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and THOMAS BRENDAN MURPHY

School of Mathematical Sciences, University College Dublin, Dublin 4, Ireland.

(e-mail: brendan.murphy@ucd.ie)

Abstract

Social network analysis is the study of how links between a set of actors are formed. Typically, it is

believed that links are formed in a structured manner, which may be due to, for example, political

or material incentives, and which often may not be directly observable. The stochastic blockmodel

represents this structure using latent groups which exhibit different connective properties, so that con-

ditional on the group membership of two actors, the probability of a link being formed between them

is represented by a connectivity matrix. The mixed membership stochastic blockmodel (MMSBM)

extends this model to allow actors membership to different groups, depending on the interaction in

question, providing further flexibility.

Attribute information can also play an important role in explaining network formation. Network

models that do not explicitly incorporate covariate information require the analyst to compare fitted

network models to additional attributes in a post-hoc manner. We introduce the mixed membership

of experts stochastic blockmodel, an extension to the MMSBM that incorporates covariate actor

information into the existing model. The method is illustrated with application to the Lazega Lawyers

dataset. Model and variable selection methods are also discussed.

1 Introduction

Social network analysis (SNA) (Wasserman & Faust, 1994; Airoldi et al., 2007; Salter-

Townshend et al., 2012) is the study of how links between a set of actors are formed.

Typically, it is believed that links are formed in a structured manner, so that the Erdős-

Rényi model (Erdős & Rényi, 1959), whereby links occur independently with a constant

probability throughout the network, fails to capture many aspects of real-world datasets.

Reasons for this structure may be due to, for example, political or material incentives, and

often may not be directly observed.

Several classes of statistical methods have been proposed to examine this structure.

Exponential family random graph models (Holland & Leinhardt, 1981; Snijders, 2002;

Robins et al., 2006) examine whether subgraph summary statistics occur significantly more

⇤ This material is based upon work completed while both authors were based in University College
Dublin, and was supported by the Science Foundation Ireland under Grant No. 08/SRC/I1407:
Clique: Graph & Network Analysis Cluster and 12/RC/2289:Insight Research Centre.
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frequently than by random chance in an unstructured network. If this is the case, then

this is treated as evidence of a particular underlying mechanism in the network structure.

For example, a larger number of triangles than could reasonably be expected by chance

occurring in a network is evidence of transitivity, whereby a mutually shared link to an

actor increases the probability of a link between two actors.

Two other approaches represent network structure using latent variables. The stochastic

blockmodel (SBM) (Holland et al., 1983; Snijders & Nowicki, 1997; Daudin et al., 2008)

introduces G latent groups underlying the network, so that conditional on the group mem-

bership of two actors, the probability of a link being formed between them is represented

by a G⇥G connectivity matrix. The latent space network model (Hoff et al., 2002) maps

actors onto a d-dimensional space so that the probability of a link being formed between

two actors becomes a function of their distance from each other. The latent position cluster

model (Handcock et al., 2007) then extends this model so that the positions of actors in

this space are determined by a mixture of spherical multivariate normal distributions. Both

the SBM and latent position cluster models can be thought of as types of mixture model

applied to network data.

A key difference between the models is that the latent space model is constrained to

cluster together actors with strong connections with each other but weak connections to

other actors in the network, a behavior known as affiliation. Conversely, the SBM has no

such constraints and can represent this behavior, as well as disassociative mixing, whereby

disparate actors connect strongly to a distinct set of actors but only weakly with each

other (Latouche et al., 2011). Airoldi et al. (2008) and Latouche et al. (2011) develop

extensions to the SBM, introducing mixed-membership (MMSBM) and overlapping SBMs

respectively. These models allow actors membership of different groups, depending on the

actors with which they are interacting, further extending the flexibility of the SBM.

Attribute information can also play an important role in helping to explain how a par-

ticular network structure has occurred. For example, high school students might be more

likely to form friendships with others in the same class as them, while gender plays an

important role in the formation of sexual networks. This belief, referred to as “homophilly

by attributes” is reflected by Breiger (1974), who notes the “metaphor which has often

appeared in sociological literature,” that “groups . . . are collectivities based on the shared

interests, personal affinities, or ascribed status of members who participate regularly in

collective activities.”

Network models that do not incorporate covariate information require the analyst to

compare fitted network model clusterings to additional attributes in a post-hoc manner

(Handcock et al., 2007; Airoldi et al., 2008). Mariadassou et al. (2010) and Gormley &

Murphy (2010) respectively extend the SBM and latent space models to incorporate covari-

ates, at link and actor-specific levels. Examples of actor-specific covariates include gender

and age, while link-specific covariates relate additional information about the relationship

between actors, such as the physical distance between actor locations. Mariadassou et al.

(2010) also introduce specifications for SBMs fitting for types of interaction beyond binary

link types. These models can explicitly investigate the impact that concomitant covariate

information has on network structure.

In this paper we present a method that incorporates actor attribute information into the

MMSBM, the mixed-membership of experts stochastic blockmodel (MMESBM). This
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method makes use of the mixture of experts terminology framework introduced by Jacobs

et al. (1991) to allow model parameters to depend on covariate information; we adapt the

terminology since the covariates are incorporating into a mixed-membership rather than

mixture model framework. This model may be thought of as a type of social selection

model (e.g., Fellows & Handcock, 2012), in that it is assumed that actor characteristics

influence network formation, while the attribute information itself is assumed fixed and

known. Models where the converse applies, so that social ties are seen as influencing

actor characteristics, are referred to as social influence models. Other approaches include

that of Zanghi et al. (2010a), who introduce a model whereby the latent structure of the

model explains both network and actor attribute information, and Zhang et al. (2013), who

develop a community detection method that reweights weighing edges according to feature

similarities on their terminal nodes to improve performance.

The rest of the paper is structured as follows: both the SBM and MMSBM are briefly

reviewed, before the MMESBM is introduced in Section 2. A variational Bayes method for

inference similar to that proposed by Airoldi et al. (2008) is then described in Section 3.

Model selection and validation methods are also discussed in this section. The model is

applied to the Lazega Lawyers dataset in Section 5. The results are interpreted and some

goodness fit diagnostics are also performed. Possible further extensions to the model are

then discussed in Section 6. Some additional details on model inference are provided in

Appendix A.

2 Model Specification

Relational data consists of a set of actors a1, . . . ,aN , and the links which they share with

each other. In this paper we assume that the links are binary valued, i.e., that they are

present or absent. Let the adjacency matrix Y represent the interaction between pairs of

actors in a network. An interaction between any pair of actors ai and a j can then be

represented as

Yi j =

⇢

1 if a link exists between actors ai and a j;

0 otherwise.

If the link type is thought of as being shared, or symmetric, then the network is said

to be undirected, with Yi j = Yji. Otherwise, it is said to be directed. In some settings,

such as protein-protein interactions, self-interaction is possible, i.e., Yii can take values.

This property is referred to as reflexivity. In other cases, such as when friendship between

high school students is being considered, such an interaction is not considered meaningful,

making the network irreflexive, and as such the diagonal entries of Y are considered

undefined. For the purposes of this paper, we consider only the case when a network is

directed and irreflexive.

2.1 Stochastic Blockmodel

The SBM assumes that G latent groups underly the data. Conditional on their memberships

to groups g and h respectively, the interaction between two actors ai and a j is then modelled

by a G⇥G interaction matrix Θ, such that P(Yi j = 1) = Θgh. Let τ denote the mixing
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proportions of the groups, so that P(Group g) = τg. Each actor ai is assigned a group

membership indicator Zi, such that

Zig =

⇢

1 if actor ai belongs to Group g;

0 otherwise.

Each Zi then follows a multinomial distribution, with one trial and probability vector τ .

The choice of conjugate priors ensures that Θ and τ follow beta and Dirichlet distributions

respectively (Snijders & Nowicki, 1997), or inference can be performed in a frequentist

framework (Daudin et al., 2008). Inference for the SBM is possible using a variational

approximation (Daudin et al., 2008) or a collapsed Gibbs sampler (McDaid et al., 2012).

Gibbs sampling on the fully parameterised SBM is also possible (Nowicki & Snijders,

2001), although at substantial additional computational cost.

2.2 Mixed-Membership Stochastic Blockmodel

The MMSBM (Airoldi et al., 2008) extends the SBM to allow actors membership to

multiple groups depending on the actor with which they interact. Within this framework,

each actor ai is assigned an individual mixing parameter τ i, denoting their propensity for

group membership. Indicator vectors Z1
i j and Z2

i j (note the superscript indices) denote

the group membership of actors ai (sender) and a j (receiver) during an interaction Yi j.

Conditional on this additional model complexity, actor interaction is again modelled by a

matrix Θ in a similar manner to the SBM.1 Choosing a Dirichlet prior distribution with

hyperparameter δ ensures that each mixing parameter τ i also follows the same distribu-

tion. A beta distribution can also be specified for Θ with the choice of a conjugate prior,

otherwise it may be treated as a nuisance parameter (Airoldi et al., 2008).

2.3 Mixed-Membership of Experts Stochastic Blockmodel

The MMSBM can be further extended by allowing the parameters of the model to be

functions of concomitant covariate data. The terminology used in the mixture of experts

literature refer to functions of covariates and mixing parameters as “gating networks”2 and

functions of covariates and conditionally distributive parameters as “experts” (Gormley

& Murphy, 2010). In this paper we restrict our analysis to actor-specific attributes Wi =

Wi1, . . . ,WiP, that are incorporated into the prior distribution of the individual-level mixing

parameters τ . The hyper-parameter δ i is treated as a function of W and parameter β g =

βg1, . . . ,βgP, g = 1, . . . ,G such that δig(Wi) = exp(∑P
p=1 Wipβgp).

As well as the actor covariates, we also include an intercept term, which quantifies

aspects of the network structure not explained by the available covariate information.

1 Airoldi et al. (2008) also introduce an additional sparsity parameter in order to distinguish between
the case where interactions in the network are in general quite rare, and when non-interaction is
due to particularly low-level connection between groups. In our own experiments, we did not find
that the parameter’s inclusion lead to improved performance. For this reason, and for simplicity of
interpretation, we excluded this parameter from our analysis.

2 Note that in this terminology, the network in question refers to the graphical model specification,
and is not to be confused with the network data under investigation.
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• for i 2 1, . . . ,N:

δ i = exp(W>
i β ) .

τ i ⇠ Dirichlet(δ i).

• for g and h 2 1, . . . ,G:

Θgh ⇠ Beta(α1
gh,α

2
gh).

• for i and j 2 1, . . . ,N:

Z1
i j ⇠ Multinomial (1, τ i),

Z2
i j ⇠ Multinomial (1, τ j),

Yi j ⇠ Bernoulli(Z1
i jΘZ2>

i j ).

Figure 1: Data generative process for the MMESBM.

For convenience, we include this term as the first variable of the actor-specific attributes,

so that Wi1 = 1, i = 1, . . . ,n. Hence we could alternatively write δig(Wi) = exp(βg1 +

∑
P
p=2 Wipβgp). Note that inference when including link-specific attributes in a mixed-membership

setting may be treated in a similar fashion to the mixture framework described in Mariadas-

sou et al. (2010). The data generative process for the MMESBM is outlined in Figure 1.

The joint distribution of the model can be decomposed thus3:

p(Y,Z1,Z2,τ,Θ|α1,α2,β ,W) =
N

∏
i=1

N

∏
j=1, j 6=i

p(Yi j|Z
1
i j,Z

2
i j,Θ)p(Z1

i j|τi)p(Z2
i j|τ j)

⇥
N

∏
n=1

p(τn|β ,W)p(Θ|α1,α2), (1)

where

3 Note that since the hyperparameters α1,α2,β , and covariate data W are all fixed non-random
quantities, it is technically more correct to use the notation, e.g., p(τn;β ,W) to distinguish from

the case where random quantities are being conditioned upon, e.g., p(Z1
i j|τi). For simplicity of

exposition we will use the conditional notation e.g., p(τn|β ,W), in both cases, although we hope
it is clear to the reader which case applies.
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p(Yi j|Z
1
i j,Z

2
i j,Θ) =

G

∏
g=1

G

∏
h=1

�

Θgh
Yi j(1�Θgh)

1�Yi j
 Z1

i jgZ2
i jh

p(Z1
i j|τ i) =

G

∏
g=1

τ
Z1

i jg

ig

p(Z2
i j|τ j) =

G

∏
g=1

τ
Z2

i jg

jg

p(τn|β ,W) =
Γ
�

∑
G
h=1 exp

�

∑
P
p=1 Wnpβph

��

∏
G
h=1 Γ

�

exp
�

∑
P
p=1 Wnpβph

��

G

∏
g=1

τ
exp
⇣

∑
P
p=1 Wnpβpg

⌘

�1

ng

p(Θ|α1,α2) =
G

∏
g=1

G

∏
h=1

Γ(α1
gh +α2

gh)

Γ(α1
gh)Γ(α

2
gh)

Θ
α1

gh�1

gh (1�Θgh)
α2

gh�1.

Note that we again use superscript indices for the hyperparameters α1 and α2. In what

follows in Sections 4 and 5 we set α1
gh = α2

gh = 1 for g,h = 1, . . . ,G, in other words we

use a uniform prior for Θ. Experimentally, it was found that different reasonable choices

of vague prior had little impact on results.

Graphical model representations of the SBM, the SBM with edge covariates introduced

by Mariadassou et al. (2010), MMSBM and MMESBM are provided in Figures 2a–2d.

3 Model Inference

In a similar fashion to Airoldi et al. (2008), we estimate the model parameters by employ-

ing a variational Bayes approximation. For estimation of the hyperparameter β , a fixed

nonrandom quantity, we employ a Newton-Raphson algorithm, which, as (Blei, 2014)

notes, in this setting can be thought of as an empirical Bayes method (Robbins, 1956;

Efron & Morris, 1973; Efron, 2013).

Variational methods have previously proved useful in both network (Daudin et al., 2008;

Salter-Townshend & Murphy, 2013) and mixed-membership settings (Blei et al., 2003;

Rogers et al., 2005; Erosheva et al., 2007). See Beal (2003), Bishop (Chapter 10, 2006)

and Ormerod & Wand (2010) for overviews of the method at differing levels of intensity.

The main idea is to approximate the posterior p(Z1,Z2,τ,Θ|Y) with a set of distribu-

tions q(Z1,Z2,τ,Θ) which have a nice form. Then the log of the marginal distribution

log p(Y|α,β ,W) can be re-written as:

log p(Y|α,β ,W) = log

ˆ

θ

ˆ

τ
∑
Z1

∑
Z2

p(Y,Z1,Z2,τ,Θ|α,β ,W)
q(Z1,Z2,τ,Θ)

q(Z1,Z2,τ,Θ)
dτdθ

�

ˆ

θ

ˆ

τ
∑
Z1

∑
Z2

q(Z1,Z2,τ,Θ) log
p(Y,Z1,Z2,τ,Θ|α,β ,W)

q(Z1,Z2,τ,Θ)
dτdθ ,

= E
q

Z1,Z2,τ,Θ

⇥

log p(Y,Z1,Z2,τ,Θ|α,β ,W)
⇤

� E
q

Z1,Z2,τ,Θ

⇥

logq(Z1,Z2,τ,Θ)
⇤

,

= L.
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YijΘ

Zi Zj

τδ

(a)

Yijβ

Wij Zi Zj

τδ

(b)

YijΘ

Z
1
ij Z

2
ij

τi τj
δ

(c)

YijΘ

Z
1
ij Z

2
ij

τi τj
βWi Wj

(d)

Figure 2: Graphical model representations of the (a) SBM , (b) SBM with edge covariates

introduced by Mariadassou et al. (2010), (c) MMSBM, and (d) MMESBM. Note that for

simplicity, a prior distribution for θ is not shown.

Here the concavity of the logarithmic function has been exploited to ensure that L is a

lower bound to log p(Y|α,β ,W), with the discrepancy in the inequality being equal to the

Kullback-Liebler divergence (Kullback & Leibler, 1951) KL(q||p) between the true and

approximate distributions p and q. Note that the superscript q is here used to denote that

the expectation E
q is taken with respect to the approximate distribution q rather than the

true joint distribution p.

If we then restrict the set of distributions q such that they can be factorized indepen-

dently, then the optimal (i.e. the Kullback-Liebler divergence minimising) form of each
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distribution will be the same as the conditional distribution of its respective parameter:

q(Z1,Z2,τ,Θ) = q(Θ|ζ 1,ζ 2)
N

∏
i=1

q(τ i|γ i)
N

∏
j=1

q(Z1
i j|φ

1
i j)q(Z

2
i j|φ

2
i j),

where q(Z1
i j|φ

1
i j)and q(Z2

i j|φ
2
i j) are multinomial distributions, q(τ i|γ i) is a Dirichlet distri-

bution, q(Θ|ζ 1,ζ 2) is a beta distribution, and we have introduced the variational parame-

ters φ 1,φ 2,ζ 1,ζ 2
and γ .

Much like for an expectation-maximisation algorithm (Dempster et al., 1977), these

parameters can be updated in a stepwise manner which iteratively optimises L, and by

extension log p(Y|β ,W,α). Updates are as follows:

ζ 1
gh = αgh +

N

∑
i=1

N

∑
j=1

φ 1
i jgφ 2

i jhYi j,

ζ 2
gh = βgh +

N

∑
i=1

N

∑
j=1

φ 1
i jgφ 2

i jh(1�Yi j),

γig = exp(
P

∑
p=1

βgpWip)+
N

∑
j=1

(φ 1
i jg +φ 2

jig),

φ 1
i jg ∝ exp

 

Ψ(γig)�Ψ(
G

∑
k=1

γik)

!

⇥ exp

(

G

∑
h=1

φ 2
i jh

⇥

Yi j

�

Ψ(ζ 1
gh)�Ψ(ζ 1

gh +ζ 2
gh

�

)+(1�Yi j)
�

Ψ(ζ 2
gh)�Ψ(ζ 1

gh +ζ 2
gh)
�⇤

)

,

φ 2
i jg ∝ exp

 

Ψ(γ jg)�Ψ(
G

∑
k=1

γ jk)

!

⇥ exp

(

G

∑
h=1

φ 1
i jh

⇥

Yi j

�

Ψ(ζ 1
hg)�Ψ(ζ 1

hg +ζ 2
hg

�

)+(1�Yi j)
�

Ψ(ζ 2
hg)�Ψ(ζ 1

hg +ζ 2
hg)
�⇤

)

for i, j = 1, . . . ,N and g,h= 1, . . . ,G, and where Ψ denotes the digamma function (Abramowitz

& Stegun, 1965).

3.1 Estimating β̂

It remains to estimate β̂ . Inference via a closed form solution is not possible (Blei et al.,

2003). Instead we make use of a Newton-Raphson algorithm to maximise L, by updat-

ing β (t+1) = β (t)�H�1∇ until the algorithm has deemed to converge. The gradient and

Hessian take the following values:
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∂L

∂βiq

=
N

∑
n=1

Wnq exp(
P

∑
p=1

Wnpβip)

⇥

(

Ψ

"

G

∑
h=1

exp(
P

∑
p=1

Wnpβhp)

#

�Ψ

"

exp(
P

∑
p=1

Wnpβip)

#

+ Ψ(γng)�Ψ(
G

∑
h=1

γnh)

)

,

∂ 2
L

∂βiq∂β jr

=
N

∑
n=1

WnqWnr exp(
P

∑
p=1

Wnp(βip +β jp))

⇥

(

Ψ
0

"

G

∑
h=1

exp(
P

∑
p=1

Wnpβhp)

#

� Ii= jΨ
0

"

exp(
P

∑
p=1

Wnpβip)

#)

+ Ii= j

 

WnqWnr exp(
P

∑
p=1

Wnpβip)

⇥

(

Ψ

"

G

∑
h=1

exp(
P

∑
p=1

Wnpβhp)

#

�Ψ

"

exp(
P

∑
p=1

Wnpβip)

#

+ Ψ(γni)�Ψ(
G

∑
h=1

γnh)

)!

.

Experimental results found that the estimates obtained by the Newton-Raphson algo-

rithm can vary wildly depending on the initial parameter settings. One strategy is to ini-

tialise the parameters using a method of moments approach proposed by Minka (2012)

when estimating the parameters of a Dirichlet distribution. Our goal is slightly different,

in that we wish to estimate the parameters β̂ with respect to the expected log of the

probabilities E[logτ] rather than the usual observed log of the probabilities. Neverthe-

less, the initialisation method still proves to be effective. In short, we initially assume

that the covariates provide no additional information about the prior probability of group

membership, before then setting β
(1)
1g = log

�

E[δg]∑
G
h=1 δh

�

, where ∑
G
h=1 δh = (E[δ1]�

E[δ1]
2)/(E[δ 2

1 ]�E[δ1]
2). Intuitively, we can think of this initialisation as starting from

a position of skepticism; that is, we assign weights to the covariate parameters only if it

increases the lower bound. The method of moments approach serve as a reasonable initial

estimate which the Newton-Raphson algorithm can then improve on.

Another difficulty which was encountered when using the estimator experimentally

was that the estimated values of coefficients for covariates with only a small number of

observations tended to infinity. This may be related to an issue known as separability in

logistic regression models (Albert & Anderson, 1984), which typically occurs for smaller

datasets, whereby for certain patterns of data points maximum likelihood estimates do not

exist. While methods have been suggested to remedy this problem for logistic regression

models (Heinze & Schemper, 2002), as we have noted, this model is not as straightforward

as other regression models, and it is not clear whether a similar approach will prove fruitful.



ZU064-05-FPR MMESB August 26, 2015 16:47

This issue meant that we were unable to generate data using the naive implementation

outlined in Figure 1 for the simulation studies carried out in Section 4. Although the sample

size in this case was relatively large, it was found that if the covariates corresponded too

closely to the underlying group structure then a similar effect would occur. With regards

to our application in Section 5, including interaction terms proved difficult, and we were

forced to omit one covariate, office location, entirely, since only five actors in the dataset

practiced in one of the three locations.

While the Newton-Raphson step described obtains the optimal parameter values β̂ , it is

necessary to obtain some estimate of the uncertainty of these parameter values before the

impact of the covariates may be assessed. One approach is to consider the diagonal entries

of the inverse Hessian H�1 specified in Section 3.1 in order to approximate the observed

information matrix. The diagonal entries of this matrix should somewhat approximate

the standard errors of β̂ . However, this approach is limited by two facts: firstly, that we

differentiate L and not the true log-posterior, and secondly, that we do not obtain the

full Hessian matrix whereby L is twice differentiated with respect to all parameters, the

dimension of which creates computational difficulties. Nevertheless, some information

about the curvature of the parameters is obtained using this method.

A second approach is to exploit the generative properties of the MMESBM to estimate

the behavior of β using a parametric bootstrapping method. Each bootstrap replication is

obtained by first generating a network from the fitted model parameters using the process

previously specified in Figure 1, with the estimated variational parameters γ , ζ 1
and ζ 2

in place of the hyperparameters δ , α1 and α2. The model is then refitted to the simulated

data and the results recorded. While this approach may be more reliable than the first

outlined, it is worth noting that the typical under-estimation of parameter uncertainty in

variational Bayes methods will be reflected in the bootstrapped values for β . It therefore

follows that while this method allows us to dismiss unimportant covariates with a high

degree of certainty, care must be taken when interpreting and selecting which attributes

appear to have a meaningful impact on the network.

3.2 Algorithm Initialisation

Experimentally, it was found that the clustering solutions obtained by the MMESBM was

highly dependent on the starting values used to initialise the algorithm. We employed the

followed initalisation approach, which we found to give sensible results in most cases.

Firstly, an SBM was fit to the network using the mixer package (Daudin et al., 2008;

Zanghi et al., 2010b; Latouche et al., 2012) in R (R Core Team, 2015). Then Ẑ⇤, the

expected group membership for each actor in the SBM framework, was used as the initial

estimate for φ 1 and φ 2, so that φ 1
i j = φ 2

i j = Ẑ⇤
i , for i = 1, . . . ,N.

The MMESBM algorithm was then run, but with the Newton-Raphson step omitted

for the first 500 iterations, or until the algorithm increases fails to increase L by some

small margin. In other words, the parameters in the MMSBM model are estimated first.

Finally, the full MMESBM algorithm was run to convergence, or for a maximum of 1,000

iterations.
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3.3 Model Selection

While model assumptions require the number of profiles G to be fixed and known, in reality

this is not the case. We therefore run the model over a range of values of G0 = 1, . . . ,Gmax,

and compare the models post-hoc. The variational approximation to Equation (1) provides

only a lower bound to the integrated likelihood, making the use of criteria such as the

Bayesian information criterion (Kass & Raftery, 1995) difficult to obtain. Other difficulties,

such as determining the effective sample size of the data, also occur in this setting (Hunter

et al., 2008).

Approaches for model selection for the SBM include the integrated complete-data likeli-

hood (ICL) (Daudin et al., 2008) and the integrated likelihood variational Bayes (ILvb) (La-

touche et al., 2012), with the ILvb in particular being a suitable method for small networks

since it does not depend on an asymptotic approximation (Latouche et al., 2012). However,

it is not clear how these criteria in a mixed-membership setting.

Alternatively, cross-validation methods can prove useful when performing model selec-

tion in a model based setting (Smyth, 2000; Hoff, 2008; Airoldi et al., 2008). Note that

in this setting, individual links, rather than all links associated with individual actors are

removed. In this instance the method takes the following steps:

1. Divide the network edges Y into k folds of roughly equal size. Let Y(�k) be the data

with the kth fold removed.

2. Drop a single fold and fit the MMESBM to the remaining data - it is straightforward

to estimate the posterior parameters Θ,τ and δ ; the values of Z1 and Z2 for missing

edges can simply be ignored during the estimation procedure.

3. Compare the fitted model parameters against the out-of-sample data. Conditional on

the fitted posterior estimates, the link probabilities for an out of sample data point Yi j

take the form

p(Yi j|Θ̂, τ̂ i, τ̂ j) =
G

∑
h=1

G

∑
g=1

τ̂igτ̂ jhΘ̂
Yi j

gh (1� Θ̂gh)
1�Yi j .

Here Θ̂gh, τ̂ i, and τ̂ j denote the posterior mean of Θgh,τ i, and τ j, conditional on the

training data Y(�k), and p(Yi j|Θ̂, τ̂ i, τ̂ j) has been integrated over Z1
i j and Z2

i j.

4. Repeat for each fold in turn. Once this has been completed, the model with highest

average hold out log-likelihood, taking into account the uncertainty in the estimation,

is deemed to be most suitable. In this way we can also assess goodness of fit for the

model, by e.g., checking the total predicted data against the total observed data; this

is described in further detail in Section 5.

4 Simulation Study

The approach is first demonstrated on simulated data. Two simulation studies are per-

formed. In both cases, the total number of actors is set to be N = 100, and the number

of underlying groups is set to be G = 3. Firstly, three covariates are used to inform the

model. These covariates distinguish Group 1 from Groups 2 and 3, but do not distinguish

between Groups 2 and 3. In the second study an additional three non-informative variables

are also included. The second network (9.6% density) is sparser than the first (26%).
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Table 1: Actor covariates for Simulation Study 1.

i = 1, . . . ,40 i = 41, . . . ,100

Wi1 = 1 Wi1 = 1

Wi2 ⇠ Binomial(1,0.8) Wi2 ⇠ Binomial(1,0.2)
Wi3 ⇠ Binomial(1,0.8) Wi3 ⇠ Binomial(1,0.2)

Wi4 ⇠

⇢

Normal(�2,1) with probability 0.9

Normal(2,1) with probability 0.1
Wi4 ⇠

⇢

Normal(�2,1) with probability 0.1

Normal(2,1) with probability 0.9

4.1 Simulation Study 1

In the first simulation study, community-like behavior was specified for all three groups.

We divide the actors into subsets, such that the individual mixing parameters are likely to

strongly favor one group over the others. This is done by setting the hyperparameter δ in

the following manner:

δ i =

8

<

:

(0.8,0.2,0.2) 1  i  40

(0.2,0.8,0.2) 41  i  80

(0.2,0.2,0.8) 81  i  100.

Together with an intercept term, covariates W were then generated to distinguish the first

subset of actors (1  i  40) from the rest of the dataset. These consisted of two binary and

one continuous variables. Actors in the first subset were more likely to be assigned positive

values for p = 2,3 (i.e., Wip = 1) and negative values (i.e., Wip < 0) for p = 4. See Table 1

for full details of how the covariates were generated.

Conditional on group structure, the probabilities of within group links are high, and

between group links are low:

Θ =

0

@

0.60 0.05 0.01

0.05 0.70 0.10

0.01 0.01 0.80

1

A .

The data was then generated in a similar manner to the process outlined in Figure

1, except that probabilities for Θ were kept fixed, rather than generated from a prior

distribution, and the hyperparameter δ i was used directly in place of exp(W>
i β ). This

was done for the reasons discussed in Section 3.1.

MMESBM models were fitted to the data over a range of values, from G = 1, . . . ,5.

The 10-fold cross-validated log-likelihood is shown in Figure 3a. While the 1 and 2 group

model are clearly inferior, the 4 and 5 group models do not appear to substantively improve

the fit achieved by the 3 group model.

The 3 group model captures the underlying mixed membership structure of the network

well. Figure 3b compares the estimated value of the individual membership of each actor to

Group 1, τ̂11, . . . , τ̂1N , to the true value τ11, . . . ,τ1N . The close correspondence between the

values is reflected in the extremely high correlation (r = 98%). There is similar agreement
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Figure 3: Figure 3a shows the hold-out log-likelihood for the first simulation study.

Figure 3b is a scatterplot comparing the estimated value of τ̂11, . . . , τ̂1N against the

true value τ11, . . . ,τ1N . Figure 3c is a boxplot comparing the a priori expected

value of individual mixing parameters conditional on the estimated hyperparameter

δ̂ ,E[τ11|δ1], . . . ,E[τ1N |δN ], against the expected value using the true value δ .

between the estimated and true values of individual membership to Groups 2 and 3 (again,

r = 98% in both cases).

The estimated values δ̂ , where δ̂ i = exp(W>
i β̂ ), did not correspond directly to the

true values of δ . However, it was found that the a priori expected value of individual

mixing parameters conditional on the estimated hyperparameter δ̂ ,E[τig|δi], corresponded

somewhat to the the expected value using the true value δ . This was particularly true

for Group 1 (r = 81%), although the association was poorer for Groups 2 and 3 (r =

55% and 25% respectively). This makes sense, since the covariates provide us with more

information about Group 1 than Groups 2 and 3. Figure 3c compares the a priori expected

value of individual mixing parameters for Group 1 using δ̂ against the expected value using

the true value, δ .

4.2 Simulation Study 2

In the second simulation study, community-like behavior was specified for Groups 1 and

3, with Group 2 exhibiting disassociative mixing. Again we divide the actors into subsets,

such that the individual mixing parameters are likely to strongly favor one group over the

others, however in this case the subsets all have unequal size and the third subset is much

smaller than the others. We set the hyperparameter δ in the following manner:

δ i =

8

<

:

(0.8,0.2,0.2) if 1  i  50

(0.2,0.8,0.2) if 51  i  90

(0.2,0.2,0.8) if 91  i  100

Conditional on group structure, the probabilities of a link occuring is set to be:

Θ =

0

@

0.30 0.01 0.01

0.01 0.01 0.10

0.01 0.20 0.60

1

A

Data was then generated in the same way as for Simulation Study 1.
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Table 2: Actor covariates for Simulation Study 2.

i = 1, . . . ,50 i = 51, . . . ,100

Wi1 = 1 Wi1 = 1

Wi2 ⇠ Binomial(1,0.8) Wi2 ⇠ Binomial(1,0.2)
Wi3 ⇠ Binomial(1,0.8) Wi3 ⇠ Binomial(1,0.2)

Wi4 ⇠

⇢

Normal(�2,1) with probability 0.9

Normal(2,1) with probability 0.1
Wi4 ⇠

⇢

Normal(�2,1) with probability 0.1

Normal(2,1) with probability 0.9

i = 1, . . . ,100

Wi5 ⇠ Binomial(1,0.5)
Wi6 ⇠ Binomial(1,0.5)
Wi7 ⇠ Normal(0,1)

As for Simulation Study 1, three covariate variables W2, . . . ,W4 were generated to

distinguish the first subset of actors (1  i  50) from the rest. These were generated in

the same manner as for the previous study. Additionally, three non-informative covariates,

W5, . . . ,W7, again consisting of two binary and one continuous variable, were included.

See Table 2 for full details of how the covariates were generated.

1 2 3 4 5

−
3

2
0

−
3

1
0

−
3

0
0

−
2

9
0

−
2

8
0

−
2

7
0

−
2

6
0

Simulation Study Model Selection

Number of Groups

H
o

ld
−

o
u

t 
L

o
g

 P
o

s
te

ri
o

r

(a)

●
●

●

1 2 3

−
3

−
2

−
1

0
1

2

Simulation Study 2 − W2

Group

β

(b)

●

●

●

●

●

●

1 2 3

−
2

−
1

0
1

Simulation Study 2 − W5

Group

β

(c)

Figure 4: Figure 4a shows the hold-out log-likelihood for the second simulation study.

Figures 4b and 4c show boxplots of parametric bootstrap samples of covariate parameter

estimates β̂ for the 3 group MMESBM, for covariates W2 (informative) and W5 (noise).

The dashed line occurs at zero.

Several aspects of this simulation study are similar to the first. The 10-fold cross-validated

log-likelihood for MMESBM models fitted to the data for G = 1, . . . ,5 are shown in

Figure 4a. Again, there appears to be little evidence for the 1 and 2 group models, while

the performance appears to be broadly comparable across the 3, 4 and 5 group models,

although in this case the 3 group model’s performance appears best.

The 3 group model again captures the underlying mixed membership structure of the

network well. In this case, the correspondence between the estimated value of the indi-
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vidual membership of each actor compared to the true value resulted in correlation scores

of r = 96% for each group. Similarly, the a priori expected value of individual mixing

parameters conditional on the estimated hyperparameter δ̂ , corresponded closely to the the

expected value using the true value δ for Group 1 (r = 90%), but less well for Groups 2

and 3 (r = 76% and 30% respectively).

Estimates of β̂ were obtained from 100 parametric bootstrap replications of the fitted

model. Parameter estimates with bootstrap quantiles at the 95% level are provided in

Table 3. For each of the informative covariates W2, . . . ,W4 at least one of the parameter

quantile ranges does not contain 0. This result is similar to that found for Simulation Study

1. Of the the non-informative covariates, W5, . . . ,W7, only one of the terms appears to

be significant. On closer inspection, the upper bound for this quartile range, -0.02, is

particularly close to 0. Boxplots of the parametric bootstrap samples of β̂ for W2 and

W5 are provided in Figure 4b and 4c.

Table 3: Estimates of the covariate parameters β . 95% boostrap quantile ranges (2.5% and

97.5%) are included in parentheses. Estimates whose quantile range does not include zero

are highlighted in bold.

Group 1 Group 2 Group 3

W1 -3.53 (-4.25, -2.81) -3.06 (-3.82, -2.28) -1.31 (-2.14, -0.35)

W2 1.25 (0.53, 2.09) -0.45 (-1.64, 0.42) -1.42 (-2.56, -0.47)

W3 1.32 (0.40, 3.81) 0.02 (-1.10, 1.59) -0.22 (-1.57, 2.29)

W4 -0.34 (-0.58, -0.14) 0.12 (-0.07, 0.33) -0.08 (-0.35, 0.17)

W5 0.12 (-0.53, 0.83) -0.38 (-1.12, 0.41) -0.50 (-1.39, 0.33)

W6 0.20 (-0.46, 0.98) -0.75 (-1.60, -0.02) -0.60 (-1.47, 0.34)

W7 -0.04( -0.37, 0.33) -0.07 (-0.47, 0.23) 0.41 (-0.06, 0.92)

5 Lazega Lawyers Application

We apply our method to the Lazega Lawyers dataset4, obtained from a network study

of corporate law partnership carried out in a Northeastern US law firm. Several features

make the data of interest, the most notable being that the lack of a strong formal working

structure, coupled with large incentives to behave opportunistically create an interesting en-

vironment for the formation of network structure. Three types of network link are available

from the study: strong co-worker, basic advice and friendship networks. In this paper we

focus on the friendship network, which consists of 71 actors and 575 links. Actor attribute

information is also available, and described in Table 4.

Care must be taken when incorporating qualitative variables into the MMESBM frame-

work so that each modality is associated to a specific parameter. In particular, it was

4 The dataset is available to download at
https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm.

https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
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Figure 5: Lazega Lawyers friendship network represented using a Fruchtermann-Reingold

algorithm. Node size is used to give an indication of the number of links sent and received

by each actor. Figures (b) and (c) color nodes with respect to gender and status respectively.

necessary to re-code the nominal variable Law School, which in its original format can

take one of three values, into a set of two binary variables. Each of these variables then

serves as a comparison between one of nominal categories (Law School = University of

Connecticut, or Law School = Other) to the baseline category (Law School = Harvard or

Yale).

The actor attributes have previously been incorporated into studies conducted by Gorm-

ley & Murphy (2010) and Snijders et al. (2006); the former found that office location

and years with the firm had a significant impact on a latent position cluster model when

included as covariates for group membership, while Snijders et al. (2006) found evidence
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Table 4: Actor attribute information for Lazega Lawyers.

Attribute Description (where necessary)

Seniority Rank in firm, where 1 is the highest, 71 the lowest.

Status Indicates partner or associate in firm, with 0 = partner and 1 =associate.

Gender 0 = man; 1 = woman.

Years with firm

Age In years.

Practice 0 = litigation; 1 = corporate.

Law school 0 = Yale or Harvard ; 1= University of Connecticut; or 2 = Other.

Office Excluded from analysis.

Recoded variables

Law school - Connecticut 0 = (Yale or Harvard) or Other; 1 = University of Connecticut;

Law school - Other 0 = (Yale or Harvard) or University of Connecticut; 1 = Other.

that seniority, practice and location affected the 36-actor network of partners beyond other

structural effects in the data using an ERGM based approach.

The network is visualised in Figure 5a using a Fruchterman-Reingold algorithm. Two

actors, who are not connected to any others in the network, are not plotted. (They are still

included in the analysis.) The size of each node in the graph is representative of the overall

number of links each actor has formed in the network. Note that several of the covariates

are correlated. This is partly visualised in Figures 5b and 5c. These figures compare gender

and status; from these figures it is clear that there are more men (53) than women (18) in

the firm, and that women are more likely to be associates than partners (there are only 3

female partners in the dataset). Seniority is also highly (negatively) correlated with both age

and years with the firm. In what follows the continuous attributes have been standardised

to have mean= 0 and standard deviation= 1, to facilitate interpretation of the covariate

parameters β̂ .

5.1 Fitting the Model

MMESBM models were fitted to the Lazega Lawyers data over a range of values, from

G = 1, . . . ,9. While the 10-fold cross-validated log-likelihood shown in Figure 6a is max-

imised for an 8 group model, the error bars for models with 4 or more groups models all

overlap, suggesting a somewhat limited improvement in performance from the inclusion of

additional groups. After considering the competing models, the 4 group model was deemed

a satisfactory fit to the data.

The 4 group MMESBM is represented in Figure 6b. Each node in the diagram represents

a group and is labelled accordingly. Node size reflects the overall (weighted) membership

of the group, while arrow sizes loosely correspond to interaction levels, with larger arrows

indicating higher levels of interaction. Selected interaction probabilities are also included

in the figure. The within group interaction terms are printed in large font size beside the
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Figure 6: Figure 6a shows the hold-out log-likelihood for the Lazega Lawyers Friendship

data. Figure 6b is a visualization of the blocks behavior. Figure 6c is a histogram of EoM

for actors in the network. Over half the actors display mixed membership between two

groups.

relevant group, while the larger of the two interaction probabilities between each pair of

groups is included in smaller font size. Each between group probability is printed roughly

half way between the relevant groups.

Inspecting the figure, Groups 1, 3 and 4 can be characterised as exhibiting community-

like behavior. In each case, the probability of within group interaction occurring is far

higher than would be expected in the network under the null Erdős-Rényi model, whereby

links between actors occur independently with probability 11.5% in this case. Group 2 is a

highly antisocial group, with no interaction probabilities exceeding 1%. The fitted values

for Θ̂ are provided in Table 5. Between group interaction occurs with low probability (less

than 10%) in all cases.

One way to check an actor’s propensity for mixed membership is to inspect their extent

of profile membership (EoM) score (Hill, 1973; White et al., 2012):

EoMi = exp(H(τ̂ i)),

where H denotes the entropy function, H(τ̂ i) = �∑
G
g=1 τ̂ig log τ̂ig. A histogram of each

actor’s EoM score is shown in Figure 6c. Over half (42) of the actors EoM scores are

over 1.5, suggestive of at least some amount of mixed membership. Of the 20 actors with

the lowest EoM score, six belong to Group 1, five to Group 3, and seven to Group 4.

These actors can be viewed as being most highly involved in their respective groups and

exhibit almost no mixed membership. The three actors who belong most strongly to Group

2 possess a single (received) link in the network between them. Thirteen of the fourteen

actors with the highest EoM scores exhibit activity across three groups; one actor has a

small amount of membership to all four groups. With one exception these actors all have

some membership of Group 2, indicating that they are not full participants in the other

groups that they have membership of; only one actor appears to be highly social with

Groups 1,3 and 4.

Figure 7a visualises the model using the same network layout as Figures 5a–5c, with

each of the plotted nodes assigned a pie chart representing their mixed membership to dif-

ferent groups. The colors in each pie chart are consistent with those in Figure 6b. Inspecting
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this plot, it’s clear that a large amount of mixed membership is exhibited by actors in this

model, corroborating the EoM statistics reported in Figure 6c. Recall that the size of each

node in the graph is related to the popularity of the actor in question. The smaller nodes

in the graph contain prominent dark gray sections, representing Group 2, while the largest

nodes display membership to the community-like Groups 1, 3 and 4, colored darkest gray

and light and lightest gray respectively. In particular, two types of mixed membership are

occurring: actors moving between the Groups 1, 3 and 4, and actors whose membership is

split between Group 2, and another group, indicating diminished involvement. Note that

the pie charts in the figure don’t represent the uncertainty classification of each actor, which

has been the purpose of similar plots produced by Handcock et al. (2007).

Table 5: Estimates for blockmodel interaction Θ̂.

Group 1 Group 2 Group 3 Group 4

Group 1 0.71 0.00 0.01 0.01

Group 2 0.00 0.00 0.01 0.01

Group 3 0.03 0.01 0.81 0.04

Group 4 0.08 0.01 0.01 0.73

5.2 Covariate Parameters

We now investigate impact of covariates in the model. Recall that the continuous attributes

have been standardised to facilitate interpretation of the covariate parameters.

Estimates of β̂ were obtained from 100 parametric bootstrap replications of the fit-

ted model. These were in broad agreement with the estimates obtained by taking the

approximate Hessian matrix. The two methods mainly disagreed on the significance of

terms related to Group 3, the group with the least participation, with the Hessian term

finding almost all covariate terms for this group important, whereas only two terms, the

intercept, and the status of actors, appear to be meaningful based on the bootstrap estimates.

Parameter estimates with bootstrap quantiles at the 95% level are provided in Table 6, while

boxplots of the parametric bootstrap samples of β̂ are provided in Figures 8a to 8i.

The effect of the covariates not only has an influence on the propensity for obser-

vations to belong to groups, through the mean of the mixed membership distribution.

The covariates also have an influence on how much the mixed membership values vary

around the mean. Thus, a large positive element in the coefficient vector implies that the

mixed membership values become less dispersed as the covariate increases, and a large

negative element implies that the mixed membership values become more dispersed as

the covariate increases. In the case where a coefficient has similar magnitude for each

group, then the value of the covariate doesn’t have a large impact on the mean of the

mixed membership distribution, but it does have an impact on the variance of the mixed

membership distribution around the mean. While several covariates appear to influence
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Figure 7: Visualisation of the 4 group MMESBM fitted to the Lazega Lawyers friendship

dataset.

the network structure, only the parameters associated with Gender and Seniority appear to

differ significantly between groups.

While our interest in the parameters directly related to covariate terms is perhaps more

obvious, the behavior of the intercepts are also worth considering; namely, intercept terms

far from zero would indicate that the group membership in the network is poorly explained

by the available covariate information. Of the four groups, the intercepts of Groups 3 and

4 are consistently below zero, although with quite high variance. These groups have the

fewest significant covariate terms, which also suggests that their structure is only partly

explained by the covariate information.

At least one covariate appears to play some part in explaining each group’s structure.

Gender appears to have the most sizable effect, in particular on membership to Group 1,

where several other covariates are also influential, including seniority, status, years with the
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firm and type of law school. It is interesting to note that despite the fact that the covariates

Seniority and Years with the Firm are negatively correlated, their respective parameters

for Group 1 are in agreement. This reflects the difference in distribution between the

covariates. Whereas Seniority is inherently evenly distributed across the data due to its

ranked nature, the Years with the Firm covariate is strongly positively skewed, reflecting

the firm’s tendency to recruit many junior staff and retain only the most successful. In

terms of Group 1, the group consists mainly of the more senior and long established actors

in the network, yet the very oldest and most experienced actors in the network are less

involved in the network. Thus the parameter penalises the very oldest actors in the network

from strong membership to Group 1, where the standardized value of Years with the Firm is

further from the standardised mean (2.23 standard deviations) than Seniority (1.69 standard

deviations).

A similar effect occurs in Group 2, where Years with the firm and Age disagree despite

their positive correlation in the data. The difference in distribution between these covariates

is less pronounced, however Age is not so strongly positively skewed as Years with the

Firm. The values of the parameters mean that younger actors with relatively little expe-

rience are assigned high prior probability to Group 4, while the older actors with highest

experience are assigned with high prior probability to Group 2. In several cases, actors are

assigned relatively high prior probability to both groups.

Group 3 are the group perhaps least well explained by the covariates. Almost all of

the continuous covariates for actors assigned to Group 3 with high prior probability were

within one standard deviation of the mean. Noticeably, however, almost all of these actors

have partner status, the one covariate parameter which appears significant based on the

bootstrap estimates.

While the law school parameters appear significant in this analysis, it must be noted

that the upper quantiles for these parameters are close to zero, and that the variance for

these parameters is large, particularly the comparison between actors attending Other law

schools and those attending Harvard or Yale. If the uncertainty surrounding these terms

were even slightly underestimated, then it seems likely that at least two of these terms

would no longer seem significant. An exception is the negative impact which attending the

law school at the University of Connecticut has on membership to Group 2 in comparison

with the baseline law school of Harvard or Yale,where the impact seems to be quite large.

Finally, we note that the type of practice engaged in by the actors appears to have little

impact on whom they form friendships with in this model setting.

5.3 Goodness of Fit

Properties of the fitted model are now examined so as to determine how well the model fits

the data. Hoff et al. (2002) note that one desirable property of a model is that its predictive

probabilities for links and non-links be well separated. Figure 9a shows boxplots of the

predicted probabilities for links and non-links of the data based on the fitted parameters

outlined in Section 5. The two boxplots show a high degree of separation, with the lower

quartile of the observed link probabilities at roughly the same level as the top whisker of

the observed non-links. Another approach is to evaluate how well the data predicts links

in a hold-out modelling approach using a receiver operating characteristic (ROC) curve
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Table 6: Estimates of the covariate parameters β . 95% boostrap quantile ranges (2.5% and

97.5%) are included in parentheses. Estimates whose quantile range does not include zero

are highlighted in bold.

Group 1 Group 2 Group 3 Group 4

Intercept -1.62 (-3.01, 1.00) -0.42 (-2.19, 1.97) -1.58(-6.30, -0.42) -2.42(-7.14, -0.39)

Seniority -2.28(-3.61, -0.40) 0.16 (-0.50, 2.61) -1.21 (-2.82,0.49) 0.88 (-0.13, 3.71)

Status -0.90(-6.73, -0.72) 0.02 (-2.78, 0.88) -1.63(-5.55, -1.13) 0.91 (-2.29, 3.97)

Gender 1.85 (1.48, 7.22) 0.15 (-0.55, 2.07) -1.00 (-1.34, 1.43) -0.23 (-1.14, 1.28)

Years -0.90(-3.48, -0.27) -1.08(-3.57, -0.30) -1.76 (-4.00, 0.50) -0.77(-5.28, -0.48)

Age -0.35 (-0.55, 1.83) 1.22 (0.73 , 3.92) -0.29 (-2.47, 0.90) 0.69 (0.13, 3.68)

Practice 0.21 (-0.80, 0.82) 0.38 (-0.34, 1.20) 0.81 (-0.36, 1.94) -0.66 (-1.27, 0.71)

UConn -1.17(-3.68, -0.22) -2.26(-4.54, -0.92) -0.78 (-2.09, 3.68) -0.21 (-3.23, 1.06)

Other -1.15(-3.49, -0.11) -1.09(-3.49, -0.02) -1.07 (-2.86, 3.75) -0.52 (-3.56, 0.62)

(Hoff, 2008). This is shown in Figure 9b. Again, the model appears to perform quite well,

with a total area under the curve (AUC) score of almost 0.86.

Another approach to checking model fit is based on network simulation (Hunter et al.,

2008; Krivitsky & Handcock, 2008; Salter-Townshend & Murphy, 2013). The main idea

is to generate networks based on the fitted model parameters and then compare properties

of these simulated networks to the observed network. Network properties which are not

directly based on model parameters are considered the best indicators of model fit (Hunter

et al., 2008). Here the model performs less well than suggested by the link prediction

measures.

We compare the simulated networks to the observed network with respect to the follow-

ing summary statistics: in degree, out degree and geodesic distance. Plots of these statistics

are shown in Figures 10a to 10c. These show the observed network summary statistics as

a line superimposed over boxplots of the same statistics obtained from 100 simulations.

While the general behavior of the statistics is reasonably well accounted for, the upper and

lower quartiles of the in and out degree statistics appear to be too narrow, indicating a lack

of variability in the simulated data. The simulated networks also fail to account for the

actors in the network with the highest in and out degree. For minimum geodesic distance,

while the model correctly predicts that the majority of actors are connected by two degrees

of separation, it overestimates this number while underestimating the number of actors

connected by three degrees of separation, again suggesting a lack of variability. This may

be caused by the underestimation of uncertainty in the data generative process caused by

the variational Bayes approximation already discussed in Section 3.

6 Conclusion

The large number of network models which have recently been introduced and extended

provide the analyst with ever more tools with which to analyze relational data. In the future,

it may be of interest to combine the MMESBM with other extensions to MMSBM, such

as the dynamic MMSBM of Xing et al. (2010). Alternatively, it would be interesting
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Figure 8: Boxplots of parametric bootstrap samples of covariate parameter estimates β̂ for

the 4 group MMESBM. The dashed line occurs at zero.

to develop models such as the overlapping SBM of Latouche et al. (2011) to include

covariates, and to compare such a model’s performance to that of the MMESBM. For

example, the specification of the overlapping SBM means that fewer parameters must be

estimated in comparison to the MMSBM – this could mean that the model is preferable,

since its fit to the network is more parsimonious, or perhaps there are aspects of the data

that are not captured as successfully as for the MMSBM.

It is interesting to note the flexibility of the mixed membership approach, beyond al-

lowing actors to interact in multiple social circles; for example, a majority of actors in

the Lazega Lawyers dataset were assigned partial membership to Group 2, a group char-

acterised by low interaction. This can be interpreted as the model accounting for degree
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Figure 9: Boxplot of link probabilities for the data based on fitted parameters. Note the high

degree of separation between the probabilities for present and absent observed links. The

plot on the right shows the ROC for link prediction for each of the held-out data samples

during the 10-fold cross validation process.
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Figure 10: Goodness of fit diagnostics for the 4 group MMESBM.

heterogeneity in the dataset, which must be explicitly modelled for (Krivitsky et al., 2009)

when using a latent position model.

In this paper an approach to incorporate actor covariates into the MMSBM has been in-

troduced and demonstrated on a dataset. This complements the work of Mariadassou et al.

(2010), who incorporate link-specific attributes into the SBM. Care must be taken when

choosing how to include this information into a model. For example, when incorporating

covariates into a latent space model, Gormley & Murphy (2010) found that the manner in

which entered the model had a major impact on the interpretation of the resulting analysis.

Where possible, specifying actor-specific covariates is arguably more easily interpretable:

Wasserman & Faust (1994, Chapter 16) state that two actors i and i0 are stochastically

equivalent if the probability of an event, in this case a link to an actor j, is unchanged by
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the interchanging of the actors. This is not the case when link-specific attributes must also

be considered.

While the variational Bayes method is an effective method for inference, at least from

a computational and clustering perspective, in its directly implemented form its computa-

tional cost is still of order O(N2). As currently implemented, the algorithm took several

minutes to fit a single model to the Lazega Lawyers data. The outlined cross-validation

approach for model selection, and the bootstrapping procedure used to evaluate covariate

parameters provide a further computational burden, since the model must effectively be

re-fit to the data multiple times. The case-control approximated likelihood approach intro-

duced by Raftery et al. (2012) for latent space models, which has been successfully applied

in a variational Bayes setting by Salter-Townshend & Murphy (2013) could prove effective

when fitting the model to larger networks.

Model choice remains a challenge for network and mixed membership models, within

the model based clustering literature and beyond. While the hold out likelihood approach

that has been used in this paper gives some idea of which group choices are most suitable

for the data, a high level of uncertainty still surrounds the identification of an optimal

model. Similarly, care must be taken when determining which covariates appear to impact

on the data.

The MMESBM as specified here can be seen to treat the covariate parameters as nui-

sance parameters, when they are of as much or greater interest as the other parameters

in the model. While the introduction of a hyper prior would allow for inference to be

performed in a more principled manner, it would also make it much more complicated,

as the conjugacy between distributions would be lost. Similarly, certain properties of the

Dirichlet distribution may prove too restrictive when modelling the group membership of

actors, especially with the introduction of covariates; the use of other distributions, such as

a logistic normal distribution may prove useful (Aitchison, 1982; Blei & Lafferty, 2007).

Again, this would lead to additional inferential complexity.

While not a particular goal of the paper, it remains unclear how to choose between

progressively more complex classes of model such as the SBM and MMSBM, or whether

or not to include covariates, when analysing a given dataset. Potentially, another class of

model, such as the latent space or ERGM may be more suitable. Hoff (2008) compares

fundamentally different methods by assessing their link predictive properties on hold-

out samples of data, and it may be possible to extend the use of the hold-out likelihood

method employed by this paper for model selection, not just for the number of groups but

also for the class of model. This possibility comes with the caveat that link prediction is

expressfully the primary goal of the analyst, when other properties in the network may be

viewed as equally or more important.
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A Estimating Model Parameters

We know provide details for how the estimates given in Section 3 were derived. The general

idea, for a given distribution with parameters Ω1, . . . ,ΩJ , is to approximate a posterior

p(Ω) = p(Ω1, . . . ,ΩJ) with a set of distributions q(Ω1), . . . ,q(ΩJ) which can factorised

independently, such that

p(Ω1, . . . ,ΩJ)⇡ q(Ω1)⇥ · · ·⇥q(ΩJ).
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It can be shown (Bishop, 2006) that the optimal (i.e. the Kullbach-Liebler divergence

minimising) form for q(Ω j) can be found by setting

q(Ω j) ∝ exp
⇣

E
q

i6= j
[log p(Ω)]

⌘

.

We make the following approximation:

p(Y,Z1,Z2,τ,Θ|α1,α2,β ,W)⇡ q(Z1|φ 1)q(Z2|φ 2)q(τ|γ)q(θ |ζ 1,ζ 2),

where we have introduced the variational parameters φ 1,φ 2,ζ 1,ζ 2
and γ .

Keeping β fixed, and setting each δig = exp(∑P
p=1 Wipβgp), inference for q(τ|γ) is as

follows:

q(τ i|γ i) ∝ exp

(

E
q

Z1,Z2

"

N

∑
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log p(Z1
i j|τ i)+ log p(Z2
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Z2 [Z
2
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ig ,

which we can recognise as a Dirichlet distribution. It is also straightforward to see that

q(θ |ζ 1,ζ 2) is a beta distribution:

q(θgh|ζ
1
gh,ζ

2
gh) ∝ exp

(

E
q

Z1,Z2

"

N

∑
i=1

N

∑
j=1

log p(Yi j|Z
1
i j,Z

2
i j,θgh)+ log p(θ |α1

gh,α
2
gh)

#)

= θ
ζ 1

gh

gh (1�θgh)
ζ 2

gh ,

where

ζ 1
gh =
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∑
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∑
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i jg
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E
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Note that the calculation of q(τ i|γ i) did not require taking the expectation of the log of

the joint distribution with respect to θ , and vice versa. This is because the parameters are

conditionally independent of one another due to the presence of the indicator variable Z.

This is perhaps most clearly seen in the diagram in Figure 2b.

Calculating q(Z1
i j|φ

1
i j) is a little trickier, since we must calculate E

q
θ

⇥

logθgh

⇤

and E
q
τ [logτig]:
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Similarly
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We can recognise both q(Z1
i j|φ

1
i j) and q(Z2

i j|φ
2
i j) to be multinomial distributions.

Since the approximate distributions all have tractable form, we can calculate the required

expectations, and give updates in fully parametric form:

E
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Parameter updates then become:
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A.1 Estimating Covariate Parameters

Recall that the log-posterior is intractable, and that we instead maximise a lower bound L:
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This is straightforward to calculate:
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The terms for the second part of the lower bound are given below:
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To estimate β̂ we make us of a Newton-Raphson step to iteratively maximise L. It’s simpler

to first calculate the gradient and Hessian functions in terms of δ :
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Now, noting that
∂δig

∂βgp
=Wip exp(∑P

p=1 Wipβgp), we can then maximise the lower bound

L with respect to β by making use of the chain rule:
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We can then calculate the Hessian matrix, again making use of the product rule:
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Cleaning this up a little gives the result:
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