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Abstract

The use of advanced technologies and intelligence in vehicles and infrastructure could

make the current highway transportation system much more efficient. Semi-automated

vehicles with the capability of automatically following a vehicle in front as long as it is in

the same lane and in the vicinity of the forward looking ranging sensor are expected to be

deployed in the near future. Their penetration into the current manual traffic will give rise

to mixed manual/semi-automated traffic. In this paper, we analyze the fundamental flow-

density curve for mixed traffic using flow-density curves for 100% manual and 100%

semi-automated traffic. Assuming that semi-automated vehicles use a time headway

smaller than today’s manual traffic average due to the use of sensors and actuators, we

have shown using the flow-density diagram that the traffic flow rate will increase in

mixed traffic. We have also shown that the flow-density curve for mixed traffic is

restricted between the flow-density curves for 100% manual and 100% semi-automated

traffic. We have presented in a graphical way that the presence of semi-automated

vehicles in mixed traffic propagates a shock wave faster than in manual traffic. We have

demonstrated that the presence of semi-automated vehicles does not change the total

travel time of vehicles in mixed traffic. Though we observed that with 50% semi-

automated vehicles a vehicle travels 10.6% more distance than a vehicle in manual traffic

for the same time horizon and starting at approximately the same position, this increase is

marginal and is within the modeling error. Lastly, we have shown that when shock waves

on the highway produce stop-and-go traffic, the average delay experienced by vehicles at

standstill is lower in mixed traffic than in manual traffic, while the average number of

vehicles at standstill remains unchanged.
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Executive Summary

In this paper, we present a macroscopic analysis of mixed manual/semi-automated traffic.

We focus our analysis on two topics: the fundamental traffic flow-density diagram and

traffic flow disturbances such as shock waves. We derive the fundamental traffic flow-

density diagram for mixed manual/semi-automated traffic using the traffic flow-density

diagrams for 100% manual and 100% semi-automated traffic. We show in a graphical

way and demonstrate using simulations, the effect of semi-automated vehicles on mixed

traffic flow during the presence of disturbances such as shock waves. Lastly, we show

using queuing theory the effect of semi-automated vehicles on the average delay and

number of vehicles in a queue on the highway during the presence of shock waves that

produce stop-and-go traffic.
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1 Introduction

During the past decade, researchers have focussed on improving traffic flow conditions
with the help of automation. Several concepts that have been proposed include
automation in the driver-vehicle system or the infrastructure or both. While fully
automated vehicles on dedicated highways are seen as a far in the future objective, the
use of partial or semi-automated vehicles on current highways with manually driven
vehicles is deemed as a near-term goal.

 Semi-automated vehicles are those that have the capability of automatically following a
vehicle in front as long as it is in the same lane and within the range of the forward
looking ranging sensor [6]. The vehicles use a longitudinal controller such as the
Intelligent Cruise Control (ICC) system that comprises of throttle and brake subsystems
[3]. The external input variables used by the ICC vehicle are the relative speed and the
relative distance between itself and the leading vehicle (if any), in addition to its own
speed obtained using different sensors [9]. It should be noted that ICC is also often
referred to as Adaptive Cruise Control (ACC). Since the name, ACC could be confused
with ordinary cruise control based on adaptive control also referred to as ACC we chose
to use the name ICC in this report and past publications.

 The use of sensors and actuators makes it possible for semi-automated vehicles to have a
lower reaction time than manually driven vehicles. As a result, a semi-automated vehicle
uses smaller time headway than current manual traffic average and reacts almost
instantaneously to a speed differential in comparison to a manual vehicle. Time headway
is the time taken to cover the distance between the rear of the front vehicle to the front of
the following vehicle. Human factor considerations demand that the response of an ICC
vehicle be smooth for passenger comfort. Hence, a semi-automated vehicle acts as a filter
that smoothes out traffic flow disturbances [12]. The principle question is what will be
the effect of the gradual penetration of semi-automated vehicles among manual ones on
the mixed traffic flow, especially during the presence of disturbances.

 In this paper, we focus our attention to the macroscopic analysis of mixed traffic flow.
Two topics addressed are fundamental flow-density diagrams and shock waves. A
fundamental flow-density diagram defines the steady-state relation between the traffic
flow rate and the traffic density [1]. It is dependent on factors under which the traffic
flow rate and the traffic density are observed like the length of time interval over which
data is aggregated [11]. We outline flow-density diagrams for 100% manual and 100%
semi-automated traffic. A linear follow-the-leader human driver model is used to model
the dynamics of manually driven vehicles [2,7,11,16]. The model assumes that the human
driver observes only the vehicle in front and sets its vehicle acceleration depending on the
relative speed and the relative distance. A manual traffic flow-density curve is
constructed using this human driver model. It has a stationary point that corresponds to
maximum manual traffic flow rate. A flow-density curve for 100% semi-automated
vehicles is constructed using the ICC design given in [3]. The highest point of the curve
corresponds to maximum semi-automated traffic flow rate. We show using these flow-
density curves that for any given traffic density, mixed traffic flow rate is greater than
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manual traffic flow rate. We also show that the mixed traffic flow-density curve is
restricted in the region encapsulated by these curves. As the percentage of semi-
automated vehicles increases, this curve converges to the flow-density curve for 100%
semi-automated traffic.

    The effect of semi-automated vehicles among manual ones during the presence of
traffic flow disturbances such as shock waves is shown using space-time diagrams and
demonstrated using simulations. Shock waves are discontinuous waves that occur when
traffic on a section of a road is denser in front and less dense behind. We present in a
graphical way that the presence of semi-automated vehicles in mixed traffic propagates a
shock wave faster than in manual traffic. We demonstrate that a vehicle in mixed traffic
with 50% semi-automated vehicles travels 10.6% more distance than a vehicle in manual
traffic for the same time horizon and starting at approximately the same position. A linear
follow-the-leader human driver model, namely Pipes model [7,8] has been validated to
closely model current manual driving [20]. Hence, it is used to model the dynamics of
manual vehicles during the simulations. A three-dimensional representation of space-time
diagrams is used to show that the traffic flow rate and the traffic density in mixed traffic
are greater than that in manual traffic.

    Lastly, we show that when shock waves produce stop-and-go traffic on the highway,
the average delay experienced by vehicles is lower in mixed traffic than in manual traffic,
while the average number of vehicles at standstill remains unchanged.

    This paper is organized as follows: Section 2 introduces the traffic flow variables and
analyzes mixed traffic flow using flow-density diagrams for 100% manual, 100% semi-
automated and mixed traffic. Section 3 deals with shock waves and the effect of semi-
automated vehicles on them. Section 4 compares the average delay experienced by
vehicles during stop-and-go conditions on the highway in manual and mixed traffic. A
summary of the main results is provided in the concluding Section 5.

2 Fundamental Flow-Density Diagram

Traffic flow rate q  and traffic density k  are average measures of traffic flow
characteristics. The precise definition of q and k and the means of measuring them are
explained in [1]. In this Section, we consider the flow-density diagrams for 100% manual
traffic, 100% semi-automated traffic and analyze the flow-density curve for mixed
manual/semi-automated traffic. A fundamental flow-density diagram defines the steady-
state relation between the traffic flow rate and the traffic density [1]. It is dependent on
factors under which the traffic flow rate and the traffic density are observed like the
length of time interval over which data is aggregated [11].

2.1 Manual Traffic

A linear car-following model is used to model the motion of a manual vehicle. The car-
following theory assumes that traffic stream is a superposition of vehicle pairs where
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each vehicle follows the vehicle ahead according to some specific stimulus-response
equation [2,7,16]. Using Fig. 1 we have the acceleration of the (n+1)-th vehicle given by
[11]

&& ( ) [ & ( ) & ( )]x t x t x tn n n+ ++ = -1 1t l (1)
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Figure 1: Vehicle following in a single lane.
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where vn+1
: speed of (n+1)-th vehicle

)()( 11 txtxs nnn ++ -= : intervehicle spacing of the (n+1)-th vehicle

The intervehicle spacing is defined as the distance between same points in successive
vehicles.

    To analyze the macroscopic effect we neglect the reaction time lag t . In [11] it is
shown that the time lag does not affect the equation that describes the macroscopic traffic
flow behavior. Dropping the subscripts in (2) we get

xn+1

xn

L
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It can be shown that the reciprocal of the average intervehicle spacing is the traffic

density [4]. Therefore, using k
s

=
1

 where k represents the traffic density, we can express

(3) as
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Integrating (4) we have
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0 0 5Ú Ú= -l (5)

where the limits are from the present point ( , )v k  to the jam condition where all vehicles

are at standstill, i.e. v = 0  and k k j= , where jk  is the traffic density at jam condition.

Evaluating (5) we get

( )v k kj= -2 0l (6)

The proportionality constant l0
 in (6) can be expressed in terms of speed and traffic

density using v v f=  when k = 0 , i.e. when the density is negligible, there is no vehicle-

to-vehicle interaction and vehicles travel at mean free speed fv . The mean free speed is

the vehicle speed that is not affected by other vehicles and only subjected to constraints
associated with the vehicle and road characteristics. That gives us

l0 2
=

v

k
f

j

Substituting for l0
 in (6) we obtain the average speed of vehicles on a section of the road

v v
k
kf

j

= -
Ê

Ë
ÁÁ

�

¯
��1 (7)

where
v f : mean free speed that corresponds to negligible traffic density when there is

no interaction among vehicles.
k : traffic density on the section of the road.
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k j : jam density equal to 1/L where L is the average length of vehicles, i.e. the

traffic density corresponding to jam conditions when the vehicles are stacked
bumper-to-bumper and the speed is zero.

    The traffic flow rate q at steady state measures the number of vehicles moving in a
specified direction on the road per unit time and is given by

q kv= (8)

Substituting v from (7) we get an equation of the manual traffic flow-density relationship
at steady state given by

)(1 kQ
k

k
kvkvq

j
f ∫�

�
¯

�
Á
Á
Ë

Ê
-== (9)

which is also used to obtain the fundamental q k-  diagram shown in Fig. 2.

    The speed of waves carrying continuous changes of flow along the vehicle stream is
the slope of the tangent to the q k-  curve at a point and is given by

c
dq
dk

d kv
dk

v k
dv
dk

= = = +
( )

(10)

The wave speed is smaller than the average speed of the vehicles when the latter

decreases with increase in traffic density, i.e. 
dv
dk

£ 0 . The equality holds when the

density is very low and any increase does not affect the average speed of the vehicles.
Such conditions exist near the origin of the q k-  diagram where the density is negligible
and there is no vehicle-to-vehicle interaction.

    The q k-  curve has a stationary point that corresponds to a critical density kcm
 that

gives the maximum traffic flow rate qmm
 or the capacity on the section of the road. The

slope of the line joining a point on the q k-  curve to the origin gives the average speed
of vehicles at that point. The equation (9) is an example of a flow-density model derived
from the (m,l) model and is used to qualitatively describe manual traffic flow
characteristics. Different values of m and l are used to obtain a good fit to actual traffic
flow data. For example, in [1] it is mentioned that the flow-density model derived with
m=0.8 and l=2.8 gives a good fit to data observed on an expressway in Chicago. The
flow-density model derived using m=1 and l=3 is shown to be qualitatively valid for
traffic flow characteristics observed in 3-lane Boulevard PJriphJrique de Paris [16].
Likewise, m=0 and l=1 is used to derive a flow-density model that gives a good fit to
actual traffic flow data taken in the Lincoln Tunnel in New York [17].
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    The point ),( cmmm kq  has been empirically observed to be unstable, i.e. it leads to a

breakdown in traffic flow. When traffic flow conditions exist at or near this point, the
traffic flow and the average speed decreases as traffic density increases, and the operating
point moves towards the jam density jk  on the q k-  curve. This observation is

explained in [15]. As capacity is approached, flow tends to become unstable as the
number of available gaps reduces. Traffic flow at capacity means that there are no usable
gaps left. A disturbance in such a condition due to lane changing or vehicle merging is
not ‘effectively damped’ or ‘dissipated’. This leads to a breakdown in traffic flow and
‘formation of upstream queues’. As pointed in [15], this is the reason why all facilities
are designed to operate at lower than maximum traffic flow conditions.

2.2 Semi-Automated Traffic

While the behavior of human drivers is random and at best we can develop a manual
traffic flow-density model that is qualitatively valid, the responses of semi-automated
vehicles are deterministic due to the use of computerized longitudinal controllers. In this
Section, we utilize this advantage along with certain assumptions to develop a
deterministic semi-automated traffic flow-density model that is used to obtain the
fundamental q k-  diagram. A semi-automated vehicle uses a longitudinal controller to
automatically follow a vehicle in the same lane and within the range of its forward-
looking ranging sensor. Many such controller designs exist in literature that use constant
time headway [3,14] and constant spacing [13] policies. In this paper we consider the
ICC design given in [3] which uses a constant time headway policy. The time headway is
defined as the time taken to travel the distance between the rear end of the lead vehicle
and the front end of the following vehicle.

   flow
 (veh/hr)

qma

    100% s.a.

qmm

100% man

         kcm
 kca

       k j density (veh/km)

Figure 2: Fundamental flow-density curves for 100% manual traffic and 100% semi-
automated traffic.

O

C

J
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    The intervehicle spacing s at a speed v followed by a semi-automated vehicle using
constant time headway ha  is given by

s h v La= + (11)

where L is the length of the vehicle. For simplicity, we assume that all semi-automated
vehicles have the same length L and use the same time headway ha .

    The average intervehicle spacing is the reciprocal of traffic density. When traffic
density is such that the intervehicle spacing is greater than or equal to that given by (11),
then during this period at steady state the traffic flow rate given by (8) increases linearly
with the density of semi-automated vehicles according to

q kv f=

where v f  is the mean free speed. This situation is indicated by the line OC in Fig. 2.

    As the traffic density increases and reaches the value

k k
h v Lca

a f

= =
+

1

the maximum semi-automated traffic flow rate maq  or capacity is reached. Thereafter, the

relation between q and k can no longer change unless the speed v f  or the time headway

ha
 changes. We assume that the time headway ha

 is fixed at all speeds1 and further
increase in k occurs due to changes in speed. In such a case we have

s h v L h v La a f= + < +  (12)

and

Lvh
k

Lvh
k

fa
ca

a +
=>

+
= 11

(13)

Thus, the speed of the semi-automated vehicles decreases with increasing k according to

v
h k

L
a

= -Ê
ËÁ

��̄
1 1

(14)

The traffic flow rate is given by

                                                       
1 This is reasonable as the purpose of ICC is to maintain a fixed time headway at all speeds. It is
possible, however, that the driver may manually change the time headway, as some ICC systems
already deployed have this option. In our analysis, we did not model such driver responses.



8

q kv
h

kL
a

= = -
1

1( )

    Graphically, the slope of the line joining the origin to a point on the q k-  curve gives
the speed of the semi-automated vehicles at that point. It can be seen that before the
critical density the speed remains constant at v f . After reaching the critical density kca ,

the speed falls as the traffic density increases (Fig. 2).

    Therefore, the steady state fundamental flow-density diagram for 100% semi-
automated traffic is given by

q

kv k k

h
kL k k

f ca

a
ca

=
£

- >

Ï
Ì
Ô

ÓÔ
1

1( ) (15)

    Equation (15) describes the average steady state traffic flow characteristics. They do
not capture any effects due to individual vehicle responses.

    In region OC of the q k-  curve, the critical density is not yet reached. The average
speed of the semi-automated vehicles is equal to the mean free speed v f . This region

corresponds to “loose” vehicle following where some semi-automated vehicles travel
without following any vehicle and use an intervehicle spacing greater than that given by
(11). The rest follow a lead vehicle and use an intervehicle spacing given by (11). After C
the average speed of the semi-automated vehicles along with the traffic flow rate begin to
decrease with increase in density. This region indicated by the line CJ corresponds to
“tight” vehicle following where all semi-automated vehicles follow a lead vehicle and use
an intervehicle spacing given by (12). Finally, at maximum density k j  all semi-

automated vehicles are at dead stop and stacked bumper-to-bumper.

    Let us now consider the stability of the point ),( cama kq . We mentioned in the previous

subsection that the corresponding point ),( cmmm kq  in manual traffic has been empirically

observed to be unstable. Obviously, it is not possible to empirically determine the
stability of ),( cama kq . However, it is expected that the point ),( cama kq  will also be

unstable, i.e. at this operating point, there will be a breakdown in traffic flow. As in
manual traffic, flow will tend to become unstable as capacity is approached and the
number of available gaps reduces. At critical density there will be no usable gaps left.
Any disturbance generated at this condition is expected to lead to the formation of
upstream queues and a breakdown in traffic flow, as observed in manual traffic.
Furthermore, it has been shown that traffic flow in the region CJ where the intervehicle
spacing is given by (13) is unstable in the sense that disturbances propagate upstream
unattenuated [21].
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2.3 Mixed Manual/Semi-Automated Traffic

In the previous subsections, at one end we developed a flow-density model that
qualitatively describes manual traffic flow characteristics. At the other end, we developed
a deterministic flow-density model for semi-automated traffic. A combination of these
two models is expected to characterize mixed manual/semi-automated traffic flow, which
we analyze in this Section.

    We assume that at steady state conditions vehicles of the same class use identical time
headways. For semi-automated vehicles, this is equal to the designed value of the ICC
controller. For manual vehicles, we take it to be equal to the average value observed in
current manual traffic. This is done for simplicity of analysis and it does not affect the
qualitative nature of the results.

    A    M     A M

            
   sa sm sa sm

Figure 3: Mixed manual/semi-automated traffic.

Consider the mixed traffic flow shown in Fig. 3. Manual vehicles are marked ‘M’ and
semi-automated vehicles are marked ‘A’. Assuming moderately dense traffic conditions,
the average vehicle spacing defined as the distance between the two rear ends of two
consecutive vehicles at steady state conditions is given by

s ps p sa m= + -( )1 (16)

where
p: market penetration of semi-automated vehicles in mixed traffic.
s h v La a= + : vehicle spacing used by semi-automated vehicles at speed v with
time headway ha

; L is the average length of the vehicle.

s h v Lm m= + : average vehicle spacing used by manual vehicles at speed v for a
time headway hm

 which is the average of current manual traffic time headway
distribution.

Remark 1: Throughout this paper, we assume that due to the use of sensors and actuators
in semi-automated vehicles, h ha m< , i.e. s sa m<  at a given speed and for the same
average length of manual and semi-automated vehicles [6].

    The total mixed traffic density is given by
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),,(
1

mamix sspf
s

k ∫= (17)

We assume that the driver of a manual vehicle behaves the same way whether following
a semi-automated vehicle or a manual vehicle. Under this assumption, we can use the
fundamental flow-density curve for 100% manual traffic to determine the characteristics
of manual vehicles in mixed traffic. Likewise, the flow-density curve for 100% semi-
automated traffic can be used for semi-automated vehicles in mixed traffic, as their
vehicle dynamics remain unchanged when following a manually driven vehicle.

    The steady state speed of mixed traffic is determined by the speed of the slowest
moving vehicle class (manual or semi-automated). Using the above assumption, we take
the inverse of the average intervehicle spacing for each vehicle class as their density, i.e.

k
sm

m

=
1

 and k
sa

a

=
1

. Then use (7) and (14) to determine the average speeds at which

the manual and the semi-automated vehicles can travel. The lower of the two determines
the speed at which all vehicles travel in mixed traffic. Note that from (17) the density of
each class is dependent on the other.

Lemma 1: The kq -  curve for mixed manual/semi-automated traffic remains in the
region between the q k-  curves for 100% manual and 100% semi-automated traffic.
Furthermore, the mixed traffic flow rate is greater than the manual traffic flow rate for the
same traffic density.

Proof:

Case 1: ma vv >
This means that the average steady state mixed traffic speed is mmix vv = . Now the

intervehicle spacing followed by the semi-automated vehicles is given by

Lvhs aaa += (18)

and the corresponding density is 
a

a s
k

1= , which is the point 1o  in the fundamental

diagram in Fig. 4. Likewise, the intervehicle spacing for the manual vehicles is given by

Lvhs mmm += (19)

and the density is 
m

m s
k

1= , the point 2o  in the fundamental diagram. Now as the total

traffic travels at average speed mv , then (18) changes to

Lvhs maa +=¢ (20)



11

Figure 4: Derivation of a mixed traffic kq -  operating point when the manual vehicles
set the average steady state speed.

and the new density is given by  
a

a s
k

¢
=¢ 1

, which corresponds to the point 1o¢  in the

fundamental diagram. The density of the mixed traffic by Remark 1 always satisfies

amixm kkk << (21)

Thus, the new point in the fundamental diagram of mixed traffic is given by

mo corresponding to mixed traffic flow rate mixf .

    Consider now 100% manual traffic at density mixk . The manual traffic flow rate

corresponding to that density is given by mixman ff < . Thus, we show that the mixed

traffic flow rate is greater than the manual traffic flow rate for the same traffic density
when the manual vehicles set the average mixed traffic speed at steady state.

Case 2: ma vv <

This means that the average steady state mixed traffic speed is amix vv = . Now the

intervehicle spacing followed by the semi-automated vehicles is given by
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Lvhs aaa += (22)

and the corresponding density is 
a

a s
k

1= , which is the point 2o  in the fundamental

diagram in Fig. 5. Likewise, the intervehicle spacing for the manual vehicles is given by

Lvhs mmm += (23)

Figure 5: Derivation of a mixed traffic kq -  operating point when the semi-automated
vehicles set the steady state average speed.

and the density is 
m

m s
k

1= , the point 1o  in the fundamental diagram. Now as the total

traffic travels at average speed av , then (23) changes to

Lvhs amm +=¢ (24)
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and the new density is given by  
m

m s
k

¢
=¢ 1

, which corresponds to the point 1o¢  in the

fundamental diagram. Using Remark 1 and (21) we show that mixed traffic point is given
by mo  corresponding to mixed traffic flow rate mixf .

    Consider now 100% manual traffic at density mixk . The manual traffic flow rate

corresponding to that density is given by mixman ff < . Thus, we show that the mixed

traffic flow rate is greater than the manual traffic flow rate for the same traffic density
when the semi-automated vehicles set the average mixed traffic speed at steady state.

Case 3: ma vv =

Figure 6: Derivation of a mixed traffic kq -  operating point when the average speed of
the semi-automated and the manual vehicles are the same at steady state.

This means that the average steady state mixed traffic speed is mamix vvv == . Now the

intervehicle spacing followed by the semi-automated vehicles is given by

Lvhs aaa += (25)
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and the corresponding density is 
a

a s
k

1= , which is the point 2o  in the fundamental

diagram in Fig. 6. Likewise, the intervehicle spacing for the manual vehicles is given by

Lvhs mmm += (26)

and the density is 
m

m s
k

1= , the point 1o  in the fundamental diagram. Now as the total

traffic travels at speed ma vv = , the operating point of the mixed traffic flow is given by

mo  corresponding to mixed traffic density 
m

m s
k

¢
=¢ 1

 and mixed traffic flow rate mixf .

    Consider now 100% manual traffic at density mixk . The manual traffic flow rate

corresponding to that density is given by mixman ff < . Thus, we show that the mixed

traffic flow rate is greater than the manual traffic flow rate for the same traffic density
when the average speed of the semi-automated vehicles and the manual vehicles are the
same at steady state.

!
    Lemma 1 and its proof give an insight into the evolution of mixed traffic. To observe
the behavior of the mixed traffic q k-  curve operating point as the percentage p of semi-
automated vehicles increases, we consider two separate cases:

Case 1  Assume that as p increases, the average speed is equal to the speed of the manual
vehicles and k ka ca£ . Then from (7) as the percentage of semi-automated

vehicles increases, i.e. p Æ 1, 0Æ= kkm  and v v fÆ . From (17) k kmix aÆ  to

give us

q
p

k v k vmix a f=
Æ

=
lim

1
(27)

This is the same as (15) for k ka ca£ .

Case 2 Assume that as p increases, the average speed is equal to the speed of the semi-
automated vehicles. This means that k ka ca> . Otherwise the average speed of

semi-automated vehicles will be 
fv , the maximum for manual vehicles, which is

not possible. Then from (14) as p Æ 1, v
h k

L
a a

Æ -
Ê
Ë
Á

�
¯
�

1 1
 and from (17)

k kmix aÆ  to give us
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q
p

k v
h

k Lmix
a

a=
Æ

= -
lim

( )
1

1
1 (28)

This is the same as (15) for k ka ca> .

Thus, we observe how the q k-  curve for mixed traffic converges to the q k-  curve for
100% semi-automated traffic as the percentage of semi-automated vehicles increases.

    Now we draw a q k-  curve for a given market penetration of semi-automated vehicles
with the help of the analyses presented above. The initial points of the curve merge with
the q k-  curves for 100% semi-automated and 100% manual traffic as seen in Fig. 7,
denoting the region where all vehicles travel at mean free speed and there is no vehicle-
to-vehicle interaction. Thereafter we trace the bivariate relationship for mixed traffic
using the average intervehicle spacings used by the manual and the semi-automated
vehicles as outlined previously. Each unique p corresponds to a unique mixed traffic
q k-  curve.

Figure 7: Fundamental kq -  diagrams for 100% semi-automated, 100% manual and p
mixed traffic at steady state conditions.

    Lastly, we investigate the mixed traffic critical density. Each curve has a maximum
traffic flow point that corresponds to the critical density. Therefore, the mixed traffic
critical density depends on the combination of the intervehicle spacings as  and ms used
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by the semi-automated and the manual vehicles, respectively. Furthermore, the operating
point on the kq -  curve at critical density corresponding to maximum mixed traffic flow
is expected to be unstable and lead to a breakdown in mixed traffic flow. Since at critical
density there are no available gaps left, a phenomenon similar to that observed in manual
traffic is expected to occur in the event of a traffic disturbance.

3 Shock Waves in Mixed Traffic

Shock waves are discontinuous waves that occur when traffic on a section of a road is
denser in front and less dense behind. The waves on the less dense section travel faster
than those in the dense section ahead and catch up with them. Then the continuous waves
coalesce into a discontinuous wave or a ‘shock wave’ [1]. It can be shown that shock
waves travel at a speed given by

u
q

k
=
D
D

 (29)

where qD  and kD  are the traffic flow rate and traffic density differences, respectively,
between the two sections. In the fundamental diagram for manual traffic, this is given by
the slope of the chord joining the two points that represent conditions ahead and behind
the shock wave at a and b, respectively (Fig. 8).

   flow
 (veh/hr)

a

u
       b

          density (veh/km)
Figure 8: Shock wave in manual traffic.

    The question that we pose is: how does the mixing of semi-automated and manual
vehicles affect the shock waves? We answer the question using space-time diagrams that
represent vehicle trajectories. This simple theory of traffic evolution will provide an
insight into the effect of semi-automated vehicles among manually driven ones on the
propagation of shock waves. The theory is also used in [4] and is a version of one
originally developed in [1]. It is presented in a graphical way and assumes the following:
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no overtaking and vehicles of the same class (i.e. manual and semi-automated) exhibit
identical headways, spacings and velocities within a given state.

    Figure 9(a) shows the space-time graph for 5 vehicles in manual traffic. At time
instant, td  a disturbance causes the lead vehicle to slow down, denoted by a change in
slope in the diagram. We assume that the vehicle decelerations occur instantaneously.
After a time lag t , the following vehicle reacts and decelerates to maintain the
intervehicle spacing depending on a constant time headway policy. Likewise, the rest of

Figure 9: Space-time graph showing traffic evolution and the propagation of shock waves
in (a) manual traffic and (b) mixed traffic.

the manual vehicles respond as shown. The shock wave that exists at the boundary of the
two regions moves back at a speed given by the slope of the arrow in Fig. 9(a).

    For mixed traffic shown in Fig. 9(b), the lines marked ‘s’ denote semi-automated
vehicles while the rest are manually driven ones. As before, the disturbance at td

 causes
the first vehicle to slow down. The following semi-automated vehicle reacts after a time
t , where t depends on the sensors and the actuators of the semi-automated vehicle and
t << t , i.e. much smaller than the time lag for human drivers in manual vehicles. This
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effect continues upstream with the semi-automated vehicles reacting almost
instantaneously to speed changes while the manual vehicles have a time lag t . As shown
in Fig. 9(b), the resultant effect is that the average slope of the shock wave increases and
as a result, it travels upstream at a higher speed than in Fig. 9(a).

    This phenomenon is illustrated in a three-dimensional representation of the space-time
diagram. We construct an axis of cumulative number of vehicles at three different
distance points and at three different time instances. The surface of the cumulative
vehicle count N x t( , )  is staircase-shaped, with each step representing a vehicle trajectory.
It follows that if the surfaces are taken to be continuous, then the traffic flow rate at a
given point can be obtained from the ttxN -),(  diagrams directly by using

t

txN
tqx ∂

∂ ),(
)( = (30)

and the traffic density at a given time can be obtained from the xtxN -),(  diagrams
using

x

txN
xkt ∂

∂ ),(
)( -= (31)

We use a negative sign in (31) because the cumulative vehicle count is considered by
counting the number of vehicles that have not yet crossed the line at a time instance t in
the space-time diagrams. This is the number of vehicles to the left of t, which is opposite
to the motion of the vehicles and hence the negative derivative.

    It is important to note that the continuum approximation to a discrete flow is valid only
in the regime of dense traffic. Writing (30) and (31) together, we obtain the continuity
equation

0=+
t

k

x

q

∂
∂

∂
∂

(32)

    The cumulative vehicle count curve ),( 2 txN  for the point x2
 in the N x t t( , ) -

diagrams in Fig. 10 is obtained by shifting the curve N x t( , )1
 horizontally to the right by

the time it takes a vehicle to travel from x1
 to x2

. However, this is not the proper
representation of the cumulative curve at x2

 due to the presence of the shock wave. Thus,
we perform the following transformations. We shift the cumulative curve N x t( , )3

 for x3

(a point after the shock wave) horizontally to the right by the time it takes the shock wave
to travel from x3

 to x2
, and vertically upwards by the number of vehicles that cross the

shock wave interface. The number of vehicles that cross the shock wave interface is
given by the product of traffic density in the region after the shock wave and the distance
from x2

 to x3
. This curve is then combined with ),( 2 txN  to obtain the correct

cumulative curve ),( 2 txN ¢  at x2
. We use a similar procedure to construct the cumulative
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Figure 10(a): Three-dimensional representation of manual traffic.
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Figure 10(b): Three-dimensional representation of mixed traffic.
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vehicle count curve ),( 2txN  at time instant t2  in N x t x( , ) -  diagrams in Fig. 10. The
cumulative N-curves are the ones that will be observed if vehicles counts are taken using
measurement devices at positions 21 , xx  and 3x  at time instances 21 , tt  and 3t .

    We observe from the cumulative curves in Fig. 10 that the traffic flow rate and the
traffic density are greater in mixed traffic than in manual traffic. Furthermore, we observe
from the ttxN -),(  diagrams that the traffic flow rate at a given point decreases more
rapidly in mixed traffic than in manual traffic. Likewise, from the N x t x( , ) -  diagrams,
we can conclude that the rate of increase in traffic density is higher in mixed traffic than
in manual traffic. These are consequences of the shock wave travelling faster in mixed
traffic than in manual traffic.

    To demonstrate this we perform the following simulations for manual and mixed
traffic. Consider a stretch of road of length 2.5 km subdivided into 5 sections of 500m
each. A constant traffic flow rate is assumed along the road. The manual vehicle
dynamics are modeled using the Pipes linear car-following model from [7,8] and the
semi-automated vehicle dynamics are modeled using the ICC design presented in [3].
The Pipes linear car following and the ICC models have been validated using actual
vehicle following experiments in [3,20]. All vehicles follow a constant time headway
policy. The time headways for the manual vehicles are generated according to a
lognormal distribution given in [5] while for semi-automated vehicles they are considered
to be 1s. It is important to note that the time headway defined in [5] is the time taken to
cover the distance that includes the vehicle length. The maximum value for the manual
vehicle time headway is taken as 4s. This is done to make the study applicable to current
manual traffic where seldom a vehicle in moderately dense traffic conditions uses a time
headway greater than 4s. Fig. 11(a) shows the time headway of vehicles in 100% manual
traffic on the road. Initially all vehicles are travelling at 15m/s. We introduce a
disturbance in the 3rd section that lasts for 10s and results in all vehicles in that section to
slow down to 5m/s. The average speed and traffic density of each section of the road for
50s are shown in Fig. 11(b) and 11(c), respectively. We observe a shock wave developing
in section 3 that causes a pile-up of vehicles.

    Next, we assume 50% semi-automated vehicles in mixed traffic that are placed
randomly among manually driven vehicles on the road. The time headways for the
vehicles are shown in Fig. 12(a). A similar disturbance is introduced that results in all
vehicles in section 3 to slow down to 5m/s. We observe in Fig. 12(b) and 12(c) that the
shock wave in section 3 moves back at a speed higher than that in manual traffic. As a
result the vehicle pile-up spills over in section 2 (Fig. 12(c)).

    We observe that the presence of semi-automated vehicles does not affect the total
travel time during traffic disturbances when we compare the space-time graphs of
vehicles in manual and mixed traffic in Fig.13. The 27th vehicle in mixed traffic starts at
approximately the same position as the 20th vehicle in manual traffic, and travels 10.6%
(covering 365m) more distance than the latter (covering 330m) in 50s. However, this
increase is marginal and is within the modeling error.
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Figure 11: Macroscopic behavior of vehicles in 100% manual traffic.
(a) Distribution of Time headway of vehicles.

(b) Average speed distribution of vehicles in 5 sections of the highway.
(c) Traffic density distribution of vehicles in the 5 sections of the highway.
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Figure 12: Macroscopic behavior of vehicles in mixed traffic where 50% are semi-
automated vehicles. (a) Distribution of Time headway of vehicles.

(b) Average speed distribution of vehicles in 5 sections of the highway.
(c) Traffic density distribution of vehicles in 5 sections of the highway.
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Figure 13: Distance covered by vehicles starting at approximately the same place in (a)

100% manual traffic and (b) mixed traffic with 50% semi-automated vehicles.
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4 Stop-and-go Traffic

In this Section, we show that the average delay experienced by vehicles on the highway
due to stop-and-go conditions is shorter in mixed traffic than in manual traffic. Consider
Fig. 14 that shows two shock waves 1-2 and 2-3 that create a stop-and-go condition. The
vehicles come to a complete stop after the first shock wave 1-2 as shown in the shaded
region 2. Thereafter reaching the second shock wave 2-3 they start moving again. As
before, we assume instantaneous acceleration/deceleration of vehicles and vehicles of the
same class use identical time headways and spacings at a given state. Consider random
vehicle arrivals at the shock wave 1-2 at a rate q1  per unit time, which is the traffic flow
rate in region 1. We take the vehicle discharge rate to be equal to q2  that represents the
traffic flow rate in region 2. The stop-and-go situation can be viewed as a first-come-
first-serve system as the first vehicle to stop is the first one to start moving. Therefore, we
can model the system as an M/M/1 queue with Poisson arrivals and exponential service
rate [10]. The theoretical Poisson distribution model is the most commonly used model
for vehicular traffic [18,19]. It gives a “satisfactory fit” with empirical traffic data, even
at high traffic flow rates as shown in [19].

x

time

Figure 14: Stop-and-go traffic.

We have the following arrival and service rates

l = q1
 and m = q2

The utilization factor is given by

r
l
m

= =
q

q
1

2
(33)

q1

q2

1

2

3

1-2
2-3
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We assume that q q2 1> , i.e. r < 1 , which is required for ergodicity [10].

4.1 Manual Traffic

For manual traffic, we have the following:

q k v
v

h v Lm
m

1 1
1

1

= =
+ , where q1  is the traffic flow rate in region 1,

k
h v Lm

m

=
+

1

1

 is the traffic density, hm  is the average time headway in manual

traffic, v1  is the average speed of vehicles in region 1 and L is the average length
of vehicles.

q k v
v

h v Lm
m

2 2
2

2

= =
+ , where q2  is the traffic flow rate in region 2 and v2  is the

average speed of vehicles in region 2.

Remark 2: For ergodicity, we have

q q2 1>
Þ >v v2 1

(34)

    The average delay experienced by a vehicle in region 3 due to the stop-and-go
condition is given by [10]
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(35)

4.2 Mixed Traffic

For mixed traffic we have

q k v
v

h v Lmix
mix

1 1
1

1

= =
+ , where q1

 is the mixed traffic flow rate in region 1,

h ph p hmix a m= + -( )1  is the average time headway in mixed traffic, ha
 is the time

headway of semi-automated vehicles and p is the percentage of semi-automated
vehicles in mixed traffic.

q k v
v

h v Lmix
mix

2 2
2

2

= =
+ , where q2

 is the mixed traffic flow rate in region 2.

    Therefore, we have the average delay given by
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    To show that the average delay experienced by vehicles at standstill in region 3 of Fig.
14 is shorter in mixed traffic than in manual traffic, we need to verify that

T T p1 2 0- > " )1,0(�p (37)

Using (35) and (36) we obtain

T T
h v L h v L
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The denominator is always positive by (34). The numerator can be expressed as

h v v h L v v h v v h L v vm m mix mix
2

1 2 1 2
2

1 2 1 2+ + - - +( ) ( ) (39)

which is always positive for all p as h hm mix>  (since h hm a>  and 10 << p ). Hence (37)
is satisfied.

    It is interesting to note that though the above phenomenon occurs, the average number
of vehicles at standstill remains unchanged in manual and mixed traffic. It is given by
[10]

N
v

v v
=

-
=

-
r
r1

1

2 1
(40)

which is independent of the average intervehicle spacings and hence the type of traffic.

    The above results agree with intuition. In the previous Section, we observed that shock
waves travel faster in mixed traffic than in manual traffic. Thus the shaded region 3,
where the vehicles are at standstill, travels upstream faster in mixed traffic than in manual
traffic. This explains (37). However, the relative speed between the two shock waves
remains the same in both types of traffic. Thus, the area or the number of vehicles they
cover also remains unchanged, which is shown in (40). Furthermore, from the
environmental perspective, lower average delay for vehicles in mixed traffic during the
presence of shock waves that produce stop-and-go traffic should reduce fuel consumption
and air pollution.



29

5 Conclusion

In this paper, we derive the kq -  diagram for mixed traffic using the kq -  diagrams for
100% manual and 100% semi-automated vehicle traffic and assuming that semi-
automated vehicles use a time headway smaller than current manual traffic average. We
show graphically that semi-automated vehicles propagate traffic disturbances such as
shock waves faster without affecting the total travel time. Furthermore, we use an M/M/1
queue to show that the average delay experienced by vehicles in mixed traffic is lower
than those in manual traffic during shock waves that produce stop-and-go traffic. Based
on the macroscopic mixed traffic analysis presented in this paper, we conclude the
following results:

∑ Mixed traffic flow rate is greater than manual traffic flow rate for the same traffic
density.

∑ Mixed traffic q k-  curve remains in the region between the q k-  curves for 100%
manual and 100% semi-automated traffic.

∑  Presence of semi-automated vehicles in mixed traffic increases the speed of
propagation of shock waves without affecting the total travel time.

∑ Presence of semi-automated vehicles in mixed traffic increases the traffic flow rate
and traffic density.

∑ The average delay experienced by vehicles during stop-and-go conditions is shorter in
mixed traffic than in manual traffic while the average number of vehicles at standstill
during stop-and-go conditions remains the same in manual and mixed traffic.
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