
Mixed-Initiative Development of Language Processing Systems

David Day, John Aberdeen, Lynette Hirschman,
Robyn Kozierok, Patricia Robinson and Marc Vilain

Advanced Information Systems Center
The MITRE Corporation

202 Burlington Road
Bedford, Massachusetts 01730 U.S.A.

{ day,aberdeen,lynette } @mitre.org

{robyn,parann,mbv } @mitre.org

A b s t r a c t

Historically, tailoring language processing systems to

specific domains and languages for which they were not
originally built has required a great deal of effort.
Recent advances in corpus-based manual and automatic
training methods have shown promise in reducing the
time and cost of this porting process. These
developments have focused even greater attention on the
bottleneck of acquiring reliable, manually tagged
training data. This paper describes a new set of
integrated tools, collectively called the Alembic
Workbench, that uses a mixed-initiative approach to
"bootstrapping" the manual tagging process, with the
goal of reducing the overhead associated with corpus

development. Initial empirical studies using the
Alembic Workbench to annotate "named entities"
demonstrates that this approach can approximately
double the production rate. As an ~ benefit, the
combined efforts of machine and user produce domain-
specific annotation rules that can be used to annotate
similar texts automatically through the Alembic NLP

system. The ultimate goal of this project is to enable
end users to generate a practical domain-specific
information extraction system within a single session.

1. I n t r o d u c t i o n

In the absence of complete and deep text understanding,
implementing information extraction systems remains a
delicate balance between general theories of language
processing and domain-specific heuristics. Recent
developments in the area of corpus-based language

processing systems indicate that the successful
application of any system to a new task depends to a
very large extent on the careful and frequent evaluation
of the evolving system against training and test corpora.
This has focused increased attention on the importance
of obtaining reliable training corpora. Unfortunately,
acquiring such data has usually been a labor-intensive

and time-consuming exercise.

The goal of the Alembic Workbench is to dramatically
accelerate the process by which language processing

systems are tailored to perform new tasks. The
philosophy motivating our work is to maximally reuse
and re-apply every kernel of knowledge available at each
step of the tailoring process. In particular, our approach
applies a bootstrapping procedure to the development of
the training corpus itself. By re-investing the
knowledge available in the earliest training data to pre-
tag subsequent un-tagged data, the Alembic Workbench
can tralasform the process of manual tagging to one
dominated by manual review. In the limit, if the pre-
tagging process performs well enough, it becomes the
domain-specific automatic tagging procedure itself, and
can be applied to those new documents from which
information is to be extracted.

As we and others in the information extraction arena
have noticed, the quality of text processing heuristics is
influenced critically not only by the power of one's
linguistic theory, but also by the ability to evaluate
those theories quickly and reliably. Therefore, building
new information extraction systems requires an
integrated environment that supports: (1) the
development of a domain-specific annotated corpus; (2)
the multi-faceted analysis of that corpus; (3) the ability
to quickly generate hypotheses as to how to extract or
tag information in that corpus; and (4) the ability to
quickly evaluate and analyze the performance of those
hypotheses. The Alembic Workbench is our attempt to
build such an environment.

As the Message Understanding Conferences move into
their tenth year, we have seen a growing recognition of
the value of balanced evaluations against a common test
corpus. What is unique in our approach is to integrate
system development with the corpus annotation process
itself. The early indications are that at the very least
this integration can significantly increase the
productivity of the corpus annotator. We believe that
the benefits will flow in the other direction as well, and
that a concomitant increase in system performance will
follow as one applies the same mixed-initiative
development environment to the problem of domain-
specific tailoring of the language processing system.

348

Figure 1. Screen dump of a typical Alembic Workbench session.

2. Alembic Workbench: A brief description

The Alembic Workbench provides a graphical user
interface by which texts can be annotated using the

mouse and user-defined key bindings. The Workbench

mouse interface is engineered specifically to minimize

hand motion. This allows text markup to proceed very

quickly. Once a text has been marked up, the user's

annotations are highlighted in colors specified by the

user. A "mouse line" at the bottom of the text window

provides further visual feedback indicating all of the

annotations associated with the location under the

mouse cursor, including document structure markup, if

available. An example screen image from a typical

session with the Workbench is shown above.

Our focus in building the Alembic Workbench is to

provide a natural but powerful environment for

annotating texts in the service of developing natural

language processing systems. To this end we have

incorporated a growing number of analysis and reporting
features. The current set of utilities includes:

349

• A string-matching mechanism that can

automatically replicate new markup to identical

instances elsewhere in the document.
• A rule language for constructing task-specific

phrase tagging and/or pre-tagging rule sets.

• A tool that generates phrase-based KWlC ("key-

word in context") reports to help the user identify

common patterns in the markup.

• A procedure that generates word lists based on their

frequency. This tool also measures the degree to

which a word occurs in different markup contexts.

• A visualization component for viewing inter-

annotator (or key/answer) agreement.

• A scorer that allows arbitrary SGML markup to be

selected for scoring.
• A full-featured interface to the multi-stage

architecture of the Alembic text processing system.

• An interface to Alembic's phrase-rule learning

system for generating new application-specific rule

sets.
• The Alembic Workbench also provides specialized

interfaces for supporting more complex, linked

markup such as that needed for coreference. Another

interface is geared towards capturing arbitrary n-ary

relations between tagged elements in a text (these
have been called "Scenario Templates" in MUC).

More details about the implementation of the
Workbench are provided in Section 7.

The development of the Alembic Workbench environ-
ment came about as a result of MYrRE's efforts at

refining and modifying our natural language processing

system, Alembic [1,7], to new tasks: the Message
Understanding Conferences (MUC5 and MUC6), and the

TIPSTER Multi-lingual Entity Task (MET1). (See [6]

for an overview and history of MUC6 and the ''Named

Entity Task".) The Alembic text processing system
applies Eric Brill's notion of ru/e sequences [2,3] at

almost every one of its processing stages, from part-of-
speech tagging to phrase tagging, and even to some

portions of semantic interpretation and inference.

While its name indicates its lineage, we do not view the

Alembic Workbench as wetkkxt to the Alembic text

processing system alone. We intend to provide a well-
documented API in the near future for external utilities

to be incorporated smoothly into the corpus/system
development environment. We envision two classes of

external utilities: tagging utilities and analysis utilities.

By integrating other tagging modules (including

complete NLP systems), we hope those systems can be
more efficiently customized when the cycle of analysis,
hypothesis generation and testing is tightened into a

well-integrated loop. The current version of the tool

supports viewing, annotating and analyzing documents
in 7-bit, 8-bit and 2-byte character sets. Current

support includes the Latin-1 languages, Japanese (JIS),
Chinese (GB1232), Russian, Greek and Thai.

3. Increasing manual annotation productivity
through pre-tagging

A motivating idea in the design of the Alembic

Workbench is to apply any available information as
early and as often as possible to reduce the burden of

manual tagging. In addition to careful interface design

and support for user-customization, a core mechanism
for enhancing this process is through pre-tagging.

The generation of reliably tagged text corpora requires
that a human annotator read and certify all of the

annotations applied to a document. This is especially
true if the annotations are to be used for subsequent
manual or automatic training procedures. However,

much of the drudgery of this process can be removed if
the most obvious and/or oft-repeated expressions can be
tagged prior to the annotator's efforts. One way of

doing this is to apply tags to any and all strings in a

document that match a given string. This is the nature
of the "auto-tagging ~' facility built-in to the Workbench

interface. For example, in annotating journalistic
document collections with "Named Entity" tags, one
might want to simply pre-tag every occurrence of
"President Clinton" with Person.. ~ Of course, these

actions should be taken with some care, since mis-
tagging entities throughout a document might actually
lead to an increase in effort required to accurately fix or

remove tags in the document.

A more powerful approach is to allow patterns, or rules,

to form the basis for this pre-tagging. The Alembic

phrase-rule interpreter provides the basis for developing

rule-based pre-tagging heuristics in the Workbench. In

the current version of the Workbench, the user is free to
compose these "phraser" rules and group them into

specialized rule sets. Figure 2 shows an example
sequence of rules that could be composed for pre-tagging

a corpus with Person tags. The Brill control regime

interprets these rules strictly sequentially: rule n is
applied wherever in the text it can be; it is then

discarded and rule n+l is consulted. There is no

unconstrained forward chaining using a "soup" of rules

as in a standard production (or rule-based) system. The

Alembic "phraser" rule interpreter has been applied to
tagging named entities, sentence chunks, simple entity

relations ("template element" in the parlance of MUC6),
and other varieties of phrases.

(def-phraser-rule
:anchor :lexeme
:conditions (:left-1 :lex (=Mr." =Ms." "Dr." ...))
:actions (:create-phrase :person))

(def-phraser-rule
:conditions (:phrase :phrase-label :person)

(:right-1 :pos :NNP)
:actions (:expand :right-I))

Figure 2. An example Alembic role sequence that (1)
produces Person phrases around any word immediately to
the fight of a title and/or honorific, and then (2) grows the
extent of the phrase to the fight one lexeme, if that word i s
a proper noun.

4. Mixed-initiative text annotation

In addition to allowing users to define pre-tagging rules,
we have developed a learning procedure that can be used

to induce these rules from small training corpora.
Operationally, an annotator starts by generating a small

initial corpus and then invokes the learner to derive a set
of pre-tagging rules. These rules can then be applied to

new, unseen texts to pre-tag them. Figure 3 illustrates
this bootstrapping cycle.

i The Named Entity task from MUC6 consists of adding
tags to indicate expressions of type Person, Location,
Organization, Date, Time and Money, see [6].

3 5 0

The earlier we can extract heuristic rules on the basis of

manually tagged data, the earlier the user can be relieved

from some portion of the chore of physically marking

up the text--the user will need to edit and/or add only a

fraction of the total phrases in a given document. In

our experience of applying the Alembic phrase rule

learner to named-entity and similar problems, our error-
reduction learning method requires only modest amounts

of training data. (We present performance details in
Section 6.)

Unprocessed material

Iflc
B$

Training)Testing corpora

Figure 3. The Alembic Workbench seeks to involve

the user in a corpus development cycle, making use of

pre-tagging facilities, analysis facilities, and the

automatic generation of pre-tagging rule sets through
machine learning.

As the human annotator continues generating reliable

training data, she may, at convenient intervals, re-

invoke the learning process. As the amount of training

data increases, the performance of the learned rules tends

to increase, and so the amount of labor saved in pre-

tagging subsequent training data is further increased.

The bootstrapping effect tends to increase over time.

For the "named entity" task in MUC6 approximately

25,000 words were provided as annotated training data

by the conference organizers ("formal training" and

"dryrun" data sets). Prior to developing the Alembic

Workbench, we were able to use this amount of data in

Alembic to generate a system performing at 85.2 P&R

on unseen test data. 2 Based on the tagging rates we

have measured thus far using the Workbench, it would

take somewhere between 1.5 to 2.5 hours to tag these
25,000 words of data.

There is a limit on how much one can reduce the time-

requirements for generating reliable training data--this

is the rate required by a human domain expert to

carefully read and edit a perfectly pre-annotated training

corpus. Training data cannot be generated without this

2 P&R (or F-measure) is a weighted combination of recall
and precision.

human investment. 3 Indeed, in situations where the

quality of the data is particularly important (as it is in,

say a multi-system evaluation such as MUC), it is

typical that multiple reviews of the same corpus is

performed by various annotators, especially given the

known ambiguity of any annotation task definition.

5. Manual refinement of automatically
derived pre-tagging heuristics

In the previous section we presented our approach to

mixed-initiative corpus development and tagging

heuristics without assuming any sophistication on the

part of the human user beyond a clear understanding of

the information extraction task being addressed.

Usually, however, even a lay end-user is likely to have

a number of intuitions about how the un-annotated data

could be pre-tagged to reduce the burden of manual

tagging. Hand-coded rules can be applied in concert

with the machine-derived rules mentioned earlier. One

way this can be done is by invoking the rule learning

subsequent to the application of the hand-cxxted pre-

tagging rules. On the other hand, if the user notices a

consistent mistake being made by the machine-learned

rules early in the bootstrapping process, the user can

augment the machine-derived rule sequence with

manually composed rules. In fact, every rule composed

by the learning procedure is completely inspectable by

the user, and so some users may want to modify

individual machine-derived rules, perhaps to expand their

generality beyond the particular data available in the

emerging corpus.

This is another way, then, that the Alembic Workbench

environment enables and encourages the mixed, or

cooperative, application of human and machine skills to

the combined task of developing a domain-specific

corpus and set of extraction heuristics.

Of course, composing rules is somewhat akin to

programming, and not all users will be inclined, or

well-equipped, to become involved in this process. One

impediment to end-users composing their own rules is

the particular syntax of Alembic's phraser rules, so we

anticipate exploring other, simpler rule languages that

will encourage end-user participation. Another approach

that we are interested in exploring involves supporting

more indirect feedback or directives from the user that

are rooted more closely to examples in the data.

3 This is not to say that high-quality machine-tagged data
cannot be generated faster than this, and that these data
may indeed be helpful in the learning procedure of some
other systems. But all such data will remain suspect as far
as being considered part of an annotated training corpus
until inspected by a human, given the vagaries of genre and
style that can easily foil the most sophisticated systems.

351

Similarities and differences between manual

and automatic rule formation

The automatic rule-learuing procedure uses a generate-

and-test approach to learn a sequence of rules. A set of
rule schemata, defining a set of possible rule instances

determines the rule space that the learning procedure

explores. The learner uses indexing based on the actual
data present in the corpus to help it explore the rule

space efficiently. The learning process is initiated by

deriving and applying an initial labeling function based

on the differences between an un-annotated version and a

correctly annotated version of the corpus. Then, during
each learning cycle, the learner tries out applicable rule

instances and selects the rule that most improves the

score when applied to the corpus. The score is
determined by evaluating the corpus as currently
annotated against the correctly annotated version, using

some evaluation function (generally precision, recall or

F-measure). The corpus annotation is updated by
applying the chosen rule, and the learning cycle repeats.

This cycle is continued until a stopping criterion is

re, ached, which is usually defined as the point where

performance improvement falls below a threshold, or
ceases. Other alternatives include setting a strict limit

on the number of rules, and testing the performance

improvement of a rule on a corpus distinct from the

training set.

Of course, there are two important advantages that a

human expert might have over the machine algorithm:

linguistic intuition and world knowledge. Rules that
include references to a single lexeme can be expanded to

more general applicability by the human expert who is
able to predict alternatives that lie outside the current
corpus available to the machine. By supporting

multiple ways in which rules can be hypothesized,

refined and tested, the strengths of both sources of

knowledge can be brought to bear.

6. Experimental Results

We are still in the early stages of evaluating the

performance of the Alembic Workbench along a number

of different dimensions. However, the results from early

experiments are encouraging. Figure 4 compares the
productivity rates using different corpus development
utilities. These are indicated by the four categories on

the X-axis: (1) using SGML-mode in emacs (by an

expert user); (2) using the Workbench interface and
"auto-tag" string-matching utility only; (3) using the

Workbench following the application of learned tagging

rules derived from 5 short documents--approximately
1,500 words, and (4) using the Workbench following

the application of learned tagging rules again, but this

time with the learned rules having trained on 100
documents (approximately 48,000 words), instead of

only five documents.

As can be seen in these experiments, there is a clear
increase in the productivity as a function of both the

user interface (second column) and the application of

pre-tagging rules (third and fourth columns). The large

step in performance between columns three and four
indicate that repeated invocation of the learning process

during the intermediate stages of the corpus

development cycle will likely result in acceleration of

the annotation rate. (As it happens, these results are

probably underestimating the pre-tagging productivity.

The reason for this is that the version of the Workbench
used was not yet able to incorporate date and time

annotations generated by a separate pre-processing step;

this date and time tagger performs at an extremely high

level of precision for this genre---in the high nineties
P&R.) These initial experiments involved a single

expert annotator on a single tagging task (MUC6 named
entity). The annotator was very familiar with the

tagging task.

280
26O

240

160

140

120

IO0

Productivity Gains

.,i
Corpus Development Tools Used

I I I Words/Minute • Tags/Minute I

Figure 4. Two measures of corpus annotation
productivity using the Alembic Workbench. The X-axis
indicates what kind of corpus-development utilities were
used: (1) SGMl.,-mode of emacs text editor; (2) Workbench
(AWB) manual interface only, (3) AWB rule-learning
bootstrap method with 5-document training set; (4) AWB
rule-learning bootstrap method with 100-document
trainin[set. See discussion in text.

To place this in the perspective of the human annotator,
after only about 15 minutes of named entity tagging,

having annotated some 1,500 words of text with
approximately 150 phrases, the phrase rule learner can

derive heuristic rules that produce a pre-tagging

performance rate (P&R) of between 50 and 60 percent.
Of course, this performance is far short of what is

needed for a practical extraction system, but it already

constitutes a major source for labor savings, since
50 to 60 percent of the annotations that need to be

moused (or clicked) in are already there. Since the

precision at this early stage is only around 60 percent,
there will be extra phrases that need (1) to be removed,
(2) their assigned category changed (from, say,

352

organization to person), or (3) their boundaries adjusted.

It turns out that for the first two of these kinds of

precision errors, the manual corrections are extremely

quick to perform. (Boundaries are not really difficult to

modify, but the time required is approximately the same
as inserting a tag from scratch.) In addition, making

these corrections removes both a precision and a recall

error at the same time. Therefore, it turns out that even

at this very early stage, the modest pre-tagging

performance gained from applying the learning

procedure provides measurable performance

improvement.

In order to obtain more detailed results on the effect of

pre-tagging corpora, we conducted another experiment in

which we made direct use of the iterative automatic

generation of rules from a growing manually-tagged

corpus. Using the same skilled annotator, we

inlroduced a completely new corpus for which named-

entity tagging happened to be needed within our

company. We randomly divided approximately 50

documents of varying sizes into five groups. The word

counts for these five groups were: Groupl: 19,300;

Group2: 13,800; Group3: 6,3130; Group4: 15,800;

Group5: 8,000; for a total of 63,000 words. After

manually tagging the first group, we invoked the rule

learning procedure. Applying the learning procedure on

each training set required two to three hours of elapsed

time on a Sun Sparc Ultra. The new tagging rules were
then applied to the next ten documents prior to being

manually tagged/edited. This enlarged corpus was then

used to derive a new rule set to be applied to the next

group of documents, and so on. A summarization of

the results are presented in Figure 5.

Clearly, more experiments are called for we plan to

conduct these across different annotators, task types, and

languages, to better evaluate productivity, quality and

other aspects of the annotation process.

It is extremely difficult to control many of the features

that influence the annotation process, such as the

intrinsic complexity of the topic in a particular

document, the variation in tag-density (tags per word)

that may occur, the user's own training effect as the

structure and content of documents become more

familiar, office distractions, etc. In order to gain a

better understanding of the underlying tagging

performance of the rule learner, and so separate out

some of these human factors issues, we ran an

automated experiment in which different random subsets

of sentences were used to train rule sets, which were

then evaluated on a static test corpus. The results

shown in Figure 6 give some indication of the ability

of the rule-sequence learning procedure to glean useful

generalizations from meager amounts of training data.

Performance of Learned Rule Set as a

Function of Training Set S i z e

; 8 0 T ~ ,,,-

c 6 0 - t t , f , ~ l l l l ' J , ~ t - -

. . , , ; r F'measurel

m 3 0 ~ , ~-- Precis ion |
.s 20
O 1 0 ~

Training Set Size (N a m e d E n t i t l e s)

3 0

Productivity by Group

2 0

1 5

1 0

5

0 I p l

1 2 3 4

Group

I T a g / M i n u t e I

Figure 5. Tagging productivity gains with the
incremental application of automatically acquired rule sets.

The first observation we make is that there is a clear and

obvious direction of improvement--by the time 30

documents have been tagged, the annotation rate on

Group 4 has increased considerably. It is important to

note, however, that there is still noise in the curve. In

addition, the granularity is perhaps still too coarse to

measure the incremental influences of pre-tagging rules.

Figure 6. Performance of learned miss on independent
test set of 662 sentences.

Average Performance of Learned Rules as

a Function of Training Set Size

8 0 ¸

= 7 0 ~ " ~ - - - - -
* , c o 4
• •

-=;4o J-
E.3o ~-

' ~ 2 0

10 , , : : : : : : : : ' : : : : : : : : : : : : : : :

Training Entitles

Figure 7. Averaged F-measure performance figures.

One clear effect of increasing training set size is a

reduction in the sensitivity of the learning procedure to

particular training sets. We hypothesize that this effect
is partly indicative of the generalization behavior on

which the learning procedure is based, which amplifies

3 5 3

the effects of choosing more or less representative
training sentences by chance. Since the learning

process is not merely memorizing phrases, but

generating contextual rules to try to predict phrase types
and extents, the rules are very sensitive to extremely
small selections of training sentences. Figure 7 shows

the F-measure performance smoothed by averaging
neighboring data points, to get a clearer picture of the

general tendency.

We should note that the Alembic Workbench, having
been developed only recently in our laboratory, was not

available to us in the course of our effort to apply the

Alembic system to the MUC6 and MET tasks.

Therefore we have not been able to measure its
influence in preparing for a particular new text

processing task. We intend to use the system to prepare
for future evaluations (including MUC7 and MET2) and

to carefully evaluate the Alembic Workbench as an
environment for the mixed-initiative development of
information extraction systems in multiple languages.

7. Implementation

The Alembic Workbench interface has been written in

Tci/Tk. Some of the analysis and reporting utilities
(available from within the interface as well as Unix

command-line utilities) are written in Perl, C or Lisp.

The separate Alembic NLP system consists of C pre-

processing taggers (for dates, word and sentence

tokenizafion and part-of-speech assignments) and a Lisp

image that incorporates the rest of Alembic: the phrase-
rule interpreter, the phrase rule learner, and a number of

discourse-level inference mechanisms described in [8].

This code currently runs on Sun workstations running
Sun OS 4.1.3 and Solaris 2.4 (Sun OS 5.4) and greater;

we have begun porting the system to Windows
NT/Windows 95. We anticipate providing an API for

integrating other NLP systems in the near future.

The Workbench reads and saves its work in the form of
SGML-encoded files, though the original document need

not contain any SGML mark-up at all. These files me
parsed with the help of an SGML normalizer. 4 During

the course of the annotation process the Workbench
uses a "Parallel Tag File" (PTF) format, which

separates out the embedded annotations from the source

text, and organizes user-defined sets of annotations
within distinct "tag files." While these files are

generally hidden from the user, they provide a basis for

the combination and separation of document annotations
("tagsets") without needing to modify or otherwise

disturb the base document. This allows the user to view

4 In cases where documents use some of the more complex
aspects of SGML, the user supplies a Document Type
Description (DTD) file for use in normalization. For simple
SGML documents, or documents with no original SGML
markup at all, no DTD needs to be specified.

only Named Entity tags, or only tokenization tags, or

any desired subset of tagsets. Thus, the Workbench is
written to be TIPSTER-compliant, though it is not

itself a document manager as envisioned by that
architecture (see [5]). We anticipate integrating the
Workbench with other TIPSTER compliant modules

and document managers via the exchange of SGML-

formatted documents. The Parallel Tag File (PTF)
format used by the Workbench provides another means

by which a translator could be written.

8. Future Work

Broadly defined, there are two distinct types of users
who we imagine will find the Workbench useful: NLP

researchers and information extraction system end-users.

While our dominant focus so far has been on supporting
the language research community, it is important to

remember that new domains for language processing
generally, and information extraction in particular, will
have their own domain experts, and we want the text

annotation aspects of the tool to be quite usable by a
wide population. In this vein we would like to enable

virtually any user to be able to compose new patterns

(rules) for performing pre-tagging on the data. While

the current rule language has a simple syntax, as well as
an extremely simple control regimen, we do not

imagine all users will want to engage directly in an

exploration for pre-tagging rules. A goal for our future

research is to explore new methods for incorporating

end-user feedback to the learning procedure. This

feedback might include modifying a very simplified
form of a single rule for greater generality by

integrating thesauri to construct word-list suggestions.

We also would like to give users immediate feedback as
to how a single rule applies (correctly and incorrectly)

to many different phrases in the corpus.

In this paper we have concentrated on the named entity

task as a generic case of corpus annotation. Of course,

there are many different ways in which corpora are being
annotated for many different tasks. Some of the specific

extensions to the user interface that we have already
begun building include part-of-speech tagging (and

"dense" markup more generally), and full parse syntactic
tagging (where we believe reliable training data can be

obtained much more quickly than heretofore). In these
and other instances the tagging process can be

accelerated by applying partial knowledge early on,
transforming the task once again into that of editing and

correcting. Most of these tagging tasks would be
improved by making use of methods that preferentially

select ambiguous data for manual annotation--for
example, as described in [4].

There are a number of psychological and human factors
issues that arise when one considers how the pre-

annotated data in a mixed-initiative system may affect

354

the human editing or post-processing. If the pre-
tagging process has a relatively high recall, then we
hypothesize that the human will tend increasingly to
trust the pre-annotations, and thereby forget to read the
texts carefully to discover any phrases that escaped
being annotated. A similar effect seems possible for
relatively high precision systems, though proper
interface design (to highlight the type assigned to a
particular phrase) should be able to mitigate these
tendencies. A more subtle interaction is "theory creep,"
where the heuristics induced by the machine learning
component begin to be adopted by the human annotator,
due, in many cases, to the intrinsic ambiguity of
defining annotation tasks in the first place. In all of
these cases the most reliable method for detecting these

human/machine interactions is probably to use some
representative sub-population of the corpus documents
to measure and analyze the inter-annotator agreement
between human annotators who have and who have not
been exposed to the machine derived heuristics for
assigning annotations.

9. C o n c l u s i o n s

On the basis of observing our own and others'
experiences in building and porting natural language
systems for new domains, we have come to appreciate
the pivotal role played in continuous evaluation
throughout the system development cycle. But
evaluation rests on an oracle, and for text processing,
that oracle is the training and test corpora for a
particular task. This has led us to develop a tailoring
environment which focuses all of the available
knowledge on accelerating the corpus development
process. The very same learning procedure that is used
to bootstrap the manual tagging process leads
eventually to the derivation of tagging heuristics that

can be applied in the operational setting to unseen
documents. Rules derived manually, automatically, and
through a combination of efforts have been applied
successfully in a variety of languages, including
English, Spanish, Portuguese, Japanese and Chinese.

The tailoring environment, known as the Alembic
Workbench, has been built and used within our
organization, and we are making it available to other
organizations involved in the development of language
processing systems and/or annotated corpora. Initial
experiments indicate an significant improvement in the
rate at which annotated corpora can be generated using
the Alembic Workbench methodology. Earlier work
has shown that with the training dat~ obtained in the
course of only a couple of hours of text annotation, an
information extraction system can be induced purely
automatically that achieves a very competitive level of
performance.

References

[1] John Aberdeen, John Burger, David Day, Lynette
Hirschman, David Palmer, Palricia Robinson, and Marc
Vilain. 1996. The Alembic system as used in MET. In
Proceedings of the TIPSTER 24 Month Workshop,
May.

[2] Eric Brill. 1992. A simple rule-based part of speech

tagger. In Proceedings of the Third Conference on
Applied Natural Language Processing, Trento.

[3] Eric Brill. 1993. A Corpus-Based Approach to
Language Learning. Ph.D. thesis, University of
Pennsylvania, Philadelphia, Penn.

[4] Scan P. Engelson and Ido Dagan. 1996. Minimizing
manual annotation cost in supervised training from
corpora. Computation and Linguistic E-Print Service
(cmp-lg/9606030), June.

[5] Ralph Grishman. 1995. TIPSTER phase II
architecture design. Worm Wide Web document.
URL=http:llcs.nyu.edtdcslfacultylgfishman/tipster.html

[6] Ralph Grishman and Beth Sundheim. 1996.
Message Understanding Conference----6: A Brief
History. In International Conference on Computational
Linguistics, Copenhagen, Denmark, August. The
International Committee on Computational Linguistics.

[7] Marc Vilain and David Day. 1996. Finite-state
parsing by rule sequences. In International Conference
on Computational Linguistics, Copenhagen, Denmark,
August. The International Committee on
Computational Linguistics.

[8] Marc Vilain. 1993. Validation of terminological
inference in an information extraction task. In

Proceedings of the ARPA Workshop on Human
Language Technology, Plainsboro, New Jersey.

355

