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Summary. Modeling relational data is an important problem for modern

data analysis and machine learning. In this paper we propose a Bayesian

model that uses a hierarchy of probabilistic assumptions about the way ob-

jects interact with one another in order to learn latent groups, their typical

interaction patterns, and the degree of membership of objects to groups. Our

model explains the data using a small set of parameters that can be reliably

estimated with an efficient inference algorithm. In our approach, the set of

probabilistic assumptions may be tailored to a specific application domain in

order to incorporate intuitions and/or semantics of interest.

We demonstrate our methods on simulated data, where they outperform

spectral clustering techniques, and we apply our model to a data set of

protein-to-protein interactions, to reveal proteins’ diverse functional roles.
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1. Introduction

Modeling relational data is an important problem for modern data analysis

and machine learning. Many data sets contain interrelated observations. For

example, scientific literature connects papers by citation, web graphs con-

nect pages by links, and protein-protein interaction data connect proteins by

physical interaction records. Such data violate the classical exchangeability

assumptions made in machine learning and statistics; moreover, the relation-

ships between data are often of interest as observations themselves. One may

try to predict citations of newly written papers, predict the likely links of a

web-page, or cluster proteins based on patterns of interaction between them.

There is a history of probabilistic models for relational data analysis in

Statistics. Part of this literature is rooted in the stochastic block modeling

ideas from psychometrics and sociology. These ideas are due primarily to

Holland and Leinhardt (1975), and later elaborated upon by others, e.g., see

Fienberg et al. (1985), Wasserman and Pattison (1996), Snijders (2002), Hoff

et al. (2002). In machine learning, Markov random networks have been used

for link prediction (Taskar et al., 2003) and the traditional block models from

Statistics have been extended with nonparametric Bayesian priors (Kemp

et al., 2004).

In this paper, we develop a mixed membership model for analyzing patters

of interaction between data. Mixed membership models for soft classification

have emerged as a powerful and popular analytical tool for analyzing large

databases involving text (Blei et al., 2003), text and references (Cohn and

Hofmann, 2001; Erosheva et al., 2004), text and images (Barnard et al.,

2003), multiple disability measures (Erosheva and Fienberg, 2005; Manton
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et al., 1994), and genetics information (Rosenberg et al., 2002; Pritchard

et al., 2000; Xing et al., 2003). These models use a simple generative model,

such as bag-of-words or naive Bayes, embedded in a hierarchical Bayesian

framework involving a latent variable structure; this induces dependencies

and introduces statistical control over the estimation of what might otherwise

be an extremely large set of parameters.

We propose a Bayesian model that uses a hierarchy of probabilistic as-

sumptions about how objects interact with one another in order to learn la-

tent groups, their typical interaction patterns, and the degree of membership

of objects to groups. Given data, we find an approximate posterior distri-

bution with an efficient variational inference algorithm. In our approach,

the set of probabilistic assumptions may be tailored to a specific application

domain in order to incorporate semantics of interest. We demonstrate our

methods on simulated data, and we successfully apply the model to a data

set of protein-protein interactions.

2. Mixed Membership Stochastic Block Models

In this section, we describe a probabilistic model of interaction patterns in a

group of objects. Each object can exhibit several patterns that determine its

relationships to the others. We will use protein-protein interaction modeling

as a working example; however, the model can be used for any relational data

where the primary goal of the analysis is to learn latent group interaction

patterns and mixed group membership of a set of objects. Throughout the

paper we refer to our model as the mixed membership stochastic block model

or MMSB.
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Suppose we have observed the physical interactions between N proteins1 .

We represent the interaction data by an N × N binary adjacency matrix r

where ri,j = 1 if the i-th protein interacts with the j-th protein. Usually,

an interaction between a pair of proteins is indicative of a unique biological

function they both involve; it may be possible to infer the functional classes

of the study proteins from the protein interactions.

In a complex biological system, many proteins are functionally versatile

and can participate in multiple functions or processes at different times or

under different biological conditions. Thus, when modeling functional classes

of the proteins, it is natural to adopt a flexible model which allows multiple

scenarios under which a protein can interact with its partners. For example, a

signal transduction protein may sometimes interact with a cellular membrane

protein as part of a signal receptor; at another time, it may interact with

the transcription complex as an auxiliary transcription factor. By assessing

the similarity of observed protein-to-protein interaction patterns, we aim to

recover the latent function groups and the degree with which the proteins

take part in them.

In the generative process, we model the observed adjacency matrix as a

collection of Bernoulli random variables. For each pair of objects, the pres-

ence or absence of an interaction is drawn by (1) choosing a latent class

for each protein from a protein-specific distribution and (2) drawing from

a Bernoulli distribution with parameter associated with the pair of latent

1Such information can be obtained experimentally with “yeast two-hybrid”
tests and others means, and in practice the data may be noisy. For simplic-
ity, we defer explicit treatment of observation noise, although plugging in
appropriate error processes is possible.
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classes. A protein represents several functional groups through its distribu-

tion of latent classes; however, each protein participates in one function when

determining its relationship to another.

For a model with K groups, the parameters are K-dimensional Dirichlet

parameters α, a K × K matrix of Bernoulli parameters η, and ρ ∈ [0, 1]

which is described below. Each θi is a Dirichlet random variable (i.e., a

point on the K − 1 simplex) and each zi→j and zi←j are indicators into the

K groups. The generative process of the observations, r(N×N), is as follows:

1. For each object i = 1, . . . , N :

1.1. Sample θi ∼ Dirichlet (α).

2. For each pair of objects (i, j) ∈ [1, N ] × [1, N ]:

2.1. Sample group zi→j ∼Multinomial (θi, 1)

2.2. Sample group zi←j ∼Multinomial (θj , 1)

2.3. Sample rij ∼ Bernoulli
(

ρ z′i→jηzi←j + (1 − ρ) δ0
)

The parameter ρ controls how often a zero is due to noise and how often

it occurs as a function of the constituent proteins’ latent class memberships

in the generative process. In turn, this leads to ones in the matrix being

weighted more as ρ decreases, and allows for the model to pick up sparsely

interconnected clusters. For the rest, the model uses three sets of latent

variables. The Multinomial parameters θi are sampled once for the entire

collection of observations; the latent cluster indicators zi→j and zi←j are

sampled once for each protein-protein interaction variable rij.
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The generative process described above leads to a joint probability dis-

tribution over the observations and the latent variables,

p(r, θ, z1, z2|α,η) =

N
∏

i=1

p(θi|α)

N
∏

j=1

p(zi→j|θi)p(zi←j |θj) p(rij|zi→j, zi←j,η).

The marginal probability of the observations is not tractable to compute,

p(r|α,η) =

∫

Θ

∫

Z

N
∏

i=1

p(θi|α)

N
∏

j=1

p(zi→j |θi)p(zi←j|θj) p(rij|zi→j, zi←j,η) dz dθ.

We carry out approximate inference and parameter estimation to deal with

this issue.

The only input to this model is the number of groups. The goal is to learn

the posterior distribution of the membership proportions of each protein and

the group interaction probabilities. We will focus on the interpretability of

these quantities, e.g., consistent functional annotations of the proteins within

groups. Note that there are several ways to select the number of groups. For

example, Kemp et al. (2004) use a nonparametric Bayesian prior for a single-

membership block model.

In our fully generative approach, it is possible to integrate outside infor-

mation about the objects into the hierarchy of probabilistic assumptions. For

example, we can include outside information about the proteins into the gen-

erative process that includes the linkage. In citation data, document words

can be modeled along with how the documents cite each other.

3. Inference and Estimation

In this section we present the elements of approximate inference essential

for learning the hyper-parameters of the model and inferring the posterior

distribution of the degrees of membership for each object.
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In order to learn the hyper-parameters we need to be able to evaluate the

likelihood, which involves a non-tractable integral as we stated above—see

equation. In order to infer the degrees of membership corresponding to each

object, we need to compute the posterior degrees of membership given the

hyper-parameters and the observations

p(θ|r,α,η) =
p(θ, r|α,η)

p(r|α,η)
, (1)

Using variational methods, we can find a lower bound of the likelihood and

approximate posterior distributions for each object’s membership vector.

The basic idea behind variational methods is to posit a variational dis-

tribution on the latent variables q(θ, z), which is fit to be close to the true

posterior in Kullback-Leibler (KL) divergence. This corresponds to maximiz-

ing a lower bound, L
[

γ,φ ; α,η
]

, on the log probability of the observations

given by Jensen’s inequality:

log p(r|α,η) ≥

N
∑

i=1

Eq

[

log p(θi|αi)
]

+

+
N

∑

i=1

N
∑

j=1

Eq

[

log p(zi→j |θi)
]

+

+
N

∑

i=1

N
∑

j=1

Eq

[

log p(rij|zi→j , zi←j,η)
]

+

+

N
∑

i=1

N
∑

j=1

Eq

[

log p(zi←j |θj)
]

−

−Eq

[

log q(θ, z)
]

.

where the expectations are taken with respect to q(θ, z). We choose a fully

factorized variational distribution such that this optimization is tractable.
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3.1 Variational Inference

The fully factorized variational distribution q is as follows.

q(θ, z|γ,φ) =
N
∏

i=1

q(θi|γi)
N
∏

j=1

(

q(zi→j|φi→j) q(zi←j|φi←j)
)

=

N
∏

i=1

Dirichlet (θi|γi)

N
∏

j=1

(

Mult (zi→j |φi→j)Mult (zi←j |φi←j)
)

The lower bound for the log likelihood L[γ,φ ; α,η] can be maximized

using exponential family arguments and coordinate ascent (Wainwright and

Jordan, 2003). This leads to the following updates for the variational pa-

rameters (φi→j,φi←j), for each pair (i, j):

φ∗i→jg ∝ exp
{

ψ(γig) − ψ(

K
∑

g=1

γig)
}

K
∏

h=1

η
rij φi←jh

gh

K
∏

h=1

(1 − ηgh)
(1−rij) φi←jh

φ∗i←jh ∝ exp
{

ψ(γjh) − ψ(
K

∑

h=1

γjh)
}

K
∏

g=1

η
rij φi→jg

gh

K
∏

g=1

(1 − ηgh)
(1−rij) φi→jg

for g, h = 1, . . . , K, and to the following updates for the variational parame-

ters γi, for each i:

γ∗ig = αg +

N
∑

j=1

φi→jg +

N
∑

j=1

φi←jg.

The vectors φi→j and φi←j are normalized to sum to one. The complete

algorithm to perform variational inference in the model is described in detail

in Figure 1. Variational inference is carried out for fixed values of η and α, in

order to maximize the lower bound for the likelihood. Then we maximize the

lower bound with respect to η and α. We iterate these two steps (variational

inference and maximization) until convergence. The overall procedure is a

variational expectation-maximization (EM) algorithm (Xing et al., 2003).
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3.2 Remarks

The variational inference algorithm presented in Figure 1 is not the näıve

variational inference algorithm. In the näıve version of the algorithm, we

initialize the variational Dirichlet parameters γi and the variational Multi-

nomial parameters φi→j and φi←j to non-informative values, then we iterate

until convergence the following two steps: (i) update φi→j and φi←j for all

pairs (i, j), and (ii) update γi for all objects i. In such algorithm, at each

variational inference cycle we need to allocate NK + 2N2K numbers.

The nested variational inference algorithm trades time for space thus al-

lowing us to deal with large graphs; at each variational cycle we need to

allocate NK + 2K numbers. The increased running time is partially offset

by the fact that the algorithm can be parallelized and leads to empirically

observed faster convergence rates, as we show in Figure 3. This algorithm is

also better than MCMC variations (i.e., blocked and collapsed Gibbs sam-

plers) in terms of memory requirements and/or convergence rates.

[Figure 1 about here.]

It is also important to note that the variational Dirichlet parameters

γ and the Bernoulli parameters η are closely related in this model: it is

necessary to keep the γs across variational-EM iterations in order to better

inform the M-step estimates of η. Thus, we smooth the γ parameters in

between EM iterations instead of resetting them to a non-informative value,

2N/K in our model. Using a damping parameter ǫ we obtain: γ̃ig = (1 −

ǫ) γ∗ig + ǫ 2N
K

.
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3.3 Parameter Estimation

Using the optimal lower bound L[γ∗,φ∗ ; α,η] as a tractable surrogate

for the likelihood we here look for (pseudo) empirical Bayes estimates for the

hyper-parameters (Carlin and Louis, 2005).

Such maximization amounts to maximum likelihood estimation of the

Dirichlet parameters α and Bernoulli parameter matrix η using expected

sufficient statistics, where the expectation is taken with respect to the vari-

ational distribution. Finding the MLE of a Dirichlet requires numerical op-

timization (Minka, 2000). For each Bernoulli parameter, the approximate

MLE is:

η∗gh =

∑N

i=1

∑N

j=1 φi→jg φi←jh rij
∑N

i=1

∑N

j=1 φi→jg φi←jh

,

for every index pair (g, h) ∈ [1, K] × [1, K].

We also smooth the probabilities of interactions between any member

of group a and any member of group b, that is ηa,b, by assuming ηa,b ∼

Beta (β1, β2) for each pair of groups (a, b) ∈ [1, K] × [1, K]. Variational

inference is modified appropriately.

4. Examples and Simulation Experiments

We first tested our model in a controlled setting. We simulated non-contrived

adjacency matrices mimicking protein-protein interactions with 100 proteins

and four groups, 300 proteins and 10 groups, and 600 proteins and 20 groups.

In our experiment, the signal-to-noise ratio is decreasing with the size of the

problem, for a fixed Dirichlet parameter α < 1.2 The data are display in

2That is, a fixed α < 1 leads to a number of active functions for each protein
that increases linearly with the total number of latent functions, but the
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Figure 5, where the S/N ratio is roughly 0.5, 0.4 and 0.3 for the both the top

and bottom rows, from left to right.

In Figure 2 we compare our model to spectral clustering with local scaling

(Zelnik-Manor and Perona, 2004) that is particularly suited for recovering the

structure of the interactions in the case when proteins take part in a single

function. Note that spectral clustering (or normalized cuts) minimizes the

total transition probability due to 1-step random walk of objects between

clusters. Each object is assumed to have a unique cluster membership. Our

model, however, is more flexible. It allows object to have different cluster

membership while interacting with different objects. The simulations with

the Dirichlet parameter α = 0.05 are meant to provide mostly unique mem-

bership; spectral clustering performs well and our model has a slightly better

performance. As proteins participate to more functions, that is, α increases

to 0.25 in our simulations, spectral clustering is not an adequate solution

anymore. Our model, on the other hand, is able to recover the mixed mem-

bership to a large degree, and performs better than spectral clustering.

[Figure 2 about here.]

In a more general formulation of our model we accommodate a collection

of observations, e.g., protein-protein interaction patterns measured by differ-

ent laboratories and under possible different conditions, or daily summaries

of email exchanges. We used this general model to understand how the model

takes advantage of the information available. Empirical results show that it

number of interactions sampled among functional groups decreases with the
square of the total number of latent function, and causes an overall decrease
of the informative part of the observed matrix r.
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is better to have a larger adjacency matrix rather than having a collection

of small matrices, in order to overcome a fixed signal-to-noise ratio.

In Figure 3 compare the running time of our enhanced variational-EM

algorithm to the näıve implementation. Our algorithm is more efficient in

terms of space and converges faster. Further, it can be parallelized given

that the updates for each interaction (i, j) are independent of one another.

[Figure 3 about here.]

To perform data analysis using our model we need to select the number

of clusters, K, in advance. For the analysis of simulated data, we use cross-

validation to this extent. That is, we pick the value of K that maximizes the

likelihood on a test set. In Figure 4 we show an example, where the latent

number of clusters equals 10.

[Figure 4 about here.]

5. Application to Protein-Protein Interactions

Protein-protein interactions (PPI) form the physical basis for formation of

complexes and pathways which carry out different biological processes. A

number of high-throughput experimental approaches have been applied to

determine the set of interacting proteins on a proteome-wide scale in yeast.

These include the two-hybrid (Y2H) screens and mass spectrometry methods.

For example, mass spectrometry is used to identify components of protein

complexes (Gavin et al., 2002; Ho et al., 2002). High-throughput methods,

though, may miss complexes that are not present under the given conditions,

for example, tagging may disturb complex formation and weakly associated

components may dissociate and escape detection.
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The MIPS database was created in 1998 based on evidence derived from

a variety of experimental techniques and does not include information from

high-throughput data sets (Mewes et al., 2004). It contains about 8000 pro-

tein complex associations in yeast. We analyze a subset of this collection con-

taining 871 proteins, the interactions amongst which were hand-curated. In

Table 1 we summarize the main functions of the protein in our sub-collection.

Note that, since most proteins participate in more than one function, Table

1 contains more counts (2119) than proteins (871), for an average of ≈ 2.4

functions per protein. Further, the relative importance of each functional

category in our sub-collection, in terms of the number of proteins involved,

is different from the relative importance of the functional categories over the

entire MIPS collection, as reported in Lanckriet et al. (2004).

[Table 1 about here.]

5.1 Recovering the Ground Truth

Our data consists of 871 proteins participating in 255 functions. The

functions are organized into a hierarchy, and the 15 functions in Table 1 are

those at the top level of the hierarchy. The ground truth for our analysis

is constituted by the presence or absence of functional annotations at the

top level of the hierarchy. That is, each proteins is associated with a 15-

dimensional vector of zeros and ones, where the ones indicate participation

in high-level functional categories of sub-categories. There are about 2200

functional annotations in our data sets, that is, the density of the proteins-

to-functions annotation matrix is about 16%. The Dirichlet parameter α

corresponding to the true mixed-membership is ≈ 0.0667. Most of the pro-

teins in our data participate in two to four functions. In Figure 5 we show
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the normalized frequencies of participation of each protein in sub-categories

of the 15 high-level functions, which ware derived using the manually curated

functional annotations.

[Figure 5 about here.]

5.2 Evaluating the Performance

In order to evaluate the performance of the competing methods in pre-

dicting the (possibly) multiple functional annotations of proteins we devised

a very simple measure of accuracy. Briefly, we added the number of func-

tional annotations correctly predicted for each proteins, divided by the total

number of functional annotations.

Note that, given their exchangeable nature, the latent functional groups

are not identifiable in our model. On the other hand, in order to compute the

accuracy above we need to decide which latent cluster correspond to which

functional class. We resolved the ambiguity by finding the one mapping

that maximized the accuracy on the training data. In those cases where no

training data is available, e.g., the unsupervised experiment, we minimize

the divergence between marginal true and predicted marginal frequencies of

membership, instead. We then used that permutation in order to compare

predicted functional annotations to the ground truth, for all proteins.

[Figure 6 about here.]

In order to compute the accuracy of spectral clustering with local scaling,

we implemented softened a soft version of it; we used the cluster predictions

and the relative distances between proteins and the centroids of the clusters

to obtain normalized scores (probabilities) of membership of each protein to
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each cluster. These mixed-membership scores enabled us to compute the

accuracy measure.

Further, we devised two baselines to compare the accuracy of our methods

against: the “dumb” random annotator, and the “clever” random annota-

tor. The dumb annotator knows the probability of a functional annotation

in general, and annotates at random each function of each protein with that

probability. The clever annotator knows the probability of a functional an-

notation for each function, and assigns annotations at random accordingly.

Note that the clever annotator can perfectly map latent groups to functions.

5.3 Testing Functional Interaction Hypothesis

The mixed-membership stochastic block model is a useful tool to explore

hypothesis about the nexus between latent protein interaction patterns and

the functions they are able to express.

For example, it is reasonable to assume that proteins that share a common

functional annotation tend to interact with one another more often than with

proteins with no functional annotations in common. In order to test this

hypothesis we can fix the function interaction matrix η to be the identity

matrix. This leads to accuracies of 76.31% for the latent mixed-membership

model and of 71.4% for spectral clustering. In this case the mapping of latent

clusters to functions was obtained by minimizing the divergence between

marginal true and predicted marginal frequencies of membership.

5.4 De-Noising Protein-Protein Interactions

It is reasonable to assume that a collection of PPI may inform us on the

functions protein are able to express (Deng et al., 2002). In the bigger picture,

the goal is to use our model to estimate interaction patterns and functional
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membership of proteins from manually curated data, in order to de-noise

functional annotations and interactions made available via high-throughput

experiments.

In the experiments we present in this section, we aim at assessing the

prediction error associated with our model. To this extent we perform cross-

validation, and in order to obtain conservative estimates of the error we

split the proteins into a training set and a testing set of about the same

size. We slightly modify our model in order to predict the functional mixed-

membership probabilities of new proteins, i.e., those in the testing set. In

particular, we use available information to learn the function interaction ma-

trix η, which encodes the interaction patterns between pairs of proteins as

they express a corresponding pair of functions. We also consider known the

functional annotations of the proteins in the training data in terms of their

corresponding mixed membership probabilities θi. In order to estimate η we

considered all protein pairs in the training set, and estimated the strength

of the interactions between pairs of expressed functions by composing the

corresponding membership probabilities of the proteins involved, under as-

sumption of independence. In the testing phase, we fixed η, and the θi for

the proteins in the training set and fit our model in order to infer the mixed-

membership probability vectors of the proteins in the testing set. Alterna-

tives are possible, where the information available is used to calibrate priors

for the elements of η, rather than fixing its values.

We perform 100 such experiments, where each replicate differs for the

subset of proteins used for training. In order to threshold the estimated

mixed membership scores, and pick the most likely annotations, we used

16



the estimated frequency of functional annotations in the training set. The

accuracy of the predictions obtained with MMSB is 85% on average. Our

method significantly outperforms both the dumb random annotator, 74%

accurate on average, and the clever random annotator, 83% accurate on

average—Figure 7 shows the distribution of the accuracy in the various cases.

This suggests that our method leverages the signal in the data, and that

the identification of latent groups to functions is somewhat feasible in this

application.

[Figure 7 about here.]

Figure 8 displays few examples of predicted mixed membership proba-

bilities against the true annotations, given the estimated mapping of latent

groups to functions.

[Figure 8 about here.]

Figure 9 shows the predicted mixed membership probabilities for 841 pro-

teins. Most proteins are predicted as participating in at least two functions.

The predicted degree of membership is reasonably good, and the estimated

Dirichlet parameter is α̂ = 0.417.

[Figure 9 about here.]

6. Discussion

In the experiments above, we have presented the mixed-membership stochas-

tic block model (MMSB) for relational data with stochastic and heteroge-

neous interactions among objects. In particular, the mixed-membership as-

sumption is very desirable for modeling real data. Given a collection of
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interaction patterns, our model yields posterior estimation of the multiple

group membership of objects, which align closely to real world scenarios

(e.g., multi-functionality of proteins). Further, our model estimates interac-

tion probabilities between pairs of latent groups.

In simulations, our model out-performs spectral clustering both in cases

when objects have single membership and in cases when objects have mixed-

membership. In this latter case, the differential performance of latent mixed-

membership model over spectral clustering (with local scaling) is remarkable,

since spectral clustering lacks a device for capturing mixed membership. The

parameter ρ of MMSB enables to recover clusters whose objects are sparsely

interconnected, by assigning more weight to the observed edges, i.e., the ones

in the observed adjacency matrix r. On the contrary, spectral clustering

methods assign equal weight to both ones and zeros in the adjacency matrix

r, so that the classification is driven by the zeros in cases where the number of

zeros is overwhelming—this may be a not desirable effect, thus it is important

to be able to modulate it, e.g., with ρ.

We then applied our model to the task of predicting the functional an-

notation of proteins by leveraging protein-protein interaction patterns. We

showed how our model provides a valuable tool to test hypothesis about

the nexus between PPI and functionality. We showed a strategy to perform

cross-validation experiments in this setting, to demonstrate how to fit our

model and make use of reliable information (about PPI) in order to infer the

functionality of unlabeled proteins. However, that is not the only strategy.

An alternative strategy we are currently exploring is that of calibrating in-

formative priors for η using the training data. An informative prior would
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both smooth the estimates of parameters, on the testing data, and increase

the identifiability of the latent groups. Last, in the analyses we presented

in this paper we fixed K = 15 and estimated a mapping between latent

groups and functions. An alternative we are currently exploring is to make

the partially available functional annotation part of the model, and select K

independently of the number of functional categories.

7. Conclusions

In conclusion, our mixed membership stochastic block model provides a valu-

able tool for “summarizing” relational data. Specifically, the MMSB both

projects the observed interactions into a lower dimensional “latent” space,

the space of group-to-group connectivity patterns, and assigns mixed mem-

bership of objects of study to groups. The connectivity patterns are captured

by η and the mixed membership scores are captured by θ.

There is a relationship between the MMSB and the latent space model

of relational data (Hoff et al., 2002). In the latent space model, the latent

vectors are drawn from Gaussian distributions and the interaction data is

drawn from a Gaussian with mean θ′iIθj. In the MMSB, the marginal prob-

ability of an interaction takes a similar form, p(ri,j|θi, θj,η) = θ′iMθj , where

Mij = p(ri,j|η) is a matrix of probabilities for each pair of latent functional

states in the collection. In contrast to the latent space model, the interaction

data can be modeled by an arbitrary distribution, in our model. With binary

relationships, i.e., a graph, we can use a collection of Bernoulli parameters;

with continuous relationships, we can use a collection of Gaussian param-

eters. While more flexible, the MMSB does not subsume the latent space

model; they make different assumptions about the data.
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When compared to spectral clustering techniques, MMSB allows to mod-

ulate the relative importance of presence and absence of interactions in the

cost function that drives the assignments of objects to clusters, by modu-

lating the parameter ρ. Further, MMSB empirically outperformed spectral

clustering with local scaling (Zelnik-Manor and Perona, 2004) in all cases we

tested.

In our applications to protein-protein interactions, recovering the mixed

membership of proteins to clusters that relate to functionality provides a

promising approach to learn the generative/mechanistic aspects underlying

such data. This approach can be valuable for seeking deeper insight of the

data, as well as for serving as informative priors for future estimation tasks.

Our results confirm previous findings that information about PPI alone does

not lead to accurate functional annotation of unlabeled proteins. More in-

formation is needed, for example, gene expression levels could be integrated

in MMSB to boost the prediction accuracy of functional annotation.

7.1 Future Work

In the future we plan to explore PPI generated with high-throughput

experimental methods: the tandem-affinity purification (TAP) and high-

throughput mass spectrometry (HMS) complex data, described in Ho et al.

(2002) and Gavin et al. (2002).

We will use all MIPS manually curated PPI, used for the analyses in

this paper, to “calibrate informative priors” for the hyper-parameters in our

model, in order to de-noise both the interactions and the functional annota-

tions for the proteins in the TAP and HMS collections. The TAP collection

contains 1363 proteins, 469 of which are contained in the MIPS hand-curated
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collection, whereas the HMS collection contains 1578 proteins, and shares 330

of them with the MIPS hand-curated collection.
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1. initialize γ0
ig = 2N

K
for all i, g

2. repeat

3. for i = 1 to N

4. for j = 1 to N

5. get variational φt+1
ij1 and φt+1

ij2 = f(rij,γ
t
i ,γ

t
j,η

t)

6. partially update γt+1

i
, γt+1

j
and ηt+1

7. until convergence

1. initialize φ0
ij1g = φ0

ij2h = 1
K

for all g, h

2. repeat

3. for g = 1 to K

4. update φs+1
ij1g ∝ f1(φ

s
ij2,γ,η)

5. normalize φs+1
ij1 to sum to 1

6. for h = 1 to K

7. update φs+1
ij2h

∝ f2(φ
s
ij1,γ,η)

8. normalize φs+1
ij2 to sum to 1

9. until convergence

Figure 1. Top: The two-layered variational inference for γ and φ. The
inner layer consists of Step 5. The function f is described in details in the
bottom panel. Bottom: Inference for the variational parameters (φij1,φij2)
corresponding to the basic observation ri,j. This is the detailed description
of Step 5. in the top panel. The functions f1 and f2 are updates for φij1g

and φij2h described in the text of Section 3.1.
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Figure 2. Error rates on simulated protein-protein interaction networks,
the lower the better, for spectral clustering with local scaling (LSC) versus
mixed-membership stochastic block model (MMSB). From left to right: the
adjacency matrices contain 100, 300 and 600 proteins and 4, 10 and 20 latent
functional groups, respectively. From top to bottom: the matrices were
generated using Dirichlet parameter α = 0.05 (stringent membership), 0.25
(more diffused membership), respectively. The proteins are re-ordered to
make explicit the structure of the group interactions. The number of proteins
per cluster averages 30 over all matrices. The Bernoulli probabilities in η

are either 0.9 or 0.1. Random guesses about single-membership of proteins
to clusters correspond to error rates of 0.75, 0.9 and 0.95, respectively.
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Figure 3. We compare the running time of the näıve variational inference
(solid line) against the running time of our enhanced (nested) variational
inference algorithm (dashed line), in two experiments. We measure the num-
ber of iterations on the X axis and the log-likelihood on the Y axis. The
two profiles (iterations/log-likelihood) in each panel correspond to the same
initial values for the parameters. Both algorithms reach the same plateau in
terms of log-likelihood, which correspond to the same parameter estimates.
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Figure 4. The log likelihood is indicative of the true number of latent
functions, on simulated data. We measure the number of latent functions on
the X axis and the log-likelihood on a test set on the Y axis. In the example
shown the peak corresponds to the correct number of functions.

28



Figure 5. Manually curated functional annotations for 841 proteins in our
data set: most proteins participate in at least two functions. Each panel
corresponds to a protein. The values on the X axis range from 1 to 15, and
are mapped to functions as in Table 1. The values on the Y axis correspond
to normalized frequencies of participation of each protein in sub-processes of
the 15 high-level functions.
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Figure 6. We estimate the mapping of latent groups to functions. The
two plots show the marginal frequencies of membership of proteins to true
functions (bottom) and to identified functions (top), in the cross-validation
experiment. The mapping is selected to maximize the accuracy of the predic-
tions on the training set, in the cross-validation experiment, and to minimize
the divergence between marginal true and predicted frequencies if no training
data is available.
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Figure 7. The accuracy of the predictions obtained with MMSB is 85%
on average. Our method significantly outperforms both the dumb random
annotator, 74% accurate on average, and the clever random annotator, 83%
accurate on average. This suggests that our method leverages the signal in
the data, and that the identification of latent groups to functions is somewhat
feasible in this application.
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Figure 8. Predicted mixed-membership probabilities (dashed, red lines)
versus binary manually curated functional annotations (solid, black lines)
for 6 example proteins. The identification of latent groups to functions is
estimated, and it is discussed in Figure 6.
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Figure 9. Predicted mixed membership scores for 841 proteins using our
mixed-membership stochastic block model (MMSB): most proteins are pre-
dicted as participating in at least two functions. The predicted degree of
membership is reasonably good, and the estimated Dirichlet parameter is
α̂ = 0.417. The values on the X axis range from 1 to 15, and are mapped
to functions as in Table 1. The values on the Y axis correspond to normal-
ized frequencies of participation of each protein in sub-processes of the 15
high-level functions.
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Table 1

Functional Categories. In the table we report the functions proteins in the
MIPS collection participate in. Most proteins participate in more than one
function (≈ 2.4 on average) and, in the table, we added one count for each

function each protein participates in.

# Category Size

1 Metabolism 125
2 Energy 56
3 Cell cycle & DNA processing 162
4 Transcription (tRNA) 258
5 Protein synthesis 220
6 Protein fate 170
7 Cellular transportation 122
8 Cell rescue, defence & virulence 6
9 Interaction w/ cell. environment 18

10 Cellular regulation 37
11 Cellular other 78
12 Control of cell organization 36
13 Sub-cellular activities 789
14 Protein regulators 1
15 Transport facilitation 41
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