
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Mixed Integer Programming versus Evolutionary
Computation for Optimizing a Hard Real-World Staff Assignment Problem

Jannik Peters,1 Daniel Stephan,1 Isabel Amon,1 Hans Gawendowicz,1 Julius Lischeid,1

Lennart Salabarria,1 Jonas Umland,1 Felix Werner,1 Martin S. Krejca,2 Ralf Rothenberger,2

Timo Kötzing,2 Tobias Friedrich2

1, 2Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
1firstname.lastname@student.hpi.de, 2firstname.lastname@hpi.de

Abstract

Assigning staff to engagements according to hard constraints
while optimizing several objectives is a task encountered by
many companies on a regular basis. Simplified versions of
such assignment problems are NP-hard. Despite this, a typical
approach to solving them consists of formulating them as
mixed integer programming (MIP) problems and using a state-
of-the-art solver to get solutions that closely approximate the
optimum.

In this paper, we consider a complex real-world staff assign-
ment problem encountered by the professional service com-
pany KPMG, with the goal of finding an algorithm that solves
it faster and with a better solution than a commercial MIP
solver. We follow the evolutionary algorithm (EA) metaheuris-
tic and design a search heuristic which iteratively improves
a solution using domain-specific mutation operators. Further-
more, we use a flow algorithm to optimally solve a subproblem,
which tremendously reduces the search space for the EA.

For our real-world instance of the assignment problem, given
the same total time budget of 100 hours, a parallel EA ap-
proach finds a solution that is only 1.7% away from an upper
bound for the (unknown) optimum within under five hours,
while the MIP solver Gurobi still has a gap of 10.5%.

Introduction

Every consulting company is faced with the problem of as-
signing employees to engagements, especially in the sector
of professional services. Oftentimes, this is done manually,
which is expensive and time-consuming. Hence, many com-
panies strive for a semi-automatic solution.

We consider a staff assignment problem faced by
the professional-service company KPMG AG Wirtschafts-
prüfungsgesellschaft on a regular basis. In each instance,
differently skilled employees have to be assigned on a day-
to-day basis to engagements requiring specific needs (i.e.,
skills on specific levels) for a certain amount of hours, all
while satisfying various hard constraints. Further, we have
several conflicting objectives we want to optimize, such as
covering as many engagements as possible with the best-
fitting skills while using as few employees as possible (see
section Problem Definition for more details). We combine all
objectives into one objective by using a weighted sum, where

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the weights are given by management decisions. The result-
ing problem is strongly NP-hard, as can be shown by using
a similar reduction from 3-Partition as done by Garey and
Johnson (1975) and Salewski, Schirmer, and Drexl (1997).

We compare two different approaches for solving this opti-
mization problem. The classical, first approach is a reformula-
tion as a mixed-integer program (MIP). For this, we linearize
all constraints and objectives by standard techniques. This
approach was successfully used to solve another strongly NP-
hard multi-skill IT staffing problem by Heimerl and Kolisch
(2010). However, solving the resulting MIP instance of our
problem by the state of the art solver Gurobi (Gurobi Opti-
mization 2018) takes four days and offers only a mediocre
assignment in terms of objective value.

Our second approach is a tailored evolutionary algorithm
(EA). EAs are inspired by the biological principle of evolu-
tion, especially of mutation and selection: an existing solution
is copied, where the copy has a few random modifications;
the former is called the parent, the latter the offspring. Out
of parent and offspring, the individual with better objective
value is selected to be the parent in the next iteration, re-
sulting in the creation of better and better individuals. This
strategy has been applied successfully to many optimiza-
tion problems. For example, Globus et al. (2004) compare
several evolutionary strategies for scheduling satellites, Jan,
Yamamoto, and Ohuchi (2000) use one to schedule nurses,
and Mesghouni, Hammadi, and Borne (2004) apply one to
job-shop scheduling.

The EA puts no restrictions on how the objective function
is defined. One benefit of this is that no linearization of ob-
jectives is required. Even more, the EA gives the flexibility
to use a hybrid approach for finding a good assignment as
follows. The algorithm only assigns different employees to
engagements for specific dates, without assigning them to a
specific need of an engagement. Given this (partial) assign-
ment, we use a very efficient minimum-cost maximum-flow
computation to find an optimal assignment of employees to
needs. We describe this procedure in detail in the section
Minimum-Cost Maximum-Flow. This approach reduces the
dimension of the search space for the EA tremendously.

We compare Gurobi (the MIP solver we consider) and the
EA experimentally on a real-world instance from KPMG
and see that the EA outperforms Gurobi by far. Given an
upper bound on an optimal solution, it takes Gurobi 4 days

548

to create a solution that is 10.5% away from that bound. In
comparison, the EA beats Gurobi already after only 5 hours
with a probability of 45%. Even further, it can be massively
parallelized. Using parallelization with a total time budget of
100 hours, the EA typically finds in under 5 hours wall-clock
time a solution that is only 1.7% away from the upper bound,
and it beats Gurobi already after 7 minutes.

Finally, we present our visualization software. The user in-
terface we built allows loading, visualizing, editing, and sav-
ing assignments as well as calculating the effects of changes
on each objective in real time. It also offers to run the EA with
freely selectable objective weights and to adjust the resulting
assignments manually.

Related Work

Various approaches have been tried for assignment problems.
One of the classical problems in the field of operations re-
search and computer science is resource-constrained schedul-
ing, for example defined by Brucker et al. (1999). However,
in most cases, this problem only has a single objective.

An extension of resource-constrained scheduling takes the
skills of employees into account, similar to our problem, as
outlined in a survey by De Bruecker et al. (2015). However, in
contrast to our setting, the skills are not used as a criterion for
the value of their assignment but rather as a hard constraint.

Li et al. (2012) consider a multi-objective nurse scheduling
problem, which is similar to our problem. While their amount
of constraints and objectives is similar to ours, our problem
has a far higher dimensionality and considers more aspects,
such as employees having different skills of varying levels.

Ernst et al. (2004) and Van den Bergh et al. (2013) also
consider staff scheduling problems, pertaining to health care,
transportation, or financial services. While similar to our
problem, none of them has an objective considering the con-
tinuity of work during the runtime of a project, as will be
described in Objective 3. However, for a professional service
company like KPMG, the continuity of work is a core mea-
surement for the quality of an assignment and as such must
be taken into account.

Problem Definition

Our assignment problem considers a set of engagements E to
which members of a set of employees A should be assigned.
We let D be a set of days, and we cluster days into weeks W.
S is a set of skills. Each employee has a corresponding level
of competence for each skill, which takes a value in L ⊆ N,
with a small value representing little experience. Furthermore,
the employees have places of residence and days of absence.

Each engagement has a location, a set of employees that
worked on this engagement in the last planning period, and a
set of needs. The latter consists of skill–level combinations
with corresponding needs in hours per week that should be
worked on.

An assignment for this problem is a mapping

Φ: A×D × E × S × L→ R≥0

such that, for each a ∈ A, d ∈ D, e ∈ E, s ∈ S, and ℓ ∈ L,
Φ(a, d, e, s, ℓ) is the amount of hours employee a works on
engagement e on day d, regarding skill s with level ℓ.

Hard Constraints

Due to the real-world nature of our problem, we have to
consider several hard constraints, such as not doing more
work than necessary. Other hard constraints are derived from
legal regulations. The formal definition of these constraints
is as follows.

Hard Constraint 1 Employees do not contribute to satisfy-
ing a need if that need is already satisfied. Hence, the assigned
total hours per skill and level shall not be greater than the
needed hours in this skill–level combination. Let newsℓ be
the amount of needed work on engagement e in week w on
skill s and level ℓ. Hence, for all engagements e, weeks w,
skills s, and levels ℓ, it has to hold that

∑

a∈A, d∈w

Φ(a, d, e, s, ℓ) ≤ newsℓ . (1)

Hard Constraint 2 Employees cannot work if they are
absent. Let iade be 1 if employee a works on day d on en-
gagement e and 0 otherwise, and let vad be 1 if employee a is
on vacation on day d and 0 otherwise. Thus, for all employees
a, days d, and engagements e, it has to hold that

iade ≤ 1− vad . (2)

Hard Constraint 3 An employee may only be assigned
to one engagement per day. Therefore, reusing the notation
from Hard Constraint 2, for all employees a and days d, we
require ∑

e∈E

iade ≤ 1 . (3)

Hard Constraint 4 In our setting, it is illegal to work more
than 10 hours per day. Let hade be the amount of hours
employee a works on engagement e on day d. Thus, for all
employees a, days d, and engagements e, it has to hold that

hade ≤ 10 . (4)

Objectives

Based on a valid assignment, we can define an objective value.
In our case, we want to maximize a weighted sum of seven
sub-objectives, which will be introduced in the following sub-
section. In this section, we introduce the seven sub-objectives
to our assignment problem.

Objective 1 Employees who have worked on an engage-
ment in the previous planning period have an advantage in
experience on this engagement over other employees who
have not worked on it before. Hence, they will be able to
work faster and deliver work with a potentially higher quality.
Thus, we want to maximize the sum of hours spent on an
engagement by employees who worked on it in the previous
planning period. Let hae be the amount of hours employee a
works on engagement e, and let ℓae be 1 if a has worked on
e in the previous planning period and 0 otherwise. We want
to maximize ∑

a∈A, e∈E

hae · ℓae . (5)

549

Objective 2 As professional services require a lot of coop-
eration between the employees, we want to keep the team on
an engagement constant and small. Thus, we want to mini-
mize the number of employees working on an engagement.
Let iae be 1 if employee a works on engagement e and 0
otherwise. Then we want to minimize

∑

a∈A, e∈E

iae . (6)

Objective 3 Employees are more efficient when they work
on an engagement continuously. They do not need to famil-
iarize themselves with the engagement again, and their work
flow is not interrupted. Thus, the amount of days an employee
does not work on an engagement when they work on it at
most 5 work days later should be minimized. Let jade be 1
if employee a does not work on engagement e on day d but
works on e at most 5 days later and 0 otherwise. Then we
want to minimize

∑

a∈A, d∈D, e∈E

jade . (7)

Note that this can lead to some anomalies in the first 5 days,
which can easily be solved by adding 5 days without needs
before those first days.

Objective 4 In order to ensure both the well-being of the
employees and to waste as little time as possible on travel-
ing, the traveling distance should be minimized. Let tae be
the traveling distance of an employee a to an engagement e.
Reusing notation from Hard Constraint 3, we want to mini-
mize ∑

a∈A, d∈D, e∈E

tae · iade . (8)

Objective 5 In our problem instance, the amount of needs
is too high to be covered fully. To satisfy most of the needs,
all employees should work as much as possible. Thus, we
want to maximize

∑

a∈A, d∈D, e∈E, s∈S, ℓ∈L

Φ(a, d, e, s, ℓ) . (9)

Objective 6 Every engagement has needs in certain skill–
level combinations per week in hours. As some tasks need
a certain expertise, experienced employees are expected to
perform better than inexperienced ones. However, it might
be beneficial to prefer a slightly under-qualified employee
to an overqualified one in order to ensure the growth of all
employees. Hence, it is also reasonable to assign a penalty
to overqualified employees. Overall, the mismatch of needed
level and the actual level of an employee working on a task
should be as small as possible. Let ℓas be the actual level of
a in s, and let p(∆) be the penalty for a skill difference of ∆
levels. Subsequently, we want to minimize

∑

a∈A, d∈D, e∈E,
s∈S, ℓ∈L

Φ(a, d, e, s, ℓ) · p(ℓas − ℓ) . (10)

Objective 7 Regular work days last 8 hours, additional
work (up to the national legal limit of 10 hours; see Hard
Constraint 4) is considered overtime. In order to reduce both
stress and bonus payment, the amount of overtime work
should be minimized. Hence, we want to minimize

∑

a∈A, d∈D, e∈E

max{hade − 8, 0} . (11)

Let the objectives be o1, . . . , o7, and let their correspond-
ing (instance-defined) weights be w1, . . . , w7. Then, for an
assignment Φ, we want to maximize the objective function

f(Φ) =
∑7

i=1
wi · oi.

Approaches

In this section, we describe the two different approaches for
solving our assignment problem.

Mixed Integer Program

For our MIP, we can model all objectives almost exactly as
described in the section Problem Definition. This leads to
Θ(|A| · |D| · |E| · |S| · |L|) many continuous variables and
Θ(|A| · |D| · |E|) many binary variables. Furthermore, we
have Θ(|A| · |D| · |E| · |S| · |L|) many constraints.

Note that Objectives 2 and 3 are the objectives that are the
hardest to optimize for MIP solvers, as those objectives create
many additional binary variables with complex dependencies.

Evolutionary Algorithm

The EA (Algorithm 1) works by storing a single assignment,
which it changes iteratively. We only keep the change if it
improves the quality, otherwise we revert it.

A change consists of a sequence of mutation operators,
chosen from a pool which we will describe later. The number
of operators we apply is chosen randomly for each iteration
via a Poisson distribution with expected value λ = 1 with 1
added to the result. This way, we will mostly perform two
mutations per iteration but still have a chance of performing
exactly one change or more than two. For us, this is the rea-
son why our algorithm is an EA and not a local search. Since
we apply several operators an individual can be changed to
arbitrarily far away individuals (with probability decreasing
with the distance) before being subject to selection. In con-
trast, local search would apply one of our operators only once
before using selection, which would give worse performance
as this makes it harder to escape local optima.

After determining the number of mutations, we choose
each operator uniformly at random from our pool (with repe-
tition). However, since the operators mutation cleanse block
and mutation add destructive are very efficient, they occur
twice in our pool. That is, the probability to choose one
of them is 1/4 each, while the probability for choosing
each other operator is 1/8. Note that these operators are
all hand-crafted. The ultimate choice of operators as well as
the choice to add two of them with higher probability is made
on grounds of extensive experiments the results of which we
have to omit due to space constraints.

In describing our operators, it is important to note that they
only work on engagements, employees, and days – not on

550

Algorithm 1: Evolutionary Algorithm

input :problem instance1 I
initial assignment Φ
number of desired iterations n
pool of our mutation operators OPs

1 for i = 1 to n do
2 choose k ∼ Pois(1) +1;
3 fold ← f(Φ);
4 foreach i ∈ {1, . . . , k} do
5 m← choose Unif(OPs);
6 Φ← m(Φ);

7 if fold ≥ f(Φ) then revert all changes;

skill–level combinations and hours. Assigning employees to
respective skills and hours is always done via a minimum-
cost maximum-flow after all mutations of the iteration have
been applied. Note that the flow only has to be recomputed
for weeks with changes.

mutation add We assign an employee to an engagement
on a specific day. Hence, we choose a triple of employee,
engagement, and day that is not in the assignment (uniformly
at random) until the triple satisfies Hard Constraints 2 and 3
and add it.

mutation delete Similar to mutation add, we choose a
triple of employee, engagement, and day from the set of
already assigned employees uniformly at random and remove
it.

The previous two operators only perform local changes,
which is bad when in a local optimum. Thus, the following
operators perform larger changes. We refer to them as block
operators.

mutation add block We choose an employee, an engage-
ment, and a day–each uniformly at random. This is followed
by the selection of a consecutive range of days starting from
the chosen day. The length of this range is chosen via a bino-
mial distribution with 20 trials and a success probability of
0.5. Then the employee is added to the chosen engagement
every day within the range if this addition satisfies the hard
constraints. If it does not satisfy the hard constraints, we do
not add the employee on this day and proceed to the next day.

mutation delete block This operator works similar to mu-
tation add block, but deletes the employee within the range
of days instead of adding.

All operators so far are sufficient for optimizing our objec-
tives in general. However, they still leave some potential in
Objective 3, which describes the continuity of work during
an engagement. Thus, we use two mutation operators tailored
towards improving Objective 3 by allowing us to create a
state where an employee can work on only one engagement
during a range of days.

1That is, all of the relevant information mentioned in the section
Problem Definition that are necessary in order to compute all of the
hard constraints and the objectives.

∞ | p(ℓa1s1 − ℓ1)− w5

2δ
1
| w

7
−
w 1
ℓ a

1
e

8δ
1
| −

w 1
ℓ a

1
e

… …

∞ | 0

s t

a1

a2

an

n
ew

s
1 ℓ

1 | 0

s1ℓ1

s1ℓ2

smℓk

Figure 1: A flow network for assigning employees to exact
hours on skills and levels for a given engagement and week.
The flow units represent hours. Every edge has a capacity and
cost, delimited by the symbol ‘|’. The blue edges represent
the unsatisfied needs. The edges between the source s and
the employee nodes symbolize the regular work an employee
can do and the overtime work if they work δi days on the
engagement in this week. The edges between the employee
and skill–level (sl) nodes penalize an employee for working
on a certain sl combination. Finally, the edges between the sl
nodes and the sink t represent the needs the engagement has
in this particular sl combination.

mutation cleanse block We choose an employee uni-
formly at random. Additionally, a range of days is chosen
in the same manner as in mutation add block. We then iden-
tify the engagement the employee worked the most days on
in the chosen range of days. If there are multiple possible
engagements, we choose one of them uniformly at random.
The employee is then deleted from other engagements in
this range of days and added to the identified engagement on
every day in the range where the addition satisfies the hard
constraints.

mutation add destructive This operator works similarly
to mutation cleanse block, but instead the engagement is
chosen uniformly at random.

Note that the first two operators are straightforward and use
basically no problem knowledge. The next two employ the
knowledge that objectives benefit from scheduling employ-
ees for consecutive days. Finally, the last two operators are
tailored to specific problems encountered by the algorithm
during optimization to overcome local optima.

Minimum-Cost Maximum-Flow

The EA is only concerned with assigning employees to en-
gagements for specific days, without considering which skill–
level requirements should be satisfied by the scheduled em-
ployees. Given this assignment of employees to engagement
and days, we can now decide which employee should be

551

0 1 2 3 4 5
0%

10%

20%

30%

40%

50%

wall-clock time in hours

ra
ti
o
of

E
A

ru
n
s
b
ea
ti
n
g
G
u
ro
b
i
(1
00

h
)

(a) The ratio of EA runs beating Gurobi after the denoted amount
of time. At each point depicted, 210 independent runs of the EA
were performed. Note that Gurobi’s solution we compare against
was only achieved after 100 h.

6min 30min 1 h 5 h

2%

4%

6%

8%

10%

EAs beat Gurobi at 7min

EAs achieve best
solution at 4.2 h

wall-clock time (scaled logarithmically)

ga
p
va
lu
e
to

th
e
op

ti
m
u
m

(b) The best gap value achieved when running multiple EAs in
parallel, each run only for the depicted wall-clock time, for a
total time budget of 100 h. The dashed (red) line denotes the gap
value of Gurobi after 100 h and is only added for comparison.

Figure 2: Our experimental results. Fig. 2a shows that the percentage of EA runs beating Gurobi (running for 100 h) grows
roughly linearly in the time spent per run. Thus, multiple EAs can be run in parallel. This approach is depicted in Fig. 2b. See the
section Experimental Comparison for details.

used to satisfy which need by constructing a flow network for
every engagement e and week w as depicted in Figure 1. A
flow unit represents an hour. For each employee working on
e in week w, there is a node. Also, there is a node for every
combination of skill and level the engagement has needs in
(in w).

We have two edges from the source to every employee
node. The first edge has a capacity equal to the amount of
non-overtime hours that an employee a can work on e in week
w. The cost is the negative weight of Objective 1 if a has
worked on e in the previous planning period and 0 otherwise.
The second edge represents Objective 7, that is, the overtime
objective. The edge has a capacity equal to the amount of
overtime hours a can work on e in w. This edge has the same
cost as the first edge plus the weight of Objective 7. The total
capacities of these edges represent the maximum hours a
can work in w. The costs represent the penalty for overtime
and the reward for having worked there in the last planning
period. Furthermore, we add an edge between every pair
of employee nodes and skill–level nodes, representing the
amount of hours a works on this skill–level combination. The
edge has a capacity of∞ and a cost according to Objective 6
minus the weight of Objective 5 in order to represent the
penalty for deviating from the required skill level and the
reward for satisfying needs.

Now we connect all skill–level nodes to the sink t with a
capacity of newsℓ and a cost of 0. These edges ensure that
only the required amount of hours are worked on each skill–
level combination, according to Hard Constraint 1. Last, we
add an edge from the source s to every skill–level node with
a capacity of∞ and a cost of 0, thus allowing employees to
work fewer than the maximum possible amount of hours.

In practice, the minimum-cost maximum-flow can be com-

puted very fast, see Goldberg and Tarjan (1989) and Orlin
(1993). Thus, the EA only needs to consider the problem of
assigning employees to engagements on days, as the com-
bined value of Objectives 1, 5, 6, and 7 is the negated summed
cost of the minimum-cost maximum-flows for all weeks and
engagements.

Experimental Comparison

We consider a real-world data set from KPMG consisting of
52 employees, 400 days, 90 engagements, and 18 skills with
four levels each. The weights of the objective function were
chosen based on the knowledge and experience of domain
experts and are considered part of the input instance. The
highest weight was given to Objectives 1 and 5; the lowest
to Objectives 4 and 7. Unfortunately, we are not allowed to
release the data set.

Gurobi (the MIP solver we consider) yields an upper bound
for an optimal solution, which we call the optimum. For each
algorithm we define the gap value; it always denotes the
percentage a solution is away from the optimum, i.e., a gap of
2% is synonymous to a 98%-approximation of the optimum.
We use the gap values in order to compare the solution quality
of both of our algorithmic approaches.

Gurobi achieves a gap value of only 10.5% after 100 hours
(roughly 4 days) and not before. Our optimum is also taken
after the same amount of time to get a good upper bound.
The EA yields far better results, which we describe in the
following.

One problem is that while Gurobi is deterministic, the
quality of the EA after t seconds is a distribution. Thus, we
consider two experimental setups, whose results are depicted
in Fig. 2. For the first setup, we let the EA run for 5 hours,
for a total of 210 times. Fig. 2a shows the percentage of these

552

Figure 3: Example visualization of a staff assignment in the detail view with anonymized employees on the left and weeks of
the year on top. Each box represents a day. The boxes are filled if the employees are assigned on that particular day, and the
colors represent different engagements. If a box is selected, the fields at the bottom show information about the engagement and
the fulfillment of its objective values (left), the employee and the skill and level they work on that day (center), and the global
objective values of the assignment (right).

210 runs that were able to create a solution of a quality at
least as good as Gurobi. This suggests that the EA gets a
solution better than Gurobi after significantly less time with
moderately high probability, e.g., nearly 45% after 5 hours.
Note that this probability roughly follows a linear trend. This
allows for a massive parallelization approach: consider a
fixed time budget of 5 h. Then it does not matter whether we
let one EA run for 5 h or five EAs for 1 h each – the success
ratio of beating Gurobi will roughly stay the same. However,
the wall-clock time needed will only be 1 h in the latter case.

For the second experiment, we build upon the just men-
tioned approach of parallelization. We consider a total time
budget of 100 h, i.e., the time it took Gurobi to achieve a
reasonable solution. Given an amount of EAs that can be
run in parallel, we determine the uniform amount of time
each EA can be given for the time budget. We then take the
best solution we could find up to that point in time as our
overall solution. The medians of these results are depicted
in Fig. 2b. We see that a time budget of 7min per EA (given
the respective number of cores) is already sufficient for cre-
ating a solution that outperforms the quality of the solution
that Gurobi achieved after 100 h. If, instead, we give 4.2 h
of time per EA, we achieve a gap value of 1.7%. Hence,
given enough computing power, the EA approach greatly
outperforms Gurobi both in wall-clock time and solution
quality.

Visualization

In order to make it easier for us and our industry partners
to inspect assignments, we developed a graphical user inter-
face. The interface has three different views: an assignment
overview, an assignment creation view, and a detail view.

In the assignment overview, assignments can be saved,
loaded, and compared. The objective values of an assignment
are displayed using parallel coordinates, and different assign-
ments are shown in the same diagram, allowing for an easy
comparison.

In the assignment creation view, assignments can be cal-
culated using the EA. The weights of the objectives can be
chosen freely before starting a run, and it is possible to start
several runs in parallel. All running jobs are viewed by dis-
playing their objective values as parallel coordinates, which
are updated periodically.

In the detail view, the actual assignment of employees
to days and engagements can be viewed (see Figure 3) and
edited. Editing an assignment is done via a new window, in
which all of the relevant information for assigning an em-
ployee with a certain skill for a specific day or range of days
to a certain engagement can be entered. Such changes can
always be reverted or saved into a new assignment. Whenever
an assignment is changed, its new quality is calculated on
the fly and compared to that of the previous assignment. This
immediate feedback enables the user to get an impression of
why certain assignments of employees to days and skills are
beneficial over other assignments that seem more natural and
thus provides an indirect explanation of the assignment.

553

Discussion and Conclusion
The findings of our experiments show that EAs are a very
good alternative to off-the-shelve solvers such as MIP solvers,
even when the problem formulation is already close to a MIP
problem. Our outcome showed that the EA did not require a
lot of tuning and problem knowledge, but it benefited from
simple yet specific mutation operators, especially concerning
Objective 3. This is because the block operators help the al-
gorithm to escape local optima and greatly boost the runtime,
as beneficial operations can often be combined to a block
operation. Furthermore, the EA allowed for formulating a
subproblem which can be solved separately by a classical
flow algorithm. Last, the EA can be massively parallelized
(see Fig. 2b), which is a great benefit when given enough
computing power by, e.g., a cloud-computing service.

Note that, in general, MIP solvers can find a good ap-
proximate solution for assignment problems similar to ours.
However, Objectives 2 and 3 both require computationally
expensive constraints. If we do not consider them in our ap-
proaches, Gurobi can generate a solution of a similar quality
(i.e., a gap value of 3%) as the EA in about 1 hour. How-
ever, the EA is still efficient as long as the objective can be
computed efficiently and incrementally. In a nutshell, the
advantages of the EA are that it

• is more flexible (no linearization of objectives),

• is easier to implement (see Alg. 1),

• is free, whereas Gurobi requires a license,

• finds comparable solutions significantly faster,

• finds better solutions (1.7% gap vs. 10.5%),

• can be massively parallelized (running 857 EAs for 7min
each is similar to 100 h Gurobi).

While the result on the given data set is sufficient to show-
case the feasibility of the approach, further research should
study the problem on more real-world data sets. Furthermore,
other metaheuristics, such as genetic algorithms, could be
considered.

References
Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; and Pesch,
E. 1999. Resource-constrained project scheduling: Notation,
classification, models, and methods. European Journal of
Operational Research 112(1):3–41.

De Bruecker, P.; Van den Bergh, J.; Beliën, J.; and Demeule-
meester, E. 2015. Workforce planning incorporating skills:
State of the art. European Journal of Operational Research
243(1):1–16.

Ernst, A. T.; Jiang, H.; Krishnamoorthy, M.; and Sier, D.
2004. Staff scheduling and rostering: A review of applica-
tions, methods and models. European Journal of Operational
Research 153(1):3–27.

Garey, M. R., and Johnson, D. S. 1975. Complexity results for
multiprocessor scheduling under resource constraints. SIAM
Journal on Computing 4(4):397–411.

Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2004. A
comparison of techniques for scheduling earth observing
satellites. In Proc. of AAAI, 836–843.

Goldberg, A. V., and Tarjan, R. E. 1989. Finding minimum-
cost circulations by canceling negative cycles. Journal of the
ACM 36(4):873–886.

Gurobi Optimization, L. 2018. Gurobi optimizer reference
manual.

Heimerl, C., and Kolisch, R. 2010. Scheduling and staffing
multiple projects with a multi-skilled workforce. OR spec-
trum 32(2):343–368.

Jan, A.; Yamamoto, M.; and Ohuchi, A. 2000. Evolutionary
algorithms for nurse scheduling problem. In Proc. of CEC,
volume 1, 196–203. IEEE.

Li, J.; Burke, E. K.; Curtois, T.; Petrovic, S.; and Qu, R. 2012.
The falling tide algorithm: a new multi-objective approach
for complex workforce scheduling. Omega 40(3):283–293.

Mesghouni, K.; Hammadi, S.; and Borne, P. 2004. Evolution-
ary algorithms for job-shop scheduling. International Journal
of Applied Mathematics and Computer Science 14(1):91–
104.

Orlin, J. B. 1993. A faster strongly polynomial minimum
cost flow algorithm. Operations Research 41(2):338–350.

Salewski, F.; Schirmer, A.; and Drexl, A. 1997. Project
scheduling under resource and mode identity constraints:
Model, complexity, methods, and application. European
Journal of Operational Research 102(1):88–110.

Van den Bergh, J.; Beliën, J.; De Bruecker, P.; Demeule-
meester, E.; and De Boeck, L. 2013. Personnel scheduling: A
literature review. European Journal of Operational Research
226(3):367–385.

554

