
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-54

2006-01-01

Mixed-Integer Linear Programming Solution to Multi-Robot Task Mixed-Integer Linear Programming Solution to Multi-Robot Task

Allocation Problem Allocation Problem

Nuzhet Atay and Burchan Bayazit

Multi-robot systems require efficient and accurate planning in order to perform mission-critical

tasks. This paper introduces a mixed-integer linear programming solution to coordinate multiple

heterogenenous robots for detecting and controlling multiple regions of interest in an unknown

environment. The objective function contains four basic requirements of a multi-robot system

serving this purpose: control regions of interest, provide communication between robots, control

maximum area and detect regions of interest. Our solution defines optimum locations of robots

in order to maximize the objective function while efficiently satisfying some constraints such as

avoiding obstacles and staying within the speed capabilities of the... Read complete abstract on Read complete abstract on

page 2. page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Atay, Nuzhet and Bayazit, Burchan, "Mixed-Integer Linear Programming Solution to Multi-Robot Task
Allocation Problem" Report Number: WUCSE-2006-54 (2006). All Computer Science and Engineering
Research.
https://openscholarship.wustl.edu/cse_research/205

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/205?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/205

Mixed-Integer Linear Programming Solution to Multi-Robot Task Allocation Mixed-Integer Linear Programming Solution to Multi-Robot Task Allocation
Problem Problem

Nuzhet Atay and Burchan Bayazit

Complete Abstract: Complete Abstract:

Multi-robot systems require efficient and accurate planning in order to perform mission-critical tasks. This
paper introduces a mixed-integer linear programming solution to coordinate multiple heterogenenous
robots for detecting and controlling multiple regions of interest in an unknown environment. The objective
function contains four basic requirements of a multi-robot system serving this purpose: control regions of
interest, provide communication between robots, control maximum area and detect regions of interest.
Our solution defines optimum locations of robots in order to maximize the objective function while
efficiently satisfying some constraints such as avoiding obstacles and staying within the speed
capabilities of the robots. We implemented and tested our approach under realistic scenarios. We
showed various extensions to objective function and constraints to show the flexibility of mixed-integer
linear programming formulation.

https://openscholarship.wustl.edu/cse_research/205?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/205?utm_source=openscholarship.wustl.edu%2Fcse_research%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-54

Mixed-Integer Linear Programming Solution to Multi-Robot Task Allocation
Problem

Authors: Nuzhet Atay, Burchan Bayazit

Corresponding Author: atay@cse.wustl.edu

Abstract: Multi-robot systems require efficient and accurate planning in order to perform mission-critical tasks.
This paper introduces a mixed-integer linear programming solution to coordinate multiple heterogenenous
robots for detecting and controlling multiple regions of interest in an unknown environment. The objective
function contains four basic requirements of a multi-robot system serving this purpose: control regions of
interest, provide communication between robots, control maximum area and detect regions of interest. Our
solution defines optimum locations of robots in order to maximize the objective function while efficiently
satisfying some constraints such as avoiding obstacles and staying within the speed capabilities of the robots.
We implemented and tested our approach under realistic scenarios. We showed various extensions to objective
function and constraints to show the flexibility of mixed-integer linear programming formulation.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Mixed-Integer Linear Programming Solution to Multi-Robot Task
Allocation Problem

Nuzhet Atay
Department of Computer Science and Engineering

Washington University in St. Louis
Email: atay@cse.wustl.edu

Burchan Bayazit
Department of Computer Science and Engineering

Washington University in St. Louis
Email: bayazit@cse.wustl.edu

Abstract— Multi-robot systems require efficient and accurate
planning in order to perform mission-critical tasks. This paper
introduces a mixed-integer linear programming solution to
coordinate multiple heterogenenous robots for detecting and
controlling multiple regions of interest in an unknown environ-
ment. The objective function contains four basic requirements
of a multi-robot system serving this purpose: control regions of
interest, provide communication between robots, control maximum
area and detect regions of interest. Our solution defines optimum
locations of robots in order to maximize the objective function
while efficiently satisfying some constraints such as avoiding
obstacles and staying within the speed capabilities of the robots.
We implemented and tested our approach under realistic
scenarios. We showed various extensions to objective function
and constraints to show the flexibility of mixed-integer linear
programming formulation.

I. INTRODUCTION

Several real life scenarios, such as fire fighting, search
and rescue, surveillance, etc., need multi-robot coordination
and task allocation. Such scenarios generally include distinct
regions of interests that require the attention of some robots.
If the locations of these regions are not known, the robots
also need to explore the environment to find them. For
example, in a forest fire, the fire can start at different
locations and fire fighters may need to detect the fire first and
then extinguish it. The size of the burning area may require
more fire teams in some locations. Similarly, in a surveillance
scenario, there can be multiple intruders in different locations
and each intruder may show a different behavior. In order
to coordinate the task at hand, it may also be helpful to
keep individual robots in contact with each other so that the
information is shared by as many robots as possible.

In this paper, we propose a solution to the problem of
detecting and controlling multiple regions of interest in an
unknown environment using multiple robots. In our system,
we assume a bounded environment that is to be controlled
by a group of robots. In this environment, there are regions
of interest which need to be tracked. These regions are
dynamic, i.e. they can appear at any point, anytime and
can move, spread or disappear. Each region may require
more than one robot to track and control. Robots do not
have initial information about the environment, and the
environment is only partially-observable by the robots. Each
robot has wireless communication capability, but its range
is not uniform. Two robots can communicate between each
other only if both of them are in the communication range
of each other. Robots can be mobile and have different

speed limits. The robots are equipped with the sensors to
identify the obstacles and the regions of interest if they are
within the robots’ sensing range. Ranges of these sensors are
not necessarily uniform. The environment can have static or
dynamic obstacles, so robots need to avoid them to be able
to perform their task.

Our solution to the task allocation problem of heteroge-
neous robots utilizes mixed integer linear programing with
an optimization criterion and some resource constraints.
Optimization criterion we are interested in is: (i) covering
all regions of interest, (ii) providing communication between
as many robots as possible, (iii) controlling maximum to-
tal surface by all the robots, (iv) exploring new regions.
Our objective is to maximize these items while satisfying
the constraints such as avoiding the obstacles or moving
within the speed capabilities of individual robots. Additional
constraints we are considering are the communication be-
tween two robots (which exists only if either two robots
are in the communication range of each other or there is
a route between them through other robots satisfying the
communication constraints) and, the sensing of the obstacles
and regions of interest when they are within the robot’s
sensor range. However, our approach is general enough to
easily adapt to additional constraints and objectives, making
it customizable for various problems. In order to validate
our approach, we have formulated and implemented a linear
program, and tested it under realistic scenarios. We have
shown sample modifications and extensions to formulate
additional constraints or objectives. Our main contribution
is a customizable multi-robot task allocation solver which
can find global optimal solution under the given constraints.
One advantage of our method is that we are considering
the future predictions so that our task allocation would give
the optimal solution within a predifined time period. Our
approach also proposes an efficient way of checking obstacle
collision using linear programming.

The rest of the paper is organized as follows. The next
section gives a summary of the related research and brief
comparison to our approach when it is applicable. Section III
gives problem definition and describes the basic variables.
Section IV describes our solution. Section V presents ex-
perimental results. We discuss extensions in Section VI and
Section VII concludes our paper.

II. RELATED WORK

Multi-robot task allocation has been studied extensively
because of the importance of application areas. One quite
popular approach to this problem is utilizing negotiation or
auction based mechanisms. In this approach, each distributed
agent computes a cost for completing a task, and broad-
casts the bid for that task. Auctioneer agent decides the
best available bid, and winning bidder attempts to perform
this task. Following the contract-net protocol [1], several
variations of this method has been proposed [2]–[6]. Another
important approach is using behaviour based architecture.
ALLIANCE [7] is a behavior-based architecture where
robots use motivational behaviors such as robot impatience
and robot acquiescence. These behaviors motivate robots
to perform tasks that cannot be done by other robots, and
give up the tasks they cannot perform efficiently. BLE [8]
is another behavior-based architecture which uses continous
monitoring of tasks among robots and best fit robot is
assigned to each task. A detailed analysis and comparison
of these methods can be found at [9], [10]. These methods
propose distributed algorithms where resource allocation is
an approximation to the global optimum. Although they were
shown to be successful in practice, they do not guarantee
global optimum even if communication between all robots is
provided. Our solution, however, guarantees global optimum
if all robots can communicate between each other.

Task allocation problem is also studied in the context of
cooperation of Unmanned Aerial Vehicles (UAVs). Several
methods are proposed for search and attack missions of
UAVs [11]–[19]. Our method is similar to the methods
proposed in [12], [13], [16], [19], since these methods are
also using mixed-integer linear programming task alloca-
tion. However, in these papers, the problem is defined as
minimizing mission completion time while UAVs visiting
predetermined waypoints and avoiding no-fly zones. The
solution to this problem is formulated as finding all possible
combinations of task allocations, and choosing the best
combination. This definition of task allocation is actually
quite different than our problem definition. Our aim is to
explore environment, find regions of interest, and assign tasks
optimally obeying the constraints imposed at that moment.
In other words, we are finding a solution in real-time, instead
of finding an initial plan and executing it.

III. PROBLEM DEFINITION

In our problem definition, there are regions of interest we
want robots to explore and cover. In the rest of the paper,
we will call these regions “targets”. Since larger areas can be
represented with multiple points, without loss of generality,
we assume targets are represented as points in planar space.
A target is assumed to be covered if there are enough robots
that have the target in their sensing range. The number of
robots required to cover a target varies for each target. We
assume the future locations of known targets after a time
period can be predicted. Our primary purpose is to find loca-
tions of robots in order to cover as many targets as possible,
using the estimated locations of targets. While covering all
targets, it is also desirable to provide communication between
as many robots as possible because this increases robots’

information about the environment and targets, so leads to
a better solution. At a given time, robots need to cover as
much area as possible besides covering targets to increase the
chances of detecting other undiscovered targets. Similarly, in
order to discover new targets and avoid waiting at the same
location when no targets are being tracked, the robots are
expected to explore new regions.

We define the state of the system as current locations of
the targets, number of robots needed to cover a target, current
positions of the robots, positions of obstacles, previously
explored regions, robot speed, communication range and
sensing range. The output of our linear program is the
optimal locations of the robots for the next state of the system
after a brief period of time. Please note that, we assume we
can predict the location of the targets at the next step. There
are approaches for motion prediction that can be used for
this purpose [20].

A. Variables

Our planning is for the next state, so all variables take
values according to next state unless stated otherwise. Vari-
ables in our linear program formulation can be listed as the
following (note that “[r]” represents a real, “[i]” represents
an integer, and “[b]” represents a binary variable):

• (rx
i , ry

i) [r]: final position of robot i.
• distanceRT

ij [r]: distance between robot i and target j.
• distanceRR

ij [r]: distance between robots i and j.
• movementi [r]: distance between between initial (cur-

rent state) and final (next state) positions of robot i.
• coveragej [b]: indicates whether a target is covered.
• communicationij [b]: indicates whether a communi-

cation link between robots i and j exists.
• areaij [b]: specifies whether sensing ranges of robots i

and j overlap.
• explorationij [b]: indicates whether the robot i will be

inside the explored region j.
• proximityij [b]: shows if robot i can sense target j.
• bhx

ij , bhy
ij , blxij , blyij [b]: represents whether there is a

possible path between initial (current state) and final
(next state) positions of the robot i not blocked by
obstacle j.

• mpx
i , mnx

i , mpy
i , mny

i [r]: used in finding an al-
ternative path of robot i to avoid obstacles in the
straightforward path.

• iehx
ij , iehy

ij , ielxij , ielyij [b]: used for finding position
of the robot i with respect to explored region j.

Besides these, there are constants used in specifying
objective function and contraints:

• (irx
i , iry

i) [r]: initial position of robot i at the current
state.

• (txj , tyj) [r]: estimated position of target j at the next
state.

• coverageRequirementj [i]: number of robots needed
to cover target j.

• sensingRangei [r]: range of sensors on robot i.
• robotSpeedi [r]: speed of robot i, defined as the number

of unit steps it can go by moving in x-axis or y-axis at
each step.

• timeStep [r]: time range during which this planning
takes place.

• commRangei [r]: communication range of robot i.
• (ohx

j , ohy
j), (olxj , olyj) [r]: upper right and lower left

corners of obstacle j, respectively.
• (ehx

j , ehy
j), (elxj , elyj) [r]: upper right and lower left

corners of explored region j, respectively.

IV. MIXED INTEGER LINEAR PROGRAMMING FOR TASK

ALLOCATION

We use linear programming to find the best placement
of the robots after a defined time period. This program
runs for all the robots that are in the communication range
of each other. If there are multiple groups of robots that
cannot communicate with each other, each group will have
its own task allocation based on its world view. If two groups
merge, they can share their knowledge. The program runs
periodically to find the best placements for each robot. It
also runs if a new event happens, such as the discovery of an
obstacle or a target. The linear program should satisfy some
constraints: (i) an evaluated location is not acceptable if the
robot cannot reach there either because of its speed limits or
because of an obstacle, (ii) two robots cannot communicate if
one of them is outside the communication range of the other,
(iii) an obstacle or target is detectable only if it is within the
sensing range of the robot. Our goal is then to optimize the
number of targets tracked, the number of robots that can
communicate with each other, the area of the environment
covered by the robot sensors, and the area of the environment
that was explored. In the next subsections, we will first define
the basic functions and constraints. Then we will discuss
different objective functions. Finally we show our overall
optimization criterion and we will discuss the complexity.

A. Basic Functions

Distance between robots and targets: 1

distanceRT
ij = |rx

i − txj | + |ry
i − tyj | (1)

for each target j and each robot i.
Distance between robots: 1

distanceRR
ij = |rx

i − rx
j | + |ry

i − ry
j | (2)

for each robot pair i and j.
Movement of robots: (i.e., the distance between initial and

goal positions) 1

movementi = |rx
i − irx

j | + |ry
i − iry

j | (3)

for each robot i.

B. Basic Constraints

Robots have limited speed, so their final position should
not be beyond their reaching limit:

movementi ≤ timeStep ∗ robotSpeedi (4)

for each robot i. Note that, as we will see next, we also
consider detours if there is an obstacle on the direct path.

In our system, we assume there are only rectangular
shaped obstacles for the sake of simplicity of defining
linear equations. However, more general shaped obstacles

1In order to satify the linear properties, we use manhattan distance. See
the appendix for linear modelling of absolute value function.

mp x
i

mp y
i

iR

mn y
i

mn x
i

Ri

(=0)

Final
Position

Position
Initial

Fig. 2. An example obstacle avoidance for robot ri. Values of mpx,
mpy , mnx and mny are arranged to verify that an alternative and
feasible path exists. Dashed line shows straightforward path, straight
line shows updated path.

can be represented as rectangular meshes. When considering
obstacles, we are not finding a path to avoid them, but
finding whether or not it is possible to avoid them with
the robot speed and timestep as the constraints. As it is
mentioned before, output of the linear program is the final
positions of robots. When computing these positions, we are
also computing the manhattan path length of the robot to
avoid an obstacle if the obstacle is in the robot’s way. If this
avoidance is possible with the particular robot speed and
timestep, we are condering the final position of the robot
as a feasible configuration. Otherwise, that configuration is
eliminated. However, we are not finding the particular path
that leads robot to the final position, that step is left to a
local planner running on the robot. Obstacle detection is
much more efficient this way than finding the exact path
using linear program. Finding exact path requires finding
intermediate states of the system at a fine resolution which
increases complexity drastically.

bhx
ij = 0, where irx

i + mpx
i ≥ ohx

j (5)

bhy
ij = 0, where iry

i + mpy
i ≥ ohy

j

blxij = 0, where irx
i − mnx

i ≤ olxj
blyij = 0, where iry

i − mny
i ≤ olyj

mpx
i + mpy

i + mnx
i + mny

i ≤ timeStep ∗ robotSpeedi

rx
i − irx

i = mpx
i − mnx

i

ry
i − iry

i = mpy
i − mny

i

Obstacle is not avoidable if ;
bhx

ij = 1 and blxij = 1 and bhy
ij = 0 and blyij = 0

bhy
ij = 1 and blyij = 1 and bhx

ij = 0 and blxij = 0

for each robot i and obstacle j. In the formulation above,
first, some alternative initial and goal positions are found.
The first four constraints guarantee that a path between
alternative positions would avoid the obstacle. Next, the
feasibility of such an alternative path is evaluated (i.e.,
reaching the alternative initial position from the original
initial position, reaching the alternative goal position using
manhattan path and reaching the original goal position from
the alternative goal position must be within the speed limits
of the robot). The variables mpx, mpy , mnx and mny

represent the offsets that will generate alternative placements
of the initial and final positions. Their usage is represented
in Fig. 2. In this figure, offsetting is required in y − axis,
which is done by arranging values of mpy and mny . There
is no change made in x − axis, so mpx shows the correct

1T

2T 3T

SR

R
SR

SR

1 R2

2

R3
3

1

(a)

CR3

R32
2CR

R

R1
1CR

(b)

R
SR

1
1

SR

R2

2

SR
R3

3

(c)

1R

R1 2

SR
R2

2SR 1

R

(d)
Fig. 1. SR stands for sensing range, and CR stands for communication range (a) A target is covered when it is in sensing range of some
robots, where number of robots is determined according to the requirements of the target. Robots R1 and R2 cover T1, while R3 covers
T3. T2 is not covered. (b) Two robots can communicate if both robots are in communication range of each other. R2 can communicate
with R1 and R3, and works as a hub between R1 and R3 which cannot communicate directly. (c) Maximum area coverage is obtained
if sensing range of robots do not overlap. In the figure, sensing regions of robots barely touch each other (d) Robots mark regions they
explored before, and move towards unexplored regions. R1 and R2 move upward toward unexplored region after marking dark (blue)
region as explored

distance in x−axis while mnx is 0. Variables bhx
ij , blxij and

bhy
ij , blyij indicate location of obstacle j with respect to the

offset initial and final positions of robot i. If both bhx
ij and

blxij are 1, this means that obstacle j is between the offset
initial and final positions of robot i on x−axis. In that case,
if both bhy

ij and blyij are 0, then both the offset initial and
final positions of robot i are inside obstacle j on y − axis.
So, there is no manhattan path connecting initial and final
positions. The same is true with x and y axes interchanged.

C. Target Coverage

A target can be considered covered only if the number of
robots following it is greater than or equal to its coverage
requirement:

coveragej = 1, where (6)
n∑

i=1

proximityij ≥ coverageRequirementj

for each target j. 2

A robot can sense and control a target only if its sensing
range is greater than or equal to the distance between itself
and the target:

proximityij = 1, where distanceRT
ij ≤ sensingRangei

(7)
for each target j and each robot i.

A sample organization of the robots and targets is shown
in Fig. 1(a). R1 and R2 are covering target T1 and R3 is
covering T3 while T2 is not covered by any of the robots.

D. Communication

Each robot has a communication range. A robot can have
a duplex communication link to another robot only if each
robot is in the sensing range of the other one:

communicationij = 1, (8)

where distanceRR
ij ≤ commRangei

and distanceRR
ij ≤ commRangej

for each robot pair i and j.

2Please see the appendix for the proof that our optimization criterion
results in continuous target coverage of all targets, if this optimization has
highest priority.

However, robots can communicate between each other
with the help of other robots. So, if two robots cannot directly
communicate with each other, but they share common robot
both of which can communicate, we assume that they can
communicate. In other words, transitive links are allowed in
the system. It should be noted that this condition implies
communication between robots with the help of multiple
intermediate robots, i.e. one or more robots can participate
in a transitive link between two robots.

communicationij = 1, (9)

where communicationik + communicationkj = 2

for each robot i, j and k.
A communication pattern of the robots is shown in

Fig. 1(b). R2 can communicate with both R1 and R3. R1
and R3 do not have a direct communication link, but they
can communicate with the help of R2.

E. Area Coverage

Robots have limited and constant sensing range, so the
only way to maximize area coverage is by preventing the
overlap of sensing ranges of robots.

areaij = 1, (10)

where distanceRR
ij ≥ sensingRangei + sensingRangej

for each robot pair i and j.
An ideal area coverage for the robots is represented in

Fig. 1(c), where robots have no overlapping sensing range.

F. Exploration

In order to explore the environment, robots need to know
places they have visited recently. We store this information as
rectangular regions defining explored areas. Then the linear
program tries to move robots into unexplored regions by
checking the final position of the robots.

iehx
ij = 1, where rx

i ≥ ehx
j (11)

iehy
ij = 1, where ry

i ≥ ehy
j

ielxij = 1, where rx
i ≤ elxj

ielyij = 1, where ry
i ≤ elyj

Robot is not in an explored region, i.e.

explorationij = 1
where iehx

ij + iehy
ij + ielxij + ielyij ≥ 1

So, program gives a final position not located in an explored
region. 3

A sample exploration scenario is shown in Fig. 1(d). Dark
(blue) region is explored in the first step, so robots try to
locate themselves outside of the explored area.

1T

R23R

R1

2T

Fig. 3. An example distribution of robots providing optimum target
coverage, communication and area coverage. Robot R1 covers
target T1 and R2 covers target T2. R3 is located to provide
communication between them, and its sensing range does not
overlap with others. Dark colored circles represent communication
range, light colored circles represent sensing range.

G. Optimization Criterion

Optimization criterion is made up of four components, tar-
get coverage, communication between robots, area covered
by the robots and the number of robots located in unexplored
regions. Target Coverage: We utilize the number of targets
that are covered, i.e.,

T =
n∑

j=1

coveragej (12)

where n=number of targets
Communication: We utilize the number of pairs of robots

that can communicate with each other, i.e.,

C =
n∑

i=1

n∑

j=1

communicationij (13)

where n=number of robots
Area Coverage: We utilize the number of pairs of robots

whose sensor ranges do not intersect, i.e.,

A =
n∑

i=1

n∑

j=1

areaij (14)

where n=number of robots
Exploration: We utilize the number of robots in unexplored

regions, i.e.,

E =
n∑

i=1

m∑

j=1

explorationij (15)

where n=number of robots, m=number of explored regions.
Optimization Criterion: Our objective function is weighted

sum of the above components.

maximize αT + βC + γA + δE (16)

3Please see the appendix for the proof that given sufficient number of
robots for communication and target tracking, our algorithm will result in
the exploration of the all environment.

where α, β, γ, and δ are constants defining priorities.
Figure 3 represents an optimal distribution of robots ac-

cording to this optimization criterion. Robots arrange them-
selves so that they cover all targets, provide communication
between each other, and cover as much area as possible.

H. Complexity

Our formulation results in mixed-integer linear program,
which is NP-Hard in the number of binary variables. How-
ever, optimal solutions for reasonable sized problems can
be obtained by using commercially available software pack-
ages such as CPLEX [21]. Complexity of our program
is dominated by the number of binary variables. These
are coveragej for target j, proximityij for robot i and
target j, communicationij and areaij for robots i and
j, explorationij , iehx

ij , iehy
ij , ielxij and ielyij for robot i

and explored region j, bhx
ij , bhy

ij , blxij and blyij for robot i
and obstacle j. For a problem with n targets, m robots, p
obstacles and q explored regions, there are n+nm+2nn+
5mq + 4mp binary variables. So, complexity can be stated
as O(n + nm + n2 + mq + mp).

V. EXPERIMENTS

We show a sample execution of our program to highlight
the properties of the solution. The environment is bounded
and has size 12 × 12. There are three rectangular obstacles,
which are located at {(0, 4), (5, 6)}, {(4, 8), (8, 10)} and
{(8, 2), (10, 6)} (darkest (dark blue) regions in Fig. 4(a)). In
the environment there are 8 robots which are located at point
(0, 0), and 6 targets whose locations are unknown initially.
The targets follow predefined paths and we assume we
can predict their locations for the next timestep. Parameters
defined for robots and targets are shown at Tables I and II.
Timestep is selected to be 4, so robots arrange themselves
according to the environment which they estimate to be in 4
steps. In the experiments, we chose constants at optimization
criterion as α > β > γ > δ. In other words, the linear
program optimizes (1)target coverage, (2)communication
between robots, (3)area coverage and (4)exploration from
highest to lowest priority, respectively.

Robots start exploring the environment by moving out
of the region they explored when they were all at (0, 0).
The initial explored region is the rectangle {(0, 0), (1, 1)}
because the robot with highest sensing range can sense a
region of radius 2. Initial locations and environment are
shown in Fig. 4(a).

Since there are no targets detected yet, and the commu-
nication constraints are satisfied, the robots try to cover
as much area as possible while obeying the movement
constraints. The new environment is shown in Fig. 5(a) where
blue (darker) areas indicate explored regions. Exploration
reveals targets t1 and t2, and predicts their positions to be
(0, 4) and (2, 2), respectively. Optimal allocation is shown in
Fig. 5(b). Robots r6 and r8 cover targets, and other robots
continue exploration while staying within the communication
range. Next, target t3 is found, which requires two robots to
be covered. Robots r2, r3 and r7 continue exploration and r6

works as the communication bridge while remaining robots
are assigned to the targets. Distribution of robots is shown
in Fig. 5(c). Two other targets, t4 and t5 are discovered

TABLE I

DEFINED PARAMETERS FOR ROBOTS

r1 r2 r3 r4 r5 r6 r7 r8

Sensing Range 1 2 1 1 2 1 2 1

Robot Speed 1 2 2 1 1 1 2 2

Comm. Range 4 4 4 4 4 4 4 4

at the next step. Moreover, targets t1 and t2 move faster
than their controller robots, r1 and r4, which cannot catch
them. However, global optimization finds a solution to this
problem by assigning the tracking task to other robots that
can reach the targets (Fig. 5(d)). Target t6 is discovered at
the next step. At this time, it is not possible to cover all the
targets while keeping the communication between all robots.
Since target coverage is given more importance, robots are
distributed into two independent groups. Robots r3 and r5

form one team, while others form the other team. Each team
has communication in itself, but cannot reach to the other
team. An optimal solution is found and applied for each
team. Fig. 5(e) represents result of two optimal solutions.
Targets t1 and t5 leave the environment at the next step.
Team of robots r3 and r5 has one target to follow, so while
one robot follows target, the other robot, in this case r3,
which is the faster robot, continues exploration. The other
team covers all targets, and provides communication in itself.
Fig. 5(f) shows the final state of the environment which is
totally explored.

We have also experimented with the effects of eliminating
some of the components from the objective function under
the same experiment scenario. Figs. 4(b) and (c) show the
final configuration at the end of the simulation where the area
coverage and exploration components are removed from the
objective function, respectively. In both of these experiments,
not all of the targets were tracked or all environment was
explored because of the decrease in effectiveness of the
method when some functions are disabled. In Fig. 4(b)
robots stand together whenever they do not need to cover
a target or provide communication between target covering
robots. Exploration does not compensate this problem be-
cause several robots can move to the same region, which
all of them consider as unexplored. This has a drastic effect
on the explored area and covered targets, so performance
is considerably lower than the original formulation. In this
scenario, targets t4 and t6 remain undiscovered and upper
part of the environment remains unexplored. In Fig. 4(c),
performance of the system is better, because the environment
is small and maximum area coverage helps exploration
when robots are following targets. However, robots have no
motivation to move unless targets drag them, which can leave
some parts of the environment totally unexplored. In this
example, target t4 remains undiscovered, and some region
still remains unexplored although it is smaller this time.

Our experiment shows that we can succesfully assign tasks
to the robots. We can successfuly track individual targets,
keep communication distance as long as possible, provide
maximum area coverage and explore the environment.

TABLE II

DEFINED PARAMETERS FOR TARGETS

t1 t2 t3 t4 t5 t6

Cov. Requirement 1 1 2 1 1 1

VI. EXTENSIONS

Linear programming provides a powerful modelling tool.
Variations in the problem can be stated easily by modifying
objectives and constraints. We will mention a few of the
modifications that can be applied to our program. In multi-
robot systems, energy consumption is an important problem.
One way for achieving optimal energy usage is by adding a
new objective function to the optimization criterion, which
minimizes the total distance covered by all robots.

D = −
n∑

i=1

movementi (17)

where n=number of robots.
Another important energy concern is the usage of wireless

communication, which can have drastic effect on small
robots. Less power can be used for shorter range commu-
nication, so minimizing distance between robots can reduce
communication cost.

CE = −
n∑

i=1

n∑

j=1

distanceRR
ij (18)

where n=number of robots.
Initially, we assumed it is enough for targets to be in

sensing range of some robots to be considered as covered,
but application may require robots to be as close as possible
to targets.

TD = −
n∑

i=1

m∑

j=1

distanceRT
ij (19)

where n=number of robots, m=number of targets.
In the original formulation, we assumed a robot can cover

more than one target. The constraint that allows each robot
to cover a single target can also be enforced.

m∑

j=1

proximityij ≤ 1 for each robot i (20)

where m=number of targets.
Robots can have constraints imposed by non-holonomic

constraints. For example, if a robot is moving in a direction, it
may require some time for it to go into reverse direction. This
can be enforced by restricting the robot going into places
beyond its limit. Assume that the robot is moving in +y
direction, then a contraint can be:

ry
i − iry

j ≥ |rx
i − irx

j | ∗ maneuver capability (21)

This constraint can be changed according to the current
direction and maneuver capability of the robot.

01

21

1

2

3

4

5

6

7

8

9

11

01 211 2 3 4 5 6 7 8 9 11R1−8

(a)

01

21

1

2

3

4

5

6

7

8

9

11

01 211 2 3 4 5 6 7 8 9 11

T6 T4

T2

T3

R2

R3

R4

R5,7

R1,6,8

(b)

01

21

1

2

3

4

5

6

7

8

9

11

01 211 2 3 4 5 6 7 8 9 11

T4T6

T2

T3

R1

R2

R3

R4

R5

R6

R7

R8

(c)
Fig. 4. (a) Initial configuration of the environment and robots. Robots are represented as circles, and targets are represented as squares.
(b) Final configuration when area coverage is not optimized. (c) Final configuration when exploration is not optimized.

01

21

1

2

3

4

5

6

7

8

9

11

01 211 2 3 4 5 6 7 8 9 11

R5

R4

R6

R8

R1

R3

R7 R2

(a)
01 211 2 3 4 5 6 7 8 9 11

T1

T2

01

21

1

2

3

4

5

6

7

8

9

11

R6 R5

R8 R1 R4

R3 R2

R7

(b)
01 211 2 3 4 5 6 7 8 9 11

01

21

1

2

3

4

5

6

7

8

9

11

T3

T2

T1 R4 R1

R6

R5

R8

R3

R7

R2

(c)

01 211 2 3 4 5 6 7 8 9 11

01

21

1

2

3

4

5

6

7

8

9

11

T2

T3T5

T4

T1

R5

R3

R4

R6

R1 R7

R8

R2

(d)

T1

T4

01 211 2 3 4 5 6 7 8 9 11

01

21

1

2

3

4

5

6

7

8

9

11 T6

R1

R6 T3

R7

T5

R5

R4

R3

T2

R2

R8

(e)
01 211 2 3 4 5 6 7 8 9 11

01

21

1

2

3

4

5

6

7

8

9

11

R1

T2R8

T4

T3

R4

R6

R7

R2R5 R3T6

(f)
Fig. 5. Sample execution of the linear programming method. Robots are represented as circles, and targets are represented as squares.
Dark blue (darkest) regions are obstacles, blue (darker) regions are explored regions, and gray (light gray) regions are unexplored regions.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a mixed-integer linear programming
method to solve the task allocation problem of multiple
heterogeneous robots for detecting and controlling multiple
regions of interest in an unknown environment under defined
constraints. The method presented here finds a global opti-
mal solution for the given state of the robots, targets and
environment. We presented our assumptions, constraints and

linear program formulations. This linear program gives the
optimal locations of the robots to maximize the objective
function while obeying constraints. Some of the alternatives
to objective function and constraints are also represented to
show the flexibility of the proposed method. We verified
validity and efficiency of our approach using simulation
results.

Our future work includes developing a fully distributed

version of this method. One obvious problem with mixed-
integer linear programming is scalability because of the in-
crease in complexity with the increased number of variables.
However, with the current processing power that mobile
robots have, wireless communication can be more limiting
especially when multi-hop communication is required. We
are currently working on developing a distributed version of
our solution, where robots find local solutions, and exchange
data to optimize solution as needed.

APPENDIX

Absolute value function is not a linear function. However,
it is possible to model it using linear constraints. One
common way for doing this is defining two extra variables.

x = x+ − x− and |x| = x+ + x−

where x+ ≥ 0 and x− ≥ 0
minimize |x|

This formulation gives |x| as the absolute value of x. In our
program, we did not need to use minimization step because
exact values of variables are not important as long as those
values are below some constant.

Theorem 1: Robots cover all targets as long as targets
move slower than robots if target coverage has the highest
priority.

Proof: A target tj is detected when it is in sensing
range of a robot ri. In other words, distance(rt

i , t
t
j) ≤

sensingRangei, where rt
i is the position of robot ri, and

ttj is the position of target tj at time step t. Our assumption
requires that robot speed is greater than or equal to the
target speed, so at time step t + 1, distance(rt+1

i , rt
i) ≥

distance(tt+1
j , ttj). The highest priority is given to target

coverage in linear program formulation, so robot ri will be
assigned to cover tj unless other robots cover it. Target tj
can move furthest if it moves on the line connecting ri and
tj , in the opposite direction of robot. In that case,

distance(rt+1
i , tt+1

j) =

distance(tt+1
j , ttj) + distance(rt

i , t
t
j) − distance(rt+1

i , rt
i) ≤

distance(rt+1
i , rt

i) + distance(rt
i , t

t
j) − distance(rt+1

i , rt
i) =

distance(rt
i , t

t
j) ≤ sensingRangei.

Theorem 2: Robots explore a bounded environment in
finite time if there are more mobile robots than needed to
cover targets and provide communication between covering
robots.

Proof: Assume that there are k mobile robots which are
not assigned for covering targets or providing communication
in a bounded environment of size w ∗ h, where w is the
width and h is the height of the environment. Each of these
robots has sensing range and speed which are greater than 0.
Assume each of them has uniform sensing range r and speed
s. These robots can be located inside the explored region, or
on the border between explored and unexplored regions. If
they are located inside explored region, they can move to
unexplored region in at most (w+h)

s timesteps. The linear
program locates them in unexplored region at each step if

robots can reach unexplored regions, exploring a region of
size at least r. Since the environment is bounded of size w∗h,
environment will be totally explored in (w+h)

s + (w∗h)
r .

REFERENCES

[1] R. Davis and R. G. Smith, “Negotiation as a metaphor for distributed
problem solving,” Artificial Intelligence, vol. 20, pp. 63–109, 1983.

[2] B. P. Gerkey and M. J. Matarić, “Sold!: Auction methods for multi-
robot coordination,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 5, pp. 758–786, October 2002.

[3] S. Botelho and R. Alami, “M+: a scheme for multi-robot cooperation
through negotiated task allocation and achievement,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Detroit, Michigan, May 1999, pp.
1234–1239.

[4] R. Zlot and A. Stentz, “Complex task allocation for multiple robots,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Barcelona, Spain,
April 2005, pp. 1515–1522.

[5] G. Thomas, A. M. Howard, A. B. Williams, and A. Moore-Alston,
“Multi-robot task allocation in lunar mission construction scenarios,”
in IEEE International Conference on Systems, Man and Cybernetics,
vol. 1, Hawaii, October 2005, pp. 518–523.

[6] T. Lemaire, R. Alami, and S. Lacroix, “A distributed tasks allocation
scheme in multi-uav context,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), New Orleans, LA, April 2004, pp. 3822–3827.

[7] L. E. Parker, “Alliance: An architecture for fault tolerant multirobot
cooperation,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 2, pp. 220–240, April 1998.

[8] B. B. Werger and M. J. Matarić, “Broadcast of local eligibility for
multi-target observation,” in 5th International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS), Knoxville, TN, October
4-6 2000, pp. 347–356.

[9] B. P. Gerkey and M. J. Matarić, “Multi-robot task allocation: Ana-
lyzing the complexity and optimality of key architectures,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), Taipei, Taiwan, September 17-
22 2003, pp. 3862–3867.

[10] ——, “A formal analysis and taxonomy of task allocation in multi-
robot systems,” Intl. Journal of Robotics Research, vol. 23, no. 9, pp.
939–954, September 2004.

[11] K. Nygard, P. Chandler, and M. Pachter, “Dynamic network flow opti-
mization models for air vehicle resource allocation,” in The American
Control Conference, Arlington, Texas, June 25-27 2001, pp. 1853–
1858.

[12] J. Bellingham, M. Tillerson, A. Richards, and J. How, “Multi-task al-
location and path planning for cooperating uavs,” pp. 1–19, November
2001.

[13] C. Schumacher, P. Chandler, M. Pachter, and L. Pachter, “Uav task
assignment with timing constraints,” in AIAA Guidance, Navigation,
and Conference and Exhibit, Arlington, Texas, 2003.

[14] Y. Jin, A. Minai, and M. Polycarpou, “Cooperative real-time search
and task allocation in uav teams,” in 42nd IEEE Conference on
Decision and Control, Maui, Hawaii USA, December 2003, pp. 7–
12.

[15] C. Schumacher, P. Chandler, S. Rasmussen, and D. Walker, “Task
allocation for wide area search munitions with variable path length,”
in The American Control Conference, Denver, Colorado, June 2003,
pp. 3472–3477.

[16] M. Alighanbari, Y. Kuwata, and J. How, “Coordination and control of
multiple uavs with timing constraints and loitering,” in The American
Control Conference, vol. 6, Denver, Colorado, June 4-6 2003, pp.
5311–5316.

[17] D. Turra, L. Pollini, and M. Innocenti, “Fast unmanned vehicles task
allocation with moving targets,” in 43rd IEEE Conference on Decision
and Control, Atlantis, Paradise Island, Bahamas, December 14-17
2004, pp. 4280–4285.

[18] P. B. Sujit, A. Sinha, and D. Ghose, “Multi-uav task allocation using
team theory,” in 44th IEEE International Conference on Decision
and Control, and the European Control Conference, Seville, Spain,
December 12-15 2005, pp. 1497–1502.

[19] M. A. Darrah, W. Niland, and B.M.Stolarik, “Multiple uav dynamic
task allocation using mixed integer linear programming in a sead
mission,” in Infotech@Aerospace, Arlington, Virginia, September 26-
29 2005.

[20] A. Elganar and K. Gupta, “Motion prediction of moving objects based
on autoregressive model,” IEEE Transactions on Systems, Man and
Cybernetics-Part A:Systems and Humans, vol. 28, no. 6, pp. 803–810,
November 1998.

[21] ILOG CPLEX 9.0 User’s Manual, ILOG, Inc.,
http://www.ilog.com/products/cplex/, October 2003.

	Mixed-Integer Linear Programming Solution to Multi-Robot Task Allocation Problem
	Recommended Citation
	Mixed-Integer Linear Programming Solution to Multi-Robot Task Allocation Problem

	tmp.1418149444.pdf.aFMKy

