(ϕ; e)n+1[1] : Kos(ϕ; n + 1)[1] → Kos(ϕ; ∞; e)[1] we obtain a morphism of complexes
Kos(ϕ; n) → Kos(ϕ; ∞; e)[1] for every n. Because these morphisms are compatible with the
morphisms κ(ϕ; e)m,n for all m,n, we obtain a morphism of complexes

Kos(ϕ; ∞; e) → Kos(ϕ; ∞; e)[1] ,(1.11.1)

which is denoted by t∧ again for simplicity. Then we have a commutative diagram

Kos(ϕ; n) t∧−−→ Kos(ϕ; n+ 1)[1]
κ(ϕ;e)n

�
�κ(ϕ;e)n+1[1]

Kos(ϕ; ∞; e) t∧−−→ Kos(ϕ; ∞; e)[1]
for every n.

(1.12) Let G be a subsheaf of F containing the image of ϕ. For the case that t is a
global section of a subsheaf G, the morphism t∧ : Kos(ϕ; n) → Kos(ϕ; n+ 1)[1] preserves
the filtrationW(G). Therefore the induced morphism t∧ : Kos(ϕ; ∞; e)→ Kos(ϕ; ∞; e)[1]
preserves the filtration W(G). In this case the morphism

GrW(G)m (t∧) : GrW(G)m Kos(ϕ; ∞; e)→ GrW(G)m Kos(ϕ; ∞; e)[1]
is identified to the morphism (−1)m id ⊗(t∧)[−m] under the identification

GrW(G)m Kos(ϕ; ∞; e) �
m∧
(F/G)⊗ Kos(ϕG; ∞; e)[−m]

GrW(G)m Kos(ϕ; ∞; e)[1] �
m∧
(F/G)⊗ Kos(ϕG; ∞; e)[−m+ 1]

in Proposition 1.10.
Next we consider the case that t is not a global section of the subsheafG. We denote the

image of t by the projection F → F/G by t̄ . The morphism t∧ : Kos(ϕ; n) → Kos(ϕ; n+1)
satisfies the condition

(t∧)(W(G)m Kos(ϕ; n)) ⊂ W(G)m+1 Kos(ϕ; n+ 1)[1] ,
which induces

(t∧)(W(G)m Kos(ϕ; ∞; e)) ⊂ W(G)m+1 Kos(ϕ; ∞; e)[1]
for every m. The induced morphism

GrW(G)m (t∧) : GrW(G)m Kos(ϕ; ∞; e)→ GrW(G)m+1 Kos(ϕ; ∞; e)[1]



MIXED HODGE STRUCTURES ON LOG SMOOTH DEGENERATIONS 77

is identified to the morphism (t̄∧)⊗ id[−m] under the identification

GrW(G)m Kos(ϕ; ∞; e) �
m∧
(F/G)⊗ Kos(ϕG; ∞; e)[−m]

GrW(G)m+1 Kos(ϕ; ∞; e)[1] �
m+1∧

(F/G)⊗ Kos(ϕG; ∞; e)[−m]
in Proposition 1.10, where t̄∧ denotes the morphism

∧m
(F/G) → ∧m+1

(F/G) sending x
to t̄ ∧ x.

(1.13) Now we treat the case with the following conditions:
(1.13.1) a ring A contains Q as a subring,
(1.13.2) there exists a global section e of the Kerϕ such that Kerϕ = A · e � A.

Then the morphism
p∧
F → Kos(ϕ; n)p = Γn−p(E)⊗

p∧
F(1.13.3)

sending x ∈ ∧p
F to (n− p)!e[n−p] ⊗ x induces an isomorphism

p∧
Coker(ϕ) → Hp(Kos(ϕ; n))

for every p by Proposition 1.4 because the condition (1.13.2) implies the identification
Γn−p(Kerϕ) � A. We can easily see that the morphism (1.13.3) is compatible with the
morphism κ(ϕ; e)m,n for every m,n. Thus we obtain a morphism

p∧
F → Kos(ϕ; ∞; e)p(1.13.4)

for every p. Since the cohomology functor is compatible with inductive limit, we have the
following proposition.

PROPOSITION 1.14. The morphism (1.13.4) induces an isomorphism
p∧

Cokerϕ → Hp(Kos(ϕ; ∞; e))
for every p.

COROLLARY 1.15. In addition to the situation above, we assume the condition that
the morphism ϕ is surjective. Then we have a quasi-isomorphism

A → Kos(ϕ; ∞; e) .
induced by the morphism A → Kos(ϕ; n)0 = Γn(E) which sends a to n!ae[n].

2. Log de Rham complex and Koszul complex for a log complex analytic space.
(2.1) Let X be an fs log complex analytic space, that is, a complex analytic space

equipped with a fine saturated log structure α : MX → OX (cf. [10] and [12]). We denote the
sheaf of holomorphic p-forms on X by Ωp

X, and the sheaf of logarithmic p-forms on X by
ω
p
X. Thus the de Rham complex and the log de Rham complex are denoted by Ω ·

X and ω·
X,

respectively.
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DEFINITION 2.2. We have a morphism

ωmX ⊗Ω
p−m
X → ω

p
X ,(2.2.1)

which sends ω⊗ η to ω ∧ η. We define an OX-subsheaf Wmω
p
X by

Wmω
p
X = image of the morphism of (2.2.1)

for every m. Then these sheaves for all p form a subcomplex of ω·
X because the differential

d : OX → ω1
X is decomposed into the composite OX

d→ Ω1
X → ω1

X . It is easy to see that
Wm defines a finite increasing filtration on ω·

X .
Moreover, a finite decreasing filtration F on ω·

X is defined by the same way as the stupid
filtration (filtration bête) in [1].

(2.3) We have the exponential sequence

0 → ZX → OX → O∗
X → 0

as in [13, Lemma 54.3], where the morphism ZX → OX is the canonical inclusion and the
morphism OX → O∗

X sends a local section f of OX to exp(2π
√−1f ). Now M

gp
X denotes

the abelian sheaf associated to the monoid sheaf MX . By using the inclusion O∗
X → M

gp
X , an

exact sequence of abelian sheaves

0 → ZX → OX → M
gp
X → M

gp
X /O∗

X → 0

is obtained. By tensoring Q with the morphism OX → M
gp
X above, we obtain a morphism

of Q-sheaves OX → M
gp
X ⊗ Q, which we denote by ϕX. The morphism ϕX fits in the exact

sequence

0 → QX → OX
ϕX−→ M

gp
X ⊗ Q → (M

gp
X /O∗

X)⊗ Q → 0

by definition.
We fix a constant function 1 as a global section of KerϕX. Then we have complexes

of Q-sheaves Kos(ϕX; n) and Kos(ϕX; ∞; 1) defined in Section 1, which we denote by
KosX(MX; n) and KosX(MX), respectively, in this article.

Because the image of the morphism ϕX : OX → M
gp
X ⊗ Q is the subsheaf O∗

X ⊗ Q of
M

gp
X ⊗ Q, we have an increasing filtration W(O∗

X ⊗ Q) on KosX(MX) as in (1.8.1), which
we denote byW for simplicity.

(2.4) The morphism dlog : Mgp
X → ω1

X defines a morphism of abelian sheaves dlog :∧p
M

gp
X → ω

p

X for every p. A morphism of Q-sheaves

ψ(X,MX),n : KosX(MX; n)p → ω
p
X

is defined by sending a local section f [n1]
1 · · · f [nk ]

k ⊗ y of KosX(MX; n)p = Γn−p(OX) ⊗∧p
M

gp
X to a local section (2π

√−1)−p(n1! · · ·nk!)−1f
n1
1 · · · f nkk dlog y of ωpX. Because of

the equality

dlog(exp(f )) = df ,(2.4.1)
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ψ(X,MX),n actually defines a morphism of complexes, which is compatible with the morphism

(κX)m,n = κ(ϕX; 1)m,n : KosX(MX; n) → KosX(MX;m)
in (1.7.1) for every n,m with n ≤ m. Thus a morphism of Q-sheaves

ψ(X,MX) : KosX(MX) → ω·
X(2.4.2)

is obtained. Sometimes we use the symbol ψX simply if there is no danger of confusion.
The morphism ψX preserves the weight filtration W on KosX(MX) and ω·

X because the
equality (2.4.1) implies that the image of the subsheaf O∗

X by the morphism dlog is contained
in the image of the canonical morphism Ω1

X → ω1
X.

3. Mixed Hodge theory on a log complex manifold.
(3.1) For a reduced effective divisor D on a complex manifold X, we set MX(D) =

j∗O∗
X\D ∩ OX, where j : X \D → X denotes the inclusion. The inclusion MX(D) → OX

gives us an fs log structure onX, which is called the log structure associated to the divisorD.
Moreover, for a given positive integer l, a morphism of monoid sheaves α : MX(D)⊕N l

X →
OX is defined by

α(f ⊕ (n1, . . . , nl)) =
{

0 if (n1, . . . , nl) �= (0, . . . , 0) ,

f if (n1, . . . , nl) = (0, . . . , 0) ,

where f is a local section of MX(D) considered as a local section of OX by definition. It is
easy to see that this actually gives us a log structure onX. We simply denote this log structure
byMX(D)⊕N l

X. In this situation, we regardMX(D) and N l
X as subsheaves ofMX(D)⊕N l

X.

LEMMA 3.2. Let X be a complex manifold, D a reduced simple normal crossing divi-
sor onX,MX(D)⊕N l

X the log structure above and ϕ : MX(D) → MX(D)⊕N l
X a morphism

of log structures. Then ϕ coincides with the canonical inclusion MX(D) → MX(D)⊕ N l
X.

PROOF. Take a local section f ofMX(D) and set ϕ(f ) = g ⊕(n1, . . . , nl) ∈ MX(D)⊕
N l
X. Then we have

f = α(f ) = αϕ(f ) = α(g ⊕ (n1, . . . , nl)) =
{

0 if (n1, . . . , nl) �= (0, . . . , 0) ,

g if (n1, . . . , nl) = (0, . . . , 0) ,

because ϕ is a morphism of log structures. By the fact that f �= 0, we have n1 = · · · = nl = 0
and g = f . �

LEMMA 3.3. Let X,D and MX(D) ⊕ N l
X be as above. For an isomorphism of log

structures ϕ : MX(D) ⊕ N l
X → MX(D) ⊕ N l

X, there exists an isomorphism of monoid
sheaves ϕ1 : N l

X → N l
X such that the induced morphism

ϕ̄ : (MX(D)/O∗
X)⊕ N l

X → (MX(D)/O∗
X)⊕ N l

X

is given by ϕ̄ = id ⊕ϕ1.
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PROOF. The restriction ϕ|MX(D) gives us a morphism of log structures MX(D) →
MX(D) ⊕ N l

X. Therefore we have ϕ(f ) = f for a local section f ∈ MX(D) by the lemma
above. We denote the inverse of ϕ by ψ . For a local section n of N l

X we set ϕ(n) = f ⊕ n′ ∈
MX(D)⊕ N l

X and ψ(n′) = g ⊕ n′′. Then we have

n = ψϕ(n) = ψ(f ⊕ n′) = ψ(f )ψ(n′) = f · (g ⊕ n′′) = f g ⊕ n′′

because ψ(f ) = f by the lemma above. Then f g = 1 inMX(D) and n = n′′. Thus the local
section f of MX(D) is contained in O∗

X. Therefore we have ϕ̄(n) = n′. �

(3.4) In the remainder of this section, we study mixed Hodge theory on a compact
Kähler complex manifold equipped with a certain kind of log structures.

Let X be a complex manifold equipped with an fs log structure MX. Here we consider
the following condition:

(3.4.1) for any point x ofX, there exist an open neighborhood V of x, a reduced simple
normal crossing divisor DV on V and a non-negative integer lV , such that the log structure
MX|V is isomorphic to the log structure MV (DV )⊕ N

lV
V .

LEMMA 3.5. Let X be an fs log complex manifold satisfying Condition (3.4) above.
For every point x of X, we have an isomorphism

(MX/O∗
X)x � N r(x)

for a non-negative integer r(x). Moreover, the function r(x) is upper semi-continuous.

PROOF. Easy by definition. �

(3.6) Let X be as above. We set r = min{r(x) | x ∈ X} and U = {x ∈ X | r(x) = r}.
Then r is a non-negative integer and U is a non-empty subset of X.

LEMMA 3.7. In the situation above, we assume that X is connected in addition. Then
U is an open dense subset of X. Moreover, the closed subset D = X \U is a reduced normal
crossing divisor on X.

PROOF. By the upper semi-continuity of the function r(x), U is an open subset of X.
We denote by Ū the closure of U in X. For any point x ∈ Ū , we take an open neighborhood
V of x in X satisfying Condition (3.4). Because U ∩ V �= ∅, we have U ∩ V = V \DV and
the equality r = lV . Then it is easy to see the equality Ū ∩V = V , that is, V ⊂ Ū . Therefore
Ū is an open subset of X. Because X is connected, we have Ū = X. In the situation above,
D|V = V \ U ∩ V = DV . ThusD is a reduced normal crossing divisor on X. �

(3.8) In the remainder of this section, we fix the notation X,U and D as in Lemma
3.7, that is, assume that X is connected. Then for an open neighborhood V in (3.4) we have
DV = D|V .

COROLLARY 3.9. Let X be as above. For any point x ∈ X there exists an open
neighborhood V of x such that the log structureMX|V on V is isomorphic to the log structure
MX(D)|V ⊕ N r

V .
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LEMMA 3.10. In the situation above, there exists a unique morphism of log structures
ι : MX(D) → MX. For an open subset V of X satisfying (3.4), the restriction of this mor-
phism ι|V : MX(D)|V → MX|V is identified with the canonical inclusion MX(D)|V →
MX(D)|V ⊕ N r

V via the identification MX|V � MX(D)|V ⊕ N r
V . Therefore the morphism ι

is injective.

PROOF. In the local situation, we may assume the identificationMX � MX(D)⊕ N r
V .

Then Lemma 3.2 implies that the canonical injectionMX(D) → MX(D)⊕ N r
V is the unique

morphism of log structures. Thus the uniqueness is proved because it is the question of local
nature. Therefore we can obtain the morphism of log structures MX(D) → MX by patching
the morphisms of log structures MX(D)|V → MX(D)|V ⊕ N r

V on the small open subsets V
satisfying the condition (3.4). �

(3.11) From now on, we considerMX(D) as a subsheaf ofMX by the injection ι. Then
we have the inclusions O∗

X ⊂ MX(D) ⊂ MX.

COROLLARY 3.12. In the situation above, the sheaf MX/MX(D) is locally constant.
More precisely, we have (MX/MX(D))|V � Nr

V for an open subset V satisfying (3.4).

(3.13) The inclusion ι : MX(D) → MX induces a morphism of monoid sheaves ῑ :
MX(D)/O∗

X → MX/O∗
X.

LEMMA 3.14. There exists a morphism of monoid sheaves π : MX/O∗
X →

MX(D)/O∗
X such that π · ῑ = id.

PROOF. Once we fix an identification MX|V � MX(D)|V ⊕ N r
V on an open subset V

satisfying the condition in (3.4), the projection

p : (MX(D)/O∗
X)|V ⊕ N r

V → (MX(D)/O∗
X)|V

induces a morphism

π : (MX/O∗
X)|V � (MX(D)/O∗

X)|V ⊕ N r
V → (MX(D)/O∗

X)|V ,
which satisfies the equality π · ῑ = id on V . Therefore it suffices to prove that the morphism
π is independent from the choice of the identification MX|V � MX(D)|V ⊕ N r

V . We may
assume X = V without loss of generality. Let

ψ1, ψ2 : MX → MX(D)| ⊕ N r
X

be two identifications. Then

ϕ = ψ2 · ψ−1
1 : MX(D)⊕ N r

X → MX(D)⊕ N r
X

is an isomorphism of log structures. By Lemma 3.3 the induced morphism

ϕ̄ : (MX(D)/O∗
X)|V ⊕ N r

V → (MX(D)/O∗
X)|V ⊕ N r

V

is expressed as ϕ̄ = id ⊕ϕ1, where ϕ1 is an automorphism of N r
X. Then we have

p · ψ2 = p · ϕ̄ · ψ1 = p · (id ⊕ϕ1) · ψ1 = p · ψ1 ,

which shows the independence in question. �
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DEFINITION 3.15. We define an abelian sheaf LZ on X by LZ = M
gp
X /MX(D)

gp.

COROLLARY 3.16. The abelian sheafLZ is locally constant. More precisely, LZ|V �
ZrV for an open subset V satisfying the condition in (3.4). Moreover, there exists an isomor-
phism of abelian sheaves Mgp

X /O∗
X → (MX(D)

gp/O∗
X) ⊕ LZ whose restriction on an open

subset V as above coincides with the canonical identification (Mgp
X /O∗

X)|V � (MX(D)
gp/

O∗
X)|V ⊕ ZrV under the identification LZ|V � ZrV .

PROOF. The identification LZ|V � ZrV is easily seen by MX|V � MX(D)|V ⊕ N r
V .

We have an exact sequence

0 → MX(D)
gp/O∗

X → M
gp
X /O∗

X → LZ → 0

by definition. Then the morphism πgp : Mgp
X /O∗

X → MX(D)
gp/O∗

X gives the splitting of the
exact sequence above. �

LEMMA 3.17. Let ϕ : Nn → Nn be an isomorphism of monoids Nn. Then there exists
an automorphism of the set {1, . . . , n} such that we have ϕ(ei) = eσ(i) for every i = 1, . . . , n,
where ei is the i-th unit element of Nn.

PROOF. Easy. �

LEMMA 3.18. The abelian sheaf LZ admits a positive definite bilinear form.

PROOF. An identification MX|V � MX(D)|V ⊕ N r
V induces an identification LZ|V �

ZrV . Therefore the canonical positive definite bilinear form ZrV ⊗ ZrV → ZV gives LZ|V an
positive definite bilinear form. So it is sufficient to prove that this bilinear form on LZ|V is
independent of the choice of the identification MX|V � MX(D)|V ⊕ N r

V . We may assume
X = V , take two identifications ψ1, ψ2 : MX|V � MX(D)|V ⊕ N r

V and use the same
notation as in the proof of Lemma 3.14. The induced isomorphisms LZ → ZrX are denoted
by ζ1 and ζ2. Then the isomorphism ϕ1 : N r

X → N r
X in the proof of Lemma 3.14 satisfies

the equality ζ2 = ϕ
gp
1 · ζ1. Moreover, we may assume that the isomorphism ϕ1 is induced

from the automorphism of the monoid N r by shrinking X sufficiently small. By the lemma
above, there exists an automorphism σ of the set {1, . . . , r} such that ϕ1(ei) = eσ(i) for every
i. Then we can easily see that the canonical positive definite bilinear form ZrV ⊗ ZrV → ZV

is independent of the choice of the identification. �

(3.19) In the situation above, we have a sequence of OX-submodules

Ω
p
X ⊂ Ω

p
X(logD) ⊂ ω

p
X

for every p. Moreover, we can easily see that the sheaves ωpX,Ω
p
X(logD) andΩp

X are locally
free of finite rank.

(3.20) In order to prove Theorem 3.27 below, we first consider the case where the log
structure MX is the trivial log structure O∗

X. In this case the log de Rham complex ω·
X is

nothing but the usual de Rham complex Ω ·
X and the filtration F defined in Definition 2.2 is

nothing but the stupid filtration in [1].
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Now Conditions (1.13.1) and (1.13.2) are satisfied for ϕX in (2.3) and for A = Q.
Moreover, the morphism ϕX is surjective. Therefore we have a quasi-isomorphism

QX → KosX(O∗
X)

by Corollary 1.15. For every integerm, we can easily see the commutativity of the diagram

QX −−→ KosX(O∗
X)

(2π
√−1)mψ(X,O∗

X
)−−−−−−−−−−−→ Ω ·

X� ∥∥∥
Q(m)X −−→ CX −−→ Ω ·

X ,

where the left vertical arrow is the morphism sending a to (2π
√−1)ma, the morphism

Q(m)X → CX is the inclusion, and the morphism CX → Ω ·
X is the usual quasi-isomorphism.

We denote the composite of the bottom line by ι(m) for a while. Thus we have the following.

PROPOSITION 3.21. The data

(KosX(O∗
X), (Ω

·
X,F ), (2π

√−1)mψ(X,O∗
X)
)(3.21.1)

is identified with the data

(Q(m)X, (Ω
·
X,F ), ι(m))

for every integer m. Therefore the data (3.21.1) is a Q-cohomological Hodge complex of
weight 0, if the complex manifold X is compact and Kähler.

(3.22) Next we treat the general case in (3.4). The morphism dlog : ∧m
M

gp
X → ωmX

induces a morphism ofOX-modules
∧m

M
gp
X ⊗Ωp−m

X → ω
p
X by sending a⊗ω to dlog(a)∧ω.

By definition the image of this morphism is contained in the subsheaf Wmω
p
X. Therefore we

obtain a morphism
m∧
M

gp
X ⊗Ω

p−m
X → GrWm ω

p
X(3.22.1)

for every m.
On the other hand, the canonical projection

m∧
M

gp
X →

m∧
(M

gp
X /O∗

X) �
m∧
((MX(D)

gp/O∗
X)⊕ LZ)

defines a surjective morphism
m∧
M

gp
X ⊗Ω

p−m
X →

m∧
((MX(D)

gp/O∗
X)⊕ LZ)⊗Ω

p−m
X

for every m. It is easy to see that the morphism (3.22.1) factors through this surjection. Thus
we obtain a morphism of OX-modules

m⊕
l=0

m−l∧
LZ ⊗

l∧
(MX(D)

gp/O∗
X)⊗Ω

p−m
X → GrWm ω

p

X(3.22.2)

for every m.
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LEMMA 3.23. The morphism (3.22.2) induces an isomorphism of complexes

m⊕
l=0

(il)∗
(
i−1
l

(m−l∧
LZ

)
⊗ εl ⊗Ω ·

D̃l
[−m]

)
→ GrWm ω

·
X ,(3.23.1)

where D̃l, il and εl are defined in Deligne [1].

PROOF. We can easily see that there exists an isomorphism

(il)∗εl �
l∧
(MX(D)

gp/O∗
X)⊗ C(3.23.2)

for every l. Then easy local computation implies the conclusion. �

COROLLARY 3.24. Let F on ω·
X and on Ω ·

X are the decreasing filtrations in Defi-
nition 2.2. Under the isomorphism (3.23.1), the induced filtration F on the right hand side
coincides with the filtration

m⊕
l=0

(il)∗
(
i−1
l

(m−l∧
LZ

)
⊗ εl ⊗ F [−m]Ω ·

D̃l
[−m]

)

on the left hand side.

(3.25) On the other hand, we have the following for the filtration W on the complex
KosX(MX).

LEMMA 3.26. The filtrationW on KosX(MX) is finite. Moreover, we have an isomor-
phism in the derived category

m⊕
l=0

(il)∗
(
i−1
l

(m−l∧
LZ

)
⊗ εl ⊗ KosD̃l (O∗

D̃l
)[−m]

)
→ GrWm KosX(MX)(3.26.1)

for every integer m.

PROOF. Proposition 1.10 for F = M
gp
X ⊗Q andG = O∗

X⊗Q implies the isomorphism
of the complexes

m∧
(M

gp
X /O∗

X)⊗ KosX(O∗
X)[−m] � GrWm KosX(MX)

for every m. Because for m big enough
∧m

(M
gp
X /O∗

X) = 0, we have GrWm KosX(MX) = 0.
Then we can easily see the finiteness of the filtration W .

Since it follows from (3.23.2) that
m∧
(M

gp
X /O∗

X) =
m∧
((MX(D)

gp/O∗
X)⊕ LZ) =

m⊕
l=0

(il)∗
(
i−1
l

(m−l∧
LZ

)
⊗ εl

)
,

we obtain an isomorphism of the complexes

m⊕
l=0

(il)∗
(
i−1
l

(m−l∧
LZ

)
⊗ εl ⊗ i−1

l (KosX(O∗
X))[−m]

)
→ GrWm KosX(MX)
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for every m. Now we have a canonical morphism i−1
l (KosX(O∗

X)) → KosD̃l (O∗
D̃l
) by the

functoriality of the Koszul complexes. This canonical morphism is a quasi-isomorphism be-
cause we have functorial quasi-isomorphisms QX → KosX(O∗

X) and QD̃l → KosD̃l (O∗
D̃l
).

Thus we complete the proof. �

THEOREM 3.27. In the situation (3.4) the data

((KosX(MX),W), (ω
·
X,W,F),ψ(X,MX))

is a Q-cohomological mixed Hodge complex if X is compact and Kähler.

PROOF. The filtration F on ω·
X induces the log Hodge to de Rham spectral sequence

E
pq

1 = Hq(X,ωpX) ⇒ En = Hn(X,ω·
X)

as usual. Then the E1-terms are of finite dimension because X is compact. Therefore the
cohomology Hn(X,ω·

X) is finite dimensional because the filtration F is finite. For every
integerm we have isomorphisms (3.23.1) and (3.26.1) in the derived category. Corollary 3.24
states that the induced filtration F on GrWm ω

·
X coincides with the filtration induced by F [−m]

on the left hand side in the identification (3.23.1). Moreover, we have a commutative diagram⊕m
l=0(il)∗

(
i−1
l (

∧m−l
LZ)⊗ εl ⊗ KosD̃l (O∗

D̃l
)[−m]) −−→ GrWm KosX(MX)

⊕
id ⊗(2π√−1)−mψ

(D̃l ,O∗
D̃l
)

� �GrWm ψ(X,MX)⊕m
l=0(il)∗

(
i−1
l (

∧m−l
LZ)⊗ εl ⊗Ω ·

D̃l
[−m]) −−→ GrWm ω

·
X

for every m. Thus we see that the data

(GrWm KosX(MX), (GrWm ω
·
X,F ),GrWm ψ(X,MX))

is a Q-cohomological Hodge complex of weight m by Proposition 3.21 and Lemma 3.18 as
in Deligne [1]. �

(3.28) Now we assume that we are given global sections t1, . . . , tk of MX. They give
us the global sections dlog t1, . . . , dlog tk of ω1

X. We have C-sheaves C[u1, . . . , uk] ⊗C ω
p

X,
where C[u1, . . . , uk] denotes the polynomial ring. A morphism of C-sheaves

d : C[u1, . . . , uk] ⊗ ω
p

X → C[u1, . . . , uk] ⊗ ω
p+1
X

is given by the formula

d(f ⊗ ω) = f ⊗ dω + (2π
√−1)−1

k∑
i=1

∂f

∂ui
⊗ dlog ti ∧ ω ,

which turns out to satisfy the equality d2 = 0 by easy computation. So we obtain a complex
of C-sheaves C[u1, . . . , uk] ⊗ ω·

X on X.
(3.29) The sections t1, . . . , tk regarded as global sections of Mgp

X define morphisms of
complexes

ti∧ : KosX(MX) → KosX(MX)[1]
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for i = 1, . . . , k as in (1.11.1). It is easy to see that they satisfy the conditions

(ti∧) · (ti∧) = 0 ,(3.29.1)

(ti∧) · (tj∧) = −(tj∧) · (ti∧) .(3.29.2)

We have Q-sheaves Q[u1, . . . , uk] ⊗Q KosX(MX)
p and a morphism of Q-sheaves

d : Q[u1, . . . , uk] ⊗ KosX(MX)
p → Q[u1, . . . , uk] ⊗ KosX(MX)

p+1

by

d(f ⊗ x) = f ⊗ dx +
k∑
i=1

∂f

∂ui
⊗ ti ∧ x .

The equality d2 = 0 holds by (3.29.1) and (3.29.2). Thus we obtain a complex of Q-sheaves
Q[u1, . . . , uk] ⊗ KosX(MX) on X.

(3.30) The morphism ψX in (2.4.2) induces a morphism of Q-sheaves

id ⊗ψX : Q[u1, . . . , uk] ⊗ KosX(MX)
p → C[u1, . . . , uk] ⊗ ω

p
X

for every p. Easy computation shows that the morphism id ⊗ψX is a morphism of complexes.
(3.31) On the complexes Q[u1, . . . , uk] ⊗ KosX(MX) and C[u1, . . . , uk] ⊗ ω·

X we
define increasing filtrations L by

Lm(Q[u1, . . . , uk] ⊗ KosX(MX)) =
⊕
q∈Nk

uq ⊗Wm−2|q| KosX(MX) ,

Lm(C[u1, . . . , uk] ⊗ ω·
X) =

⊕
q∈Nk

uq ⊗Wm−2|q|ω·
X

for everym., where uq = u
q1
1 · · ·uqkk and |q| = q1 + · · ·+ qk for q = (q1, . . . , qk) ∈ Nk . The

facts

(ti∧)(Wm KosX(MX)) ⊂ Wm+1 KosX(MX)[1] ,
dlog ti ∧Wmω

·
X ⊂ Wm+1ω

·
X[1]

for i = 1, . . . , k imply that they are subcomplexes of Q[u1, . . . , uk] ⊗ KosX(MX) and of
C[u1, . . . , uk] ⊗ ω·

X.
On C[u1, . . . , uk] ⊗ ω·

X we define a decreasing filtration F by

Fn(C[u1, . . . , uk] ⊗ ω·
X) =

⊕
q∈Nk

uq ⊗ Fn−|q|ω·
X

for every n. This defines a subcomplex of C[u1, . . . , uk] ⊗ ω·
X by the facts

dlog ti ∧ Fnω·
X ⊂ Fn+1ω·

X[1]
for i = 1, . . . , k.
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REMARK 3.32. We have the equalities

L−1(Q[u1, . . . , uk] ⊗ KosX(MX)) = 0 ,

L−1(C[u1, . . . , uk] ⊗ ω·
X) = 0

trivially. We remark that L is not a finite filtration. However, it satisfies the conditions⋃
m

Lm(Q[u1, . . . , uk] ⊗ KosX(MX)) = Q[u1, . . . , uk] ⊗ KosX(MX)

and ⋃
m

Lm(C[u1, . . . , uk] ⊗ ω·
X) = C[u1, . . . , uk] ⊗ ω·

X .

Similarly, we have

F 0(C[u1, . . . , uk] ⊗ ω·
X) = C[u1, . . . , uk] ⊗ ω·

X ,

but F is not a finite filtration. We have the equality⋂
p

Fp(C[u1, . . . , uk] ⊗ ω·
X) = 0 .

Since the morphism ψX preserves the weight filtrations W on KosX(MX) and on ω·
X,

the morphism id ⊗ψX preserves the filtrations L on Q[u1, . . . , uk] ⊗ KosX(MX) and on
C[u1, . . . , uk] ⊗ ω·

X.

THEOREM 3.33. In the situation above, the data

((Q[u1, . . . , uk] ⊗ KosX(MX),L), (C[u1, . . . , uk] ⊗ ω·
X,L, F ), id ⊗ψX)

is a weak Q-cohomological mixed Hodge complex on X, if X is compact and Kähler ( for the
definition of a weak Q-cohomological mixed Hodge complex, see Definition A.4 in Appendix).

PROOF. We have equalities

GrLm Q[u1, . . . , uk] ⊗ KosX(MX) =
⊕
q∈Nk

GrWm−2|q| KosX(MX) ,

GrLm(C[u1, . . . , uk] ⊗ ω·
X) =

⊕
q∈Nk

GrWm−2|q| ω
·
X ,

F GrLm(C[u1, . . . , uk] ⊗ ω·
X) =

⊕
q∈Nk

F [−|q|] GrWm−2|q| ω
·
X ,

GrLm(id ⊗ψX) =
⊕
q∈Nk

GrWm−2|q| ψX

by easy computation. From Theorem 3.27 the data

(GrWm−2|q| KosX(MX), (GrWm−2|q| ω
·
X,F [−|q|] GrWm−2|q| ω

·
X),GrWm−2|q| ψX)

is a Q-cohomological Hodge complex of weightm− 2|q| − 2(−|q|) = m on X. �
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4. Log smooth degeneration and its reduction.
(4.1) For a positive integer k, a pre-log structure Nk → C over the point (Spec C)an is

given by sending 0 ∈ Nk to 1 ∈ C and sending x ∈ Nk , x �= 0, to 0 ∈ C. The log structure
induced from the pre-log structure above is nothing but ((Spec C)an,C

∗ ⊕ Nk). The point
with this log structure is called the Nk-log point and denoted simply by (∗,N k) or ∗k . The
N -log point (∗,N ) is called the standard log point in Steenbrink [19]. For the module of “log
differential forms” ω1

∗k on ∗k , we have ω1
∗k = Ck .

LetE be the divisor on Ck which is the sum of all the coordinate hyperplanes. Moreover,
we denote by (Ck, E) the complex manifold Ck equipped with the log structure associated to
E. Then the point 0 ∈ Ck equipped with the pull-back of the log structure above is nothing
but the Nk-log point. Thus we have a canonical strict closed immersion

(∗,N k) → (Ck, E)(4.1.1)

by definition.

DEFINITION 4.2. Let f : U → Ck be a morphism of complex manifolds. We assume
that the effective divisor D = f ∗E on U is well-defined. Then we have a log structure MU

associated to the effective divisor D, and obtain a morphism of log complex analytic spaces
f : (U,MU) → (Ck, E). In this article, the morphism of log complex analytic spaces f is
called a log degeneration over Ck , if the divisor Dred is a simple normal crossing divisor on
U . If the morphism f is log smooth, in addition, it is called a log smooth degeneration over
Ck .

DEFINITION 4.3. Let Y be an fs log complex analytic space, and g : Y → ∗k a
morphism of log complex analytic spaces. The morphism g (or simply Y ) is said to be a log
degeneration over the Nk-log point ∗k if for any point x ∈ Y there exist an open neighborhood
V of x in Y , a log degeneration f : (U,MU) → (Ck, E) and a morphism of log complex
analytic spaces V → U such that the diagram

V −−→ U

g |V
�

�f
∗k −−→ Ck ,

is Cartesian in the category of log complex analytic spaces, where the bottom arrow is the
canonical morphism (4.1.1). If we can take a log smooth degeneration f : (U,MU) →
(Ck, E) in the definition above, Y is called a log smooth degeneration over ∗k . If Y is compact,
in addition, we call Y a proper log (smooth) degeneration over ∗k . Moreover, the complex
analytic space X = Yred with the pull-back log structure from Y is called the reduction of the
log (smooth) degeneration Y .

REMARK 4.4. If Y is a log smooth degeneration over ∗k , then Y is log smooth over
∗k by definition.
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EXAMPLE 4.5. Let f : X → ∆ be a surjective morphism from a complex manifold
X to the unit disc ∆, such that f is smooth outside the origin {0} in ∆ and that the divisor
f−1(0) is a normal crossing divisor. Then the fiber Y = f −1(0) as a complex space is a log
smooth degeneration over the N -log point ∗ = {0}.

EXAMPLE 4.6. A log deformation defined by Steenbrink [19] is a log smooth degen-
eration over the N -log point.

EXAMPLE 4.7. Let f : X → ∆k be a surjective morphism from a complex manifold
X to the k-dimensional polydisc ∆k. We use the same symbols Ei and E as in (4.1) for the
coordinate hyperplanes and the divisor which is the sum of the coordinate hyperplanes. Then
the fiber Y = f−1(0) is a log degeneration over the Nk-log point if the divisor (f ∗E)red

is a normal crossing divisor on X. If f is log smooth in addition, then Y is a log smooth
degeneration. For the case where the morphism f is of generalized semi-stable type in [5], Y
is a reduced log smooth degeneration.

EXAMPLE 4.8. Let f : X → S be a morphism of complex manifolds. If the morphism
f is a weak semistable reduction in the sense of Kawamata [14], every fiber of this morphism
turns out to be a log smooth degeneration under suitable log structures on the fiber and the
base point.

EXAMPLE 4.9. We give a simple and explicit example which shows that a log de-
generation is not necessarily equi-dimensional. We consider C3 with the coordinate (x, y, z)
and C2 with the coordinate (s, t). We consider the log structures on C3 and C2 associated
to the simple normal crossing divisors xyz = 0 and st = 0, respectively. The morphism
f : C3 → C2 given by f (x, y, z) = (xy, xz) is a log smooth degeneration over C2. Then
the fiber f−1(0) with the induced log structure is a log smooth degeneration over ∗2, which
is not equi-dimensional.

EXAMPLE 4.10. Let f : U → Ck be a log degeneration over Ck as in Definition
4.2 and π : Ũ → U a log blow-up (for the definition see [9, Definition (6.1.1)]) whose
underlying morphism is a blow-up along an intersection of some irreducible components of
f−1(0). Then we can see that the composite πf : Ũ → Ck is a log degeneration again. If
we assume that f is a log smooth degeneration, then πf is also a log smooth degeneration.
Therefore the fiber (πf )−1(0) turns out to be a log (smooth) degeneration over the Nk-log
point. Here we remark that (πf )−1(0) is not equi-dimensional for k ≥ 2 because it contains
the exceptional divisor.

DEFINITION 4.11. Let X be the reduction of a log degeneration over ∗k . We denote
the irreducible components of the reduced complex analytic space X by {Xλ}λ∈Λ. We set

X[Γ ] =
⋂
λ∈Γ

Xλ

for any subset Γ of Λ (for Γ = ∅, X[∅] = X). We give an fs log structure MX[Γ ] on X[Γ ]
by pulling back the log structure of X.
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REMARK 4.12. For a non-empty subset Γ , X[Γ ] above is a complex manifold satis-
fying the condition (3.4), if the irreducible component Xλ is nonsingular for every λ.

LEMMA 4.13. For the reduction X of a log degeneration Y over ∗k , ωpX[Γ ] is locally

free of finite rank for every p and for every Γ ⊂ Λ. Moreover, ωp
X[Γ ]/∗k is also locally free,

if Y is log smooth degeneration over ∗k .
PROOF. By Kato and Nakayama [12, Lemma (3.6)(2)], the canonical morphism

OX[Γ ] ⊗ ω1
Y → ω1

X[Γ ] turns out to be an isomorphism. Also we have the canonical iso-

morphism OX[Γ ] ⊗ ω1
Y/∗k

�→ ω1
X[Γ ]/∗k by similar arguments. Then we have isomorphisms

OX[Γ ] ⊗ ω
p
Y

�−→ ω
p
X[Γ ] , OX[Γ ] ⊗ ω

p

Y/∗k
�−→ ω

p

X[Γ ]/∗k(4.13.1)

for every p. Thus we can easily see the conclusions. �

(4.14) For the reduction X of a log degeneration Y , we set

Xn =
∐

|Γ |=n+1

X[Γ ](4.14.1)

for any non-negative integer n. Once we fix a total order on the finite set Λ in addition, we
obtain a simplicial “resolution”

· · · Xn

→
→
· · ·
→
→

Xn−1

→
→
· · ·
→

· · ·
→
→
→

X1
→
→ X0 → X(4.14.2)

as usual. We denote by an the natural morphism Xn → X.

(4.15) From the simplicial resolution above, we have a sequence of the morphisms of
sheaves

0 → OX
δ−−→ (a0)∗OX0

δ−−→ (a1)∗OX1

δ−−→ (a2)∗OX2

δ−−→ · · ·(4.15.1)

by using the “Čech type” morphism δ as usual.

PROPOSITION 4.16. In the situation above, we assume that the irreducible component
Xλ of X is nonsingular for every λ. Then the sequence (4.15.1) is an exact sequence.

PROOF. We may check the exactness locally because of the smoothness condition on
the irreducible components of X. So, we may assume that Y is given by a Cartesian square

Y −−→ U�
�f

∗k −−→ Ck ,

where f : U −→ Ck is a log degeneration over Ck . Moreover, we may assume that U is an
open neighborhood of the origin 0 in Cn with the coordinate functions x1, . . . , xn and that the
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morphism f is given by

f ∗tj = gj
n∏
i=1

x
aij
i j = 1, . . . , k ,(4.16.1)

where gj ’s are invertible holomorphic functions over U and aij ’s are non-negative integers.
In this situation, we look at the stalk at the origin of the sequence (4.15.1). We set A =
C{x1, . . . , xn} and denote by I the defining ideal of X in A. Then we can easily see that the
irreducible decomposition of X at the origin is given by

I = I1 ∩ · · · ∩ IN ,(4.16.2)

where Iα is generated by some of coordinate functions xλ in the ring C{x1, . . . , xn}. So, what
we have to prove is the exactness of the sequence

0 → I → A
δ−→ ⊕N

α=1 A/Iα
δ−→ ⊕

1≤α0<α1≤N A/(Iα0 + Iα1)
δ−→ · · · ,

where the morphism

δ :
⊕

1≤α0<···<αj≤N
A/(Iα0 + · · · + Iαj ) →

⊕
1≤α0<···<αj+1≤N

A/(Iα0 + · · · + Iαj+1)

sends an element f = (fα0···αj ) to the element g = (gα0···αj+1) with

gα0···αj+1 =
j+1∑
l=0

(−1)l+1fα0···α̂l ···αj+1

as usual. Since the exactness of the sequence

0 → I δ−→ A
δ−→

N⊕
α=1

A/Iα

is trivial by (4.16.2), we have to prove the exactness of the sequence

A
δ−→

N⊕
α=1

A/Iα δ−→
⊕

1≤α1<α2≤N
A/(Iα1 + Iα2)

δ−→ · · · .(4.16.3)

The completion Â = C[[x1, . . . , xn]] is faithfully flat over A = C{x1, . . . , xn} (see, for in-
stance, Matsumura [16, Theorem 8.14]). Therefore we can check the exactness after tensoring
Â. Since every ideal Iα and the differential d are homogeneous with respect to the Nn grad-
ing, we can check the exactness degree by degree. So we fix a degree q = (q1, . . . , qn) ∈ Nn.
If xq1

1 · · · xqnn is contained in the ideal Iα0 + · · · + Iαj , then xq1
1 · · · xqnn is an element of Iαl

for some l, because every Iα is generated by some of xi’s. Therefore we may exclude all the
ideals Iαl containing xq1

1 · · · xqnn at first, and identify the degree q part of the sequence (4.16.3)
with the sequence of C-vector spaces

C
δ−→ CN ′ δ−→

2∧
(CN ′

)
δ−→

3∧
(CN ′

) · · ·
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for some non-negative integer N ′. This complex is nothing but the complex Kos(∆;N ′) for
the diagonal morphism ∆ : C → CN ′

. Then we obtain the exactness of the sequence above
by using Proposition 1.4. �

COROLLARY 4.17. IfX is the reduction of a log smooth degeneration with the smooth
irreducible components, we have exact sequences

0 → ω
p

X/∗k
δ−−→ (a0)∗ωpX0/∗k

δ−−→ (a1)∗ωpX1/∗k
δ−−→ (a2)∗ωpX2/∗k

δ−−→ · · ·
for all p by the “Čech type” morphisms δ.

PROOF. The isomorphisms in (4.13.1) and Proposition 4.16 imply the conclusion. �

(4.18) In the situation above, the single complex associated to the double complex

0 → (a0)∗ω·
X0/∗k

δ−−→ (a1)∗ω·
X1/∗k

δ−−→ (a2)∗ω·
X2/∗k

δ−−→ · · ·
is denoted by (a·)∗ω·

X·/∗k . The stupid filtrations (filtrations bêtes) in Deligne [1] on ω·
X/∗k

and ω·
Xn/∗k are denoted by F as usual. Moreover, subcomplexes Fp(a·)∗ω·

X·/∗k which are the
associated single complexes to

0 → (a0)∗Fpω·
X0/∗k

δ−−→ (a1)∗Fpω·
X1/∗k

δ−−→ (a2)∗Fpω·
X2/∗k

δ−−→ · · ·
define a decreasing filtration F on (a·)∗ω·

X·/∗k .

PROPOSITION 4.19. For the reduction X of a log smooth degeneration over ∗k the
“Čech type” morphism

ω·
X/∗k → (a·)∗ω·

X·/∗k(4.19.1)

is a filtered quasi-isomorphism with respect to the filtration F , if all the irreducible compo-
nents of X are nonsingular.

PROOF. We have GrpF ω
·
X/∗k = ω

p

X/∗k [−p]. On the other hand, GrpF (a·)∗ω·
X·/∗k is the

complex obtained by shifting the complex

0 → (a0)∗ωpX0/∗k
δ−→ (a1)∗ωpX1/∗k

δ−→ (a2)∗ωpX2/∗k
δ−→ · · ·

by p to the right. Thus we obtain the conclusion by Corollary 4.17. �

5. Mixed Hodge structures on the relative log de Rham cohomologies.
(5.1) Let X be the reduction of a proper log smooth degeneration over ∗k . Moreover,

we assume that all the irreducible components of X are nonsingular and Kähler in addition.
In the last section we obtain a resolution of ω·

X/∗k (4.19.1). In this section we construct mixed

Hodge structures on the cohomology groups Hn(X,ω·
X/∗k ) by using the resolution above.

By the additional assumption, Xn in (4.14.1) is a compact Kähler log complex manifold
satisfying Condition (3.4). We denote by fn : Xn → ∗k the composite of the morphisms
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an : Xn → X and X → ∗k , which yields global sections t1, . . . , tk of MXn . Therefore we
have a weak Q-cohomological mixed Hodge complex

((Q[u1, . . . , uk] ⊗ KosXn(MXn), L), (C[u1, . . . , uk] ⊗ ω·
Xn
, L, F ), id ⊗ψXn)

on Xn by Theorem 3.33.
(5.2) A morphism of C-sheaves C[u1, . . . , uk]⊗ωpXn → ω

p
Xn

sending f ⊗ω to f (0)ω
induces a morphism of complexes

θXn/∗k : C[u1, . . . , uk] ⊗ ω·
Xn

→ ω·
Xn/∗k

because dlog ti = 0 in ω1
Xn/∗k for every i. We can easily see that this morphism preserves the

filtrations F on both sides.

PROPOSITION 5.3. In the situation above, the morphism θXn/∗k induces a quasi-iso-
morphism

GrpF θXn/∗k : GrpF C[u1, . . . , uk] ⊗ ω·
Xn

→ GrpF ω
·
Xn/∗k

for every integer p.

PROOF. From the equality ω1
∗k = Ck , we obtain the morphism of OXn-sheaves

f ∗
n ω

1
∗k = O⊕k

Xn
→ ω1

Xn
,

which is denoted by f ∗
n for a while. By Lemma 4.13 this morphism fits in an exact sequence

0 → O⊕k
Xn

f ∗
n−−→ ω1

Xn
→ ω1

Xn/∗k → 0

and the cokernel ω1
Xn/∗k is locally free OXn -module. We have

GrpF C[u1, . . . , uk] ⊗ ωlXn =
⊕
q∈Nk

Grp−|q|
F ωlXn =

⊕
q∈Nk

|q|=p−l

ωlXn = Symp−l (O⊕k
Xn
)⊗

l∧
ω1
Xn

for every l and p. By the equality above together with easy computation on the differentials
the complex GrpF C[u1, . . . , uk]⊗ω·

Xn
can be identified with the Koszul complex Kos(f ∗

n ;p).
On the other hand, the equality

GrpF ω
·
Xn/∗k = ω

p

Xn/∗k [−p] =
p∧
ω1
Xn/∗k [−p]

holds trivially. Then we have the conclusion by Proposition 1.4. �

(5.4) Since the simplicial resolution (4.14.2) is compatible with the morphisms fn :
Xn → ∗k for all n, the “Čech type” morphisms

δ : (an)∗Q[u1, . . . , uk] ⊗ KosXn(MXn) → (an+1)∗Q[u1, . . . , uk] ⊗ KosXn+1(MXn+1) ,

δ : (an)∗C[u1, . . . , uk] ⊗ ω·
Xn

→ (an+1)∗C[u1, . . . , uk] ⊗ ω·
Xn+1
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are morphisms of complexes which preserves the filtrationsL and F involved. Thus we obtain
double complexes

((an)∗Q[u1, . . . , uk] ⊗ KosXn(MXn), δ) , ((an)∗C[u1, . . . , uk] ⊗ ω·
Xn
, δ)

and the associated single complexes which we denote by KQ and KC . We define subcom-
plexes WmKQ andWmKC by the associated single complexes to the double complexes

((an)∗Lm+n(Q[u1, . . . , uk] ⊗ KosXn(MXn)), δ) ,

((an)∗Lm+n(C[u1, . . . , uk] ⊗ ω·
Xn
), δ)

for every m. Moreover, the associated single complex to the double complex

((an)∗Fp(C[u1, . . . , uk] ⊗ ω·
Xn
), δ)

defines a subcomplex FpKC for every p. Thus we obtain filtered complex of Q-sheaves
(KQ,W) and bifiltered complex of C-sheaves (KC,W,F ) on X.

Here we remark that the filtrations above are not finite. However, we can easily see the
following conditions:

(5.4.1) For sufficiently small m, WmKQ = 0 andWmKC = 0.
(5.4.2) The equalities

⋃
mWmKQ = KQ and

⋃
mWmKC = KC hold.

(5.4.3) We have F 0KC = KC and
⋂
p F

pKC = 0.
(5.5) Trivially the morphisms of complexes

id ⊗ψXn : Q[u1, . . . , uk] ⊗ KosXn(MXn) → C[u1, . . . , uk] ⊗ ω·
Xn

and

θXn/∗k : C[u1, . . . , uk] ⊗ ω·
Xn

→ ω·
Xn/∗k

are compatible with the morphism δ for every n. Thus we obtain morphisms of complexes
preserving weights and Hodge filtartions, which are denoted by

ψ : KQ → KC ,

θX·/∗k : KC → (a·)∗ω·
X·/∗k ,

respectively.

LEMMA 5.6. The morphism θX·/∗k induces a quasi-isomorphism

GrpF (θX·/∗k ) : GrpF KC → GrpF (a·)∗ω·
X·/∗k

for every p.

PROOF. The complexes GrpF KC and GrpF (a·)∗ω·
X·/∗k are the associated single com-

plexes to ((an)∗ GrpF C[u1, . . . , uk] ⊗ ω·
Xn
, δ) and ((an)∗ GrpF ω

·
Xn/∗k , δ), respectively. Thus

we obtain the conclusion by Proposition 5.3. �

COROLLARY 5.7. In the derived category we have a morphism

KC → ω·
X/∗k
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preserving the filtrations F on both sides, which induces an isomorphism

GrpF KC → GrpF ω
·
X/∗k = ω

p

X/∗k

in the derived category for every p.

PROOF. By the lemma above together with Proposition 4.19. �

PROPOSITION 5.8. In the situation above, the data ((KQ,W), (KC ,W,F ),ψ) is a
weak Q-cohomological mixed Hodge complex on X (see Definition A.4 in Appendix).

PROOF. For every m, we have

GrWm KQ =
⊕
n≥0

GrLm+n Q[u1, . . . , uk] ⊗ KosXn(MXn)[−n] ,

GrWm KC =
⊕
n≥0

GrLm+n C[u1, . . . , uk] ⊗ ω·
Xn

[−n] ,

GrWm ψ =
⊕
n≥0

GrLm+n(id ⊗ψXn)[−n]

by easy computation. Moreover, the filtration F induces

F GrWm KC =
⊕
n≥0

F(GrLm+n C[u1, . . . , uk] ⊗ ω·
Xn
)[−n]

for every m. Therefore the data (GrWm KQ, (GrWm KC, F ),GrWm ψ) is a Q-cohomological
Hodge complex of weight m+ n+ (−n) = m by Theorem 3.33. �

THEOREM 5.9. Let X be the reduction of a proper log smooth degeneration over the
Nk-log point ∗k . Assume that all the irreducible components of X are Kähler complex mani-
folds in addition. Then we have the following:

(5.9.1) For every integer n, the cohomology group Hn(X,ω·
X/∗k ) underlies a Q-mixed

Hodge structure, whose Hodge filtration is induced by the stupid filtration on ω·
X/∗k .

(5.9.2) The log Hodge to de Rham spectral sequence

E
pq

1 = Hq(X,ωp
X/∗k ) ⇒ En = Hn(X,ω·

X/∗k )(5.9.3)

degenerate at E1-terms.

PROOF. Corollary 5.7 tells us that there exists a positive integer N such that GrpF KC

is acyclic for all p ≥ N . The exact sequence in (A.6.4) implies that FpHn(X,KC) =
FNHn(X,KC) for p ≥ N . Since the filtration F on Hn(X,KC) induces a finite filtration
on GrWm Hn(X,KC), we have FN GrWm Hn(X,KC) = 0 for every integerm. Then we have the
inclusions

FN ∩Wm ⊂ FN ∩Wm−1 ⊂ · · ·
on Hn(X,KC). Then we have the equality FN ∩ Wm = 0 because WlHn(X,KC) = 0 for
sufficiently small l. Therefore we have FN = 0 by using the condition

⋃
mWmHn(X,KC) =
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Hn(X,KC). Thus the filtration F on Hn(X,KC) is finite. Moreover, the cohomology
Hn(X,KC) is of finite dimension, because we have

GrpF Hn(X,KC) � Hn(X,GrpF KC) � Hn−p(X,ωp
X/∗k )

for every p. Then the filtration W is finite and the data

((Hn(X,KQ),W [n]) , (Hn(X,KC),W [n], F ))(5.9.4)

turns out to be a Q-mixed Hodge structure by (A.6.1) in Lemma A.6. Now we have the
identification

Hn(X,KC) = Hn(X,KC)/F
NHn(X,KC) � Hn(X,KC/F

NKC) � Hn(X,ω·
X/∗k )

by FNHn(X,KC) = 0 as well as by the fact that the morphism KC → ω·
X/∗k induces an

isomorphism KC/F
NKC

�→ ω·
X/∗k in the derived category. Thus the cohomology group

Hn(X,ω·
X/∗k ) underlies the mixed Hodge structure (5.9.4). Then E1-degeneration (A.6.3)

for the filtered complex (KC, F ) implies the E1-degeneration of the log Hodge to de Rham
spectral sequence (5.9.3). Moreover, we can easily see the coincidence of the filtrations F on
Hn(X,KC) and on Hn(X,ω·

X/∗k ) by Corollary 5.7. �

Appendix. In this appendix, we try to relax the finiteness assumption in axioms of
(cohomological) mixed Hodge complexes in [2].

DEFINITION A.1. A weak Q-mixed Hodge complex consists of the following data:
(A.1.1) a bounded below complex of Q-vector spacesKQ,
(A.1.2) an increasing filtration W on KQ such that

⋃
mWmKQ = KQ and that for

every n there exists an integerm with WmK
n
Q = 0,

(A.1.3) a bounded below complex of C-vector spaces KC ,
(A.1.4) an increasing filtration W on KC satisfying the same conditions as for W on

KQ above,
(A.1.5) a decreasing filtration F on KC ,
(A.1.6) a morphism α : KQ ⊗ C → KC preserving the filtration W on both sides

such that the morphism GrWm α : GrWm KQ ⊗ C → GrWm KC is a quasi-isomorphism for every
integerm,

satisfying the condition
(wMHC) the data (GrWm KQ, (GrWm KC, F ),GrWm α) is a Q-Hodge complex of weight

m for every integerm.

REMARK A.2. A weak Q-mixed Hodge complex ((KQ,W), (KC ,W,F ), α)

becomes a Q-mixed Hodge complex, if the cohomology Hn(KC) � Hn(KQ) ⊗ C is of
finite dimension for every n.

LEMMA A.3. Let ((KQ,W), (KC ,W,F ), α) be a weak Q-mixed Hodge complex.
Then we have the followings:
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(A.3.1) (GrWm Hn(KQ), (GrWm Hn(KC), F )) is a Q-Hodge structure of weight m + n

for every n and m.
(A.3.2) The spectral sequence associated to the filtrationW degenerates at E2-terms.
(A.3.3) The spectral sequence associated to the filtration F degenerates at E1-terms.
(A.3.4) We have the natural exact sequences

0 → Hi (F nKC) → Hi (KC) → Hi (KC/F
nKC) → 0 ,

0 → Hi (F n+1KC) → Hi (F nKC) → Hi (GrnF KC) → 0

for every i and n.

PROOF. By the morphism α we have isomorphismsEp,qr (KQ,W)⊗ C �Ep,qr (KC,W)

etc. Moreover, the morphisms d : Ep,qr (KC,W) → E
p+r,q−r+1
r (KC,W) etc. are defined

over Q.
First we prove the following by induction on r .
(A.3.5) We have an exact sequence

0 → E
p,q
r (F nKC,W) → E

p,q
r (KC,W) → E

p,q
r (KC/F

nKC ,W) → 0

for every p, q, r and n. Therefore the three filtrations Fd, Fd∗ and Frec coincide. Moreover,
E
p,q
r (KC,W) with the filtration Fd = Fd∗ = Frec is a Hodge structure of weight q for every

p, q and r ≥ 1.
For the case of r = 0, it is easy to see that the sequence

0 → E
p,q

0 (F nKC,W) → E
p,q

0 (KC,W) → E
p,q

0 (KC/F
nKC ,W) → 0

is exact. So we proved (A.3.5) for r = 0. Moreover, the filtration Fd = Fd∗ = Frec is nothing
but the induced filtration F on GrW−p K

p+q
C = E

p,q
0 (KC,W). Then the morphism

d : Ep,q0 (KC,W) = GrW−p K
p+q
C → GrW−p K

p+q+1
C = E

p,q+1
0 (KC,W)

is strictly compatible with respect to the filtration Fd = Fd∗ = Frec by the assumption
(wMHC) and the definition of Hodge complex (see [2]). Therefore we obtain an exact se-
quence

0 → E
p,q

1 (F nKC,W) → E
p,q

1 (KC,W) → E
p,q

1 (KC/F
nKC ,W) → 0

by the “Lemma on two filtrations” in [2]. This shows that Fd = Fd∗ = Frec on Ep,q1 (KC,W).
Since we have Frec = F under the identification Ep,q1 (KC,W) � Hp+q(GrW−p KC) by def-
inition, Ep,q1 (KC,W) with the filtration Fd = Fd∗ = Frec is a Hodge structure of weight
p + q + (−p) = q by the assumption (wMHC). Thus we proved (A.3.5) for the case of
r = 1. Now we proceed the induction process. We assume Condition (A.3.5) for r ≥ 1.
Since the morphism d : Ep,qr (KC,W) → E

p+r,q−r+1
r (KC,W) preserves the filtration Fd , it

is a morphism of Hodge structures. Then d is strictly compatible with the Hodge filtrations
Fd = Fd∗ = Frec. The “Lemma on two filtrations” tells us that we have an exact sequence

0 → E
p,q

r+1(F
nKC,W) → E

p,q

r+1(KC,W) → E
p,q

r+1(KC/F
nKC,W) → 0
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for every p, q and n. Therefore Fd = Fd∗ = Frec onEp,qr+1(KC,W). Moreover,Ep,qr+1(KC,W)

with the filtration Frec = Fd = Fd∗ is a Hodge structure of weight q , because the morphism
d is a morphism of Hodge structures. Thus we proved (A.3.5) by induction.

The weights of the Hodge structures Ep,qr (KC,W) and Ep+r,q−r+1
r (KC,W) are q and

q − r + 1, respectively. Therefore the morphism of Hodge structures d : Ep,qr (KC,W) →
E
p+r,q−r+1
r (KC,W) is the zero map for r ≥ 2 because of the inequality q > q − r + 1. This

fact combined with Assumption (A.1.4) in Definition A.1 implies that the spectral sequence
associated to the filtration W on KC degenerates at E2-terms. Thus we obtain the conclusion
(A.3.2).

By the E2-degeneration above, we have the equalities

E
p,q∞ (KC,W) � E

p,q

2 (KC,W) ,

E
p,q∞ (F nKC,W) � E

p,q
2 (F nKC,W) ,

E
p,q∞ (KC/F

nKC,W) � E
p,q

2 (KC/F
nKC,W) ,

and the exact sequence

0 → E
p,q∞ (F nKC,W) → E

p,q∞ (KC,W) → E
p,q∞ (KC/F

nKC,W) → 0(A.3.6)

for every p, q and n. Therefore we have Fd = Fd∗ = F on Ep,q∞ (KC,W). Moreover,
E
p,q∞ (KC,W) with the filtration Fd = Fd∗ = F is a Hodge structure of weight q . Therefore

GrWm Hn(KC) � E−m,m+n∞ (KC,W)

with the filtration F is a Hodge structure of weightm+n. So we obtain the conclusion (A.3.1).
From the exact sequence (A.3.6) we obtain the exact sequence

0 → GrWm Hi (F nKC) → GrWm Hi (KC) → GrWm Hi (KC/F
nKC) → 0

for every i,m and n. Thus we obtain the first exact sequence in (A.3.4) by using Assumption
(A.1.4). Injectivity of the morphism Hi (F n+1KC) → Hi (KC) implies the injectivity of the
morphism Hi (F n+1KC) → Hi (F nKC) for every i and n. Then we can easily see the second
exact sequence in (A.3.4), which implies the isomorphism

GrnF Hi (KC) � Hi (GrnF KC)

for every i and n. Thus we obtain the conclusion (A.3.3). �

DEFINITION A.4. Let X be a topological space. A weak Q-cohomological mixed
Hodge complex consists of the following data:

(A.4.1) a bounded below complex of Q-sheaves KQ,
(A.4.2) an increasing filtration W on KQ such that

⋃
mWmKQ = KQ and that for

every n there exists an integerm with WmK
n
Q = 0,

(A.4.3) a bounded below complex of C-sheaves KC ,
(A.4.4) an increasing filtration W on KC satisfying the same conditions as for W on

KQ above,
(A.4.5) a decreasing filtration F on KC ,
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(A.4.6) a morphism α : KQ ⊗ C → KC preserving the filtration W on both sides
such that the morphism GrWm α : GrWm KQ ⊗ C → GrWm KC is a quasi-isomorphism for every
integer m,

satisfying the condition
(wCMHC) the data (GrWm KQ, (GrWm KC, F ),GrWm α) is a Q-cohomological Hodge

complex of weight m for every integerm.
(A.5) For a weak Q-cohomological mixed Hodge complex ((KQ,W), (KC ,W,F ), α)

on a topological space X, we can see that the data

((RΓ (X,KQ),W), (RΓ (X,KC),W,F ),RΓ (α))

becomes a weak Q-mixed Hodge complex by using the Godement resolution. So we have the
following.

LEMMA A.6. Let X be a topological space and ((KQ,W), (KC ,W,F ), α) a weak
Q-cohomological mixed Hodge complex on X. Then we have the followings:

(A.6.1) (GrWm Hn(X,KQ), (GrWm Hn(X,KC), F )) is a Q-Hodge structure of weight
m+ n for every n and m.

(A.6.2) The spectral sequence associated to the filtrationW degenerates at E2-terms.
(A.6.3) The spectral sequence associated to the filtration F degenerates at E1-terms.
(A.6.4) We have the natural exact sequences

0 → Hi (X, FnKC) → Hi (X,KC) → Hi (X,KC/F
nKC) → 0 ,

0 → Hi (X, Fn+1KC) → Hi (X, FnKC) → Hi (X,GrnF KC) → 0

for every i and n.
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