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ABSTRACT

The interaction between wind-driven Langmuir circulation and preexisting stratification is examined in order
to elucidate its role in the deepening of the ocean surface mixed layer. For linear stratification, a numerical
model suggests that Langmuir cells initially engulf water and create a homogeneous surface layer. The depth

of this layer can be understood in terms of a Froude number Fr 5 w̃dn/( where w̃dn is the maximum˜h̃ Nh),
downwelling velocity generated by Langmuir circulation in homogeneous water and N is the buoyancy frequency.
Numerical results show that Fr is a constant ø 0.6. Using computed values of w̃dn, this implies that the rapid
mixed layer deepening stops at 5 cu*/N in which u* is the water friction velocity and the coefficient c is abouth̃
10 for fully developed seas. Alternatively, the deepening is arrested when the buoyancy jump Db at the mixed
layer base reaches about . The above formula, compared with the Price, Weller, and Pinkel value of 0.652 ˜50u /h*

for the bulk Richardson number Rb associated with shear mixing, suggests that engulfment by Langmuir cir-
culation dominates mixed layer deepening if the velocity difference zDũz across the base of the mixed layer is
less than about 0.01Uw, where Uw is the wind speed. The buoyancy jump criterion is tested for two-layer
stratification profiles and found to be a robust formula suitable for incorporation into one-dimensional mixed
layer models.

The possibility of further mixed layer deepening through shear instability is studied by examining the dis-
tribution of the gradient Richardson number Rig, particularly in a transition region beneath the mixed layer. It
has great variability across wind, reaching minimum values beneath downwelling jets, but can fall below 0.25,
indicating the onset of shear instability. Thus, Langmuir cells may facilitate shear instability in a horizontally
confined region beneath downwelling jets, although further study will require allowance for a different back-
ground shear.

1. Introduction

When the wind blows across a stratified ocean, a sur-
face mixed layer (SML) develops in which the density
is approximately uniform. The lower boundary is
marked by a strongly stratified transition region. The
density jump across this increases as the mixed layer
deepens.

Shear-driven turbulence may contribute to the mixing
and density homogenization in the SML during wind
events, but another important process is wind-driven
Langmuir circulation (LC). This consists of a pattern of
fairly parallel vortices oriented downwind, with alter-
nating vorticity and maximum downwind surface cur-
rent at the surface convergences. Following a series of
ingenious experiments, Langmuir (1938) suggested that
the circulation patterns constitute the essential mecha-
nism by which the mixed layer is produced. Recent
observations by Weller and Price (1988) showed a
downward vertical velocity sometimes exceeding 0.2 m
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s21. Langmuir circulation appeared to rapidly mix away
shallow near-surface stratification associated with di-
urnal heating, within one-third to one-half of the original
SML depth, but they found no evidence that LC played
a direct role in mixing near the base of the nighttime
40–60 m SML present during the experiment. No quan-
titative criterion for the effect of LC was suggested.

Thus, despite Langmuir’s pioneering paper over five
decades ago, the role of LC in distributing heat and
momentum in the upper ocean or in forming the seasonal
thermocline is not yet determined (Thorpe 1985, 1992).
Moreover, none of the existing mixed layer models have
explicitly taken LC into consideration.

Most mixed layer models are one-dimensional and
assume that the mean temperature and horizontal ve-
locity are quasi-uniform within the layer but have a jump
at the lower boundary. To close the model, the entrain-
ment velocity at the SML base is prescribed in terms
of the wind stress and/or the difference of the velocity
and density between the mixed layer and the water be-
low it (Niiler and Kraus 1977; Price et al. 1986). These
bulk models, as well as more elaborate higher-order
turbulence closure models (e.g., Mellor and Yamada
1974, 1982; Large et al. 1994), suffer from not explicitly
incorporating the key physical processes in the ocean
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FIG. 1. Schematic diagram showing the interaction between Langmuir circulation and three kinds
of preexisting stratification. (a) General stratification, (b) linear stratification, and (c) two-layer
stratification.

surface layer that are responsible for the SML deep-
ening, and it is not at all clear that their parameterization
implicitly models these processes correctly.

This paper investigates the role of wind-driven LC
in the deepening of the ocean SML. The model we use
to simulate LC is that of Craik and Leibovich (Craik
1977; Leibovich 1977) in which the Stokes drift of sur-
face waves tilts the vertical vortex lines of a near-surface
downwind jet to produce streamwise vorticity with sur-
face convergence at the jet maximum. The jet is then
reinforced by continued acceleration, by the wind stress,
of the converging surface flow. Li and Garrett (1995,
hereafter LG95) confirm that the vortex force associated
with the Stokes drift is powerful, dominating over the
buoyancy force in driving the circulation for typical
values of wind, waves, and surface buoyancy flux.

Figure 1a illustrates the problem under consideration.
A mixed layer with depth and a buoyancy jump Dbh̃
at its base lies above uniformly stratified deep water,
which has a buoyancy frequency N. There is a surface
wind stress t 5 rw , where rw is the water density and2u*

u* is the water friction velocity. The Stokes drift is usu-
ally approximated by an exponential profile in the LC
model; that is, ũs 5 2S0e2bz̃ in which 2S0 is the surface
drift velocity and 1/(2b) is the e-folding depth (e.g., Li
and Garrett 1993, hereafter LG93). Small-scale mixing
is parameterized in terms of eddy viscosity nT and eddy
diffusivity kT. Our question is whether and how LC
deepens the mixed layer. Dimensional analysis shows
that six dimensionless parameters control the flow: 1)
the Langmuir number La 5 (nTb/u*)3/2(S0/u*)2½, which
is a ratio of viscous to inertial forces (Leibovich 1977;
LG93); 2) the Prandtl number Pr 5 nT/kT; 3) RLb 5
DbnT/(S0 ), measuring the strength of the buoyancy2u*

jump at the mixed layer base; 4) RLN 5 N2nT/(S0b ),2u*

describing stratification in deep water; 5) the length
scale ratio comparing the surface layer depth with˜bh,
the e-folding depth of the Stokes drift; and 6) the ratio
Sw 5 S0/u*, representing the ratio of surface Stokes drift
to water friction velocity. One can rewrite RLb 5 4bDb/
(SStokesSmean) and RLN 5 4N2/(SStokesSmean), where SStokes 5
4S0b is the surface shear in the Stokes drift current and
Smean 5 /nT is the shear in the wind-driven current.2u*

Thus, both RLb and RLN can be seen as Richardson num-
bers.

We shall examine the problem for an appropriate
range of La, RLb, and RLN and for Pr 5 1 or 2. The ratio
Sw does not occur explicitly in the nondimensionalized
equations governing the problem and only affects the
scaling back to dimensional variables. Based on nu-
merical results, we shall argue that the mixed layer deep-
ening is independent of since is normally much˜2bh˜bh e
greater than 1 so that the vortex force due to the Stokes
drift is concentrated near the surface.

We shall examine two simplified models. In the first
model, there is a preexisting linear stratification (Fig.
1b) for which the buoyancy content of the water is con-
served so that RLb 5 )/2, but we will examine a˜R (bhLN

range of RLN values. In the second model, the water
consists of two homogeneous layers connected by a
sharp interface (Fig. 1c). We then have RLN 5 0 but RLb

will be varied across an appropriate range. The simi-
larity of the results obtained for the two simple models,
and supporting physical arguments, will suggest that the
criterion we derive for mixed layer deepening by LC is
applicable to the general model illustrated in Fig. 1a.

2. A model for LC eroding linear stratification

Leibovich and Paolucci (1980) developed a model to
study the interaction between LC and a preexisting lin-
ear stratification. They fixed the temperature at the top
and bottom boundaries of the computational domain so
that, with more stirring near the surface, there was a net
heat flux into the water column. Moreover, a program-
ming error in their computer code rendered the numer-
ical solutions strictly valid only when temperature was
a passive scalar (Leibovich 1983). This programming
error was later corrected by Lele (1985), who also con-
sidered LC interacting with stratification profiles more
appropriate to the ocean. Lele showed that stratification
can be broken down by LC, but he did not propose any
quantitative criterion for SML deepening and also re-
tained the fixed temperature boundary condition.

We propose a different starting point. The water col-
umn at rest is assumed to be uniformly stratified with
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buoyancy frequency N. We maintain this stratification
by a constant downward heat flux Q 5 CprwkT] /]z̃ 5ũ
CprwkTN2/(ag) through the surface to balance the heat
loss through the bottom boundary and conserve the total
heat content of the water column, though the magnitude
of the flux is small enough to be dynamically unim-
portant (LG95). Here Cp is the specific heat at constant
pressure, rw the water density, kT the eddy diffusivity
of heat, a the coefficient of thermal expansion, and ũ
the temperature. We then impose a surface wind stress
t and see how cells grow from random noise and erode
the stratification.

The dimensional governing equations are (Leibovich
1977)

]ũ ]ũ ]ũ
21 ỹ 1 w̃ 5 n ¹ ũ, (1)T˜]t ]ỹ ]z̃

˜ ˜ ˜]V ]V ]V ˜21 ỹ 1 w̃ 5 n ¹ VT˜]t ]ỹ ]z̃

˜dũ ]ũ ]us2 1 ag , (2)
dz̃ ]ỹ ]ỹ

˜ ˜ ˜]u ]u ]u
2˜1 ỹ 1 w̃ 5 k ¹ u, (3)T˜]t ]ỹ ]z̃

˜ ˜ỹ 5 2c , w̃ 5 c ,z̃ ỹ

˜ 2 ˜V 5 ¹ c, (4)

in which ỹ is in the crosswind direction; z̃ is vertically
upward; ũ, y, w̃ represent the downwind, crosswind, and
vertical velocities, respectively; and is the streamwiseṼ
vorticity. In this model the effects of turbulence are
parameterized by constant eddy viscosity nT and con-
stant eddy diffusivity kT.

Nondimensionalizing distance, velocities, time, and
temperature as

21(ỹ, z̃) 5 b (y, z), (5)
2u*ũ 5 u, (6)

n bT

1/22u n S bT 0*(ỹ, w̃) 5 (y, w), (7)
21 2n b uT *

21/2
n n S bT T 0t̃ 5 t, (8)

2 21 2u u* *

2N
ũ 5 u, (9)

agb

one obtains the nondimensional governing equations

]u ]u ]u
21 y 1 w 5 La¹ u, (10)

]t ]y ]z

]V ]V ]V
21 y 1 w 5 La¹ V

]t ]y ]z

du ]u ]us2 1 R , (11)LNdz ]y ]y

]u ]u ]u La
21 y 1 w 5 ¹ u, (12)

]t ]y ]z Pr

]C ]C
y 5 2 , w 5 ,

]z ]y
2V 5 ¹ C, (13)

where the Langmuir number (Leibovich 1977), defined
as

3/2 21/2
n b ST 0La 5 , (14)1 2 1 2u u* *

is the ratio of viscous to inertial forces. The Prandtl
number Pr 5 nT/kT is the ratio of eddy viscosity to eddy
diffusivity. The parameter RLN 5 N2nT/( ) represents2S bu0 *

the ratio of the buoyancy force to the vortex force as-
sociated with surface waves. It can also be understood
as the ratio of the buoyancy force to inertial forces and
was termed an overall Richardson number by Leibovich
and Paolucci (1980). It is possible to introduce a strat-
ification parameter

22/32N S022/3(R La ) 5 , (15)LN 2 2 1 2b u u* *

which characterizes the preexisting stratification without
the involvement of eddy diffusivity. Model output can
then be discussed in terms of La (representing viscous
effects), RLNLa22/3 (representing stratification), and Pr,
assuming (as we argue later) that the precise value of

is unimportant provided that is much greater˜2bh˜bh e
than 1.

LG93 estimated La to be in the neighborhood of 0.01
in order for the model to produce the right prediction
for the maximum downwelling velocity. For typical
stratification in the upper ocean, N2 ranges up to O(1024)
s22. The wind stress can be estimated from the drag
coefficient and the Stokes drift current can be calculated
from the wave spectrum. Taking u* 5 1.3 3 1023Uw,
1/(2b) 5 0.12 /g, and S0/u* 5 5.75 applicable to fully2Uw

developed seas (LG93), we find that (RLNLa22/3) ø
. For a wind speed Uw 5 10 m s21, this upper22 210 Uw

bound is about 1. From (15) RLN , 0.1 for La 5 0.03
(which we use later in an example), small enough for
the surface buoyancy forcing to be unimportant (LG95).
For developing seas RLN will be somewhat smaller due
to the increase of b, though this is partially offset by a
decrease of S0.
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To solve Eqs. (10)–(13) numerically, we take u 5
U(z, t) 1 u9(z, t) and u 5 T(z) 1 u9(z, t), where

z
1/2U(z, t) 5 2(Lat) f (h), h 5 ,

1/22(Lat)
221/2 2hf (h) 5 p e 1 herfc(2h), (16)

˜T(z) 5 z 1 bd/2, (17)

and 5 d/b is the depth of the computational box.d̃
The boundary conditions to be satisfied at the top and

bottom boundaries are
2]u9 ] c ]u9

5 0, c 5 5 0, 5 0,
2]z ]z ]z

˜at z 5 0, 2bd. (18)

The perturbation current is stress free, and the heat flux
is held constant at both upper and lower boundaries. We
choose the computational box to be sufficiently deep
such that the deep water remains stagnant and uniformly
stratified; in general, the depth d of the computational
box is chosen inversely proportional to RLN.

Periodic boundary conditions are imposed at two lat-
eral boundaries; that is,

˜ ˜c(y 1 bL) 5 c(y), u9(y 1 bL) 5 u9(y),

˜u9(y 1 bL) 5 u9(y), (19)

in which L̃ 5 L/b is the width of the computational
box. A main goal of this paper is to determine the ver-
tical penetration depth of Langmuir cells. However, as
found in LG93, Langmuir cells in homogeneous water
typically fill the computational box regardless of the
box size. In stratified water LC will be arrested at a
certain depth by stratification, but the vertical cell
growth could also be constrained by the prescribed lat-
eral boundary conditions (19). To evaluate this possi-
bility, we later widen the computational box to check
that the final cell depth reaches a constant value inde-
pendent of bL̃.

For initial conditions, we begin from a linear tem-
perature profile given in nondimensional form by (17).
At t 5 0 an infinitesimal random noise is imposed in
the vorticity field and the wind is switched on to drive
the flow. For small values of La, it is found to be more
economical to start numerical integrations with U(z, t0)
. 0 (this presumably could correspond to a preexisting
wind-driven current) because U(z, t) is a thin surface
jet at small t and requires high resolution.

The formulated mathematical model is solved nu-
merically using a spectral code described in more detail
in LG93 and LG95. The solutions c, u9, and u9 are
expanded as Fourier series in both y and z directions
and are chosen so that the imposed boundary conditions
are satisfied. The spatial resolution is chosen such that
the one-dimensional energy spectra show exponential
decay at high wavenumbers. It is found that 128 3 128
Fourier modes provide adequate resolution for the La

regime studied in this paper (generally speaking, high
resolution is required at low La).

3. Rapid SML deepening through engulfment

The model is now used to examine the interaction
between LC and linear stratification. For illustration, we
choose La 5 0.03, Pr 5 1, and RLN 5 0.05 so that
RLNLa22/3 ø 0.5. The computational box has a size of

5 4p and bL̃ 5 2p, which is judged to be sufficiently˜bd
large because a further doubling of bL̃ does not yield
an increase in the depth of the Langmuir cells.

a. Flow fields

Contours of streamfunction, vorticity, downwind cur-
rent, and temperature reveal detailed flow structures.
They are presented in Fig. 2 for different times during
cell development. At t 5 20 (Fig. 2a) four weak cells
appear near the surface and the temperature shows a
slight deviation from the linear distribution with depth.
The cells gain strength and penetrate deeper with time,
meanwhile stirring the upper layer. At t 5 60 (Fig. 2b)
the four cells have merged into two cells, similar to the
cell amalgamation found in homogeneous water (Lei-
bovich 1983; LG93). The top isotherm is raised at the
upwelling site as cold water is engulfed from below.
The two remaining large cells continue to intrude ver-
tically into the stratified water as more cold water is
engulfed and mixed, but then approach a quasi-steady
state and deepen much more slowly. In the contour plots
at t 5 160 (Fig. 2c), no significant further engulfment
is apparent in the temperature field. However, horizontal
downwind momentum is transferred down to greater
depth because of the continual action of wind stress at
the surface.

These snapshots of flow fields illustrate the mecha-
nism by which LC erodes stratification. Langmuir cells
penetrate into the stratified water by engulfing cold wa-
ter and this is mixed with near-surface warmer water to
form a surface mixed layer, as shown in the profiles
averaged across the Langmuir cells.

b. Vertical profiles

Figure 3 shows the time evolution of the averaged
downwind current and temperature as well as their ver-
tical gradients. At t 5 20 the temperature is approxi-
mately a linear function of depth and the downwind
current decreases away from the surface. As engulfment
proceeds (t 5 60), the temperature appears to be ho-
mogenized in a surface layer, suggesting the creation of
a SML by Langmuir cells. In a region beneath the cells,
the temperature gradient is larger than the initially pre-
scribed value due to mixing in the surface layer. The
current shear is reduced in the middle of the SML. The
SML continues to deepen, but at a more gradual rate.
In the final quasi-steady state (t 5 160), we observe a
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FIG. 2. Contours of (i) streamfunction, (ii) vorticity, (iii) temperature, and (iv) downwind current,
for La 5 0.03, RLN 5 0.05, and Pr 5 1, at nondimensional times (a) t 5 20, (b) t 5 60, and (c)
t 5 160. The computational box has a size of bL̃ 5 2p and b 5 4p, but we have only shownd̃
the full box for temperature. The numerical integration started with U(z, t0) at t0 5 10.
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FIG. 3. Vertical profiles of (a) mean downwind current, (b) mean
temperature, (c) current shear, and (d) temperature gradient for the
same parameters as in Fig. 2 and at times t 5 20 (solid), t 5 60
(dashed) and t 5 160 (short-dashed).

FIG. 4. Depth of the mixed layer generated by Langmuir cells in
two computational boxes with L 5 2p (solid) and L 5 4p

(dashed).

surface layer of fairly uniform temperature and down-
wind current, above a transition layer with enhanced
shear and temperature gradient. In the lower part of the
computational box, the water remains uniformly strat-
ified and stagnant.

c. Time series
We define the mixed layer depth 5 h/b to be theh̃

depth of the maximum temperature gradient, averaged
across the cells, although, due to the finite background
eddy diffusivity, the SML shown in Fig. 3 does not show
a sharp jump in temperature across its base. We have
experimented with Pr . 1 and observed a more rapid
transition with a larger maximum temperature gradient,
but with unchanged depth at which the temperature˜bh
gradient is maximum.

The mixed layer depth as a function of time is˜bh

shown in Fig. 4 for two numerical runs with box width
bL̃ 5 2p and bL̃ 5 4p. The depth increases rapidly as
Langmuir cells grow in scale and engulf water from
below, but then approaches an asymptotic limit. In the
quasi-steady state, two cells fill the computational box,
but the cells are flat in the wider box. At small values
of La in the wider box, a new instability may develop
and a pair of small cells may be regenerated at the
surface divergence between the two large cells, though
this cell regeneration process does not appear to further
deepen the mixed layer because it is confined near the
surface. Figure 4 shows that almost the same cell depth
is obtained for the two computational boxes with dif-
ferent widths. Hence is controlled by stratification˜bh
rather than by side boundaries. Further SML deepening
may occur through localized shear instability and this
will be discussed in section 7.

The nondimensional time taken for the SML to reach
this depth is approximately td 5 130, as shown in Fig.
4. Translated into dimensional units, this gives

21/2
n n S bT T 0t̃ 5 t (20)d d2 21 2u u* *

nT 21/25 (n S b) t (21)T 0 du*

21/31 S0 1/35 La t . (22)d1 2u b u* *

For La 5 0.01, u* 5 1.3 3 1023Uw, and with 1/(2b) 5
0.12 /g and S0/u* 5 5.75 (LG93) appropriate for fully2Uw

developed seas, ø 3 3 103Uw/g or 50 min for Uw 5t̃d

10 m s21. For developing seas d may still be about thet̃
same if nT does not change, since S0b has a flat spectrum
and so would not be much reduced.

4. Parameterization of the SML depth in terms of
a Froude number

For a preexisting linear stratification, the depth ofh̃
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FIG. 5. Time series of Fr for La 5 0.03, RLN 5 0.05, and Pr 5 1.
FIG. 6. Summary of critical Froude number Frc in La and

RLNLa22/3 parameter space. Symbol ‘‘*’’ corresponds to La 5 0.1,
‘‘●’’ to La 5 0.06, ‘‘1’’ to La 5 0.03, and ‘‘3’’ to La 5 0.02 at Pr
5 1, while ‘‘o’’ corresponds to La 5 0.03 at Pr 5 2.the SML produced by LC depends mainly on three di-

mensionless parameters La, RLN, and Pr (Sw does not
enter the nondimensionalized governing equations, but
see later for a discussion on the effects of ). Langmuir˜bh
circulation generates vertical velocities with vertical
penetration inhibited by stratification. The cell penetra-
tion depth thus depends on the competition, betweenh̃
vertical motion and stratification, represented by the
Froude number

w̃ wdn dnFr 5 5 , (23)
1/2˜Nh R hLN

where w̃dn and wdn are the maximum dimensional and
nondimensionalized downwelling velocities, respective-
ly, generated by Langmuir cells in homogeneous water.

Figure 5 displays a time series of Fr. The Froude
number is high when LC engulfs water and deepens the
SML but reaches a constant value when the SML deep-
ening is arrested. The vertical penetration is inhibited
when Fr reaches a value of about 0.6.

In order for this to lead to a useful parameterization
for the SML produced by LC, the critical value Frc

should be independent of the input parameters La, RLN,
and Pr. Estimates of Frc obtained from various numerical
runs are summarized in Fig. 6. When obtaining h, we
have checked the influence of box width L and con-
firmed that the cells in the final quasi-steady state are
defined by the stratification rather than by the side
boundaries; for smaller RLNLa22/3 (weaker stratification)
the cells are larger and it is necessary to run the models
in larger computational boxes. The figure suggests that
Frc is approximately a constant for any oceanographi-
cally reasonable combination of La, RLN, and Pr; namely,

Frc ø 0.6. (24)

This has a physical interpretation in terms of kinetic
energy conversion into potential energy; LC generates
the kinetic energy that is used to raise water particles
from their initial equilibrium positions. Penetration
stops if the potential energy required ( N2 is more1 2h̃ )2

than the kinetic energy available ( w̃2). We can also1
2

understand the LC growth and arrest in terms of angular

momentum balance. The Craik–Leibovich vortex force
exerts torque in the water and generates circular mo-
tions. If there were no stratification, cells would grow
indefinitely, even though more slowly at later stages. In
stratified water, a buoyancy torque is created, which
counteracts the driving vortex force so that eventually
an angular momentum balance is reached.

We note that k 1, such that the vortex force˜2bhe
that generates LC is concentrated near the surface. Al-
though the depth at which w̃dn is reached remains close
to the surface, the vertical velocity does not drop more
rapidly with depth for large cells. In fact, the profiles
of normalized downwelling velocity (w̃/w̃dn versus

appear to be similar in the final quasi-steady state˜z̃/h)
for various values of RLN, at fixed La and Pr. This
supports the idea that the maximum downwelling ve-
locity determines the cell penetration depth indepen-
dently of when k 1.˜2bh˜bh e

5. Incorporation of LC into the PWP model

The maximum downwelling velocity of Langmuir
cells in homogeneous water can be expressed as (LG93)

1/3S0 21/3w̃ 5 u La w (25)dn dn*1 2u*

1/3S0 21/35 0.72 La u . (26)*1 2u*

The eddy viscosity nT is an unknown in our model, but
a choice of La 5 0.01 gives

w̃dn ø 0.008 Uw, (27)

in reasonable agreement with observed downwelling ve-
locities.

Equations (23), (24), and (26) give for the dimen-
sional mixed layer depth

Unauthenticated | Downloaded 08/23/22 01:49 PM UTC



128 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

1/3u S0* 21/3h̃ 5 1.2 La (28)1 2N u*

y S0* 21/25 1.2 (n S b) . (29)T 0 1 2N u*

For La 5 0.01 and for fully developed seas for which
Sw 5 (S0/u*) 5 5.75,

h̃ ø 10u /N.* (30)

The ratio Sw can be significantly smaller in developing
seas, leading to a smaller coefficient of u*/N in (30) if
nT stays the same.

We can compare (30) with the results of the simple
model of Pollard et al. (1973, hereafter PRT) for the
upper-ocean response to an imposed wind stress. They
argued that the interface is unstable due to the near
discontinuity of velocity across it and suggested that the
problem be closed by an assumption involving a suitable
Richardson number. They hypothesized that Rb 5

/(r0zDũ2z), in which Dr and zDũz are the velocity˜gDrh
and density differences across the mixed layer, main-
tains a value of 1 during SML deepening. For an initially
constant stratification they predicted the SML depth to
increase with time, up to ft 5 p, as

1/4
4(1 2 cos ft)

h̃ 5 u , (31)* 2 2[ ]f N

with the initial deepening obeying

1/4 1/2h̃ 5 2 u (t/N) .* (32)

After one-half inertial period, the deepening is arrested
by rotation at depth, giving

3/4 1/2h̃ 5 2 u /(Nf) .max * (33)

Taking the Coriolis parameter f 5 1024 s21 and the buoy-
ancy frequency N2 5 1025 to 1024 s22, one obtains

h̃ 5 (10 to 17)u /N.max * (34)

In the PRT model 10u*/N is obtained after a time ranging
from (0.7 to p)f21 h, generally significantly longer than
the time taken for LC to reach the same depth.

To incorporate the effects of LC into a mixed layer
model, we propose to use a criterion in terms of the
buoyancy jump at the base, as in the bulk Richardson
criterion in the PWP model (Price et al. 1986), which
uses 0.65 rather than 1 as the critical value of Rb. The
important difference is that our LC criterion depends on
u*, whereas the PRT or PWP criterion depends on zDũz.
It is only for idealized problems that u* and zDũz are
simply related.

To generalize, we note that our numerical simulations
suggest that LC erodes an initially uniformly stratified
water and creates an SML with depth and buoyancyh̃
jump Db at its base. Because the heat content is con-
served,

1
2˜Db 5 N h. (35)

2

This combines with (28) to yield
2 ˜Db 5 cu /h,* (36)

where c 5 0.72(S0/u*)2/3 La22/3 5 0.72S0/(nTb). For fully
developed seas, this reduces to c 5 50, using the same
parameter values as in (22).

We thus propose that, in addition to the bulk Rich-
ardson number criterion that the SML will deepen unless

2 ˜Db $ 0.65zDũz /h, (37)

we also use a criterion that LC engulfment will occur
unless

2 ˜Db $ 50u /h,* (38)

Clearly, LC dominates the SML deepening if

zDũz , 9u* 5 0.01Uw, (39)

that is, if the velocity shear across the base of the mixed
layer is no greater than 1% of the wind speed.

Equation (38) appears to be similar to Kraus and Tur-
ner’s (1967) entrainment model. A u* dependence was
later disputed by Price (1979), however, who proposed
that the rate of entrainment be scaled instead with the
velocity difference across the interface, as this resolved
the disagreement between the two laboratory experi-
ments (Kato and Phillips 1969; Kantha et al. 1977). In
the Mixed Layer Experiment (MILE), Davis et al.
(1981) suggested empirical deepening formulas involv-
ing both u* and zDũz and obtained better agreement with
observations than with formulas depending on u* or zDũz
alone. Our formula involves u* but is based on the mod-
eling of Langmuir circulation, and the coefficient c gives
an explicit dependence on the sea state and turbulence
parameterization.

To summarize the numerical results on the erosion
into linear stratification by LC, we note that Frc ø 0.6
and is insensitive to input parameters La, Pr, and RLN

over a plausible range. However, the deeper stratifica-
tion is fixed such that RLb 5 To make the˜R (bh)/2.LN

deepening criterion (38) more general, we next turn to
the two-layer stratification.

6. Test of the buoyancy jump criterion to SML
deepening in a two-layer fluid

We consider a two-layer fluid in which two homo-
geneous water layers are connected by a sharp interface
(see Fig. 1c). In this case RLN 5 0. Two values of ˜bh
are studied. For each we shall vary RLb across a˜bh,
range and determine whether the surface layer deepens
according to the criterion suggested by (38). This pro-
vides a genuine test of the criterion because the deep
water is homogeneous and no buoyancy force is avail-
able there to inhibit cell penetration if the buoyancy
jump at the interface cannot stop the SML deepening.
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The dimensional governing equations are still (1)–
(4). Denoting the temperature difference across the in-
terface by DT, the depth of the top layer by andh̃,
nondimensionalizing distance, velocity, and time as (5)
to (8), but scaling temperature with DT instead of N2/
(agb), we obtain

]u ]u ]u
21 y 1 w 5 La¹ u, (40)

]t ]y ]z

]V ]V ]V
21 y 1 w 5 La¹ V

]t ]y ]z

du ]u ]us2 1 R , (41)Lbdz ]y ]y

]u ]u ]u La
21 y 1 w 5 ¹ u, (42)

]t ]y ]z Pr

]C ]C
y 5 2 , w 5 ,

]z ]y
2V 5 ¹ C, (43)

where

agDTnTR 5 . (44)Lb 2S u0 *

As in section 2, the downwind current is split into a
mean and a perturbation. The boundary conditions to
be satisfied at the top and bottom boundaries are

2]u9 ] c ]u
5 0, c 5 5 0, 5 0,

2]z ]z ]z

˜at z 5 0, 2bd,

where the depth at the lower boundary is chosen˜bd
such that water in the lower portion of the box stays
stagnant. The heat flux is kept equal to zero at the top
and bottom boundaries, and the total heat content of the
water column is thus conserved.

The initial temperature has a two-layer structure

˜1 1 tanh[g(z 1 bh)]
u 5 , (45)

2

in which g measures the thickness of the initial interface.
A choice of g 5 20 makes the interface thin, but the
thickness increases as 2(Lat/Pr)½ due to temperature dif-
fusion and this could potentially affect the cell pene-
tration. To reduce this diffusion problem we choose Pr
5 2 or larger.

According to (38), the surface layer should deepen if
Db , This inequality can be translated into a2 ˜50u /h.*

criterion for RLb.
Equation (36) gave

2/3S0 22/3 2˜(Dbh) 5 0.72 La u (46)cri *1 2u*

for linearly stratified fluid where denotes the˜(Dbh)cri

value of at which deepening of the SML stopped.˜Dbh
Together with (44) and noting Db 5 agDT, we obtain

2S u0 *˜Dbh 5 R hLbn bT

2/3S0 22/3 25 h La u RLb*1 2u*

h ˜5 (Dbh) R , (47)cri Lb0.72

which is rearranged to

˜0.72 Dbh
R 5 . (48)Lb ˜h (Dbh)cri

The SML should thus deepen if , or˜ ˜Db h (Db h)cri

RLb , 0.72/h. (49)

Taking 5 h 5 4, the SML should deepen if RLb
˜bh

, 0.18, whereas no rapid deepening should occur when
RLb $ 0.18. We have run our numerical model with a
range of RLb values below and above the critical value.
The SML stays at approximately the same depth for RLb

5 0.18, 0.25, 0.3, but penetrates to an increasingly
greater depth for RLb 5 0.05, 0.1, 0.15 (Fig. 7a), though
the deepening is significantly slower for bigger cells at
later times. This criterion (38) has also been checked
for 5 2 (Fig. 7b) in which the critical value RLb 5˜bh
0.36, although higher values of Pr are needed in order
to minimize diffusion effects.

7. Enhanced shear instability beneath downwelling
jets

We have shown that LC rapidly produces an SML
through engulfment. Further entrainment due to shear
instability is possible although the two-dimensional
model, which assumes no dependence in the downwind
direction, cannot resolve this. As a first step, we cal-
culate the gradient Richardson number from the down-
wind current ^u& and temperature ^u& averaged across
the cells for the runs that we started with linear strati-
fication. We define this as

˜2g(]^r̃&/]z̃) ag(]^u&/]z̃)
Ri 5 5gav 2 2r̃(]^ũ&/]z̃) (]^ ũũ&/]z̃)

4/3S ]^u&/]z0 2/35 La zR z . (50)LN 21 2u (]^u&/]z)*

A time series plotted in Fig. 8 shows that Rigav evaluated
at depth approaches 0.56 when the cells reach a˜bh
quasi-steady state, indicating no shear instability. This
result is misleading, however, because the downwind
shear and temperature gradient are far from uniform in
the crosswind direction. Figure 9 shows a variation of
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FIG. 7. Depth of the surface layer in a two-layer fluid starting (a)
at h 5 4 and for RLb 5 0.05, 0.1, 0.15, 0.18, 0.25, 0.3, and (b) at h
5 2 and for RLb 5 0.2, 0.3, and 0.5. In these runs we choose La 5
0.03 and Pr 5 2 except that Pr 5 4 is chosen for h 5 2 and RLb 5
0.5 in order to minimize the effects of diffusion.

FIG. 9. The crosswind variation of Rig at depth h. Again we use
S0/u* 5 5.75.

FIG. 10. Summary of minimum gradient Richardson number Rigm

(S0/u*)24/3 as a function of La, (RLNLa22/3) and Pr. Symbol ‘‘1’’ cor-
responds to La 5 0.1, ‘‘o’’ to La 5 0.06, and ‘‘●’’ to La 5 0.03 at
Pr 5 1, while ‘‘3’’ corresponds to La 5 0.03 and Pr 5 2. The critical
value Rig 5 0.25 becomes a narrow band in Rig(S0/u*)24/3 because
S0/u* 5 4.6 to 6.9.

FIG. 8. Time series of gradient Richardson numbers. A value of
S0/u* 5 5.75 is taken in the calculations.

the gradient Richardson number Rig along a horizontal
line at depth Evidently Rig exhibits considerable˜bh.
variability in the crosswind direction, with variation by
a factor of 3. The minimum value Rigm is located beneath
the surface convergence, where the downwelling jet car-
ries fast-moving fluid down, making the shear much
stronger. As shown in Fig. 8, Rigm is significantly smaller
than Rigav.

Figure 10 summarizes Rigm in parameter space. We
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observe a trend that Rigm decreases with decreasing
(RLNLa22/3); when the water is less stratified, Rigm be-
comes smaller. The two curves corresponding to La 5
0.06 and La 5 0.03 are close to each other, indicating
that establishing the condition for shear instability is not
sensitive to the eddy viscosity. Figure 10 suggests the
likelihood of shear instability for 0.1 , (RLNLa22/3) ,
1, although Rigm appears to be only marginally less than
0.25.

In this discussion of the gradient Richardson number,
we have only considered the velocity and temperature
associated with LC eroding an initially linear stratifi-
cation. In reality, horizontal currents due to previous
wind events and the Coriolis force may exist and should
be considered. Overall, it is worth pointing out that,
when LC is present, further SML deepening may be
caused by enhanced shear instability beneath down-
welling jets. Incorporating this into one-dimensional
SML models will require further work.

8. Conclusions

We have demonstrated that LC causes a rapid deep-
ening of SML to a depth ø 10u*/N for initially linearh̃
stratification in fully developed seas. The estimate is
derived from the Froude number criterion Fr 5 w̃dn/

which is found to be a constant of about 0.6. The˜(Nh),
formula for can also be understood from dimensionalh̃
arguments. Langmuir circulation is driven by u* and the
stratification is represented by N. The depth dependsh̃
on these two quantities and, if nT } /g and b } g/ ,3 2u u* *

the only dimensionally consistent statement is 5 cu*/h̃
N in which c is a constant of proportionality. For fully
developed seas, c ø 10. For developing seas S0/u* can
be significantly smaller and c may be less than 10.
Equivalently, and more generally, the buoyancy jump
at the base of the mixed layer is predicted to be about
50 less for developing seas. This buoyancy jump2 ˜u /h,*

criterion (38), and that of PWP (37), have been tested
against oceanic observations, which show some evi-
dence of mixed layer deepening due to LC (Li et al.
1995).

The model predicts that both and w̃dn vary likeh̃
[from the La21/3 dependence of (26) and (28)], de-½nT

pending on the magnitude of eddy viscosity. Repre-
senting the effects of turbulence by a constant eddy
viscosity requires further examination, and recent LES
(large eddy simulation) studies (Skyllingstad and Denbo
1995) show some promise of eliminating the need for
this parameterization. However, we must emphasize that
the parameterization of the SML depth in terms of Fr
is independent of La. It should be possible to deduce a
similar parameterization in LES models that could also
resolve the shear instability, which we have shown be-
neath downwelling jets.

We have used the two-dimensional Craik–Leibovich
model in this paper. Future work will need to consider
three-dimensional effects. Using sidescan sonar to im-

age the ocean surface, Farmer and Li (1995) observed
that bubble clouds collected at the convergence zones
of Langmuir circulation produce parallel lines at low
wind speeds but organize into Y-shaped patterns at high
winds. In a recent investigation of a three-dimensional
model of Langmuir circulation, Tandon and Leibovich
(1995) found considerable levels of spatial and temporal
complexity in the flows. The 3D LES simulations by
Skyllingstad and Denbo (1995) and McWilliams et al.
(1996) have also shown the Y-shaped patterns in the
contour plots of vertical velocity. It should be possible
to use a 3D LES model to derive a more robust and
realistic parameterization of Langmuir circulation in the
deepening of the ocean surface layer.
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