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Abstract

We investigate an extension of Mixed-Integer Optimal Control Problems by adding

switching costs, which enables the penalization of chattering and extends current

modeling capabilities. The decomposition approach, consisting of solving a partial

outer convexification to obtain a relaxed solution and using rounding schemes to

obtain a discrete-valued control can still be applied, but the rounding turns out to be

difficult in the presence of switching costs or switching constraints as the underlying

problem is an Integer Program. We therefore reformulate the rounding problem into a

shortest path problem on a parameterized family of directed acyclic graphs (DAGs).

Solving the shortest path problem then allows to minimize switching costs and still

maintain approximability with respect to the tunable DAG parameter θ . We provide a

proof of a runtime bound on equidistant rounding grids, where the bound is linear in

time discretization granularity and polynomial in θ . The efficacy of our approach is

demonstrated by a comparison with an integer programming approach on a benchmark

problem.
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1 Introduction

This work considers optimal control problems of the form

inf
y,v

J ( y) + C(v)

s.t. ẏ(t) = f ( y(t), v(t)) for t ∈ [0, T ], y(0) = y0,

v(t) ∈ {v1, . . . , vM } for t ∈ [0, T ].

(MSCP)

In (MSCP), the measurable function v : [0, T ] → {v1, . . . , vM } ⊂ R
nV is a discrete-

valued control input. The function y : [0, T ] → R
nY is the state vector of an initial

value problem (IVP). We assume a uniform Lipschitz estimate on f in the first variable

and deduce from the Picard–Lindelöf theorem that for all controls v, there exists a

unique solution y ∈ W 1,∞((0, T ), R
nY ), the space of functions in L∞((0, T ), R

nY )

with weak derivatives in L∞((0, T ), R
nY ).

The continuous function J assigns costs to the state vector y and the function

C : L∞((0, T ), R
nV ) → R assigns costs to the control function v. We leave its

regularity unspecified here and note that a natural choice in this article is a measure

of switching costs, like for example the total variation or a weighted variant thereof.

Several approaches to deal with (MSCP) have been considered. Reformulation

methods such as variable-time transformation [7,25] necessitate the sometimes dif-

ficult evaluation of the costate but allow insertion of new switches, while bilevel

optimization approaches require an a-priori fixed maximal number of switchings [6].

The presented approach is complementary to the aforementioned reformulation meth-

ods. We use a two-step approach [13] and aim to extend the modeling capabilities of

the second step with respect to switching costs and combinatorial constraints.

The challenging feature of (MSCP) is that the discrete-valued variable v is dis-

tributed in the time horizon [0, T ]. Consequently, a direct discretization of (MSCP)

gives an integer optimization problem, in which the number of integer variables grows

with the mesh refinement. In the absence of the costs C , the infimum of (MSCP) can

be approximated by deriving and solving a continuous relaxation of (MSCP). The

solution of the relaxation is then rounded to a discrete-valued control satisfying an

approximation property with respect to the relaxed solution.

While solving a discretization of (MSCP) to optimality is often considered

intractable in practice, roundings can be computed efficiently. What is more, the infi-

mum in (MSCP) can be approximated arbitrarily well using this methodology [17,18].

Consequently, rounding approaches have been used to solve a variety of problems

[11,13,20,21,23].

Still, there are some drawbacks. First, the infimum is approximated in the limit

of the mesh refinements, necessitating very fine grids in practice. Related to this,

the rounding algorithms inevitably introduce an (often undesired) chattering behavior

into the resulting discrete control because the fractional control is approximated in the
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MIOCP with switching costs: A shortest path approach 623

weak∗ topology of L∞((0, T ), R
nV ) (see [18]). Second, the approximation properties

usually do not hold anymore once the control costs C are present in (MSCP).

The authors of [13] propose to solve an IP optimizing the approximation of a

rounding of the relaxation. Recently this approach was extended to constrain the total

variation of the rounded control to reduce chattering [24].

We continue these steps towards practical applicability but take a slightly different

point of view. For a given discretization mesh, we fix the approximation quality for

the controls as the constraint and seek for a binary valued control such that the control

costs C are minimized. Therefore the approach allows to incorporate additional com-

binatorial constraints into the problem. A first version of this idea has been presented

by the authors in the short proceedings article [2]. We highlight that the switching costs

are considered in the rounding process and are not part of the continuous relaxation.

This allows to maintain the approximation properties of the decomposition approach,

see Proposition 3 and Remark 4 for a summary of the related results.

While there has been quite some research on approximation guarantees for rounding

algorithms, see e.g., [14,23,24], there has not been much work on complexity and

theoretic runtime analysis in case the rounding algorithm necessitates the solution of

an IP [2,13]. We address this question in detail for a generalization of the rounding

algorithm proposed in [2] in the case of equidistant grids that decompose the domain.

1.1 Contribution

We reconsider the IP-based rounding algorithm introduced in [2]. While the algorithm

provides solutions satisfying established approximation criteria with minimum costs,

the computational effort of solving the IP is substantial. In order to improve compu-

tational efficiency, we exploit the structure of the IP. We show that the IP corresponds

to a shortest path problem in a directed acyclic graph (DAG), which is reduced by

means of an equivalence relation. The shortest path problem is known to be solvable

in linear time in the size of the graph (see [5]). We prove bounds of O(N (2θ + 3)M )

and O(N (2θ +3)2M ) on the number of vertices and arcs of the reduced DAG, respec-

tively, where N denotes the number of intervals discretizing the time horizon [0, T ],

and the tuning parameter θ ≥ 1 may be chosen independently of the coarseness of

the discretization grid on which the discrete-valued control is defined. We obtain an

O(N (2θ + 3)2M ) algorithm computing the rounded control.

We show that the algorithm can be adapted to obey additional constraints, such as

minimum dwell times (see [26]) and vanishing constraints without any increase in

complexity. What is more, the objective function to be optimized can be adapted to

mirror problems such as the Combinatorial Integral Approximation (CIA) problem

(see [13]). It is also possible to include the approximation quality as an objective to

obtain solutions approximating the fractional control as least as well as those provided

by the well known Sum-Up Rounding (SUR) algorithm from [20].

We conclude by conducting a computational experiment. It shows that the developed

algorithm reduces the running times by several orders of magnitude compared to the

use of a state-of-the-art solver for the original IP formulation.
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624 F. Bestehorn et al.

1.2 Structure of the remainder

The remainder of this article is structured as follows. Section 2 introduces the approxi-

mation of (MSCP) and gives a short introduction to rounding algorithms for MIOCPs.

In Sect. 3 we reformulate the problem and derive the DAG formulation as well as a

labeling scheme, which will be used throughout the article. We state that the optimal

solution of a shortest path problem leads to a control for the original problem (MSCP)

minimizing the costs C and staying within chosen bounds for the relaxed solution.

Afterwards, Sect. 4 provides the worst case analysis for our approach and the proof

that the runtime is linear in the grid discretization. Section 5 provides a computational

comparison. We close with a summary of the article in Sect. 6.

1.3 Notation

The symbol ei denotes the i-th canonical basis vector in an Euclidean space. For

an equivalence relation denoted by ∼ on the set V , we denote the quotient set by

V∼, and the equivalence class of v ∈ V by [̃v]. For N ∈ N we denote the set of

numbers {1, . . . , N } by [N ]. . The {0, 1}-valued characteristic function of a set A is

denoted by χA. A row slice of row s until row k of a matrix A ∈ R
N×M is denoted by

As:k ∈ R
((k−s+1)×M).

2 Approximation of (MSCP)

We follow the idea of partial outer convexification (see [21]) to derive an equiva-

lent reformulation as well as a continuous relaxation of (MSCP). Then, we state the

abstract consistency property, Definition 2, that is required for rounding algorithms,

Proposition 3, and the following main result of the described two step approximation

methodology.

2.1 Reformulation and relaxation of (MSCP)

We reformulate (MSCP) equivalently and replace the control function v by a {0, 1}M -

valued function ω that models a one-hot or special ordered set of type 1 (SOS-1)

activation of the different control realizations v1,. . .,vM , that is v(t) =
∑M

i=1 ωi (t)vi

for t ∈ [0, T ]. This formulation allows to move the activation of the different control

realizations in the second argument of f to the different right hand sides of the ordinary

differential equation (ODE). The problem BC is stated below.
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MIOCP with switching costs: A shortest path approach 625

inf
y,ω

J ( y) + C

(
M∑

i=1

ωivi

)

s.t. ẏ(t) =

M∑

i=1

ωi (t) f ( y(t), vi ) for t ∈ [0, T ], y(0) = y0,

ω(t) ∈ {0, 1}M and

M∑

i=1

ωi (t) = 1 for t ∈ [0, T ].

(BC)

The problem (BC) can be relaxed straightforwardly to a continuous optimal control

problem by relaxing the SOS-1 constraint to convex coefficients. Moreover, we omit

the switching cost term here, because important approximation properties cannot be

sustained, see Proposition 3 below, and transfer it to the rounding problem (SCARP)

instead. The resulting continuous relaxation (RC) of (BC) is stated below.

min
y,α

J ( y)

s.t. ẏ(t) =

M∑

i=1

αi (t) f ( y(t), vi ) for t ∈ [0, T ], y(0) = y0,

α(t) ∈ [0, 1]M and

M∑

i=1

αi (t) = 1 for t ∈ [0, T ].

(RC)

By changing the infimum in the formulation of (BC) to a minimum in (RC), we

highlight that we tacitly assume that (RC) admits a solution throughout the remainder

of the manuscript. We note that the approximation method is not restricted to optimal

solutions of (RC) but can be applied to all feasible points. As in [17], we call a

function ω∗ ∈ L∞((0, T ), R
M ) satisfying the second constraint of (BC) a binary

control. Similarly, a function α∗ ∈ L∞((0, T ), R
M ) satisfying the second constraint

of (RC) is a relaxed control. From now on we denote binary and relaxed controls that

are functions in L∞((0, T ), R
M ) with ∗ and discretized functions using piecewise

constant discretizations as matrices without ∗.

2.2 Rounding algorithms

Naturally, binary controls are piecewise constant functions. Therefore, the rounding

algorithms operate on grids, which we call rounding grids from now on and which are

defined formally below together with the rounding algorithms themselves.

Definition 1 Let 0 = t0 < . . . < tN = T be a grid discretizing [0, T ] into N intervals.

We call the set {[t0, t1), . . . , [tN−2, tN−1), [tN−1, tN ]} a rounding grid. If hk := tk −

tk−1 for k = 1, . . . , N are the lengths of the intervals, then h := maxk∈[N ]{tk − tk−1 :

k ∈ [N ]} is called the mesh size of the grid.

A function or algorithm is called a rounding algorithm if it maps a relaxed control

and a rounding grid to a binary control that is constant per interval.
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626 F. Bestehorn et al.

We define a consistency property for rounding algorithms that leverages the approx-

imation relationship between (BC) and (RC).

Definition 2 A rounding algorithm is called consistent if there exists a constant θ > 0

such that for all relaxed controls α∗ and all rounding grids, the produced control ω∗

satisfies d(ω∗,α∗) ≤ θh, where d is the pseudo-metric given as

d(ω∗,α∗) := sup
t∈[0,T ]

∥∥∥∥
∫ t

0

[
α∗(s) − ω∗(s)

]
ds

∥∥∥∥
∞

.

The consistency property gives rise to the main approximation relationship between

(BC) and (RC) in the proposition below [17,18]. This relationship constitutes the

theoretical justification for the described approximation methodology.

Proposition 3 (Theorem 5.1 in [17]) Let f (·, vi ) : R
ny → R

ny be Lipschitz continuous

for all i ∈ [M]. Let α∗ ∈ L∞((0, T ), R
M ) be a relaxed control, and let y denote the

solution of the IVP in (RC) for α∗. Let (ω(n),∗)n ⊂ L∞((0, T ), R
M ) be a sequence of

binary controls such that

d(ω(n),∗,α∗) → 0.

Then, the solutions y(n) of the IVPs in (BC) for the control inputs ω(n),∗ satisfy

y
(n) → y in C([0, T ], R

nY ).

Furthermore, let J be continuous. Then,

min{J (y) : (α∗, y) feasible for (RC)} = inf{J (y) : (ω∗, y) feasible for (BC)}.

We note that the algorithms Sum-Up Rounding (SUR) [20,23], Next-forced Rounding

(NFR) [12], and the CIA [13] satisfy Definition 2 and consequently, the claim of

Proposition 3 holds for them for refinements of the rounding grids such that h → 0,

that is the mesh size vanishes.

Remark 4 The last identity in Proposition 3 usually does not hold for objectives of

the form J (y) + C(ω). Therefore, we consider the switching cost term C in the

rounding process instead, which is described and analyzed in the next section. For

example consider the total variation as switching costs. Then, the discrete-valued

approximation of a fractional-valued control function always leads to a divergence of

the switching costs towards infinity if the mesh is refined because the control becomes

a rapidly oscillating function, see also [18, Section 4, Figure 1] for visualization.

3 Switching cost aware rounding

Let α∗ be a relaxed control. We seek an approximating binary control ω∗ ∈

L∞((0, T ), R
M ), such that the costs C in the resulting controls v are minimal. More-
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MIOCP with switching costs: A shortest path approach 627

over, we seek guarantees on the consistency principle in Definition 2. We propose to

use the solution of the optimization problem

min
ω∗ feasible for (BC )

C

(
M∑

i=1

ω∗
i vi

)
s.t. d(ω∗,α∗) ≤ θh (SCARP)

as the rounding algorithm for a given rounding grid with mesh size h and a given

relaxed control α∗ ∈ L∞((0, T ), R
M ). The slack-parameter θ > 0 steers the trade-

off between the approximation accuracy and the costs of the optimized control function

ω∗. The existence of solutions is proven for a value of θ ≥
∑M

i=2 1/i in [14] and for

θ = 1 in [12].

For a given rounding grid, we formulate (SCARP) as a finite-dimensional IP and

provide elementary consistency properties in Sect. 3.1. Then, we derive the graph-

based formulation in Sect. 3.2.

3.1 Switching cost aware rounding as an integer program

Switching Cost Aware Rounding was introduced in the form of an IP in [2]. Throughout

the remainder of this article, we optimize (SCARP) for a fixed rounding grid, implying

that the resulting control ω∗ ∈ L∞((0, T ), R
M ) is constant on the intervals that make

up the rounding grid. We briefly repeat the steps required to derive the IP formulation.

First, notice that the function α∗ − ω∗ is monotone in each component per inter-

val because α∗ is nonnegative and ω∗ is interval-wise constant. Consequently, the

condition d(ω∗,α∗) ≤ θh is equivalent to the set of linear constraints

−θh ≤

t∑

k=1

hk(αk,i − ωk,i ) ≤ θh for all t ∈ [N ] for all i ∈ [M],

where the matrix α ∈ R
N×M is defined by αk := 1

hk

∫ tk
tk−1

α∗ for k ∈ [N ],

that is αk ∈ R
M is the average of the function α∗ ∈ L∞((0, T ), R

M ) over

the k-th interval. Analogously, the resulting matrix ω ∈ {0, 1}N×M allows to

reconstruct the piecewise-constant control function ω∗ ∈ L∞((0, T ), R
M ) as

ω∗ =
∑N−1

k=1 ωkχ[tk−1,tk ) + ωN χ[tN−1,tN ].

Second, many cost functions, for instance the switch-on of control i from interval

k − 1 to k, which may be modeled by nonlinear functional formulations such as

ci (1 − ωk−1,i )ωk,i can be rewritten as linear terms after adding additional binary

variables to the problem formulation, see for example the formulation of (SCARP)

in [2]. We assume that the cost function C can be included into the IP in this way,

arriving at the following formulation in which binary variables model the control ω:

min
ω

C(ω) s.t.

M∑

i=1

ωt,i = 1 for all t ∈ [N ], (SCARP-IP)
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628 F. Bestehorn et al.

− θh ≤

t∑

k=1

hk(αk,i − ωk,i ) ≤ θh for all t ∈ [N ] and all i ∈ [M],

ωt,i ∈ {0, 1} for all t ∈ [N ] and all i ∈ [M].

Based on this formulation, for a given relaxed control α∗ and a given rounding grid,

the solution of (SCARP-IP) yields a piecewise constant binary control defined on

the rounding grid. This control minimizes the switching costs while being in a θh

proximity of α∗ with respect to d. The following proposition follows immediately

from the definitions:

Proposition 5 Let ω ∈ {0, 1}N×M be a solution of (SCARP-IP). It then holds that the

function ω∗ :=
∑N−1

k=1 ωkχ[tk−1,tk ) + ωN χ[tN−1,tN ] is feasible for (BC).

The literature guarantees that (SCARP-IP) always has a feasible point for θ ≥ 1, see

[2,12], which thereby proves the desired consistency from Definition 2 that is required

in Proposition 3.

Proposition 6 (Proposition 3.1 in [2]) Let a rounding grid with mesh size h > 0 be

fixed. Let θ ≥ 1. Let α∗ ∈ L∞((0, T ), R
M ) be a relaxed control. Then, (SCARP-IP)

has a solution ω. Let ω∗ :=
∑M

k=1 χ[tk−1,tk )ωk . Then,

d(ω∗,α∗) ≤ θh.

In particular, the rounding algorithm defined by solving (SCARP-IP), for given

relaxed control and rounding grid, is consistent.

If the costs C increase with the number of switches, the optimal costs of the solution

of (SCARP-IP) become unbounded when h → 0. However, the maximal frequency of

switching (often (mink{hk})
−1) is subject to some physical (mechanical or electrical)

limits in practice. This may imply that h → 0 cannot be reasonably assumed. The

problem formulation (SCARP-IP) gives us the interpretation of θ as a trade-off param-

eter to balance the deviation of ω from an optimal relaxed control with the induced

increase in switching costs.

One of the key ingredients of branch-and-bound solvers for IPs are good continuous

relaxations of the IP formulation. If one considers (SCARP-IP) and minimizes θ , we

obtain the problem CIA from [13]. An initial solution, originating from the continuous

relaxation, is given by α with the worst lower bound zero on the objective value.

Consequently the continuous relaxation does not add any information and using black-

box branch-and-bound solvers is not advisable. This observation is confirmed by the

long computing times we observe when solving (SCARP-IP) for higher numbers of

intervals N in [2], and the speedup reported when the software package pycombina

[4] is applied to CIA from [13] with SCIP [1].
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MIOCP with switching costs: A shortest path approach 629

3.2 Switching cost aware rounding as shortest path in a directed acyclic graph

We propose to consider (SCARP) as a shortest path problem on a DAG. This allows

us to use nonlinear cost functions of the form

C(ω) = cs(ω1) +

N−1∑

t=2

ct (ωt−1,ωt ) + c f (ωN ), (3.1)

where cs are start costs, ct are intermediate costs from interval t − 1 to t and c f

are final costs. This formulation covers switching costs, the main motivation for this

article. We now set forth to transform the set defined in terms of the two constraints

of (SCARP-IP), namely

M∑

i=1

ωt,i = 1 for all t ∈ [N ], and (SOS-1)

−θh ≤

t∑

k=1

hk(αk,i − ωk,i ) ≤ θh for all t ∈ [N ] and all i ∈ [M] (Slack)

into a DAG formulation. Here, (Slack) corresponds to the constraint d(ω∗,α∗) ≤ θh.

We begin by defining the set of binary feasible solutions (that is binary controls as

elements of the set {0, 1}N×M ) for a given relaxed control, a given rounding grid, and

a given trade-off parameter value.

Definition 7 (Binary Feasible Solution (BinFS)) Let α ∈ [0, 1]N×M satisfy (SOS-1),

and let θ > 0 and h1, . . ., hN be given. Then, we define the set of binary feasible

solutions with regards to α and θ until interval t ∈ [N ] as

Vt (α, θ) :=

{
ω ∈ {0, 1}t×M

∣∣∣∣
ω satisfies (SOS-1) and (Slack) w.r.t

α for all i ∈ [M] and k ∈ [t]

}
. (3.2)

We also say that Vt (α, θ) are the feasible solutions that are spanned by α, θ and

h1, . . . , ht .

This enables us to define vertices and arcs for our DAG. Following the definition

of (SCARP), we obtain, given a relaxed control α, a rounding grid and a trade-off

parameter value θ , one DAG. Our DAG can be grouped into N layers such that arcs

can only exist between vertices of two subsequent layers.

For t ∈ [N ], the vertices in the t-th layer are the matrices ω ∈ {0, 1}t×M that are

binary feasible until the t-th interval, that is ω ∈ Vt (α, θ). For t ∈ [N − 1], an arc

exists between two nodes ωa ∈ Vt (α, θ) and ωb ∈ Vt+1(α, θ) if ωa
k = ωb

k for k ∈ [t].

This means that a BinFS until the t-th interval ωa ∈ {0, 1}t,M can be extended to a

BinFS until the t + 1-th interval, ωb ∈ {0, 1}t+1,M . Before reducing the graph, we

formalize this idea in Definition 8 below.
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Definition 8 Let α ∈ [0, 1]N×M satisfy (SOS-1), and let θ > 0. We define the vertex

set V as

V := V (α, θ) =

N⋃

t=1

Vt with Vt := Vt (α, θ), for t ∈ [N ],

and the corresponding set of arcs A :=
⋃N−1

t=1 At with

At :=
{
(ωt ,ωt+1) ∈ Vt × Vt+1

∣∣∣ωt ∈ Vt ,ω
t+1 ∈ Vt+1,ω

t+1
k = ωt

k for all k ∈ [t]
}
.

For t ∈ [N − 1], we define the costs for an arc (v,w) ∈ (Vt × Vt+1) ∩ A as

C(v,w) := ci (vt , wt+1) +

⎧
⎨
⎩

cs(v1) if t = 1,

0 if t ∈ {2, . . . , N − 2},

c f (wN ) if t = N − 1.

Note that the size of the DAG, given by |V | + |A|, determines the time required to

traverse the graph in a shortest path search. Moreover, arc costs are considered as part

of the input of (SCARP-IP), and are not used in the DAG construction. Therefore they

do not influence the complexity description of the DAG. Thus the size of the DAG is

independent of the value of C . A second observation is facilitated by the following

assumption and enables the identification of control realizations with vertices.

Assumption 9 (Equidistant rounding grid) The rounding grid on which the relaxed

solution α was obtained is equidistant, i.e., it holds that hk = h for all k ∈ [N ].

This assumption allows to factor (Slack) by h, which we do throughout the remainder

of the article. We now observe that under Assumption 9 and with (SOS-1), a column-

wise sum of ω ∈ Vt (α, θ) yields the number of intervals in which the different control

realizations v1,. . .,vM are switched on. We call the resulting vectors the labels of ω.

Definition 10 (Labels of Binary Solutions) Let Assumption 9 hold. Let t ∈ [N ],

α ∈ [0, 1]t×M , let θ > 0, and ω ∈ Vt (α, θ). Then the vector L(ω) ∈ N
M defined as

L(ω) :=

(
t∑

k=1

ωk,1,
t∑

k=1

ωk,2, . . . ,
t∑

k=1

ωk,M

)T

(3.3)

is the label of ω.

We observe that if two BinFSs until the t-th interval have the same label value, they

also have the same emerging arcs in the DAG in the sense that they may be extended

by the same SOS-1 control vector without losing feasibility in terms of (Slack). This

also implies that the costs induced by subsequent layers are the same. Moreover, the

t-th layer of the DAG consists of a subset of the BinFSs with a sum of label entries of

exactly t , that is that the 1-norm of the label is t . We formalize these observations in

the following proposition.
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Proposition 11 Let Assumption 9 hold, let α ∈ [0, 1]N×M satisfy (SOS-1), let θ > 0.

1. Let t ∈ [N ], and let ωa , ωb ∈ Vt such that L(ωa) = L(ωb). If it holds that

ω̂a :=
(
ωaT

| eT
i∗

)T

∈ Vt+1 for some i∗ ∈ [M], then it follows that ω̂b :=
(
ωbT

| eT
i∗

)T

∈ Vt+1.

2. Let ω ∈ V . Then, either ω ∈ V1 or there exist t ∈ [N − 1] and vertices ω1 ∈

V1,. . .,ωt ∈ Vt with (ωk, ωk+1) ∈ A for all k ∈ [t − 1] and (ωt , ω) ∈ A.

3. Let t ∈ [N ], and let ω ∈ Vt . Then, ‖L(ω)‖1 =
∑M

i=1 L(ω)i = t .

Proof Because of ωb ∈ Vk and Assumption 9, we obtain

−θ ≤
k∑

ℓ=1

ω̂
b
ℓ,i − αℓ,i ≤ θ for all k ∈ [t] and i ∈ [M].

Furthermore,

t+1∑

k=1

ω̂
b
k − αk = L(ωb) + ei∗ −

t+1∑

k=1

αℓ = L(ωa) + ei∗ −

t+1∑

k=1

αk =

t+1∑

k=1

ω̂
a
k − αk,

where we have used the fact that L(ωa) = L(ωb) implies that
∑t

k=1 ωa
k,i =

∑t
k=1 ωb

k,i

for all i ∈ [M]. Consequently, it follows for all i ∈ [M] that

−θ ≤
t+1∑
k=1

ω̂
b
k,i − αk,i ≤ θ

by means of ω̂
a ∈ Vt+1(α, θ). Combining this, (Slack) holds with k ∈ [t + 1] for ω̂

b
.

Because ω̂
b
t+1 = ei , ω̂

b
t+1 satisfies (SOS-1) too. This proves the first claim.

The second claim follows inductively from the first. The third claim follows from

the SOS-1 constraint and the definition of L . ⊓⊔

We may observe that the function L induces an equivalence relation ∼ on the set

of vertices of the t-th layer Vt (α, θ) as well as on the whole set of vertices V (α, θ).

For the equivalence relation, we define an induced quotient DAG G∼ := (V∼, Ã).

Definition 12 Let Assumption 9 hold, let α ∈ [0, 1]N×M satisfy (SOS-1) and let

θ > 0. Let G = (V , A) be a DAG as defined in Definition 8 with label function

L from Definition 10 and induced equivalence relation ∼. The vertex set V∼ for the

quotient DAG G∼ to G is defined as

V∼ :=
{
[̃v]

∣∣ v ∈ V
}

and the set of arcs is

Ã =
{
([̃v], [̃w]) ∈ V∼ × V∼ : (v,w) ∈ A

}
.
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Moreover, there exists a bijection between a (sub)path of vertices (v1, . . . , vt )

through (V , A, C) and a corresponding sequence (L(v1), . . . , L(vt )). Finally, the quo-

tient set V∼ of V decomposes consistently into the quotient sets Vk,∼ of Vk for k ∈ [N ].

We formalize these observations in the following proposition.

Proposition 13 Let Assumption 9 hold, let α ∈ [0, 1]N×M satisfy (SOS-1), let θ > 0.

1. Then v ∼ w :⇔ L(v) = L(w) for v, w ∈ V is an equivalence relation.

2. Let v ∼ w for v, w ∈ V . Then, v ∈ Vt for t ∈ [N ] implies w ∈ Vt .

3. Then V∼ =
⋃N

t=1 Vt,∼.

4. There exists a bijection between the subpaths (v1, . . . , vt ) ∈ V1 × . . . × Vt with

(vk, vk+1) ∈ A for all k ∈ [t − 1], and (L1, . . . , L t ) ∈ V1,∼ × . . . × Vt,∼ with

(Lk, Lk+1) ∈ Ã for all k ∈ [t − 1].

5. Let (L1, . . . , L t ) ∈ V1,∼ × . . . × Vt,∼ be a subpath and let the costs defined by

Ĉ(L1, . . . , L t ) := cs(L1) +

t−1∑

k=2

ct (Lk − Lk−1, Lk+1 − Lk)

+

{
c f (L N − L N−1) if t = N ,

0 else.

Let v1, . . . , vt ∈ V1 × Vt be the subpath devised from L1, . . . , L t through the

bijection from 4. Then the cost function Ĉ(L1, . . . , L t ) is consistent with C on

(V , A) Then the cost function Ĉ(L1, . . . , L t ) is consistent with C on (V , A), that

is

Ĉ(L1, . . . , L t ) =

t−1∑

k=1

C (vk, vk+1) .

Proof The first claim is verified straightforwardly. The second claim follows from

Proposition 11.3, and in turn ‖L(v)‖1 = k for v ∈ Vk . The third claim follows from

the second.

For the fourth claim, we strive an inversion of (v1, . . . , vt ) �→ (L(v1), . . . , L(vt )).

We observe that |[̃v]| = 1 for v ∈ V1, that is no information is lost because of the

equivalence relation. Thus, L(v1) = L1 has exactly one solution v1 ∈ V1. Thus,

with dk := Lk+1 − L(vk), we can recover the change from layer k to layer k + 1

by virtue of Proposition 11.1, and obtain the injectivity inductively with the formula

vk = v1 +
∑k−1

ℓ=2 dℓ for k ∈ [t].

The fifth claim follows inductively from Definition 8 and the fourth claim. ⊓⊔

The recursive structure of Ĉ yields that a shortest path algorithm only needs to store

the information on the current and previous vertex of the path in (V∼, Ã, Ĉ) to be able

to evaluate the costs for an arc in the quotient DAG. Let (v1, . . . , vt ) be a path in the

DAG (V , A, C). Then, the cost of the path is given by

L(V ,A,C)((v1, . . . , vt )) :=

t−1∑

k=1

C(vk, vk+1). (3.4)
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By virtue of Propositions 11 and 13 , we are able to prove the main result of Sect. 3,

which establishes the equivalence between solving (SCARP-IP) and solving a shortest

path over the (quotient) DAG.

Theorem 14 Let Assumption 9 hold, let α ∈ [0, 1]N×M satisfy (SOS-1), let θ > 0.

Let C be defined as in (3.1). Then, the following are equivalent.

1. ω is feasible for (SCARP-IP).

2. (ω1, . . . ,ωN ) ∈ V1 × . . . × VN and (ωt ,ωt+1) ∈ A for all t ∈ [N − 1].

3. (L1, . . . , L N ) ∈ V1,∼ × . . .× VN ,∼ and (L t , L t+1) ∈ Ã for all t ∈ [N −1], where

L t := L
(∑t

k=1 ωk

)
for t ∈ [N ].

Moreover, C(ω) = L(V ,A,C)((ω1, . . . ,ωN )) = L(V∼, Ã,Ĉ)((L1, . . . , L N )).

Proof The equivalence of 1. and 2. follows from the construction of (V , A, C) and

Proposition 11. The equivalence of 2. and 3. follows from Proposition 13.

The identity C(ω) = L(V ,A,C)(...) follows by construction of C and (3.4). The

identity L(V ,A,C)(...) = L(V∼, Ã,Ĉ)(...) follows from Proposition 13.4. ⊓⊔

Theorem 14 allows to apply a shortest path algorithm to the DAG constructed from

a relaxed solution and a parameter θ > 0. The solution can then be used to construct

a feasible binary control. Before briefly discussing the applied algorithm we note that

the used DAG construction induces a topological order on the vertices of V and V∼ as

all outgoing arcs for vertex [̃v] ∈ Vt,∼ (or its equivalent in Vt ) are incident to vertices

in Vt+1,∼ (Vt+1) and there exist no outgoing arcs from Vt,∼ (Vt ) to Vt−1,∼ (Vt−1). With

this in mind the general procedure for the shortest-path algorithm, using elements of

Dijkstras algorithm, is as follows, see also [5, p. 655].

Algorithm 3.1 Shortest-paths on DAG

1: Add an artificial vertex [̃v]0 incident to all vertices in V1,∼ to the topologically sorted vertices of G∼.

2: For each vertex [̃v] ∈ V∼ set d([̃v]) = ∞ and P([̃v]) = N I L .

3: Set d([̃v]0) = 0.

4: for each vertex [̃v] ∈ V∼ taken in topologically sorted order do

5: for each vertex [̃w] adjacent to [̃v] with a higher topological order value do

6: if d([̃w]) > d([̃v]) + C(v, w) then

7: Set d([̃w]) = d([̃v]) + C([̃v], [̃w]) and P([̃w]) = [̃v].

8: end if

9: end for

10: end for

11: return Vertex [̃v] ∈ V∼,N with lowest value d([̃v]) and predecessors P .

Because of the topological order of G∼ the runtime of Algorithm 3.1 is O(|V∼| +

| Ã|). The cardinalities |V∼| and | Ã| will be estimated in the next Sect. 4. Theorem 14

now allows to convert the result from applying Algorithm 3.1 to G∼ into a binary

control for the MSCP, which is feasible with respect to (Slack) and optimal with

respect to the switching cost function. Furthermore, we observe that, if no path of

length N through the DAG can be found, then infeasibility of the instance for the

combination of combinatorial constraints and the slack-parameter θ is certified.
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Remark 15 We would like to point out that the DAG approach to rounding algorithms

offers a lot of modeling flexibility, for example:

1. The presented approach is able to handle additional pointwise vanishing constraints

in (RC), see also [14]. In this case the constraint that an arc from v ∈ Vt to w ∈ Vt+1

with L(w) = L(v) + ei can only be traversed, if αt,i > 0, has to be added.

2. Minimum dwell time constraints [26] can be incorporated by choosing a path

through the DAG which satisfies the dwell times for all controls.

3. The CIA problem from [13] can be solved efficiently with our approach by includ-

ing changing costs C .

Note that these modifications do not negatively affect complexity: On the one hand,

a shortest path through a DAG can be computed in linear time for any cost function,

in particular negative ones [5]. On the other hand, the removal of arcs or vertices from

the DAG only makes the shortest path problem easier.

Furthermore, we observe that, if no path of length N through the DAG can be

found, then we have an infeasibility certificate of the instance for the combination of

combinatorial constraints and the slack-parameter θ .

4 Runtime complexity estimates

Section 4.1 establishes a worst-case scenario for the approach with regards to runtime

for calculating an optimal solution. In Sect. 4.2 it is shown that the time needed to

calculate the optimal solution with respect to α and θ is linear in N and an upper bound

on the total computing time in dependency of M, N and θ is given for the established

worst-case.

4.1 Worst case for the graph based algorithm

From the previous section we know that to establish the runtime of the proposed

approach knowledge of the maximal cardinalities of |V∼| and | Ã| are necessary. As

arcs are only defined in between vertex sets of subsequent time intervals, the underlying

graph is bipartite. Thus | Ã| is only dependent on |V∼|, which in turn is dependent on

the cardinality of the set of BinFSs spanned by a relaxed solution. Therefore the worst

case for the proposed shortest path search is the relaxed solution which spans the

largest set of BinFSs.

We define the set of all relaxed solutions α, that is the ones satisfying (SOS-1),

below.

Definition 16 (Set of Relaxed Solutions) Let M be the number of switches and N the

number of intervals in a rounding grid. Then the set of relaxed solutions until interval

t ∈ [N ] is defined as

S(M, t) :=

{
α ∈ [0, 1]t×M

∣∣∣∣
M∑

i=1

αk,i = 1 for all k ∈ [t]

}
. (4.1)
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Having defined S(M, N ), the worst case is bounded by the number of BinFSs

spanned by solutions α ∈ S(M, N ). We define subsets R ⊂ S(M, N ) such that the

cardinality of the spanned BinFSs is bounded, in particular

sup
α∈S(M,N )

|V∼(α, θ)| ≤ sup
α∈R

|V∼(α, θ + 1)| . (4.2)

We finish at a finite subset R such that maxα∈R |V∼(α, θ + 1)| can be bounded favor-

ably in Sect. 4.2. Remembering Assumption 9, we define the following two subsets

of S(M, t), which assume the role of R in the remainder.

Definition 17 (Subsets of Relaxed Solutions) Let Assumption 9 hold. For t ∈ [N ],

we define the following subsets of relaxed solutions.

I (M, t) :=
{
α ∈ S(M, t)

∣∣αk,i ∈ {0, 1} for all i ∈ [M] and all k ∈ [t]
}
,

SI (M, t) :=

{
α ∈ I (M, t)

∣∣For all i, j ∈ [M] and all s ∈ [t] :

∣∣∣∣∣
s∑

k=1

αk,i −

s∑

k=1

αk, j

∣∣∣∣∣ ≤ 1

}
.

We observe that the following chain of inclusions holds for all t ∈ [N ].

SI (M, N ) ⊆ I (M, N ) ⊆ S(M, N ). (4.3)

We can now state and then prove the main theorem of this worst case analysis, which

particularly implies that (4.2) holds with the choice R := SI (M, N ).

Theorem 18 Let M ∈ N, θ ≥ 1, and let Assumption 9 hold. Then, for all t ∈ [N ] and

all α̃ ∈ S(M, t), there exists an α ∈ SI (M, t) such that

|Vt,∼(̃α, θ)| ≤ |Vt,∼(α, θ + 1)|. (4.4)

Outline of the proof of Theorem 18

We divide the proof into two parts. First, we prove the inequality (4.4) for the choices

α̃ ∈ S(M, t) and α ∈ I (M, t). Second, we improve the statement to the desired claim

by proving (4.4) for the choices α ∈ I (M, t) and α ∈ SI (M, t).

Proof of inequality (4.4) for the choices ˜̨ ∈ S(M, t) and˛ ∈ I(M, t)

Lemma 19 Let Assumption 9 hold and let θ ≥ 1. Then for all t ∈ [N ] and all

α̃ ∈ S(M, t), there exists an α ∈ I (M, t) such that

Vt,∼(̃α, θ) ⊆ Vt,∼(α, θ + 1). (4.5)

To prove Lemma 19, we will require an α ∈ I (M, t) that satisfies two important

bounds, which are introduced below in (4.6). The existence follows with the help of

the Next-forced Rounding (NFR) algorithm from [12].
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Lemma 20 For all t ∈ [N ] there exists α ∈ I (M, t) such that for all i ∈ [M]

⌈
t∑

k=1

α̃k,i − 1

⌉
≤

t∑

k=1

αk,i ≤

⌊
t∑

k=1

α̃k,i + 1

⌋
. (4.6)

Proof We use the (NFR) algorithm from [12] to deduce that there exists an α ∈ I (M, t)

that satisfies

s∑

k=1

α̃k,i − 1 ≤

s∑

k=1

αk,i ≤

s∑

k=1

α̃k,i + 1. (4.7)

for all s ∈ [t] (Proposition 4.8, [12]). Furthermore, by definition of ⌊·⌋ it holds that

b ≤ c implies b ≤ ⌊c⌋ for b ∈ N and c ∈ R. Analogously, a ≤ b implies ⌈a⌉ ≤ b for

a ∈ R and b ∈ N. Because of α ∈ I (M, t), we have
∑s

k=1 αk,i ∈ N for all s ∈ [t]

and i ∈ [M] and the claim follows. ⊓⊔

Proof of Lemma 19 There is nothing to prove if α̃ ∈ I (M, t). Thus we restrict to α̃ ∈

S(M, t)\I (M, t). Lemma 20 yields the existence of an α ∈ I (M, t) such that the

inequalities (4.6) hold. Let v ∈ Vt (̃α, θ) be arbitrary. Then for all i ∈ [M] at an

arbitrary grid point t ∈ [N ] it holds that

⌈
t∑

k=1

αk,i − (θ + 1)

⌉
(4.6)
≤

⌈
t∑

k=1

α̃k,i − θ

⌉
Def.7
≤

(Slack)
L(v)i , (4.8)

⌊
t∑

k=1

αk,i + (θ + 1)

⌋
(4.6)
≥

⌊
t∑

k=1

α̃k,i + θ

⌋
Def. 7
≥

(Slack)
L(v)i . (4.9)

The last inequality in both (4.8) and (4.9) holds by Definition 7 and (Slack), while

the first inequality holds because of the chain of inequalities (4.6). Because v was

arbitrary by Definition 7 the claim follows. ⊓⊔

Proof of inequality (4.4) for the choices˛ ∈ I(M, t) and˛ ∈ SI(M, t)

To complete the proof of Theorem 18 it remains to show that inequality (4.4) holds

for α ∈ I (M, t) and α ∈ SI (M, t), which is the purpose of the following lemma.

Lemma 21 Let Assumption 9 hold and let θ ≥ 1. Then for all t ∈ [N ] and all

α ∈ I (M, t) there exists an α ∈ SI (M, t) such that

|Vt,∼(α, θ)| ≤ |Vt,∼(α, θ)|. (4.10)

Proof We observe that there is nothing to prove if α ∈ SI (M, N ) or t ≤ θ because

|Vt (α, θ)| = |Vt (α, θ)| holds in these cases by virtue of (Slack). Thus, we restrict to

t > θ , and α ∈ I (M, t)\SI (M, t) throughout the proof.

We employ mathematical induction over m ∈ N by means of a distance function

dt (α), which is defined in Definition 24 below. The induction hypothesis reads:
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For all t ∈ [N ] and all α ∈ I (M, t)\SI (M, t) with dt (α) = m there exists

α ∈ SI (M, t) such that

|Vt,∼(α, θ)| ≤ |Vt,∼(α, θ)|.

The base case is laid out in Lemma 26 and the step is elaborated in Lemma 27, which

together conclude the proof. ⊓⊔

The constraint (Slack) allows to obtain upper and lower bounds on the number of

intervals k where αk,i = 1 holds. We introduce corresponding notation below.

Definition 22 Let t ∈ [N ], let α ∈ I (M, t), let s ∈ [t], and let θ ≥ 1. The number of

necessary activations for α, θ and s is the vector

θ−
s (α, θ) :=

(
max

{
0,

⌈
s∑

k=1

αk,1 − θ

⌉}
, . . . , max

{
0,

⌈
s∑

k=1

αk,M − θ

⌉})T

.

(4.11)

The number of allowed activations for α, θ and s is the vector

θ+
s (α, θ) :=

(⌊
s∑

k=1

αk,1 + θ

⌋
, . . . ,

⌊
s∑

k=1

αk,M + θ

⌋)T

. (4.12)

Before we continue we show that a BinFSω can be reconstructed from a label satisfying

the activation bounds from α ∈ I (M, t).

Lemma 23 Let t ∈ [N ], θ ≥ 1, and let α ∈ I (M, t). Let L ∈ Z
M satisfy θ−

t (α, θ) ≤

L ≤ θ+
t (α, θ). Then there exists ω ∈ Vt (α, θ) with L(ω) = L.

Proof By Definition 17 there exists i ∈ [M] such that αt,i = 1. Because θ ≥ 1,

‖L‖1 = t and (SOS-1) hold for α, there exists j ∈ [M] such that

θ−
t−1(α, θ) ≤ L − e j ≤ θ+

t−1(α, θ).

We can therefore start to construct the last row of the desired ω ∈ Vt (α, θ). by setting

ωt, j = 1 and ωt,ℓ = 0 for ℓ �= j . Then we repeat the described procedure backwards

in t with L − e j to determine the entries of the row ωt−1 ∈ Z
M until t = 1. We obtain

a recursively defined ω ∈ Vt (α, θ) with L(ω) = L . ⊓⊔

In our arguments, we require a means to quantify the distance between a given

α ∈ I (M, t) and the set SI (M, t) in terms of the label function L . We introduce a

distance function that satisfies our needs.

Definition 24 Let Assumption 9 hold, let θ ≥ 1, t ∈ [N ], let α ∈ I (M, t). The integral

label distance dt (α) ∈ N for α is defined as

dt (α) := min
α

1
2
‖L(α) − L(α)‖1 s.t. α ∈ SI (M, t), (D)
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with L(α) :=
(∑t

k=1 αk,1, . . . ,
∑t

k=1 αk,M

)T
consistent to Definition 10. For

s ≥ t and α ∈ I (M, s), we use the canonical restriction and define dt (α) :=

dt ((α
T
1 , . . . , αT

t )T ).

We prove elementary properties of dt (α).

Lemma 25 Let the assumptions of Definition 24 hold. Then the following holds.

1. There exists a minimizer α of (D). In particular the value dt (α) is well defined.

2. The difference between two consecutive integral label distances satisfies dt (α) −

dt−1(α) ∈ {−1, 0, 1}.

Proof For the first claim, we notice that minimizing (D) reduces to enumerating the

set SI (M, t), which is finite by the construction from Definition 17. For the second

claim, we notice that α satisfies (SOS-1) because of α ∈ I (M, t). Therefore the

integral label distance can differ by at most 1 in between two consecutive distances

dt (α) and dt−1(α) due to sum-norm and the factor 1
2

in front of it. ⊓⊔

We are ready to prove the base case and induction step of Lemma 21. The arguments

bear similarities, and we begin with the base case, which is less technical.

Lemma 26 Let Assumption 9 hold, let t ≥ θ ≥ 1, let α ∈ I (M, t)\SI (M, t), and let

dt (α) = 1. Then there exists α ∈ SI (M, t) such that

|Vt,∼(α, θ)| ≤ |Vt,∼(α, θ)|. (4.13)

Proof Let dt (α) = 1. By Lemma 25.1 there is α ∈ SI (M, t) and i �= j ∈ [M] such

that

t∑

k=1

αk, j −

t∑

k=1

αk, j = 1, (4.14)

t∑

k=1

αk,i −

t∑

k=1

αk,i = 1 and (4.15)

t∑

k=1

αk,g −

t∑

k=1

αk,g = 0 for all g ∈ [M]\ {i, j} . (4.16)

Moreover, because of the definition of SI (M, t) and α ∈ SI (M, t) it holds that

t∑

k=1

αk,i −

t∑

k=1

αk, j ∈ {−1, 0, 1}. (4.17)

We proceed by distinguishing between two cases for (4.17). In case
∑t

k=1 αk,i −∑t
k=1 αk, j = 1, we obtain the identities

t∑

k=1

αk, j
(4.14)
= 1 +

t∑

k=1

αk, j =

t∑

k=1

αk,i , and (4.18)
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t∑

k=1

αk,i
(4.15)
=

t∑

k=1

αk,i − 1 =

t∑

k=1

αk, j . (4.19)

Therefore, we may conclude for g ∈ [M] that

θ±
t,g(α, θ) =

⎧
⎪⎪⎨
⎪⎪⎩

θ±
t, j (α, θ) if g = i by (4.18),

θ±
t,i (α, θ) if g = j by (4.19),

θ±
t,g(α, θ) if g �= i, j by (4.16).

(4.20)

Let ω ∈ Vt (α, θ). We define the vector L̃ as

L̃ i := L j (ω), L̃ j := L i (ω), and L̃g := Lg(ω) for g ∈ [M]\{i, j}.

From equations (4.20) we deduce that θ−
t (α, θ) ≤ L̃ ≤ θ+

t (α, θ). Hence, we apply

Lemma 23 to deduce the existence of an ω ∈ Vt (α, θ) such that L(ω) = L̃ . Thus [̃ω] ∈

Vt,∼(α, θ). This procedure can be repeated for all ω ∈ Vt (α, θ). Thus, factorizing by

label values using ∼ we conclude that the claimed inequality (4.13) holds.

For the second case,
∑t

k=1 αk,i −
∑t

k=1 αk, j ≤ 0, it follows that

θ−
t,i (α, θ)

(4.15)
≤ θ−

t,i (α, θ) ≤ θ−
t, j (α, θ)

(4.14)
≤ θ−

t, j (α, θ). (4.21)

We conclude the proof by means of a case distinction on the sign of θ−
t, j (α, θ).

Case θ−
t, j (α, θ) > 0.

For all ω ∈ Vt (α, θ) there exists an element ω ∈ Vt (α, θ) with L(ω) = L̃ :=

L(ω) + ei − e j by virtue of Lemma 23 because

0 ≤ θ−
t, j (α, θ)

(4.14)
= θ−

t, j (α, θ) − 1
(Slack)

≤ L j (ω) − 1 = L̃ j ,

θ+
t,i (α, θ)

(4.15)
≥ θ+

t,i (α, θ) + 1
(Slack)

≥ L i (ω) + 1 = L̃ i .

Combining this with the fact that Z
M ∋ ℓ �→ ℓ + ei − e j ∈ Z

M is a bijection on the

codomain of the labeling function L , the claimed inequality (4.13) follows.

Case θ−
t, j (α, θ) = 0.

From inequality (4.21) and θ−
t,i ≥ 0, by definition, it follows that

θ−
t,i (α, θ) = θ−

t,i (α, θ) = θ−
t, j (α, θ) = 0. (4.22)

Thus for elements ω ∈ Vt (α, θ) with

0 = θ−
t,i (α, θ) ≤ L i (ω) ≤ θ+

t,i (α, θ) and 0 < L j (ω) ≤ θ+
t, j (α, θ)
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we can construct ω ∈ Vt (α, θ) such that L(ω) = L(ω) + ei − e j as above. Using∑t
k=1 αk,i −

∑t
k=1 αk, j ≤ 0, it then holds that

0 < L i (ω) ≤ θ+
t,i (α, θ) and 0 ≤ L j (ω) ≤ θ+

t, j (α, θ). (4.23)

Finally, let ω ∈ Vt (α, θ) with L j (ω) = 0 and 0 ≤ L i (ω) ≤ θ+
t,i (α, θ). We have

θ+
t,i (α, θ)

(4.15)
< θ+

t,i (α, θ) ≤ θ+
t, j (α, θ), (4.24)

where the second inequality follows from
∑t

k=1 αk,i −
∑t

k=1 αk, j ≤ 0. Therefore we

define the label L̃ as

L̃ i := L j (ω) = 0, L̃ j := L i (ω), and L̃g := Lg(ω) for all g ∈ [M]\{i, j}.

For L̃ it holds that

θ−
t,i (α, θ)

(4.22)
= 0 = L̃ i and θ−

t, j (α, θ)
(4.22)
= 0 ≤ L̃ j

(4.24)
≤ θ+

t, j (α, θ) (4.25)

Thus by virtue of Lemma 23, we find ω ∈ Vt (α, θ) with L(ω) = L̃ . In this case

Z
M ∋ ℓ �→ ℓ+ (ℓ j − ℓi )ei + (ℓi − ℓ j )e j defines a bijection on the set of label values,

where ℓ is the label of ω ∈ Vt (α, θ) interpreted as a vector and ℓi , ℓ j are the entries

associated to control i and j respectively.

Furthermore, comparing (4.23) and (4.25), we observe that L i (ω) > 0 for the ω

constructed in (4.23) and L i (ω) = 0 for the ω constructed in (4.25), which yields that

the claimed inequality (4.13) follows. ⊓⊔

Lemma 26 states that if dt (α) = 1, there exist an element of SI (M, t) whose set

of BinFSs is at least as large as the one from α when factorizing for identical label

values. We continue with the induction step in which we construct the labels similar

to the base case to prove the claim for higher values of dt (α).

Lemma 27 Let Assumption 9 hold and let θ ≥ 1. Assume that for some m ∈ N\{1} it

holds that for all t ∈ [N ] and all α ∈ I (M, t) the inequality dt (α) ≤ m − 1 implies

that there exists α ∈ SI (M, t) such that

|Vt,∼(α, θ)| ≤ |Vt,∼(α, θ)|

Then for all t ∈ [N ] and all α ∈ I (M, t) the identity dt (α) = m implies that there

exists α ∈ SI (M, t) such that

|Vt,∼(α, θ)| ≤ |Vt,∼(α, θ)|.

Proof Let dt (α) = m > 1 be fixed. The claim is immediate if α ∈ SI (M, t). Thus we

assume α ∈ I (M, t)\SI (M, t). Because dt (α) > 1 and α /∈ SI (M, t), breaking ties
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MIOCP with switching costs: A shortest path approach 641

arbitrarily, we may pick i := arg min{L(α)ℓ : ℓ ∈ [M]} and j := arg max{L(α)ℓ :

ℓ ∈ [M]} such that

t∑
k=1

αk,i + 1 <
t∑

k=1

αk, j . (4.26)

Therefore there exists s ∈ [t] such that αs, j = 1, αs,i = 0. With this in mind, we

construct a (different) binary control β ∈ {0, 1}t×M to use the induction hypothesis.

Let βk = αk for k ∈ [t]\{s} and βs = ei . The construction of βs and inequality (4.26)

gives

t∑
k=1

βk,i ≤
t∑

k=1

βk, j . (4.27)

Then, we consider the minimizer α of dt (α), and obtain

1
2
‖L(β) − L(α)‖1 = m − 1, and 1

2
‖L(β) − L(α)‖1 = 1

by choice of i and j . Moreover, this implies that dt (β) ≤ dt (α) − 1, and we may

apply the induction hypothesis on β, that is |Vt,∼(β, θ)| ≤ |Vt,∼(β, θ)| for some

β ∈ SI (M, t). It remains to show that

|Vt,∼(α, θ)| ≤ |Vt,∼(β, θ)|.

From the construction of β we have βk = αk for k ∈ [t]\{s} and Eqs. (4.14)–(4.16)

hold with the choice of β for the variable α therein. Since

βs,i = 1, βs, j = 0, αs, j = 1, αs,i = 0, (4.28)

we have

θ−
t, j (β, θ) ≤ θ−

t, j (α, θ) and θ+
t, j (β, θ) + 1 = θ+

t, j (α, θ) (4.29)

as well as

θ−
t,i (α, θ) ≤ θ−

t,i (β, θ) and θ+
t,i (α, θ) + 1 = θ+

t,i (β, θ). (4.30)

This leads to

t∑

k=1

αk,i

βs,i =1
<

αs,i =0

t∑

k=1

βk,i

(4.27)
≤

t∑

k=1

βk, j

βs, j =0

<
αs, j =1

t∑

k=1

αk, j , (4.31)

As in the proof of Lemma 26, we distinguish the two cases θ−
t, j (α, θ) > 0 and

θ−
t, j (α, θ) = 0 to establish |Vt,∼(α, θ)| ≤ |Vt,∼(β, θ)|.
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The claim for the first case follows analogously to the corresponding case in

Lemma 26 because (4.14) and (4.15) follow from (4.28)–(4.30).

The case θ−
k, j (α, θ) = 0 can be handled analogously to the corresponding case in

Lemma 26 as well because the equality (4.22) and inequality (4.24) follow from the

chain of inequalities (4.31). ⊓⊔

This concludes the proof of the assumptions made in the proof of Lemma 21 and

therefore the second part of the proof of Theorem 18. Theorem 18 is now a result of

putting Lemmas 19 and 21 together.

Theorem 18 Let M ∈ N, θ ≥ 1, and let Assumption 9 hold. Then, for all t ∈ [N ] and

all α̃ ∈ S(M, t), there exists an α ∈ SI (M, t) such that

|Vt,∼(̃α, θ)| ≤ |Vt,∼(α, θ + 1)| (4.4)

Proof of Theorem 18 Let t ∈ [N ], and let α̃ ∈ S(M, t). Then by Lemma 19 we can

construct α ∈ I (M, t) satisfying (4.5). Employing Lemma 21 allows to construct

α ∈ SI (M, N ) such that inequality (4.10) holds. This leads to the chain of inequalities

|Vt,∼(̃α, θ)| ≤ |Vt,∼(α, θ + 1)| ≤ |Vt,∼(α, θ + 1)| (4.32)

and concludes the proof of Theorem 18. ⊓⊔

Remark 28 Note that relaxed solutions in computational practice are often fractional-

valued. Due to Theorem 18 the worst-case estimate on the number of vertices is attained

by an already binary-valued function. Additionally the set of worst-case relaxed solu-

tions SI (·, ·) has a peculiar structure, see Definition 12, which is also scarcely seen

in practice. Thus the worst-case for our approach occurs rarely in practice.

4.2 Runtime for the general shortest path approach

The previous subsection treated the worst case in terms of BinFS cardinality, which

will now be used to determine the necessary runtime to acquire an optimal solution

for (SCARP-IP) with a shortest path algorithm as suggested at the end of Sect. 3.1.

Lemma 29 (Limited cardinality of BinFS for SI (M, N )) Let Assumption 9 hold and

let θ ≥ 1. Then for k ≤ M⌊θ⌋ and α ∈ SI (M, k) it holds that

|Vk−1,∼(α, θ)| ≤ |Vk,∼(α, θ)|. (4.33)

Additionally for all k > M⌊θ⌋ it holds that

|Vk,∼(α, θ)| = |VM⌊θ⌋,∼(α, θ)|. (4.34)

Proof Let k ≤ M⌊θ⌋ and α ∈ SI (M, k). For all i ∈ [M], it follows that

θ−
k,i =

⌈
k∑

ℓ=1

αℓ,i − θ

⌉
α∈SI (M,k)

≤
k≤M⌊θ⌋

0. (4.35)
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We consider the i ∈ [M] with αk,i = 1 and αk, j = 0 for all j ∈ [M]\{i}. Therefore

θ−
k−1,i (α, θ) = θ−

k,i (α, θ) = 0. Thus for j ∈ [M]\{i} the identities θ−
k−1, j (α, θ) =

θ−
k, j (α, θ) = 0 follow. Moreover, θ+

k−1,i (α, θ) < θ+
k,i (α, θ) because of αk,i = 1.

Let ω ∈ Vk−1(α, θ). We define ω̃ ∈ {0, 1}k×M by setting ω̃ℓ := ωℓ for all ℓ ∈ [k−1]

and ω̃k := ei . Then L(ω̃) = L(ω) + ei and ω̃ ∈ Vk(α, θ) because

L(ω̃) j ∈
{
θ−

k, j (α, θ), . . . , θ+
k, j (α, θ)

}
for all j ∈ M\{i}, and

L(ω̃)i ∈
{
θ−

k,i (α, θ) + 1, . . . , θ+
k,i (α, θ)

}
.

Thus, |Vk−1,∼(α, θ)| ≤ |Vk,∼(α, θ)|.

To prove (4.34), let k > M⌊θ⌋. It is immediate that each ω ∈ Vk−1(α, θ) can be

extended to ω̃ ∈ Vk(α, θ) with ω̃ℓ = ωℓ for all ℓ ∈ [k − 1]. It remains to prove

|Vk,∼(α, θ)| ≤ |Vk−1,∼(α, θ)|. We choose again i ∈ [M] such that αk,i = 1 and

αk, j = 0 for all j ∈ [M]\{i}. Because α ∈ SI (M, k) and k > M⌊θ⌋, every column

of α contains at least ⌊θ⌋ nonzero entries. Thus,

0 ≤

⌈
k−1∑

ℓ=1

αℓ,i − θ

⌉
<

⌈
k∑

ℓ=1

αℓ,i − θ

⌉
. (4.36)

We pick an arbitrary ω̃ ∈ Vk(α, θ). We set L̃ = L(ω) − ei and note that L̃ i ≥ 0 holds

because of inequality (4.36). The feasibility inequalities θ−
k−1,i (α, θ) ≤ L̃ j ≤ θ+

k−1,i

are satisfied by construction. Moreover,

L̃ i = L(ω)i − 1 ≤ θ+
k,i (α, θ) − 1

αk,i =1
= θ+

k−1,i (α, θ), and

L̃ i = L(ω)i − 1 ≥ θ−
k,i (α, θ) − 1

(4.36)
= θ−

k−1,i (α, θ).

We apply Lemma 23 to deduce that there exists ω ∈ Vk−1(α, θ). Because of (4.36),

we may use the bijectivity of the mapping Z
M ∋ ℓ �→ ℓ − ei ∈ Z

M to deduce that

|Vk−1,∼(α, θ)| = |Vk,∼(α, θ)| for k > M⌊θ⌋. ⊓⊔

It remains to show that the BinFS spanned by different elements of SI (M, N ) all have

the same cardinality from a certain grid point on.

Lemma 30 Let Assumption 9 hold and let t ∈ N. Then for all α, β ∈ SI (M, Mt) with

α �= β it holds that

|VMt (α, θ)| = |VMt (β, θ)|. (4.37)

Additionally, for all k ∈ N with M⌊θ⌋ ≤ k ≤ Mt it follows that

|VM⌊θ⌋,∼(α, θ)| = |Vk,∼(α, θ)| = |VM⌊θ⌋,∼(β, θ)|. (4.38)
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Proof By Definition 17 and (SOS-1) it holds that

Mt∑

k=1

αk,i =

Mt∑

k=1

αk, j for all i, j ∈ [M] (4.39)

because otherwise there exists a pair i, j ∈ [M], i �= j such that

Mt∑
k=1

αk,i −
Mt∑

k=1

αk, j > 1

contradicting α ∈ SI (M, Mt). By (SOS-1) and Eq. (4.39) it follows that

M

Mt∑

k=1

αk,i
(4.39)
=

M∑

i=1

Mt∑

k=1

αk,i
(SOS-1)

= Mt
(SOS-1)

=

M∑

i=1

Mt∑

k=1

βk,i
(4.39)
= M

Mt∑

k=1

βk,i

(4.40)

and therefore t =
∑Mt

k=1 αk,i =
∑Mt

k=1 βk,i for all i ∈ [M]. Now let ω ∈ VMt (α, θ).

Because of (4.40) and the regularity of α and β from Definition 17 we can construct a

permutation matrix Ps ∈ {0, 1}M×M for every s ∈ [t −1] such that Psα(s−1)M+1:s M =

β(s−1)M+1:s M . By applying the permutation matrices P1, . . . Pt to the associated rows

of ω we can construct an element ω ∈ VMt (β, θ), which fulfills (SOS-1) and (Slack)

as well as the condition for SI (M, N ) as ω was an element of VMt (α, θ). Because

permutation matrices are invertible and we apply them row-wise we have a bijection

between VMt (α, θ) and VMt (β, θ), which proves the first claim. The second claim

follows by applying Lemma 29 together with the first claim. ⊓⊔

The previous two Lemmas 29 and 30 show that in the worst case, α ∈ SI (M, N ),

the set of BinFSs do strictly increase up to the grid point M⌊θ⌋ and do not increase

afterwards. Additionally Lemma 30 shows that the sets of BinFSs originating from

elements of SI (M, N ) have the same cardinality from grid point M⌊θ⌋ onwards. For

the runtime investigation we can therefore fix one α ∈ SI (M, N ) and confine us to

the case that the considered grid point is k = M⌊θ⌋.

A formula for the cardinality of the vertex V∼ and arc set Ã from Sect. 3.2 can

now be deduced by looking at the possible number of labels which can exist under

the (SOS-1) and (Slack) conditions at grid point M⌊θ⌋. This can be formulated as the

problem of finding the number of integral solutions for the system

⎧
⎨
⎩

∑M
i=1 xi = M⌊θ⌋,

0 ≤ xi ≤ ⌊2θ⌋ for all i ∈ [M],

xi ∈ N for all i ∈ [M].

(4.41)

Naturally for α ∈ SI (M, N ) any solution of the system (4.41) represents one element

of VM⌊θ⌋,∼(α, θ), because the (Slack) condition is encoded in 0 ≤ xi ≤ ⌊2θ⌋, while

the (SOS-1) condition is enforced through the sum.

A closed form for the number of solutions can be determined by using formal power

series [19] in combination with coefficient extractions and partial geometric sums.
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Lemma 31 (See e.g. Theorem 2.1 in [10]) Let assumption 9 hold and α ∈ SI (M, N ).

Then

|VM⌊θ⌋,∼(α, θ)| =

m∑

j=0

(−1) j

(
M

j

)(
M + M⌊θ⌋ − (⌊2θ⌋ + 1) j − 1

M − 1

)
, (4.42)

where m ≡
⌊

M⌊θ⌋
⌊2θ⌋+1

⌋
.

For the sake of completeness we include the proof of Lemma 31.

Proof Let N be the number of integral solutions of (4.41) and let H := ⌊θ⌋ and

H2 := ⌊2θ⌋. Application of the definition of the Kronecker delta yields that N ≡∑H2

x1=0 · · ·
∑H2

xM =0 δM H , x1+... +xM
and the term δM H , x1+... +xM

can be written as a

formal power series where the coefficient of M H gets extracted by [·], the coefficient

extraction operator,

δM H , x1+... +xM
≡ [zM H ] zx1+... +xM .

Mathematical induction over M immediately shows the identity

∑H2

x1=0 · · ·
∑H2

xM =0 zx1+... +xM = (1 + z + . . . + zH2)M . (4.43)

Using partial geometric sums (pGS) [9] and the binomial theorem (BT ) [9] yields:

N ≡

H2∑

x1=0

· · ·

H2∑

xM =0

[zM H ] zx1+... +xM
(4.43)
= [zM H ]

(
H2∑

r=0

zr

)M

(pGS)
= [zM H ]

(
1 − zH2+1

1 − z

)M

= [zM H ]

(
1 − zH2+1

)M

(1 − z)M

(BT)
= [zM H ]

⎛
⎝

M∑

j=0

(−1) j

(
M

j

)(
zH2+1

) j
∞∑

b=0

(
M + b − 1

b

)
zb

⎞
⎠

= [zM H ]

⎛
⎝

M∑

j=0

(−1) j

(
M

j

) ∞∑

b=0

(
M + b − 1

b

)⎞
⎠ z(H2+1) j+b (4.44)

We use coefficient extraction on (4.44) and write the condition imposed on the exponent

of z as an Iverson bracket [9]

M∑
j=0

(−1) j
(

M
j

) ∞∑
b=0

(
M+b−1

b

) [
(H2 + 1) j + b = M H

]
I

Symm. of
=

binomial coeff.

M∑
j=0

(−1) j
(

M
j

) ∞∑
b=0

(
M+b−1

M−1

) [
b = M H − (H2 + 1) j

]
I

Insertion for b
=

and b≥0

M∑
j=0

(−1) j
(

M
j

)(
M+M H−(H2+1) j−1

M−1

) [
M H − (H2 + 1) j ≥ 0

]
I

Rearrange
=

Iverson

M∑
j=0

(−1) j
(

M
j

)(
M+M H−(H2+1) j−1

M−1

) [
j ≤ M H

H2+1

]
I

Def H
=

Def H2

m∑
j=0

(−1) j
(

M
j

)(
M+M⌊θ⌋−(⌊2θ⌋+1) j−1

M−1

) [
m ≡

⌊
M⌊θ⌋

⌊2θ⌋+1

⌋]
I
.

⊓⊔
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Unfortunately the structure of Eq. (4.42) is not suitable for a precise calculation.

However, using Stirling’s formula and the local limit theorem, Eger [8] has shown the

following asymptotic approximation for (4.42).

Theorem 32 ([8]) Let M be a positive integer and θ ≥ 1. Then

m∑

j=0

(−1) j

(
M

j

)(
M + M⌊θ⌋ − (⌊2θ⌋ + 1) j − 1

M − 1

)
∈ O

⎛
⎝ (⌊2θ⌋ + 1)M

√
2π M

(⌊2θ⌋+1)2−1
12

⎞
⎠ ,

where m :=
⌊

M⌊θ⌋
⌊2θ⌋+1

⌋
.

Using Theorem 32 in correspondence with the bipartite graph structure constructed

in Sect. 3.1 allows to obtain a worst case runtime.

Theorem 33 (Runtime of the graph based algorithm for (SCARP-IP)) Let assump-

tion 9 hold and let θ ≥ 1. Then searching for a binary feasible solution which is

optimal in a radius of θ around a given solution α of the (discretized) relaxed problem

(RC) has the worst case runtime of

|V∼| + | Ã| ∈ O

(
N (⌊2θ⌋ + 3)2M

M
(
(⌊2θ⌋ + 3)2 − 1

)
)

. (4.45)

Proof Let α̃ ∈ S(M, N ) be a solution for (RC). Let G∼ := (V∼, Ã) be the quotient

DAG from Sect. 3.2. Theorem 18 shows that there exists α ∈ SI (M, N ) such that

|Vk,∼(̃α, θ)| ≤ |Vk,∼(α, θ + 1)|
Lem.29

≤ |VM⌊θ+1⌋,∼(α, θ + 1)| (4.46)

holds for all k ∈ [N ]. Let G(α)∼ := (V∼(α, θ), Ã(α)) be defined in the same way

as G∼ for α̃. We observe that for all k ∈ [N + 1] G is bipartite for vertex subsets

Vk−1,∼ and Vk,∼ and that there exists no arc from a vertex set Vℓ,∼ to vertex set Vk,∼

for ℓ ∈ [N + 1]\{k − 1, k, k + 1}. Thus | Ãk | = |Vk,∼|2 and therefore the term |Vk,∼|

in the claim is dominated by | Ãk | and it remains to prove a bound on | Ãk |. Using

Theorem 32 we obtain

| Ã| =

N∑

k=1

|Vk,∼(α, θ + 1)|2
(4.46)
≤

Sum
N |VM⌊θ+1⌋,∼(α, θ + 1)|2

Lemma 31
∈

T hm. 32
O

(
N

6(⌊2θ⌋ + 3)2M

π M
(
(⌊2θ⌋ + 3)2 − 1

)
)

.

Thus proving the claim. ⊓⊔
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Theorem 33 shows that the worst case runtime of the proposed approach is linear in N

and exponential in M . This makes the approach viable for applications as the number

of controls in optimal control problems is small in practice, while the number of grid

points is exceedingly large, i.e., M , θ ≪ N . As the (Slack)-parameter θ is important

for our approach and the established results, a few remarks are in order.

Remark 34 1. From [12,14] it is known that the choice of θ = min
{

1,
∑M

i=2 1/i
}

guarantees the existence of a binary solution in our setting, explaining the choices

for θ made in Sects. 3 and 4.

2. Given some θ < 1, independent of N and M , one can immediately construct

an infeasible instance of (SCARP-IP) by choosing N ≥ M > 1
1−θ

and setting

αt,i = 1
M

. There exists no path through the DAG not violating (Slack) and therefore

no BinFS.

3. We note that for any θ < 1 the proposed DAG approach will find a BinFS if it exists

and the algorithm can easily be modified such that an infeasibility certificate is gen-

erated otherwise. The runtime in this case can be estimated by using Theorem 33

with θ1 = 1 as it holds by Definition 8 that V (α, θ) ⊆ V (α, θ1) ≡ V (α, 1).

4. A larger value of θ enlarges the DAG, leading to potentially better solutions with

respect to switching costs C , but allows BinFSs which are farther away from the

(RC) solution α, resulting in worse solutions with respect to J .

5 Numerical performance benchmark

We illustrate the effect of the presented approach towards (MSCP) problems by using

an extension of the Lotka-Volterra multimode fishing problem taken from the MIOCP

benchmark library [22] already considered in [2]. The convexified problem formulation

without the switching cost summand reads

min
y,ω

∫ tf

t0

( y0(t) − 1)2 + ( y1(t) − 1)2dt (LV)

s.t. ẏ(t)0 = y0(t) − y0(t) y1(t) − c0 y0(t)
M∑

i=1

ωi (t)vi ,

ẏ(t)1 = − y1(t) + y0(t) y1(t) − c1 y1(t)
M∑

i=1

ω(t)ivi ,

y(t0) = (0.5, 0.7, 0)T ,

ω(t) ∈ {0, 1}M for t ∈ [t0, tf],
M∑

i=1

ωi (t) = 1 for t ∈ [t0, tf].

We used the values c0 = 0.4, c1 = 0.2, [0, T ] = [0, 12] and M = 3 with discrete con-

trol realizations v1 = 1.0, v2 = 0.2 and v3 = 0.0. Switching costs can be interpreted

as the necessity to change the fishing equipment. We chose to penalize the switch

into a control with values (2, 1, 0) and the switch out of a control by (0.1, 0.1, 0.0).

To illustrate the computation time of (SCARP-IP) depending on the slack-parameter
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Fig. 1 Computation times of (SCARP) and SUR [20] for different values of the mesh size h

θ , we ran benchmarks with values of θ ∈ 5
6

· {1, 1.5, 2}, that is we chose values of

θ for which existence of a solution is guaranteed, see Sect. 3, [12,14]. Furthermore,

we included the running time of the SUR rounding algorithm [20] as a baseline. As

noted before, we do not consider the switching cost term in (LV) but transfer the

minimization of switching costs to the rounding step.

The continuous relaxed problem was solved by means of a first discretize, then

optimize methodology using direct multiple shooting to discretize the dynamics [3].

We chose equidistant discretizations with h ∈ {2−1T , . . . , 2−10T }. We employed

the solver Muscod- II, see [15], and solved (SCARP-IP) using version 8.1 of the IP

solver Gurobi [16]. The shortest path algorithm 3.1 from [5] to solve (SCARP-IP)

was implemented in the C++ programming language compiled using the GNU C++

compiler with the optimizing option -O2. All experiments were conducted on an Intel

Core i7-965 clocked at 3.20 Ghz.

The running times of the algorithms are depicted in Fig. 1. Running times below

1 S were not reported by the IP-solver, which explains the incomplete data lines for

(SCARP-IP). Sum-Up-Rounding, having linear running time, performs best in terms

of runtime, averaging a running time of below 1 ms (drawn solid). Conversely, the

IP-solver takes a significant time to solve (SCARP-IP), with a maximum of more than

16 h, increasing both in θ and 1/h (depicted dotted). The shortest path (SP-SCARP)

implementation of (SCARP-IP) presents a vast improvement over the IP formulation

in terms of running time, being far less sensitive to the parameters with a maximum

running time of below 10 ms (drawn dashed).

The cardinality of the vertex and arc set and its importance for the presented

approach was discussed in Sect. 4. Figure 2 shows the cardinality of the vertex and

arc sets visited during the (SP-SCARP) computations and compares them with the

proven worst-case bound from Theorem 33. As expected, the number of vertices and

arcs increases linearly with the refinement of the mesh size h, but the number of ver-

tices and arcs actually seen during the computation are significantly lower than the

theoretical bound, Theorem 18 and Remark 28.
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Fig. 2 Evaluated vertices and arcs evaluated during a computation of (SP-SCARP) for different values of

h compared to the bound from Theorem 33

To compare the (LV) objective values, the relative error e
(h)
R =

|J ( y(ω(h)))−J ( y(α))|
|J ( y(α))|

was used with respect to the common relaxed solution α for controls determined by

SUR and (SP-SCARP). We omit the results of (SCARP-IP) here, because they are

identical to the results calculated with (SP-SCARP). In general it is possible that

multiple (SCARP) results have the same switching costs but different (LV) values,

but comparing the (LV) values can be done quickly as the corresponding controls are

known for the whole time horizon, see predecessors P from Algorithm 3.1.

Figure 3 visualizes the behavior of the relative error. Since the considered initial

value problem is nonlinear, the error does not necessarily decrease monotone over the

grid refinements. The convergence property guaranteed by Proposition 6 is validated

and the objective value for (LV) grows as the θ parameter is increased, as predicted

in Sect. 3. The switching costs of the optimal control solutions are visualized in

Fig. 4. We observe that for all θ the switching costs computed by (SP-SCARP) are

significantly lower than the switching costs of (SUR) and that a higher value of θ leads

to smaller switching costs because the controls can be chosen farther away from the

relaxed solution. This validates the trade-off character of θ in this example and shows

one of the features with which (SP-SCARP) enhances the current capabilities of the

relaxation approach. Others are mentioned in Remark 15.

Comparing Figs. 3 and 4, one observes that simultaneously minimizing the switch-

ing costs and driving the approximation error to 0 is not possible in our example. Note

that including C(·) in the objective of (LV) leads to divergence of the relative error

e(h) quantity towards infinity unless the optimized control of the continuous relaxation

is already a binary control.

We want to point out that we could have just as easily chosen to optimize the

approximation quality instead of adding switching costs in order to obtain solutions

approximating the fractional control at least as well as the SUR solution. For a given

discretization grid this corresponds to replacing C(·) by θ in (SCARP), which allows

us to use the DAG structure and the shortest path algorithm. We also note that if the
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Fig. 3 Validation of theoretical results regarding the approximations of the objective for (SCARP) and SUR

[20] for different values of h. The grey line visualizes the desired linear decrease of the error

Fig. 4 Switching costs of (SCARP) and SUR [20] for different values of the mesh size h

control deviation parameter θ is chosen too small or combinatorial constraints can

never be satisfied, then an infeasibility certificate can be easily provided by (SCARP)

as no path from t0 to tN will exist.

For the purpose of applying rounding algorithms, we recommend computing con-

trols from both approaches and comparing the results if one is not sure which algorithm

to prefer a-priori. Note that the costs are still negligible compared to solving a large

mixed-integer problem and that the shortest path approach offers much flexibility

with respect to constraints, switching costs and performance guarantee for the integral

control deviation.
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6 Conclusion

We have shown that a feasible control for (MSCP) minimizing a general switching

cost term can be derived by solving an IP. The IP is based on the relaxed solution α

of the partial outer convexified counterpart to (MSCP). The feasible set of this IP has

a DAG structure whose size is governed by a user-defined slack-parameter θ , which

governs the approximation quality with respect to α. By computing a solution of the

corresponding shortest path problem, an optimal solution or an infeasibility certificate

with respect to the chosen slack-parameter θ and relaxed solution α of the IP can

be found. Additional combinatorial constraints on the permitted switching structures

accelerate our approach as they thin out the DAG we have to process, Remark 15. We

have proven favorable bounds on the worst case for the number of vertices in the DAG

in the case of an equidistant grid, Theorem 18, which is linear in time, polynomial

in θ and exponential in the number of binary controls, Theorem 33. Our approach

promises to be beneficial in practice as we have exemplarily demonstrated a speed up

of several orders of magnitude over a naive IP-based approach.
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