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MIXED LOSS AND DELAY RETRIAL QUEUEING SYSTEM 
WITH TWO CLASSES OF CUSTOMERS 

B. Krishna Kumar, S. Pavai Madheswari 

1. INTRODUCTION 

Retrial queues are described by the feature that arriving customers (or calls, re-
quests) who find the server busy join the retrial group/orbit to try again for their 
requests in a random order and at random intervals . Retrial queues are widely 
used as mathematical models of several computer systems: packet switching net-
works, shared bus local area networks operating under the Carrier Sense Multiple 
Access protocol and collision avoidance star local area networks. For recent bib-
liographies on retrial queues, see Yang and Templeton (1987), Falin (1990), Falin 
and Templeton (1997) and Artalejo (1999). 

In modern communication networks, the multiplexers are expected to handle a 
variety of data traffic types. The communication services required may be carried 
out using packet-switched technology, circuit-switched technology or hybrid 
techniques. Integration of these services and traffic types corresponding to them, 
for transmission over networks, has to be carried out in an effective manner. A 
single system with a number of data inputs coming into it may be used, or the 
outputs of a number of stations may be multiplexed together for transmission 
over a network or a series of networks. These types of networks are termed as 
integrated services digital networks. 

Here, we consider the integrated communication systems and focus on multi-
plexing of two types of traffic (customers) only. One type requires circuit-
switched service and the other type consists of packet-switched traffic, typically 
voice and data traffic, respectively, which will hence-forth be referred to as class-
1 and class-2 customers. The class-1 customers are blocked if transmission chan-
nel is not available and leave the system once for all while class-2 customers may 
be obliged to leave the service area and join the retrial group/orbit, to try again 
for their service after a random interval of time. These studies have been applied 
to the study of packet-switched data, circuit-switched voice, circuit-switched wide 
band video and other types of traffic (see Hammond and O’Reilly (1986)). The 
usage of these networks differ in their bandwidth requirements, their holding and 
service times and their arrival rates. 



 B. Krishna Kumar, S. Pavai Madheswari 58

Moreover, queueing networks with batch arrivals are common in a number of 
retrial situations. In computer network systems, messages which are to be trans-
mitted could consist of a random number of packets; comparable work on opti-
mal control policies for batch arrival case is seldom found in the literature. This 
motivates us to develop a realistic model for queueing system with batch arrivals. 
Chaudhry and Templeton (1983) have provided a comprehensive review on bulk 
queues and their applications. Takahashi (1987) has discussed the mixed loss and 
delay queueing system with batch arrival. Langaris and Moutzoukis (1995) have 
investigated a retrial queue with structured batch arrivals, preemptive resume pri-
orities for a single vacation model. Martin and Artalejo (1995) have dealt with a 
single server retrial queueing system in which the server must serve two types of 
customers with control retrial policy by using Markov renewal process technique. 
For detailed survey of retrial queues with two classes of customers and results on 
several models, one can refer to Choi and Chang (1999). 

In this paper, we consider a retrial queueing system with two types of custom-
ers of class-1 and class-2 where class-1 customers arrive singly and class-2 cus-
tomers arrive in a random batch size. The retrial time, the time interval between 
two consecutive attempts made by a class-2 customer in the retrial group is expo-
nentially distributed and is independent of all previous retrial times and all other 
stochastic processes in the system. The organization of the paper is as follows: 
The model under consideration is described in section 2 along with the necessary 
and sufficient condition for the system to be stable. The steady state distributions 
of the server state and the orbit length are discussed in section 3. In section 4, 
some performance measures are obtained. Finally, in section 5, we establish a 
general stochastic decomposition law for our retrial queueing system. 

2. MODEL DESCRIPTION AND STABILITY CONDITION

We consider a single-server retrial queueing system with two classes of cus-
tomers, known as class-1 (impatient) customers and class-2 (non-impatient) cus-
tomers. The class-1 customers arrive singly at the server as independent Poisson 
stream with rate 1 whereas the class-2 customers arrive in groups according to a 
time homogeneous Poisson process with parameter 2. The batch size Y of the 

class-2 customers is a random variable and ( ) , 1, 2, 3, ...kP Y k c k  with 

1

1k
k

c . Denote by 
1

( ) k
k

k

C z c z  the generating function of the batch size 

distribution of the class-2 customers , and C , the mean batch size and 2C , sec-
ond moment. Let class-m customers have independently and identically distrib-

uted service times mS , with distribution functions ( )mB x  and probability den- 

sity functions ( )mb x , 1, 2.m  Also, Laplace Stieltjes transforms and the first 
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two moments of mS , are denoted by *

0

( ) ( ),sx
m m ms e dB x  and 

( 2 ) , 1, 2,m m  respectively. 

If a class-1 customer arrives at the service system and finds the server free, 
then it immediately occupies the server and leaves the system after completion of 
service; whereas if the server is busy, the arriving class-1 customer leaves the sys-
tem forever without getting its service. On the other hand, if the server is busy 
when a batch of class-2 customers arrives at the server, then all these class-2 cus-
tomers leave the service area and enter the group of blocked customers called 
“orbit” and wait there to be served later; whereas if the server is free, then one of 
the arriving class-2 customers begins its service and the other class-2 customers 
join the “orbit” and wait there to be served later. 

The class-2 customers in the “orbit” behave independently of each other and 
are persistent in the sense that they keep making retrials until they receive their 
requested service, after which they have no future effects on the system. Succes-
sive inter-retrial times of any class-2 customers are independent, exponentially 

distributed with a common mean 
1

. We assume that the input flow of primary 

customers of both classes of customers, service times and intervals between re-
peated attempts are mutually independent. From this description, it is clear that 
either at any service completion epoch of class-1 customer or class-2 customer, 
the server becomes free, in such a case, the possible primary arrivals and the one 
(if any ) in the orbit compete for service. 

The state of the system at time t  can be described by the Markov process 
{ ( ) ; 0}N t t = {( ( ), ( ), ( ) ); 0}C t X t t t , where ( )C t  denotes the server 

state ( 0, 1 or 2 according as the server being free, busy with a class-1 customer or 
busy with a class-2 customer, respectively) and X(t) corresponds to the number 

of customers in orbit at time t. If C(t)  1 , then ( )t represents the extended 

service time of the class-1 customer being served at time t , if ( ) 2C t , then 

( )t  corresponds the extended service time of the class-2 customer being served 

at time t  and if ( ) 0C t , then ( ) 0t . The functions 1
1

1

( )
( )

1 ( )

b x
x

B x
 and 

2
2

2

( )
( )

1 ( )

b x
x

B x
are the conditional completion rates (at time x ) for services of 

the class-1 and class-2 customers respectively. 
In this section, we derive the necessary and sufficient condition for the system 

to be stable. To this end, in the following theorem we investigate the ergodicity of 

the embedded Markov chain at the customer departure epochs. Let { ; }nt n N

be the sequence of epochs of the service completion times at which the server is 
idle, i.e., the sequence of epochs of either service completion times of class-1 



 B. Krishna Kumar, S. Pavai Madheswari 60

(impatient) customers or class-2 (non impatient) customers. The sequence 

{ ( )}n nX X t  forms a Markov chain which is embedded in our retrial queueing 

system on the state space N. 

Theorem 1 : Let nX  be the orbit length at the time of the thn customer’s departure, 

1n . Then { ; 1}nX n  is ergodic if and only if 2 2 1C .

Proof: It is not difficult to see that { ; 1}nX n  is irreducible and aperiodic. 

To prove it is also positive recurrent, we shall use the following Foster’s criterion: 
An irreducible and aperiodic Markov chain is ergodic if there exists a non 
negative function ( ),f j j N  and 0  such that the mean drift 

1[ ( ) ( )/ ]j n n nE f X f X X j  is finite for all j N  and j  for all 

j N , except perhaps for a finite number of j ’s. In our case, we consider the 

function ( )f j j . Then, we have for j =0,

1 2
0 2 1 2 2

1 2 1 2

[ ] [ ]C C = 2 1 1 2 2

1 2

( )C

and for j=1, 2, 3, ... , 

1
2 2 2 1

1 2 1 2

2
2 2

1 2

[ 1 ] [ ]

[ ]

j

j
j C j j C j

j j

j C j
j

                                                 = 2 2 2 1 1 2

1 2

( )j C C j

j
,

so that 

2 2lim 1.j
j

C

Thus, if condition 2 2 1C  is fulfilled then Foster’s criterion guarantees 

that the embedded Markov chain { ; 1}nX n  is ergodic. Hence the sufficient 

condition for ergodicity is proved. 
The same inequality is also necessary for ergodicity. As noted in Sennott et al. 

(1983), we can guarantee nonergodicity, if the Markov chain{ ; 1}nX n satisfies 

Kaplan’s condition, namely j  for all 0j  and there exists 0j N  such 

that 0j  for 0j j . It should be noted that in our case, Kaplan’s condition is 
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satisfied because there is a k  such that 0ijr for j i k  and 0,i  where 

( )ijR r  is the one step transition matrix of { ; 1}nX n . Then 2 2 1C

implies the nonergodicity of the Markov chain. 

As {( , ); 0}n nX t n  is an embedded Markov renewal process of the semi-

regenerative process {( ( ), ( ), ( )); 0}C t X t t t , it can be shown from the re-

sults in Cinlar (1975, pp. 343-350), that the limiting probabilities of 

{( ( ), ( ), ( )); 0}C t X t t t  exist and are positive if 2 2 1C  and 1B (.)  and 

2(.)B  satisfy regular conditions (i.e., the existence of the first two moments or 

both 11 ( )B x and 21 ( )B x being Riemann integrable over [0, ) ).

3. STATIONARY DISTRIBUTION

In this section, we study the steady state distribution for the system under con-
sideration. For the Markov process { ( ); 0}N t t , we define the unconditional 

probabilities: 

( ) { ( ) 0, ( ) }, 0, 1, 2, ...nR t P C t X t n n

and the unconditional probability densities: 

( , ) { ( ) 1, ( ) , ( ) }nP x t dx P C t X t n x t x dx

          for 0, 0 & 0t x n

and

( , ) { ( ) 2, ( ) , ( ) }nQ x t dx P C t X t n x t x dx

          for 0, 0 & 0.t x n

Following routine procedures (see, for instant, Keilson et al.(1968)), we obtain 
the following system of equations that govern the dynamics of the system behav-
iour:

1 2 1 2

0 0

( )
( ) ( ) ( , ) ( ) ( , ) ( ) ,n

n n n

dR t
n R t P x t x dx Q x t x dx

dt

          0, 1, 2,...n  (3.1) 

0 0
2 1 0

( , ) ( , )
( ( )) ( , )

P x t P x t
x P x t

t x
 (3.2) 
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2 1 2
1

( , ) ( , )
( ( )) ( , ) ( , ),

n
n n

n i n i
i

P x t P x t
x P x t c P x t

t x

          n=1, 2, 3,… (3.3) 

0 0
2 2 0

( , ) ( , )
( ( )) ( , )

Q x t Q x t
x Q x t

t x
 (3.4) 

2 2 2
1

( , ) ( , )
( ( )) ( , ) ( , ),

n
n n

n i n i
i

Q x t Q x t
x Q x t c Q x t

t x

          n=1, 2, 3 … . (3.5) 

The boundary conditions are 

1(0, ) ( ), 0, 1, 2, ...n nP t R t n  (3.6) 

0 1 2 0 1(0, ) ( ) ( )Q t c R t R t  (3.7) 

and

1 2 0 1 2 1
1

(0, ) ( ) ( 1) ( ) ( ),
n

n n n i n i
i

Q t c R t n R t c R t

         1, 2, 3, ...n  (3.8) 

We assume that the condition 2 2 1C  is fulfilled, so that the limiting 

probabilities lim ( ),n t nR R t for 0, 1, 2, ...n  and the limiting densities 

( ) lim ( , ),n t nP x P x t for 0x  and 0, 1, 2, ...n and 

( ) lim ( , ),n t nQ x Q x t for 0x  and 0, 1, 2, ... ,n  exist. Letting t  in 

equations (3.1) - (3.8), we get 

1 2 1 2

0 0

( ) ( ) ( ) ( ) ( ) ,n n nn R P x x dx Q x x dx

          0, 1, 2, ...n  (3.9) 

0
2 1 0

( )
( ( )) ( )

dP x
x P x

dx
 (3.10) 

2 1 2
1

( )
( ( )) ( ) ( ),

n
n

n i n i
i

dP x
x P x c P x

dx
 1, 2, 3, ...n  (3.11) 
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0
2 2 0

( )
( ( )) ( )

dQ x
x Q x

dx
 (3.12) 

2 2 2
1

( )
( ( )) ( ) ( ),

n
n

n i n i
i

dQ x
x Q x c Q x

dx
1, 2, 3, ... .n  (3.13) 

The steady state boundary conditions are 

1(0) , 0, 1, 2, ...n nP R n  (3.14) 

0 1 2 0 1(0)Q c R R  (3.15) 

and

1 2 0 1 2 1
1

(0) ( 1) ,
n

n n n i n i
i

Q c R n R c R 1, 2, 3, ...n  (3.16) 

and the normalizing condition is 

0 0 00 0

( ) ( ) 1.n n n
n n n

R P x dx Q x dx  (3.17) 

In order to solve the equations (3.9) - (3.16), we define the generating functions: 

0 0

( ) , ( , ) ( )n n
n n

n n

R z R z P x z P x z    and
0

( , ) ( ) .n
n

n

Q x z Q x z

The following theorem discusses the steady state distribution of the system. 

Theorem 2: If 2 2 1C , then the joint steady state distributions of 

{ ( ); 0}N t t  under different server states are obtained as 

0( ) ( )R z R z  (3.18) 

2 10(1 ( )) ( )
1 0( , ) ( )

C z x u du
P x z R z e  (3.19) 

2 2
0

(1 ( )) ( )
2 1 2 2

0

2 2

{ (1 ( )) [1 ( (1 ( )))]}
( , ) ( )

[ ( (1 ( ))) ]

x

C z x u duC z C z
Q x z R z e

C z z

(3.20)

where 
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1 1 2 2 2 2

2 20

{ [1 ( (1 ( )))] [ ( ) ( (1 ( )))]}
( ) exp

[ ( (1 ( )))]

z
u C u u C u C u

z du
u u C u

(3.21)

and the probability 0R  is to be determined from the normalization condition. 

Proof: Multiplying equations (3.9) - (3.16) by nz  and summing over all possible 

values of n, we obtain the following equations: 

1 2 1 2

0 0

( )
( ) ( ) ( , ) ( ) ( , ) ( )

dR z
R z z P x z x dx Q x z x dx

dz
 (3.22) 

2 1

( , )
[ (1 ( )) ( )] ( , )

P x z
C z x P x z

x
 (3.23) 

2 2

( , )
[ (1 ( )) ( )] ( , )

Q x z
C z x Q x z

x
 (3.24) 

1(0, ) ( )P z R z  (3.25) 

2

( )1
(0, ) ( ) ( ) .

dR z
Q z z C z R z

z dz
 (3.26) 

Solving equations (3.23) and (3.24), we have 

2 1
0

(1 ( )) ( )

( , ) (0, )

x

C z x u du

P x z P z e  (3.27) 

2 2
0

(1 ( )) ( )

( , ) (0, ) .

x

C z x u du

Q x z Q z e  (3.28) 

Substituting the right hand side of (3.25) into (3.27), we get 

2 1
0

(1 ( )) ( )

1( , ) ( ) .

x

C z x u du

P x z R z e  (3.29) 

Using (3.26) into (3.28), we obtain 

2 2
0

(1 ( )) ( )

2

( )1
( , ) ( ) ( ) .

x

C z x u dudR z
Q x z z C z R z e

z dz
 (3.30) 

Now, applying the equations (3.29) and (3.30) to (3.22) and integrating, we 
have after rearrangement: 
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1 1 2 2 2 2

2 2

( ) { [1 ( (1 ( )))] [ ( ) ( (1 ( )))]}
( ) 0.

[ ( (1 ( )))]

dR z z C z z C z C z
R z

dz z z C z

(3.31)

Solving the above equation gives 

( ) ( )R z D z  (3.32) 

where ( )z  is defined as in (3.21) and D is a constant. To determine the constant 

D, we set 0z  in equation (3.32) and obtain 0 ,D R  so that 

0( ) ( )R z R z . (3.33) 

Substituting (3.31) and (3.33) back into (3.29) and (3.30), we have after alge-
braic manipulation: 

2 1
0

(1 ( )) ( )

1 0( , ) ( )
C z x u du

P x z R z e  (3.34) 

and

2 2
0

2 1 1 2
0

2 2

(1 ( )) ( )

{ (1 ( )) [1 ( (1 ( )))]}
( , ) ( )

[ ( (1 ( ))) ]

.

x

C z x u du

C z C z
Q x z R z

C z z

e

 (3.35) 

Hence the theorem follows from (3.33) - (3.35). 

We define the partial generating function 
0

( ) ( , )z x z dx  for any generating 

function ( , )x z . Then, from (3.19) - (3.20), we have the following partial gener-

ating functions under steady state condition: 

0 1 1 2

2

( )[1 ( (1 ( )))]
( )

(1 ( ))

R z C z
P z

C z
 (3.36) 

and

0 2 1 1 2 2 2

2 2 2

( ){ (1 ( )) [1 ( (1 ( )))]} [1 ( (1 ( )))]
( )

(1 ( ))[ ( (1 ( ))) ]

R z C z C z C z
Q z

C z C z z

(3.37)

where 
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1
2 2 1 1 2 2 2 2

0

2 21 1 0

1 { [1 ( (1 ( )))] [ ( ) ( (1 ( )))] }
exp

[ ( (1 ( )))](1 )

C u C u u C u C u du
R

u u C u

(3.38)

which is determined using the normalizing condition (1) (1) (1) 1R P Q . The 

probability generating function for the number of customers in the system de-
noted by ( )K z  is given by ( ) ( ) ( ) ( )K z R z zP z zQ z . Substituting for 

R(z), ( )P z and ( )Q z , we have 

0 1 1 2 2 2 2

2 2 2

{ (1 ) ( ){ [1 ( (1 ( )))] (1 ( )) ( (1 ( )))}
( ) .

(1 ( )){ ( (1 ( ))) }

R z z z C z C z C z
K z

C z C z z

(3 39) 

Note that ( )R z  is the probability generating function of the orbit size when 

the server is free, ( )P z is the probability generating function of the orbit size 

when the server is busy with class-1 (impatient) customer, ( )Q z is the probability 

generating function of the orbit size when the server is busy with class-2 (non-

impatient) customer and 0R  is the probability that the server is free in the system, 

i.e., no customer in the system. These expressions are used in the next section for 
obtaining performance measures. 

4. PERFORMANCE MEASURES

In this section, we derive some performance measures for the system under 
steady state condition. Let U be the steady state probability that the server is busy 
for providing the service for either a class-1 (impatient) customer or a class-2 
(non-impatient) customer, I be the steady state probability that the server is idle 
during the retrial time or no customer in the system, V be the steady state prob-
ability that the server is idle during the retrial time and D be the steady state loss 
probability for the class-1 customers. From the results of the previous section, we 
obtain: 

1 1 2 2

1 1

(1) (1)
1

C
U P Q  (4.1) 

2 2

1 1

1
(1)

1

C
I R  (4.2) 

0(1)V R R 12 2

1 1

1
{1 [ (1)] }

1

C
 (4.3) 
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and

1 (1)D R 1 1 2 2

1 11

C
 (4.4) 

which is same as (4.1). 

The mean number of customers in the system sL  under steady state condition 

is obtained by differentiating (3.39) with respect to z and evaluating at z=1 as 

( 2 )
1 1 2 1 1 2

1 1

2 ( 2) 2
2 2 2 22 1 1 2 2

2 2 2 2

{2 ( 2 )}
'(1)

2(1 )

{ ( ) ( ) }{ ( 1) 1}
.

[1 ] 2[1 ]

s

C
L K

C C CC

C C

 (4.5) 

Let W be the average time a class-2 customer spends in the system under 
steady state. Due to Little’s formula, we have 

.sL
W

C

Define ( ) ( ) ( ) ( ).H z R z P z Q z  Then ( )H z  represents the probability gen-

erating function for the number of customers in the orbit. Using (3.18) - (3.21) 
and (3.38) and simplifying, we get 

0 1 1 2 2

2 2 2

{ (1 ) ( ){ [1 ( (1 ( )))] (1 ( ))}}
( )

(1 ( )){ ( (1 ( ))) }

R z z C z C z
H z

C z C z z
. (4.6) 

Hence, the mean number of customers in the orbit is given by 

( 2 )
1 1 2 2 1 1 2 2

1 1 2 2

2 ( 2 ) 2
2 2 2 2

2 2

{ ( 1) 1}
'(1)

2(1 ) (1 )

{ ( ) ( ) }
,

2(1 )

q

C C
L H

C

C C C

C

 (4.7) 

so that the mean rate of flow of repeated class-2 customers for our system is 
given by 
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( 2 )
1 1 2 2 1 1 2 2

1 1 2 2

2 ( 2) 2
2 2 2 2

2 2

{ ( 1) 1}

2(1 ) [1 ]

{ ( ) ( ) }
.

2[1 ]

q

C C
L

C

C C C

C

 (4.8) 

Thus 2 1 1 2 2

2 2

{ ( 1) 1}
,

(1 )
q

C
L

C
 as 0.

Furthermore, let 1
0M  and 1

1M  denote the partial moments defined by 

1
0

0
n

n

M nR  and 1
1

0 0

[ ( ) ( )] .n n
n

M P x Q x dx  If 2 2 1C , then routine 

differentiation of the partial probability generating functions ( )R z , ( )P z  and 

( )Q z  yield 

1
0 0 '(1)M R  (4.9) 

and

1 ( 2)1 0 0
1 1 2 2 2

2 2

2 2 ( 2)
2 2 1 1 2 2 2 2

2 ( 2) 2 2
1 1 1 1 2 2

( 2 ) 2 2 2
2 1 1 2 2 2 2

{2 '(1) (1)}
2 2(1 )

{(1 )[(1 ) (2 '(1) ( ) (1))

( )(1 ) ( ) (1)]

(1 ) (1)( ( ) ( ) }.

R R
M C

C

C C C

C C C

C C C C

 (4.10) 

It is observed that the mean number of customers in the system in steady state is 

1 1
0 1 lim ( ( ) 1) lim ( ( ) 2).S

t t
L M M P C t P C t

Remark. 1: If 1 0 , i.e., no class-1 customers arrive at the system, then the 

model reduces to the classical M/G/1 batch arrival retrial queue (Falin and 
Templeton (1997)). In this case, the probability generating function of the num-
ber of customers present in the system K(z) is given as 

2 2 2 2

2 2

(1 )(1 ) ( (1 ( ))) ( )
( )

(1){ ( (1 ( ))) }

C z C z z
K z

C z z
 (4.11) 

where 
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2 2 2

2 20

( ) ( (1 ( ))) ]
( ) exp

[ ( (1 ( ))) ]

z
C u C u u

z du
u C u u

and the mean number of customers in the system SL  under steady state condi-

tions is obtained from (4.5) as 

2 ( 2) 2
2 2 2 2 2 2 2

2 2

2 2 2 2

{ (1 ) 1} { ( ) ( ) }

[1 ] 2[1 ]
S

C C C C
L C

C C
. (4.12) 

Remark 2: If 2 0 , i.e., no class-2 customers arrive at the system, then our 

model becomes an M/G/1 queueing system with no waiting line. Thus, the 
probability generating function of the number of customers in the system K(z) is 
reduces to 

1 1

1 1

1
( )

1

z
K z  (4.13) 

and the corresponding mean number of customers in the system SL  under 

steady state condition is obtained as 

1

1

1

1SL . (4.14) 

We now consider a busy period of the system for the model under considera-
tion. The mean of the system busy period is an interesting and important per-
formance measure in the retrial context. The system busy period L is defined as 
the period that starts at an epoch when an arriving customer finds an empty sys-
tem and ends at the next departure epoch at which the system is empty. The 
mean length of the system busy period of our model is obtained in a direct way 
by the theory of regenerative processes which leads to the limiting probabilities 

0 lim {( ( ), ( )) (0,0)}
t

R P C t X t

as follows: 

00
0

1 2

( )

1
( )

E T
R

E L

where 00T  is the amount of time in a regenerative cycle during which the system 

is in the state (0, 0). It is clear that 
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00

1 2

1
( )E T

so that 

1
0

1 2

1
( ) ( 1).E L R

Using equation (3.38), we get 

2

2 2 11

1 2 2

{( 1) (1 ) (1)}
( )

( )(1 )

C
E L

C
. (4.15) 

Remark 3: If 1 0  and 1C , then the mean of the system busy period (4.15) 

reduces to 

2 2 2

(1)1
( ) 1

1
E L  (4.16) 

which agrees with Artalejo and Lopez-Herrero (2000). 

5. STOCHASTIC DECOMPOSITION

In this section, we analyse the stochastic decomposition property of the system 
size distribution. The literature on vacation models recognizes this problem as 
one of the most interesting features (see, for example, Cooper (1970), Doshi 
(1986) and Fuhrmann and Cooper (1985)). A key result in these analyses shows 
that the number of customers present in the system in steady state at an arbitrary 
point in time is distributed as the sum of two independent random variables, one 
of which is the number of customers present at an arbitrary point in the corre-
sponding queueing model without server vacations and the other random variable 
may have different probabilistic interpretations in specific cases depending on 
how the vacations are scheduled (see Doshi (1986) and Takagi (1991) for more 
details).

Stochastic decomposition has also been observed to hold for some M/G/1 re-
trial queues (Artalejo (1997), Artalejo and Gomez-Corral (1997), Yang and 
Templeton (1987) and Neuts and Ramalhoto (1984)). The retrial queue, under 
consideration, can be thought of as a queueing system with generalized vaca- 
tions (Fuhrmann and Cooper (1985)) in which the vaction begins at the end 
of either class-1 customer service or class-2 customer service time. Let ( )z

be the probability generating function of the number of customers in the 

1 2 1 2, / , /1/1,XM M G G  mixed loss and delay queueing system (Takahashi 
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(1987)) in the steady state at a random point in time, ( )z  be the probability gen-

erating function of the number of customers in the generalized vacation system at 
a random point in time given that the server is idle due to retrials and ( )K z  be 

the probability generating function of the random variable being decomposed. 
Then the mathematical version of the stochastic decomposition is 

( ) ( ) ( ).K z z z  (5.1) 

We now verify that the decomposition law is applicable to our retrial queue with 

two classes of customers analyzed in this paper. For the 1 2 1 2, / , /1/1,XM M G G

queue with mixed loss and delay system, we have 

2 2 1 1 2 2 2 2

1 1 2 2 2

{(1 )(1 ){ [1 ( (1 ( )))] (1 ( )) ( (1 ( )))}
( ) .

(1 ) (1 ( )){ ( (1 ( ))) }

z C z C z C z C z
z

C z C z z

(5.2)

To obtain an expression for ( )z , we first define vacation in our retrial con-

text. We say that the server is on vacation if the server is idle ( there may be cus-
tomers in the system even when the server is idle in the retrial queue context). 
Under this definition, we have 

( ) ( )
( ) .

(1) (1)

R z z
z

R
 (5.3) 

From (3.38) and (3.39), we can see that ( ) ( ) ( )K z z z , which confirms that 

the stochastic decomposition law of Fuhrmann and Cooper (1985) is also valid 
for this special vacation system. However, we must point out that if the idle peri-
ods were not considered as vacations, the decomposition law would not apply 
here due to interference between customer retrials and server vacation. 

For the appropriate choice of parametric values and distributions, the decom-
position property for the models considered in Keilson et al. (1968) and Falin and 
Templeton (1997) can be deduced as special cases. 
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RIASSUNTO

Un sistema di code “retrial” con perdite e attese con due tipologie di utenti 

Il presente studio è dedicato all’analisi di una coda “retrial” con arrivi raggruppati in un 
singolo punto di servizio, in presenza di due tipologie di utenti. In caso di intasamento 
della coda, gli utenti del primo tipo escono dal sistema senza più ritornarvi, mentre gli 
utenti del secondo tipo attendono di venire serviti più tardi. Viene definita una condizione 
necessaria e sufficiente per la stabilità del sistema e vengono studiati la distribuzione della 
lunghezza della coda e la performance del sistema sotto particolari condizioni. Infine, viene 
definito un criterio di scomposizione per un sistema di code di questo tipo. 
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SUMMARY

Mixed loss and delay retrial queueing system with two classes of customers 

This paper is concerned with the analysis of a single-server batch arrival retrial queue 
with two classes of customers. In the case of blocking, the class-1 customers leave the 
system forever whereas the class-2 customers leave the service area and enter the orbit 
and wait to be served later. The necessary and sufficient condition for the system to be 
stable is derived and analytic results for the queue length distribution as well as some per-
formance measures of the system under steady state condition are obtained. A general 
decomposition law for the retrial queueing system is established. 


