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A b s t r a c t  

Historically, tailoring language processing systems to 

specific domains and languages for which they were not 
originally built has required a great deal of effort. 
Recent advances in corpus-based manual and automatic 
training methods have shown promise in reducing the 
time and cost of this porting process. These 
developments have focused even greater attention on the 
bottleneck of acquiring reliable, manually tagged 
training data. This paper describes a new set of 
integrated tools, collectively called the Alembic 
Workbench, that uses a mixed-initiative approach to 
"bootstrapping" the manual tagging process, with the 
goal of reducing the overhead associated with corpus 

development. Initial empirical studies using the 
Alembic Workbench to annotate "named entities" 
demonstrates that this approach can approximately 
double the production rate. As an ~ benefit, the 
combined efforts of machine and user produce domain- 
specific annotation rules that can be used to annotate 
similar texts automatically through the Alembic NLP 

system. The ultimate goal of this project is to enable 
end users to generate a practical domain-specific 
information extraction system within a single session. 

1. I n t r o d u c t i o n  

In the absence of complete and deep text understanding, 
implementing information extraction systems remains a 
delicate balance between general theories of language 
processing and domain-specific heuristics. Recent 
developments in the area of corpus-based language 

processing systems indicate that the successful 
application of any system to a new task depends to a 
very large extent on the careful and frequent evaluation 
of the evolving system against training and test corpora. 
This has focused increased attention on the importance 
of obtaining reliable training corpora. Unfortunately, 
acquiring such data has usually been a labor-intensive 

and time-consuming exercise. 

The goal of the Alembic Workbench is to dramatically 
accelerate the process by which language processing 

systems are tailored to perform new tasks. The 
philosophy motivating our work is to maximally reuse 
and re-apply every kernel of knowledge available at each 
step of the tailoring process. In particular, our approach 
applies a bootstrapping procedure to the development of 
the training corpus itself. By re-investing the 
knowledge available in the earliest training data to pre- 
tag subsequent un-tagged data, the Alembic Workbench 
can tralasform the process of manual tagging to one 
dominated by manual review. In the limit, if the pre- 
tagging process performs well enough, it becomes the 
domain-specific automatic tagging procedure itself, and 
can be applied to those new documents from which 
information is to be extracted. 

As we and others in the information extraction arena 
have noticed, the quality of text processing heuristics is 
influenced critically not only by the power of one's 
linguistic theory, but also by the ability to evaluate 
those theories quickly and reliably. Therefore, building 
new information extraction systems requires an 
integrated environment that supports: (1) the 
development of a domain-specific annotated corpus; (2) 
the multi-faceted analysis of that corpus; (3) the ability 
to quickly generate hypotheses as to how to extract or 
tag information in that corpus; and (4) the ability to 
quickly evaluate and analyze the performance of those 
hypotheses. The Alembic Workbench is our attempt to 
build such an environment. 

As the Message Understanding Conferences move into 
their tenth year, we have seen a growing recognition of 
the value of balanced evaluations against a common test 
corpus. What is unique in our approach is to integrate 
system development with the corpus annotation process 
itself. The early indications are that at the very least 
this integration can significantly increase the 
productivity of the corpus annotator. We believe that 
the benefits will flow in the other direction as well, and 
that a concomitant increase in system performance will 
follow as one applies the same mixed-initiative 
development environment to the problem of domain- 
specific tailoring of the language processing system. 
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Figure 1. Screen dump of a typical Alembic Workbench session. 

2. Alembic  Workbench:  A brief description 

The Alembic Workbench provides a graphical user 
interface by which texts can be annotated using the 

mouse and user-defined key bindings. The Workbench 

mouse interface is engineered specifically to minimize 

hand motion. This allows text markup to proceed very 

quickly. Once a text has been marked up, the user's 

annotations are highlighted in colors specified by the 

user. A "mouse line" at the bottom of the text window 

provides further visual feedback indicating all of the 

annotations associated with the location under the 

mouse cursor, including document structure markup, if 

available. An example screen image from a typical 

session with the Workbench is shown above. 

Our focus in building the Alembic Workbench is to 

provide a natural but powerful environment for 

annotating texts in the service of developing natural 

language processing systems. To this end we have 

incorporated a growing number of analysis and reporting 
features. The current set of utilities includes: 
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• A string-matching mechanism that can 

automatically replicate new markup to identical 

instances elsewhere in the document. 
• A rule language for constructing task-specific 

phrase tagging and/or pre-tagging rule sets. 

• A tool that generates phrase-based KWlC ("key- 

word in context") reports to help the user identify 

common patterns in the markup. 

• A procedure that generates word lists based on their 

frequency. This tool also measures the degree to 

which a word occurs in different markup contexts. 

• A visualization component for viewing inter- 

annotator (or key/answer) agreement. 

• A scorer that allows arbitrary SGML markup to be 

selected for scoring. 
• A full-featured interface to the multi-stage 

architecture of the Alembic text processing system. 

• An interface to Alembic's phrase-rule learning 

system for generating new application-specific rule 

sets. 
• The Alembic Workbench also provides specialized 

interfaces for supporting more complex, linked 

markup such as that needed for coreference. Another 



interface is geared towards capturing arbitrary n-ary 

relations between tagged elements in a text (these 
have been called "Scenario Templates" in MUC). 

More details about the implementation of the 
Workbench are provided in Section 7. 

The development of the Alembic Workbench environ- 
ment came about as a result of MYrRE's efforts at 

refining and modifying our natural language processing 

system, Alembic [1,7], to new tasks: the Message 
Understanding Conferences (MUC5 and MUC6), and the 

TIPSTER Multi-lingual Entity Task (MET1). (See [6] 

for an overview and history of MUC6 and the ''Named 

Entity Task".) The Alembic text processing system 
applies Eric Brill's notion of ru/e sequences [2,3] at 

almost every one of its processing stages, from part-of- 
speech tagging to phrase tagging, and even to some 

portions of semantic interpretation and inference. 

While its name indicates its lineage, we do not view the 

Alembic Workbench as wetkkxt to the Alembic text 

processing system alone. We intend to provide a well- 
documented API in the near future for external utilities 

to be incorporated smoothly into the corpus/system 
development environment. We envision two classes of 

external utilities: tagging utilities and analysis utilities. 

By integrating other tagging modules (including 

complete NLP systems), we hope those systems can be 
more efficiently customized when the cycle of analysis, 
hypothesis generation and testing is tightened into a 

well-integrated loop. The current version of the tool 

supports viewing, annotating and analyzing documents 
in 7-bit, 8-bit and 2-byte character sets. Current 

support includes the Latin-1 languages, Japanese (JIS), 
Chinese (GB1232), Russian, Greek and Thai. 

3. Increasing manual annotation productivity 
through pre-tagging 

A motivating idea in the design of the Alembic 

Workbench is to apply any available information as 
early and as often as possible to reduce the burden of 

manual tagging. In addition to careful interface design 

and support for user-customization, a core mechanism 
for enhancing this process is through pre-tagging. 

The generation of reliably tagged text corpora requires 
that a human annotator read and certify all of the 

annotations applied to a document. This is especially 
true if the annotations are to be used for subsequent 
manual or automatic training procedures. However, 

much of the drudgery of this process can be removed if 
the most obvious and/or oft-repeated expressions can be 
tagged prior to the annotator's efforts. One way of 

doing this is to apply tags to any and all strings in a 

document that match a given string. This is the nature 
of the "auto-tagging ~' facility built-in to the Workbench 

interface. For example, in annotating journalistic 
document collections with "Named Entity" tags, one 
might want to simply pre-tag every occurrence of 
"President Clinton" with Person.. ~ Of course, these 

actions should be taken with some care, since mis- 
tagging entities throughout a document might actually 
lead to an increase in effort required to accurately fix or 

remove tags in the document. 

A more powerful approach is to allow patterns, or rules, 

to form the basis for this pre-tagging. The Alembic 

phrase-rule interpreter provides the basis for developing 

rule-based pre-tagging heuristics in the Workbench. In 

the current version of the Workbench, the user is free to 
compose these "phraser" rules and group them into 

specialized rule sets. Figure 2 shows an example 
sequence of rules that could be composed for pre-tagging 

a corpus with Person tags. The Brill control regime 

interprets these rules strictly sequentially: rule n is 
applied wherever in the text it can be; it is then 

discarded and rule n+l is consulted. There is no 

unconstrained forward chaining using a "soup" of rules 

as in a standard production (or rule-based) system. The 

Alembic "phraser" rule interpreter has been applied to 
tagging named entities, sentence chunks, simple entity 

relations ("template element" in the parlance of MUC6), 
and other varieties of phrases. 

(def-phraser-rule 
:anchor :lexeme 
:conditions (:left-1 :lex (=Mr." =Ms." "Dr." ...)) 
:actions (:create-phrase :person)) 

(def-phraser-rule 
:conditions (:phrase :phrase-label :person) 

(:right-1 :pos :NNP) 
:actions (:expand :right-I)) 

Figure 2. An example Alembic role sequence that (1) 
produces Person phrases around any word immediately to 
the fight of a title and/or honorific, and then (2) grows the 
extent of the phrase to the fight one lexeme, if that word i s 
a proper noun. 

4. Mixed-initiative text annotation 

In addition to allowing users to define pre-tagging rules, 
we have developed a learning procedure that can be used 

to induce these rules from small training corpora. 
Operationally, an annotator starts by generating a small 

initial corpus and then invokes the learner to derive a set 
of pre-tagging rules. These rules can then be applied to 

new, unseen texts to pre-tag them. Figure 3 illustrates 
this bootstrapping cycle. 

i The Named Entity task from MUC6 consists of adding 
tags to indicate expressions of type Person, Location, 
Organization, Date, Time and Money, see [6]. 
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The earlier we can extract heuristic rules on the basis of 

manually tagged data, the earlier the user can be relieved 

from some portion of the chore of physically marking 

up the text--the user will need to edit and/or add only a 

fraction of the total phrases in a given document. In 

our experience of applying the Alembic phrase rule 

learner to named-entity and similar problems, our error- 
reduction learning method requires only modest amounts 

of training data. (We present performance details in 
Section 6.) 

Unprocessed material 

Iflc 
B$ 

Training)Testing corpora 

Figure 3. The Alembic Workbench seeks to involve 

the user in a corpus development cycle, making use of 

pre-tagging facilities, analysis facilities, and the 

automatic generation of pre-tagging rule sets through 
machine learning. 

As the human annotator continues generating reliable 

training data, she may, at convenient intervals, re- 

invoke the learning process. As the amount of training 

data increases, the performance of the learned rules tends 

to increase, and so the amount of  labor saved in pre- 

tagging subsequent training data is further increased. 

The bootstrapping effect tends to increase over time. 

For the "named entity" task in MUC6 approximately 

25,000 words were provided as annotated training data 

by the conference organizers ("formal training" and 

"dryrun" data sets). Prior to developing the Alembic 

Workbench, we were able to use this amount of  data in 

Alembic to generate a system performing at 85.2 P&R 

on unseen test data. 2 Based on the tagging rates we 

have measured thus far using the Workbench, it would 

take somewhere between 1.5 to 2.5 hours to tag these 
25,000 words of data. 

There is a limit on how much one can reduce the time- 

requirements for generating reliable training data--this 

is the rate required by a human domain expert to 

carefully read and edit a perfectly pre-annotated training 

corpus. Training data cannot be generated without this 

2 P&R (or F-measure) is a weighted combination of recall 
and precision. 

human investment. 3 Indeed, in situations where the 

quality of the data is particularly important (as it is in, 

say a multi-system evaluation such as MUC), it is 

typical that multiple reviews of the same corpus is 

performed by various annotators, especially given the 

known ambiguity of any annotation task definition. 

5. Manual refinement of automatically 
derived pre-tagging heuristics 

In the previous section we presented our approach to 

mixed-initiative corpus development and tagging 

heuristics without assuming any sophistication on the 

part of the human user beyond a clear understanding of 

the information extraction task being addressed. 

Usually, however, even a lay end-user is likely to have 

a number of intuitions about how the un-annotated data 

could be pre-tagged to reduce the burden of manual 

tagging. Hand-coded rules can be applied in concert 

with the machine-derived rules mentioned earlier. One 

way this can be done is by invoking the rule learning 

subsequent to the application of the hand-cxxted pre- 

tagging rules. On the other hand, if the user notices a 

consistent mistake being made by the machine-learned 

rules early in the bootstrapping process, the user can 

augment the machine-derived rule sequence with 

manually composed rules. In fact, every rule composed 

by the learning procedure is completely inspectable by 

the user, and so some users may want to modify 

individual machine-derived rules, perhaps to expand their 

generality beyond the particular data available in the 

emerging corpus. 

This is another way, then, that the Alembic Workbench 

environment enables and encourages the mixed, or 

cooperative, application of human and machine skills to 

the combined task of developing a domain-specific 

corpus and set of extraction heuristics. 

Of course, composing rules is somewhat akin to 

programming, and not all users will be inclined, or 

well-equipped, to become involved in this process. One 

impediment to end-users composing their own rules is 

the particular syntax of Alembic's phraser rules, so we 

anticipate exploring other, simpler rule languages that 

will encourage end-user participation. Another approach 

that we are interested in exploring involves supporting 

more indirect feedback or directives from the user that 

are rooted more closely to examples in the data. 

3 This is not to say that high-quality machine-tagged data 
cannot be generated faster than this, and that these data 
may indeed be helpful in the learning procedure of some 
other systems. But all such data will remain suspect as far 
as being considered part of an annotated training corpus 
until inspected by a human, given the vagaries of genre and 
style that can easily foil the most sophisticated systems. 
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Similarities and differences between manual 

and automatic rule formation 

The automatic rule-learuing procedure uses a generate- 

and-test approach to learn a sequence of rules. A set of 
rule schemata, defining a set of possible rule instances 

determines the rule space that the learning procedure 

explores. The learner uses indexing based on the actual 
data present in the corpus to help it explore the rule 

space efficiently. The learning process is initiated by 

deriving and applying an initial labeling function based 

on the differences between an un-annotated version and a 

correctly annotated version of the corpus. Then, during 
each learning cycle, the learner tries out applicable rule 

instances and selects the rule that most improves the 

score when applied to the corpus. The score is 
determined by evaluating the corpus as currently 
annotated against the correctly annotated version, using 

some evaluation function (generally precision, recall or 

F-measure). The corpus annotation is updated by 
applying the chosen rule, and the learning cycle repeats. 

This cycle is continued until a stopping criterion is 

re, ached, which is usually defined as the point where 

performance improvement falls below a threshold, or 
ceases. Other alternatives include setting a strict limit 

on the number of rules, and testing the performance 

improvement of a rule on a corpus distinct from the 

training set. 

Of course, there are two important advantages that a 

human expert might have over the machine algorithm: 

linguistic intuition and world knowledge. Rules that 
include references to a single lexeme can be expanded to 

more general applicability by the human expert who is 
able to predict alternatives that lie outside the current 
corpus available to the machine. By supporting 

multiple ways in which rules can be hypothesized, 

refined and tested, the strengths of both sources of 

knowledge can be brought to bear. 

6. Experimental Results 

We are still in the early stages of evaluating the 

performance of the Alembic Workbench along a number 

of different dimensions. However, the results from early 

experiments are encouraging. Figure 4 compares the 
productivity rates using different corpus development 
utilities. These are indicated by the four categories on 

the X-axis: (1) using SGML-mode in emacs (by an 

expert user); (2) using the Workbench interface and 
"auto-tag" string-matching utility only; (3) using the 

Workbench following the application of learned tagging 

rules derived from 5 short documents--approximately 
1,500 words, and (4) using the Workbench following 

the application of learned tagging rules again, but this 

time with the learned rules having trained on 100 
documents (approximately 48,000 words), instead of 

only five documents. 

As can be seen in these experiments, there is a clear 
increase in the productivity as a function of both the 

user interface (second column) and the application of 

pre-tagging rules (third and fourth columns). The large 

step in performance between columns three and four 
indicate that repeated invocation of the learning process 

during the intermediate stages of the corpus 

development cycle will likely result in acceleration of 

the annotation rate. (As it happens, these results are 

probably underestimating the pre-tagging productivity. 

The reason for this is that the version of the Workbench 
used was not yet able to incorporate date and time 

annotations generated by a separate pre-processing step; 

this date and time tagger performs at an extremely high 

level of precision for this genre---in the high nineties 
P&R.) These initial experiments involved a single 

expert annotator on a single tagging task (MUC6 named 
entity). The annotator was very familiar with the 

tagging task. 
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Figure 4. Two measures of corpus annotation 
productivity using the Alembic Workbench. The X-axis 
indicates what kind of corpus-development utilities were 
used: (1) SGMl.,-mode of emacs text editor; (2) Workbench 
(AWB) manual interface only, (3) AWB rule-learning 
bootstrap method with 5-document training set; (4) AWB 
rule-learning bootstrap method with 100-document 
trainin[ set. See discussion in text. 

To place this in the perspective of the human annotator, 
after only about 15 minutes of named entity tagging, 

having annotated some 1,500 words of text with 
approximately 150 phrases, the phrase rule learner can 

derive heuristic rules that produce a pre-tagging 

performance rate (P&R) of between 50 and 60 percent. 
Of course, this performance is far short of what is 

needed for a practical extraction system, but it already 

constitutes a major source for labor savings, since 
50 to 60 percent of the annotations that need to be 

moused (or clicked) in are already there. Since the 

precision at this early stage is only around 60 percent, 
there will be extra phrases that need (1) to be removed, 
(2) their assigned category changed (from, say, 
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organization to person), or (3) their boundaries adjusted. 

It turns out that for the first two of these kinds of 

precision errors, the manual corrections are extremely 

quick to perform. (Boundaries are not really difficult to 

modify, but the time required is approximately the same 
as inserting a tag from scratch.) In addition, making 

these corrections removes both a precision and a recall 

error at the same time. Therefore, it turns out that even 

at this very early stage, the modest pre-tagging 

performance gained from applying the learning 

procedure provides measurable performance 

improvement. 

In order to obtain more detailed results on the effect of 

pre-tagging corpora, we conducted another experiment in 

which we made direct use of the iterative automatic 

generation of rules from a growing manually-tagged 

corpus. Using the same skilled annotator, we 

inlroduced a completely new corpus for which named- 

entity tagging happened to be needed within our 

company. We randomly divided approximately 50 

documents of  varying sizes into five groups. The word 

counts for these five groups were: Groupl: 19,300; 

Group2: 13,800; Group3: 6,3130; Group4: 15,800; 

Group5: 8,000; for a total of 63,000 words. After 

manually tagging the first group, we invoked the rule 

learning procedure. Applying the learning procedure on 

each training set required two to three hours of elapsed 

time on a Sun Sparc Ultra. The new tagging rules were 
then applied to the next ten documents prior to being 

manually tagged/edited. This enlarged corpus was then 

used to derive a new rule set to be applied to the next 

group of documents, and so on. A summarization of 

the results are presented in Figure 5. 

Clearly, more experiments are called for we plan to 

conduct these across different annotators, task types, and 

languages, to better evaluate productivity, quality and 

other aspects of the annotation process. 

It is extremely difficult to control many of the features 

that influence the annotation process, such as the 

intrinsic complexity of the topic in a particular 

document, the variation in tag-density (tags per word) 

that may occur, the user's own training effect as the 

structure and content of documents become more 

familiar, office distractions, etc. In order to gain a 

better understanding of the underlying tagging 

performance of the rule learner, and so separate out 

some of these human factors issues, we ran an 

automated experiment in which different random subsets 

of sentences were used to train rule sets, which were 

then evaluated on a static test corpus. The results 

shown in Figure 6 give some indication of the ability 

of the rule-sequence learning procedure to glean useful 

generalizations from meager amounts of training data. 
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Figure 5. Tagging productivity gains with the 
incremental application of automatically acquired rule sets. 

The first observation we make is that there is a clear and 

obvious direction of improvement--by the time 30 

documents have been tagged, the annotation rate on 

Group 4 has increased considerably. It is important to 

note, however, that there is still noise in the curve. In 

addition, the granularity is perhaps still too coarse to 

measure the incremental influences of pre-tagging rules. 

Figure 6. Performance of learned miss on independent 
test set of 662 sentences. 

Average Performance of Learned Rules as 

a Function of Training Set Size 
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Figure 7. Averaged F-measure performance figures. 

One clear effect of increasing training set size is a 

reduction in the sensitivity of the learning procedure to 

particular training sets. We hypothesize that this effect 
is partly indicative of the generalization behavior on 

which the learning procedure is based, which amplifies 
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the effects of choosing more or less representative 
training sentences by chance. Since the learning 

process is not merely memorizing phrases, but 

generating contextual rules to try to predict phrase types 
and extents, the rules are very sensitive to extremely 
small selections of training sentences. Figure 7 shows 

the F-measure performance smoothed by averaging 
neighboring data points, to get a clearer picture of the 

general tendency. 

We should note that the Alembic Workbench, having 
been developed only recently in our laboratory, was not 

available to us in the course of our effort to apply the 

Alembic system to the MUC6 and MET tasks. 

Therefore we have not been able to measure its 
influence in preparing for a particular new text 

processing task. We intend to use the system to prepare 
for future evaluations (including MUC7 and MET2) and 

to carefully evaluate the Alembic Workbench as an 
environment for the mixed-initiative development of 
information extraction systems in multiple languages. 

7. Implementation 

The Alembic Workbench interface has been written in 

Tci/Tk. Some of the analysis and reporting utilities 
(available from within the interface as well as Unix 

command-line utilities) are written in Perl, C or Lisp. 

The separate Alembic NLP system consists of C pre- 

processing taggers (for dates, word and sentence 

tokenizafion and part-of-speech assignments) and a Lisp 

image that incorporates the rest of Alembic: the phrase- 
rule interpreter, the phrase rule learner, and a number of 

discourse-level inference mechanisms described in [8]. 

This code currently runs on Sun workstations running 
Sun OS 4.1.3 and Solaris 2.4 (Sun OS 5.4) and greater; 

we have begun porting the system to Windows 
NT/Windows 95. We anticipate providing an API for 

integrating other NLP systems in the near future. 

The Workbench reads and saves its work in the form of 
SGML-encoded files, though the original document need 

not contain any SGML mark-up at all. These files me 
parsed with the help of an SGML normalizer. 4 During 

the course of the annotation process the Workbench 
uses a "Parallel Tag File" (PTF) format, which 

separates out the embedded annotations from the source 

text, and organizes user-defined sets of annotations 
within distinct "tag files." While these files are 

generally hidden from the user, they provide a basis for 

the combination and separation of document annotations 
("tagsets") without needing to modify or otherwise 

disturb the base document. This allows the user to view 

4 In cases where documents use some of the more complex 
aspects of SGML, the user supplies a Document Type 
Description (DTD) file for use in normalization. For simple 
SGML documents, or documents with no original SGML 
markup at all, no DTD needs to be specified. 

only Named Entity tags, or only tokenization tags, or 

any desired subset of tagsets. Thus, the Workbench is 
written to be TIPSTER-compliant, though it is not 

itself a document manager as envisioned by that 
architecture (see [5]). We anticipate integrating the 
Workbench with other TIPSTER compliant modules 

and document managers via the exchange of SGML- 

formatted documents. The Parallel Tag File (PTF) 
format used by the Workbench provides another means 

by which a translator could be written. 

8. Future Work 

Broadly defined, there are two distinct types of users 
who we imagine will find the Workbench useful: NLP 

researchers and information extraction system end-users. 

While our dominant focus so far has been on supporting 
the language research community, it is important to 

remember that new domains for language processing 
generally, and information extraction in particular, will 
have their own domain experts, and we want the text 

annotation aspects of the tool to be quite usable by a 
wide population. In this vein we would like to enable 

virtually any user to be able to compose new patterns 

(rules) for performing pre-tagging on the data. While 

the current rule language has a simple syntax, as well as 
an extremely simple control regimen, we do not 

imagine all users will want to engage directly in an 

exploration for pre-tagging rules. A goal for our future 

research is to explore new methods for incorporating 

end-user feedback to the learning procedure. This 

feedback might include modifying a very simplified 
form of a single rule for greater generality by 

integrating thesauri to construct word-list suggestions. 

We also would like to give users immediate feedback as 
to how a single rule applies (correctly and incorrectly) 

to many different phrases in the corpus. 

In this paper we have concentrated on the named entity 

task as a generic case of corpus annotation. Of course, 

there are many different ways in which corpora are being 
annotated for many different tasks. Some of the specific 

extensions to the user interface that we have already 
begun building include part-of-speech tagging (and 

"dense" markup more generally), and full parse syntactic 
tagging (where we believe reliable training data can be 

obtained much more quickly than heretofore). In these 
and other instances the tagging process can be 

accelerated by applying partial knowledge early on, 
transforming the task once again into that of editing and 

correcting. Most of these tagging tasks would be 
improved by making use of methods that preferentially 

select ambiguous data for manual annotation--for 
example, as described in [4]. 

There are a number of psychological and human factors 
issues that arise when one considers how the pre- 

annotated data in a mixed-initiative system may affect 
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the human editing or post-processing. If the pre- 
tagging process has a relatively high recall, then we 
hypothesize that the human will tend increasingly to 
trust the pre-annotations, and thereby forget to read the 
texts carefully to discover any phrases that escaped 
being annotated. A similar effect seems possible for 
relatively high precision systems, though proper 
interface design (to highlight the type assigned to a 
particular phrase) should be able to mitigate these 
tendencies. A more subtle interaction is "theory creep," 
where the heuristics induced by the machine learning 
component begin to be adopted by the human annotator, 
due, in many cases, to the intrinsic ambiguity of 
defining annotation tasks in the first place. In all of 
these cases the most reliable method for detecting these 

human/machine interactions is probably to use some 
representative sub-population of the corpus documents 
to measure and analyze the inter-annotator agreement 
between human annotators who have and who have not 
been exposed to the machine derived heuristics for 
assigning annotations. 

9. C o n c l u s i o n s  

On the basis of observing our own and others' 
experiences in building and porting natural language 
systems for new domains, we have come to appreciate 
the pivotal role played in continuous evaluation 
throughout the system development cycle. But 
evaluation rests on an oracle, and for text processing, 
that oracle is the training and test corpora for a 
particular task. This has led us to develop a tailoring 
environment which focuses all of the available 
knowledge on accelerating the corpus development 
process. The very same learning procedure that is used 
to bootstrap the manual tagging process leads 
eventually to the derivation of tagging heuristics that 

can be applied in the operational setting to unseen 
documents. Rules derived manually, automatically, and 
through a combination of efforts have been applied 
successfully in a variety of languages, including 
English, Spanish, Portuguese, Japanese and Chinese. 

The tailoring environment, known as the Alembic 
Workbench, has been built and used within our 
organization, and we are making it available to other 
organizations involved in the development of language 
processing systems and/or annotated corpora. Initial 
experiments indicate an significant improvement in the 
rate at which annotated corpora can be generated using 
the Alembic Workbench methodology. Earlier work 
has shown that with the training dat~ obtained in the 
course of only a couple of hours of text annotation, an 
information extraction system can be induced purely 
automatically that achieves a very competitive level of 
performance. 
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