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ABSTRACT The extended ant colony known as Mixed Integer Distributed Ant Colony Optimization 
(MIDACO) is presented in this paper as a new application of solving multi-objective single-tuned passive 
filters design problems. This paper presents a new non-dominated solution for the optimization of four 
independent objective functions which are maximized power factor, minimized total harmonic voltage 
distortion, minimized total demand distortion and minimized investment cost of the filter. The global solution 
is achieved by maintaining the quality factor of the filter in a specified range, avoiding the harmonic 
resonance and maintaining the capacitor’s capability limits within the standard limits. The attained parameters 
of the filter are used to weigh the performance of the system, and the robustness of the proposed algorithm is 
verified by comparing the results with three different highly competitive evolutionary techniques. Also, the 
proposed algorithm attains the Pareto front of the problem and tolerates the selection of its parameters to the 
most effective solution. The numerical results specify the comprehensive passive filter design through 
possible multi-objective approaches, and the improvements of multi-objective over single-objective 
optimization are also presented in this paper. 

INDEX TERMS Power quality, harmonics, multi-objective optimization, ant colony optimization, passive 
filter.

I.  NOMENCLATURE 
 
𝑋𝑋𝐿𝐿 Inductive reactance (ohms) 
𝑋𝑋𝐶𝐶  Capacitive reactance (ohms) 

𝑅𝑅 Intrinsic resistance of inductance 
(ohms) 

𝑃𝑃𝐿𝐿 Load power (W) 
𝐼𝐼𝑆𝑆 RMS source current (A) 
𝐼𝐼𝑆𝑆𝑆𝑆  K-th harmonic number of source 

current (A) 
𝐼𝐼𝐿𝐿 Maximum current demand at PCC 

(A) 
VL Load voltage in RMS (V) 
𝑉𝑉𝐿𝐿𝑆𝑆  K-th harmonic number of Load 

voltage (V) 
𝜃𝜃𝑆𝑆 K-th angle of load voltage (rad) 
𝜙𝜙𝑆𝑆 K-th angle of line current (rad) 
𝑘𝑘𝐶𝐶  cost coefficients of capacitor ($/kvar) 

𝑘𝑘𝐿𝐿 cost coefficients of inductor($/kvar) 
𝑘𝑘𝑅𝑅  cost coefficients of resistor ($/kW) 
𝑄𝑄𝐶𝐶  Reactive power of capacitor (kvar) 
𝑄𝑄𝐿𝐿 Reactive power of inductor (kvar) 
𝑃𝑃𝑅𝑅 Power of resistor (kW) 
ℎ Harmonic order 
ℎ𝑟𝑟  Harmonic order activating resonance 
𝑈𝑈𝑖𝑖 ,𝑁𝑁𝑖𝑖  Utopia and Nadir 

𝑑𝑑𝑖𝑖
𝑗𝑗(𝑥𝑥) Weighted distance 

𝐷𝐷𝑗𝑗(𝑥𝑥) Average distance 
𝐵𝐵𝑗𝑗  Balance parameter 
𝑇𝑇𝑗𝑗(𝑥𝑥) Objective function T 
𝑅𝑅𝑇𝑇𝑇𝑇1,𝑋𝑋𝑇𝑇𝑇𝑇1 Thevenin resistance and reactance (Ω) 
𝑅𝑅𝐿𝐿1,𝑋𝑋𝐿𝐿1 Load resistance and reactance (Ω) 
Npop Size of ants 
k Number of kernel 
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Ω Oracle parameter 
𝑉𝑉𝐶𝐶  Capacitor voltage in RMS (V) 
𝑉𝑉𝐶𝐶𝐶𝐶 Peak capacitor voltage (V) 
𝐼𝐼𝐶𝐶  Capacitor current in RMS (A) 
𝑄𝑄𝐶𝐶  Reactive power of capacitor (kvar) 
QF Quality factor 
MAXEVAL Maximum number of function 

evaluation. 
𝑃𝑃𝑃𝑃 Power factor 
THDV Total harmonic voltage distortion 
𝑇𝑇𝐷𝐷𝐷𝐷 Minimum total demand distortion 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Investment cost of the filter 
PARETOMA
X Maximum number of pareto point 

EPSILON Precision pareto-dominance filter 
BALANCE Search effort on the part of the Pareto 

front 
 
II.  INTRODUCTION 
 
The wide use of nonlinear loads in power systems results in 
increasing power quality problems such as harmonic 
pollution with consequences to power losses in electrical 
equipment, communication interference and even damage. 
Harmonic distortion causes unnecessary heat in the 
equipment, transformer overheating, nuisance tripping of 
circuit breakers and overstressing of power factor correction 
capacitors [1]. Therefore, it becomes a main concern to 
engineers to solve power quality issues, resonances problem 
and power system harmonic estimation to maintain the 
productivity and stability of industrial applications [2]–[4]. 
There are three types of filters that have been studied to 
eliminate the harmonic disturbances: passive [5]–[7], active 
[8]–[10] and hybrid [11], [12] power filters. The passive 
power filter (PPF) is the most favored method for harmonic 
mitigation when compared to the other techniques because 
of its design which is robust, simple and less expensive with 
almost maintenance-free operation. Furthermore, PPF also 
acts as reactive power compensation to the system, which 
helps improve the power factor and in the same time can 
reduce losses [13], [14]. Its nature has inspired many 
researchers to provide effective ways to solve problems 
including PPF designs where the optimization is classified as 
single-objective [15]–[18] and multi-objective [19]–[21]. 
This is not an easy task for engineers in designing of PPF 
because there are measurements, conditions and practical 
standards that must be carefully considered.  
The goal of this paper is to find an optimal multi-objective 
single-tuned passive filter design using software which is 
motivated by behavior of ants proposed by Martin [22], [23]. 
There are various ant colony optimization (ACO) have been 
proposed to solve multi-objective problems [24], [25]. 
However, MIDACO uses the concept of utopia-nadir 
balance which is different from other traditional multi-
objective methods where the algorithm focuses its search 
effort on a particular area of the Pareto front [26], [27]. 

Unlike the typical technique which alters the objectives 
using an appropriate scaling/weighting factor method, 
MIDACO automatically measures those values for its 
internal algorithmic procedures [27].  
Some previous studies resolve the multi-objective problem 
by explaining each of the objectives individually [15]–[18], 
this paper works on non-dominated solutions for the 
optimization of four independent objective functions: 1) 
maximized power factor, 2) minimized total harmonic 
voltage distortion, 3) minimized total demand distortion and 
4) minimized investment cost of the filter. The set of filters 
is designed considering that the values of the filter will avoid 
harmonic resonances, the filter is in the specified range of 
the quality factor, and as well as the values of the practical 
capacitor follow the IEEE standard [28]. The outcomes of 
multi-objective optimization over single-objective 
optimization are also discussed in this paper. Finally, the 
proposed methods are compared with three other optimizers 
in power quality areas which are genetic algorithm (GA), 
Non-dominated sorting Genetic Algorithm (NSGA-II) and 
Multi Objective Particle Swarm Optimization (MOPSO). 
The comparisons of performances between all methods are 
evaluated, and the robustness of the suggested algorithm is 
proved through simulation results.  

III.  OPTIMIZATION PROBLEM 
The harmonic circuit model of a bus consisting of a single-
tuned filter, linear and nonlinear loads involved in this study 
is presented in Fig. 1. The filter provides low impedance path 
to the system restricting the harmonic current source to go to 
the Thevenin’s impedance, RTHK + jXTHK, and must be 
confined to flow to the impedance of the filter. 

A. OBJECTIVE FUNCTIONS 
The presented optimization problem can be formalized 
through four objectives: maximize the power factor, 
minimize the total harmonic voltage distortion, minimize the 
total demand distortion, and minimize the cost of the filter.  
 
After some complex mathematical modeling equations, the 
different criteria are given in (1)– (4), described as follows:
   
1) MAXIMUM POWER FACTOR, PF 
 

𝑃𝑃𝑃𝑃 =
𝑃𝑃𝐿𝐿
𝐼𝐼𝑆𝑆𝑉𝑉𝐿𝐿

 =
∑𝑉𝑉𝐿𝐿𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆 𝑐𝑐𝐶𝐶𝐶𝐶 (𝜃𝜃𝑆𝑆 − 𝜙𝜙𝑆𝑆)

�∑𝐼𝐼𝑆𝑆𝑆𝑆2 ∑𝑉𝑉𝐿𝐿𝑆𝑆2
 (1) 

 
where PL, VL and IS are load power, load voltage and current 
source, respectively. VLK  and ISK are load voltage and current 
source, respectively, at the Kth harmonic order. Also, 
θ𝑆𝑆 , 𝜙𝜙𝑆𝑆 are the angles of VLK  and ISK in rad, respectively. 
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FIGURE 1.  The system under study 

 
2) MINIMUM TOTAL HARMONIC VOLTAGE 
DISTORTION, THDV 

𝑇𝑇𝑇𝑇𝐷𝐷𝑉𝑉 =
�∑ 𝑉𝑉𝐿𝐿𝑆𝑆2𝑆𝑆>1

𝑉𝑉𝐿𝐿1
 (2) 

where 𝑉𝑉𝐿𝐿1 is the load voltage at the fundamental frequency. 
 
3) MINIMUM TOTAL DEMAND DISTORTION, TDD 
 

𝑇𝑇𝐷𝐷𝐷𝐷 =
�∑ 𝐼𝐼𝑆𝑆𝑆𝑆2𝑆𝑆>1

𝐼𝐼𝐿𝐿
 (3) 

where 𝐼𝐼𝐿𝐿 is the maximum current demand at point of 
common coupling (PCC). 
 
4) MINIMUM INVESTMENT COST OF THE FILTER, 
COST 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑘𝑘𝐶𝐶 .𝑄𝑄𝑐𝑐 + 𝑘𝑘𝐿𝐿 .𝑄𝑄𝐿𝐿 + 𝑘𝑘𝑅𝑅 .𝑃𝑃𝑅𝑅
𝑆𝑆=1

 (4) 

where the cost coefficients of the filter are given by 𝑘𝑘𝐶𝐶  
($/kvar), 𝑘𝑘𝐿𝐿 ($/kvar) and 𝑘𝑘𝑅𝑅  ($/kW). The total of the filter 
cost including the price of capacitors, inductors and resistors 
is proportional to the powers of the different elements of the 
filters, 𝑄𝑄𝑐𝑐, 𝑄𝑄𝐿𝐿 and 𝑃𝑃𝑅𝑅 respectively [19]. 
 
 
 
 

B. CONSTRAINTS 

This optimization includes some constraints including the 
practical capacitor following the standard, the quality factor, 
and the resonance constraints. 
By complying with IEEE Std 18-2012 [28], overloading of 
the capacitors should be avoided for reliability and proper 
circuit operation of the system. This can be done by setting 
rms capacitor voltage (𝑉𝑉𝐶𝐶), peak capacitor voltage (𝑉𝑉𝐶𝐶𝐶𝐶), 
nominal current (𝐼𝐼𝐶𝐶) and reactive power (𝑄𝑄𝐶𝐶) less than 
110%, 120%, 135% and 135%, correspondingly.  
Also, the value of quality factor 𝑄𝑄𝑃𝑃 is important, and it needs 
to be measured where low value of 𝑄𝑄𝑃𝑃 has high resistance 
which results in increasing the power losses within the filter. 
Therefore, there are standard limitations considered in this 
paper to limit 𝑄𝑄𝑃𝑃. It is specified between 20 to 100 [29]. 
In addition, the amplification of current and voltage caused 
from series and parallel resonance respectively will result in 
damage to the circuit. The problems related with both 
resonances are usually caused from filter detuning where the 
common mechanisms are capacitor fuse blowing, 
capacitance and inductance manufacturing tolerance, 
temperature and system variants. Therefore, it is becoming 
beneficial for the filter to avoid the resonances by tuning 3–
10% from the desired harmonic frequency, and the harmonic 
order activating resonance is always less than tuned 
harmonic order [3], [29]. 

On the basis of the description above, the paper’s multi-
objective problem can be formulated as below: 

𝑓𝑓1(𝑥𝑥) 𝑃𝑃𝑃𝑃(𝑅𝑅,𝑋𝑋𝐶𝐶 ,𝑋𝑋𝐿𝐿) 
𝑓𝑓2(𝑥𝑥) 𝑇𝑇𝑇𝑇𝐷𝐷𝑉𝑉(𝑅𝑅,𝑋𝑋𝐶𝐶 ,𝑋𝑋𝐿𝐿) 
𝑓𝑓3(𝑥𝑥) 𝑇𝑇𝐷𝐷𝐷𝐷(𝑅𝑅,𝑋𝑋𝐶𝐶 ,𝑋𝑋𝐿𝐿) 
𝑓𝑓4(𝑥𝑥) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅,𝑋𝑋𝐶𝐶 ,𝑋𝑋𝐿𝐿) 

 

Subject to: 
Capacitor Capability Limits follows IEEE Std 18-2012 
ℎ is tuned 9% from the desired harmonic frequency 

ℎ > ℎ𝑟𝑟  
20 ≤ 𝑄𝑄𝑃𝑃 ≤ 100    
                                       

where ℎ and ℎ𝑟𝑟  are harmonic order and harmonic order 
activating resonance, respectively. 

 
IV.  PROPOSED APPROACH 
The high-performance MIDACO technique is employed as 
an optimization tool to solve the multi-objective problem 
formulation. The software is an innovative optimization 
solver, where the software implements an extended ant 
colony optimization (ACOmi) combined with the oracle 
penalty method for constraint handling [22], [23]. To solve 
the multi-objective problem, MIDACO applies the concept 
of utopia-nadir balance, which is different from multi-
objective since they consider four or more objectives [30].  
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FIGURE 2.  Flowchart of multi-objective optimization 
using MIDACO 
 
MIDACO implements the extension of ACO metaheuristics, 
where the algorithm is based on stochastic Gauss 
approximation technique. Instead of a pheromone table, the 
methodology is based on pheromone-controlled probability 

functions (PDFs) where the advantage of ACOmi can be 
seen in [22]. There are two parameters implemented in the 
proposed algorithm, which are ants (𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝) and kernels (k).  
The penalty method is simple and easy to use. However, the 
use of this method often becomes a challenging problem 
because it is difficult to gain adequate performance. 
Therefore, MIDACO introduced the oracle penalty method 
to handle constraints [23]. For a given constrained problem, 
this method adjusts just one single parameter, called the 
oracle (Ω), where the parameter aims to find equal or slightly 
better global solutions. For multi-objective problems, the 
proposed concept is created from the utopia-nadir balance, 
where the utopia 𝑈𝑈𝑖𝑖 and nadir 𝑁𝑁𝑖𝑖  are formally defined as 
following [26]: 

𝑈𝑈𝑖𝑖 = min  {𝑓𝑓𝑖𝑖(𝑥𝑥)∀𝑥𝑥𝑥𝑥ℱ} (6) 

𝑁𝑁𝑖𝑖 = max  {𝑓𝑓𝑖𝑖(𝑥𝑥)∀𝑥𝑥 ∶  ∃𝑘𝑘 ≠ 𝑈𝑈𝑘𝑘} (7) 

where 𝑓𝑓𝑖𝑖(𝑥𝑥) is the global minimum of the respective 
objective among all solutions 𝑥𝑥. Different from the utopia, 
the nadir 𝑁𝑁𝑖𝑖  represents the worst objective function where 
𝑓𝑓𝑖𝑖(𝑥𝑥) corresponds to the utopia 𝑈𝑈𝑘𝑘 of any other 
objective 𝑓𝑓𝑘𝑘(𝑥𝑥). 
From the information given in (6) and (7), MIDACO 
introduced the BALANCE parameter which is different from 
traditional multi-objective approaches in such regard. By 
default, this is the middle part of the Pareto front, as this part 
provides the best equally balanced trade-off between all 
individual objective functions. Besides, this parameter also 
can be tuned to any other part of the Pareto front [27], [30].  
The given weighted distance 𝑑𝑑𝑖𝑖

𝑗𝑗(𝑥𝑥) and average distance 
𝐷𝐷𝑗𝑗(𝑥𝑥) are defined in (8) and (9) below, respectively: 

𝑑𝑑𝑖𝑖
𝑗𝑗(𝑥𝑥) = 𝑤𝑤𝑖𝑖

𝑗𝑗 𝑓𝑓𝑖𝑖(𝑥𝑥) − 𝑈𝑈𝑖𝑖
𝑁𝑁𝑖𝑖 − 𝑈𝑈𝑖𝑖

 (8) 

𝐷𝐷𝑗𝑗(𝑥𝑥) =
∑ 𝑑𝑑𝑖𝑖

𝑗𝑗(𝑥𝑥)𝑀𝑀
𝑖𝑖=1

𝑀𝑀
 (9) 

Then, the balance parameter, 𝐵𝐵𝑗𝑗 , in (10) expresses the 
average distance to each objective of utopia and nadir, which 
described as following: 

𝐵𝐵𝑗𝑗(𝑥𝑥) = ��𝑑𝑑𝑖𝑖
𝑗𝑗(𝑥𝑥)

𝑀𝑀

𝑖𝑖=1
− 𝐷𝐷𝑗𝑗(𝑥𝑥)� (10) 

 
 
 
From (8)– (10), the objective function T can be defined as 

𝑇𝑇𝑗𝑗(𝑥𝑥) = �𝑑𝑑𝑖𝑖
𝑗𝑗(𝑥𝑥) + 𝐵𝐵𝑗𝑗(𝑥𝑥)

𝑀𝑀

𝑖𝑖=1

 (11) 

Yes 

No 

Yes 

No 

Set the bounds intervals: 
R, XL and XC 

Set input parameters 

Select adjustable parameter of 
MIDACO: Npop, k and Ω 

Evaluate objective function and 
constraints 

Feasible 
solution? 

Collect all non-dominated 
solutions 

End 

Start 

Select single-objective and all constraints 

Select adjustable parameter for multi-
objectives problem: BALANCE, 
PARETOMAX and EPSILON 

Solving 𝑇𝑇𝑗𝑗(𝑥𝑥)  

Feasible 
solution? 

Plot all Pareto optimal 
solutions 
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For multi-objective optimization, the main advantage of 
utopia-nadir balance in MIDACO is that the proposed 
algorithm focuses its search effort on a particular area of the 
Pareto front without needing to measure the amount of 
scaling/weighting factor and particularly highlights a single 
point of the Pareto front as the MIDACO solution. In 
addition, the parameter of PARETOMAX can be tuned to 
define the maximal number of non-dominated solutions, 
while EPSILON defines the precision used for its multi-
objective Pareto-dominance filter. Refer to Fig. 2 for the 
flowchart algorithm of MIDACO.  
 
V.  SIMULATED RESULTS 
The values of fundamental frequency supply voltage, short 
circuit power, 3-phase inductive load and reactive power 
involved in this study are given in Fig. 1. From the figure, 
the impedances of the single-phase equivalent circuit are 
𝑅𝑅𝑇𝑇𝑇𝑇1 = 0.01154 Ω, 𝑋𝑋𝑇𝑇𝑇𝑇1 = 0.1154 Ω, 𝑅𝑅𝐿𝐿1 = 1.742 Ω 
and 𝑋𝑋𝐿𝐿1 = 1.696 Ω. The voltage and current harmonic 
source, which are randomly selected and deliberate in this 
study, are given in Table I below. All the cost coefficients of 
the filter are given by 𝑘𝑘𝐶𝐶 = 0.05 $/kvar, 𝑘𝑘𝐿𝐿 = 250 $/kvar 
and 𝑘𝑘𝑅𝑅 = 100 $/kW [19]. 

 
TABLE I 

VOLTAGE AND CURRENT HARMONICS OF THE SYSTEM UNDER 
STUDY 

ℎ VSK (%VS1) ILK (A) 
5 5 33 
7 3 25 
11 2 8 
13 1 9 

Table II shows the summary of simulated results of multi-
objective optimization with different impacts of the 
BALANCE parameter.  

 
TABLE II 

SIMULATED RESULTS OF MULTI-OBJECTIVE OPTIMIZATION 
WITH DIFFERENT BALANCE PARAMETER 

Setting 1 2 3 4 5 6 
BALANC

E 
Parameter 

0 1.0 2.0 0.411
1 

0.963
1 

0.851
4 

XC 4.43 4.71 4.57 4.57 4.57 4.57 

R 0.009
3 

0.046
9 

0.009
4 

0.014
3 

0.009
2 

0.009
4 

XL 0.196
2 

0.186
8 

0.194
8 

0.188
1 

0.181
2 

0.190
9 

PF 95.43 93.54 94.69 94.32 93.85 94.48 
THDV 2.09 1.91 2.00 1.91 1.84 1.94 
TDD 1.55 1.84 1.63 1.72 1.82 1.68 
Cost 59677 60187 59013 59428 59692 59146 

 
 

 
 

a) BALANCE = 0 (default) d) BALANCE = 0.4111 

  
b) BALANCE = 1.0 e) BALANCE = 0.9631 

 
 

c) BALANCE = 2.0 f) BALANCE = 0.8514 
 

FIGURE 3.  The impact of the BALANCE parameter 
on the solution 
 
The parameter specifications used for controlling MIDACO 
as Npop, k, and Ω have been set to default where MIDACO 
will dynamically change Npop per generation, maximum k is 
fixed to 100 and Ω = 109. For multi-objective problems, 
the parameters PARETOMAX and EPSILON are set to 1000 
(default) and 0.0001, respectively. From Table II, the first 
setting is when the BALANCE parameter is set to 0 (default). 
For this setting, MIDACO will focus its search effort on the 
part of the Pareto front which offers best equally balanced 
trade-off between all objectives. For settings 2 and 3, the 
parameter is set to BALANCE = 1.0 or 2.0, where MIDACO 
will focus its search effort exclusively on the first and second 
objective, respectively. For settings 4 to 6, the search effort 
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represents some unequal priority between objectives. Based 
on the table, the results show that the optimal filter can be 
obtained with different optimal solutions considering four 
objective functions simultaneously where the BALANCE 
parameter is significant and has a great impact to each of the 
solutions. Fig. 3 clearly demonstrates the impact of varying 
the BALANCE parameter for each of the simulations on the 
position of the MIDACO solutions among the Pareto front.  
Table III shows simulated results for single-objective 
optimization solutions of the best: 1) 𝑃𝑃𝑃𝑃, 2) 𝑇𝑇𝑇𝑇𝐷𝐷𝑉𝑉, 3) 𝑇𝑇𝐷𝐷𝐷𝐷, 
and 4) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.  

 
TABLE III 

SIMULATED RESULTS OF SINGLE-OBJECTIVE 
OPTIMIZATION 

No. 
of 

Case
s 

Xc R XL PF THD
V 

TD
D Cost 

f1 
4.7
1 

0.025
2 

0.163
9 

91.2
4 2.19 2.29 63196 

f2 
1.8
0 

0.011
9 

0.089
1 

69.8
8 1.41 2.23 10563

5 

f3 
2.1
7 

0.023
5 

0.162
8 

92.2
1 1.99 2.17 62313

4 

f4 
4.7
1 

0.001
1 

0.002
2 

67.3
7 22.48 5.99 4038 

 
The results in Table III are compared with Table II to 
highlight the efficiency, where the results prove that the 
multi-objective optimization achieved a great economic 
effectiveness in improving the power factor and produced 
great reduction of the distortion indexes 𝑇𝑇𝑇𝑇𝐷𝐷𝑉𝑉 and 𝑇𝑇𝐷𝐷𝐷𝐷.  
Table IV shows a comparison of the computation time 
between multi-objective and single-objective optimization 
up until the maximum number of function evaluations were 
reached.  

 
TABLE IV 

COMPARISON OF COMPUTATION TIME OF MULTI-OBJECTIVE 
AND SINGLE-OBJECTIVE OPTIMIZATIONS 

Criteria Multi-objective Single-objective 
1 2 3 4 5 6 f1 f2 f3 f4 

Time, t/s 22 25 23 23 24 23 20 21 20 20 
No. of 

Iterations 20000 

 
The results show that the computation time for multi-
objective optimization is a bit slower compared to the results 
for single-objective optimization. This is because the 
PARETOMAX and EPSILON parameters used by 
MIDACO for its multi-objective Pareto-dominance filter are 
main influences on the amount of Pareto points stored and its 
internal calculation time. 
As described in the Section III, the PARETOMAX and 
EPSILON parameters give an impact to the number of Pareto 
points. Therefore, Table V has been added to prove that 
increasing the values of PARETOMAX will result in 
increasing collected Pareto points. Consequently, it will slow 
down the internal calculation time of MIDACO because of 

more memory that needs to be stored as shown in Table V. 
In this test, only one parameter is varying, which is 
PARETOMAX. 

 
TABLE V 

EFFECTS OF CHANGING PARETOMAX PARAMETER 

Computation time, t/s 

PARETOMAX 
Setting 

1 2 3 4 5 6 
10 21 22 21 22 21 22 

100 21 22 22 22 22 22 
1000 22 25 23 23 24 23 

Number of Pareto points stored 

PARETOMAX 
Setting 

1 2 3 4 5 6 
10 10 10 10 10 10 10 

100 100 100 100 100 100 100 
1000 973 1000 1000 445 1000 496 

 
Table VI shows the effects of changing different values of 
the EPSILON parameter to the amount of Pareto points 
stored and the internal computation time. In this test, only 
one parameter is varying, which is EPSILON. 
From Table VI, the results show that small values of the 
EPSILON parameter result in an increase in the amount of 
Pareto points stored in MIDACO. Although the base case 
(EPSILON set to 0.00001) speed is slower, it proves that the 
solution has a higher chance of a new solution being 
introduced into the Pareto points.  
 

TABLE VI 
EFFECTS OF CHANGING EPSILON PARAMETER 

Computation time, t/s 

EPSILON 
Setting 

1 2 3 4 5 6 
0 22 22 22 22 22 22 

0.0001 22 22 22 22 23 23 
0.00001 22 25 23 23 24 23 

Number of Pareto points stored 

EPSILON 
Setting 

1 2 3 4 5 6 
0 27 107 23 36 47 29 

0.0001 77 513 418 263 168 368 
0.00001 973 1000 1000 445 1000 496 

 
Table VII presents the effects of different sets of ant and 
kernel parameters on the multi-objective simulated results of 
power factor. In MIDACO, both control parameters 
influence the sensitivity of the solutions, which must be used 
together.  
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TABLE VII 
EFFECTS OF ALTERING Npop AND k PARAMETERS 

Set 
Parameters PF 
Npop k 1 2 3 4 5 6 

1 30 5 93.79 96.00 93.59 93.12 93.15 93.90 
2 500 10 93.43 74.15 29.05 94.65 93.03 92.92 
3 100 50 68.39 95.86 36.69 36.63 36.05 69.12 
4 0 100 95.43 93.54 94.69 94.32 93.85 94.48 

 
The results in Table VII show that tuning the parameters of 
ants and kernels will result in inaccurate solutions. By 
increasing number of kernels, a better solution can be 
reached where the sensitivity analysis results in the table 
verified that setting 4, which is the current proposed setting, 
is the best setting for all simulations for multi-objective 
optimization.  
Table VIII shows the results when modifying the value of the 
oracle parameter. 

TABLE VIII 
EFFECTS OF DIFFERENT ORACLE PARAMETERS 

Settin
g 

Paramete
r PF 

Oracle 1 2 3 4 5 6 

1 103 36.4
4 

93.5
4 

94.6
9 

40.2
4 

92.3
7 

36.6
2 

2 106 93.6
5 

93.5
4 

94.6
9 

51.3
5 

93.6
6 

94.0
3 

3 109 95.4
3 

93.5
4 

94.6
9 

94.3
2 

93.8
5 

94.4
8 

 
From Table VIII, the results verified that the oracle 
parameter directly corresponds to the ideal solution from 
given problems. However, it is very sensitive where the 
selections of this parameter can result erroneous. The results 
show that the base setting (setting 3) can be seen as a 
reasonable oracle choice for all simulations of multi-
objective optimization.  
Lastly, Table IX shows the improved value for fitness for the 
proposed technique when increasing the number of function 
evaluations. The consequences show that the proposed 
method seemed to have a better chance in attaining a global 
optimal solution when the maximized function number is 
reached. 
 

TABLE IX 
EFFECTS OF INCREASING MAXIMUM NUMBER OF 

FUNCTION EVALUATIONS, MAXEVAL 

Setting PF 
MAXEVAL 1 2 3 4 5 6 

1000 93.51 75.09 75.09 93.53 93.53 94.14 
5000 93.52 77.13 75.09 94.31 93.55 94.52 
15000 95.45 78.54 94.69 94.32 93.85 94.48 
20000 95.43 93.54 94.69 94.32 93.85 94.48 

Table X indicates the restrictions for the main capacitors of 
the filter. From Table X, the results show that all capacitors 
are capable to operate below the standard limitation. 

  
TABLE X 

THE CAPACITOR CAPABILITY LIMITS 

Setting VCP (%) VC (%) IC (%) QC (%) 
1 68.49 89.96 99.26 86.43 
2 69.27 89.48 101.45 86.35 
3 68.74 89.77 99.92 86.33 
4 68.93 89.65 100.45 86.31 
5 69.17 89.55 101.13 86.35 
6 68.85 89.70 100.21 86.32 

Standard 120 110 135 135 

The filter impedance in the resonant circuit and the effects of 
resonance peak when all objectives are equally balanced are 
shown in Fig. 4. 

 
FIGURE 4.  Impedance response with equally balanced 
objectives (setting 1) 
 
The characteristic of the filters responses in Fig. 4 is 
evaluated and explained as following: 

• Adding the single-tuned filter into the system can 
result in the occurrences of resonances with the 
interaction between Thevenin’s impedance and 
compensated load. 

• In series resonance, the value of inductance and 
capacitance reactance are equal, thus making 
resistance at a minimum. In contrast, the resistance 
is at a local maximum for parallel resonance.  

• The value of R determines the resonant peak. The 
lower value of R results in a high value of Q where 
the resonant peak becomes sharper. This results in 
high frequency selectivity and better harmonic 
attenuation. However, the passband is reduced with 
higher Q. 

• It is recommended to always tune the filter below 
the harmonic to be filtered to avoid both 
resonances. 
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VI.  COMAPRISON WITH OTHER TECHNIQUES 
The effectiveness of the proposed method is shown by 
comparing the results with other highly competitive 
evolutionary multi-objectives algorithms which are genetic 
algorithm (GA), Non-dominated sorting Genetic Algorithm 
(NSGA-II) and Multi Objective Particle Swarm 
Optimization (MOPSO). 
In GA, the optimization is inspired based on the process of 
natural selection, where the optimal solution is found by 
relying on bio-inspired operators. After generating a random 
initial population, then GA selects a group of individuals 
(parents) from the current population who are strong enough 
to contribute their genes and create children to form the next 
generation via reproduction. The main elements of GA 
consist of selection method, crossover method, crossover 
probability, mutation method, mutation probability and 
replacement method [31]. 
Besides, GA is a well-known solver to solve multi-objective 
optimization problems since it is a population-based method. 
By modification of single-objective optimization, GA is able 
to find multiple non-dominated solutions in one run. 
Besides, GA has the ability to search different regions of a 
good solution where the crossover operator may exploit the 
structures of the good solutions with respect to different 
objectives to create non-dominated solutions.  
The concept of GA has inspired Srivinas and Deb to extent 
this concept and proposed NSGA to optimize multi-
objectives problem where NSGA-II is the updated version 
from classical NSGA [32]. The NSGA works by improving 
the adaptive fit of a population of candidate solutions to a 
Pareto front constrained by a set of objective functions. The 
algorithm uses an evolutionary process with surrogates for 
evolutionary operators including selection, genetic 
crossover, and genetic mutation. The only different way of 
NSGA when compare to GA is how the selection operator 
working while the crossover and mutation operator remains 
same. The population is sorted into a hierarchy of sub-
populations based on the ordering of Pareto dominance. 
Similarity between members of each sub-group is evaluated 
on the Pareto front, and the resulting groups and similarity 
measures are used to promote a diverse front of non-
dominated solutions. 

On the other hand, PSO was inspired by having a 
population or swarming behavior flocks of fish or birds. In 
PSO, each of the “bird” or called as “particle” in the search 
space is represented every single potential solution [33]. The 
particles fly through the search space until the better 
positions are discovered. Then, it will guide to the entire 
swarm best-known position. The process continues 
repetitively until an acceptable solution is eventually 
discovered. However, due to its limitation on solving only 
single objective, a new concept known as MOPSO has been 
proposed to solve multi-objective problems and have been 

successfully developed in many applications until now [34], 
[35].  

Table XI shows the comparison of simulated results of 
the proposed method (setting 1), GA, NSGA-II and MOPSO 
for solving the multi-objective problem. In order to simulate 
using GA, three parameters are used, where crossover rate, 
mutation probability, and population size are set to 0.8, 
0.001 and 50, respectively. In order to simulate NSGA-II, 
four parameters are used, where mutation rate, mutation 
percentage, crossover percentage and population size are set 
to 0.02, 0.4, 0.7 and 50, respectively. Contrary, MOPSO has 
eleven parameters to be used where all parameters are set as 
follows: population size is 200, repository size is 100, inertia 
weight is 0.5, inertia weight damping rate is 0.99, global 
learning coefficient is 1, personal learning coefficient is 2, 
number of grids per dimension is 7, inflation rate 0.1, leader 
selection pressure is equals 2, deletion selection pressure is 
set at 2, and mutation rate 0.1. 

TABLE XI 
COMPARISON OF THE SYSTEM PERFORMANCE  

Methods Xc R XL PF THD
V 

TD
D Cost 

MIDAC
O 

4.4
3 

0.009
3 

0.1
9 

95.4
3 2.09 1.55 59,678 

GA 3.1
1 

0.025
8 

0.5
2 

94.6
5 4.72 0.59 173,25

9 

NSGA-II 2.1
2 0.245 1.0

2 
96.3

0 8.55 0.74 47,138 

MOPSO 4.0 0.013
4 

0.1
6 

99.2
0 4.05 0.76 90,206 

 
From Table XI, it can be pointed out from the comprehensive 
evaluation of MIDACO and GA that the proposed has 
outperformed GA where the optimal solutions are attained 
with overall better power factor, lower THDV and great 
investment cost effectiveness. After performing simulation 
using NSGA-II, the comparison of the results shows the 
advantages of MIDACO which gives better accuracy 
wherein the value of THDV for NSGA-II is too high and 
beyond the IEEE standard limit. In addition, the simulation 
using MOPSO also shows that the results have high value of 
THDV where the investment cost of the filter also very high 
when compare to the proposed method. 
The comparison of computation time and maximum function 
evaluation between the proposed method with GA, NSGA-
II and MOPSO are presented in Table XII. 

TABLE XII 
COMPARISON OF COMPUTATION TIME AND MAXIMUM 

FUNCTION EVALUATION FOR ALL METHODS 

 Computation Time, t/s No. of Iterations 
MIDACO 22.00 20000 

GA 14.14 197 
NSGA-II 39.768 100 
MOPSO 209.64 2000 
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From the table, the results proved that the biggest advantage 
of the proposed method is less computation time compare to 
the other methods, where it can process thousands of 
iterations within a few seconds. 
 
 
 
VII.  CONCLUSIONS 
This paper deals with non-dominated solutions when 
optimizing parameters of a single-tuned filter based on 
general multi-objective problems, which are maximized 
power factor, minimized total harmonic voltage distortion, 
minimized total demand distortion and minimized 
investment cost of the filter. A mathematical harmonic 
modeling has been developed and numerically evaluated on 
the harmonics level with possible resonance problems using 
a new algorithm known as Mixed Integer Distributed Ant 
Colony Optimization. A case study has been tested using the 
proposed method where the results show that the algorithm 
attains the Pareto front of the problem and tolerates the 
selection of its parameters to the most effective solution with 
satisfaction of all objective functions and constraints 
involved while complying with IEEE Std 18-2012. The 
effectiveness and advantage of the proposed method is 
demonstrated with other highly competitive evolutionary 
multi-objectives algorithms in power quality area. The 
numerical results revealed that the proposed method does 
highly benefit for multi-objective approaches over single-
objective optimization on a comprehensive passive filter 
design.  
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