MEETING ABSTRACT **Open Access** # Mixed linage kinase 3 functions as a cGMPdependent protein kinase I alpha substrate and regulates blood pressure and cardiac remodeling in vivo Timothy Calamaras¹, Robert Baumgartner¹, Guang-rong Wang¹, Roger Davis², Mark Aronovitz¹, David Kass³, R Karas¹. Robert M. Blanton^{1*} *From* 7th International Conference on cGMP Generators, Effectors and Therapeutic Implications Trier, Germany. 19-21 June 2015 Protein kinase G I alpha (PKGI α) counteracts hypertension and pathologic cardiac remodeling. These effects require the PKGI α leucine zipper (LZ) protein binding domain. However, PKGI α LZ-binding substrates mediating these effects remain incompletely understood. We previously demonstrated that Mixed Lineage Kinase 3 (MLK3) binds the PKGI α LZ domain in the heart. In the present study we hypothesized that MLK3 functions as a PKGI α substrate and cardiovascular effector. We observed that recombinant MLK3 precipitated with affinity purified PKGI α but not with LZ mutant PKGI α . When PKGI α was precipitated with RP-cGMP beads, which inhibit PKG kinase activity, we observed decreased PKGI α -MLK3 co-precipitation, supporting a requirement of PKGI α kinase activity for MLK3-PKGIa interaction. PKGI α phosphorylated MLK3 in vitro as assayed by Western blot. We next analysed mice with genetic deletion of MLK3. In the baseline state, MLK3^{-/-} mice display normal cardiac function as assessed by echocardiography and invasive cardiac hemodynamics. MLK3^{-/-} mice develop cardiac hypertrophy by 3 months of age (heart weight/tibia length 64.4 ± 1.9 mg/cm WT, 73.6 ± 2.1 mg/cm MLK3^{-/-}; p<0.001; n=11 WT, 14 MLK3-/-). Compared with WT littermates, anesthetized MLK3^{-/-} mice have elevated blood pressure (BP) (94.3 ± 2.1 mmHg WT, 109.3 ± 2.5 mmHg MLK3^{-/-}; p<0.001). Conscious male MLK3^{-/-} mice monitored continuously with implantable arterial radiotelemetry (10-12 weeks of age) had overt hypertension compared with WT littermates (Systolic BP: WT 121.5 \pm 2.0 mmHg, MLK3^{-/-} 161.6 \pm 5.1 mmHg; p<0.01; Diastolic BP: WT 87.0 \pm 2.9 mmHg, MLK3^{-/-} 114.5 \pm 2.7 mmHg; p<0.001; n=4 WT, 3 MLK3^{-/-}). We observed no difference in baseline heart rate between genotypes. Chronic administration of hydralazine (250 mg/L) normalized BP in MLK3^{-/-} mice, but did not completely inhibit cardiac hypertrophy. Further, in response to LV pressure overload by transaortic constriction (TAC), which equalized left ventricular (LV) systolic pressure between genotypes, MLK3^{-/-} mice had increased LV hypertrophy (LV/Tibia length) as well as elevated LV end diastolic pressure, and worsening of LV ejection fraction, preload recruitable stroke work, and other LV systolic and diastolic indices (n=8-10), indicating advanced cardiac dysfunction. Together, our findings identify MLK3 as a direct PKGI substrate, and reveal that deletion of MLK3 leads to hypertension and pathologic cardiac hypertrophy. These findings support a model in which, in response to activation by PKGI α , MLK3 inhibits hypertension and cardiac hypertrophy. We conclude that identifying novel PKGI α LZ substrates, like MLK3, may reveal new candidate therapeutic targets for hypertension and heart failure. #### Authors' details ¹Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA. ²Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. Full list of author information is available at the end of the article ^{*} Correspondence: rblanton@tuftsmedicalcenter.org ¹Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111. USA ³Department of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA. Published: 2 September 2015 #### doi:10.1186/2050-6511-16-S1-A24 Cite this article as: Calamaras et al.: Mixed linage kinase 3 functions as a cGMP-dependent protein kinase I alpha substrate and regulates blood pressure and cardiac remodeling in vivo. BMC Pharmacology and Toxicology 2015 16(Suppl 1):A24. ## Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit