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This article concerns the phenomenon of Mixed-Mode Bursting Oscillations (MMBOs). These are

solutions of fast-slow systems of ordinary differential equations that exhibit both small-amplitude

oscillations (SAOs) and bursts consisting of one or multiple large-amplitude oscillations (LAOs).

The name MMBO is given in analogy to Mixed-Mode Oscillations, which consist of alternating

SAOs and LAOs, without the LAOs being organized into burst events. In this article, we show how

MMBOs are created naturally in systems that have a spike-adding bifurcation or spike-adding

mechanism, and in which the dynamics of one (or more) of the slow variables causes the system to

pass slowly through that bifurcation. Canards are central to the dynamics of MMBOs, and their

role in shaping the MMBOs is two-fold: saddle-type canards are involved in the spike-adding

mechanism of the underlying burster and permit one to understand the number of LAOs in each

burst event, and folded-node canards arise due to the slow passage effect and control the number of

SAOs. The analysis is carried out for a prototypical fourth-order system of this type, which consists

of the third-order Hindmarsh-Rose system, known to have the spike-adding mechanism, and in

which one of the key bifurcation parameters also varies slowly. We also include a discussion of the

MMBO phenomenon for the Morris-Lecar-Terman system. Finally, we discuss the role of the

MMBOs to a biological modeling of secreting neurons. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4827026]

This study introduces a new mechanism for generating
complex oscillations in systems of differential equations
with fast and slow time scales. At the heart of the model,
there is a third-order system of equations, which exhibits
spike-adding transitions. Then, when the bifurcation pa-
rameter that controls the spike-adding transition is
allowed to evolve slowly in time, a new mechanism for
generating oscillations arises. The resulting solutions pos-
sess alternating segments of small-amplitude slow oscilla-
tions (SAOs) and bursts, which consist of large-amplitude
fast oscillations (LAOs). Hence, the solutions are termed
Mixed-Mode Bursting Oscillations (MMBOs), in analogy
with the known Mixed-Mode-Oscillations (MMO) that
consist of alternating SAOs and LAOs without the LAOs
being organized in bursts. Moreover, MMBOs may be
periodic or aperiodic. The large-amplitude oscillations in
the bursts are created by the slow passage through the
spike-adding bifurcation, and the number of small-
amplitude oscillations is controlled by the system param-
eters and by the presence of a certain type of singularity
in the slow subsystem. While the results are presented for
the Hindmarsh-Rose (H-R) model, they apply to a broad
class of fast-slow neuronal oscillators, including the
Morris-Lecar-Terman model and others that exhibit the
spike-adding transition. The analysis also raises timely
mathematical questions related to understanding the new
dynamics created by combining bursting and MMO
dynamics.

I. INTRODUCTION

MMOs is a term used to describe trajectories that com-

bine small-amplitude oscillations and large-amplitude oscil-

lations of relaxation type, both recurring in an alternating

manner. Recently, there has been a lot of interest in MMOs

that arise due to a generalized canard phenomenon.4,7,15,20,22

Such MMOs arise in the context of slow-fast systems with at

least two slow variables and with a folded critical manifold

(set of equilibria of the fast system). The small oscillations

arise during the passage of the trajectories near a fold, due to

the presence of a so-called folded singularity. The dynamics

near the folded singularity is transient, yet recurrent: the tra-

jectories return to the neighborhood of the folded singularity

by way of a global return mechanism.

An important step on the way to an understanding of

MMOs is the analysis of the flow near the folded singular-

ities. Of particular importance are special solutions called

canards. The term canard was first used to denote periodic

solutions of the van der Pol equation that stay close to the

repelling slow manifold (which lies close to the middle

branch of the fast nullcline).1 One of the characteristic fea-

tures of canard cycles is that they exist only for an exponen-

tially small range of parameter values. This very sharp

transition was then termed canard explosion.3 The related

term canard solution has been used to denote solutions con-

necting an attracting slow manifold to a repelling slow mani-

fold. Such canards, sometimes also called maximal canards,

organize the dynamics in a similar way as invariant sets
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which separate different dynamical regimes (e.g., separatri-

ces of saddle points). Also, in systems with more than one

slow variable, canards occur in a more robust fashion and

underlie the presence of the small-amplitude oscillations

near the folded singularity in MMOs.

When going from two to three dimensions in slow-fast

vector fields, one may add a second fast variable instead of a

second slow variable. In that case, the fast dynamics can now

sustain periodic dynamics and this can give rise, in the full

three-dimensional system, to complex oscillations referred to

as bursting oscillations. Such systems are then called bur-

sters. Bursters have long been studied using a slow-fast dy-

namics formalism and then classified by a number of

different means, including the bifurcations of the fast system

in which the burst events are initiated and terminated16,27 and

by an unfolding theory approach to singularities in the fast

subsystem.11 Among the many known bursters is the one giv-

ing rise to so-called square-wave bursting, where the burst

phase is initiated by a saddle-node bifurcation of equilibria

and ends in a homoclinic bifurcation. It is a “two fast/one

slow” system for which the critical manifold (fast nullcline)

is a cubic curve. The H-R system13,14 is one of the simplest

square-wave bursters since it corresponds to a (smooth) poly-

nomial vector field (Eqs. (1)–(3) below). In this model, burst-

ing solutions arise through a supercritical Hopf bifurcation

followed by a canard explosion; then a canard-mediated

spike-adding transition is responsible for bursting orbits with

more and more fast oscillations in the burst. This phenom-

enon is well-known and has been investigated, for instance,

in the Morris-Lecar-Terman model12,33 and in the

Hindmarsh-Rose model;24,25,34 see Sec. III.

An open question involves what happens when a system

exhibits slow passage through the spike-adding bifurcation,

and it is this question which we address in this article. We

show that slow passage through a spike-adding bifurcation

gives rise to complex oscillations. The solutions exhibit com-

plex oscillations with small-amplitude oscillations around

the fold point of the fast nullcline, interspersed with large-

amplitude oscillations, but contrary to MMOs, the large-

amplitude oscillations occur in bursts. This is why we choose

to name this more elaborate type of complex oscillations

Mixed-Mode Bursting Oscillations or MMBOs. A principal

difference here is that the system has two fast variables,

which allows for fast oscillations; then, the fast component

of the periodic attractors are the bursts. See Fig. 1.

MMBOs are also relevant in the modeling of biological

rhythms. For instance, the model of pancreatic b-cells pro-

posed by Bertram et al. in Ref. 2 has the right structure to

sustain MMBOs and the time series shown in Ref. 2

(e.g., Fig. 3) clearly displays both small-amplitude slow

oscillations and bursts of large-amplitude fast oscillations.

In this article, we investigate the presence of MMBOs in

the following system:

x0 ¼ y� ax3 þ bx2 þ I � z; (1)

y0 ¼ c� dx2 � y; (2)

z0 ¼ eðsðx� x1Þ � zÞ; (3)

I0 ¼ eðk � hxðx� xfoldÞ2 � hyðy� yfoldÞ2 � hIðI � IfoldÞÞ:
(4)

System (1)–(4) is an extension of the H-R burster, where the

main bifurcation parameter, the applied current I, evolves

slowly. In Eq. (4), the I component of the vector field is an

elementary model for dynamical clamping of the current, in

that it accounts for the lowest order terms that would be pres-

ent in a generic dynamical clamping protocol that slowly

adjusts the applied current. In Eqs. (1)–(3), which correspond

to the H-R system, we consider the classical parameter val-

ues, as follows: a¼ 1, b¼ 3, c¼ 1, d¼ 5, e ¼ 0:001, s¼ 4,

x1¼�1.618; note that the small parameter e is usually

denoted by r. The critical manifold of the H-R burster is the

curve

S0 ¼ fx0 ¼ 0g \ fy0 ¼ 0g
¼ fz ¼ �ax3 þ ðb� dÞx2 þ I þ cg: (5)

The terms xfold and yfold correspond to the lower fold point of

S0. Therefore, we have

FIG. 1. Simulation of system (1)–(4) for e ¼ 10�3; k ¼ 10�2, and hi ¼ 10�2 for i¼ x, y, I. The orbit shown here is clearly of MMBO type, that is, a succession

of small-amplitude slow oscillations and large-amplitude fast oscillations. The observed MMBO pattern is irregular and combines transitions of the type 41,

42, and 43.
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xfold ¼
2ðb� dÞ

3a
; yfold ¼ c� dx2fold: (6)

Furthermore, the value Ifold is chosen so that the slow null-

cline of the H-R burster fz ¼ sðx� x1Þg goes exactly

through the fold of S0. Thus, we have

Ifold ¼ ax3fold � ðb� dÞx2fold þ sðxfold � x1Þ � c: (7)

The main new result is that slow passage through Ifold com-

bined with a suitable return mechanism leads to MMBOs.

More generally, our goals in this article are to understand the

dynamics of MMBOs, in particular, to show that they result

from a slow passage through a spike-adding canard explo-

sion and to show how the number of SAOs is controlled, via

folded node theory, by the system parameter k. Along the

way, we will show in this article that the point ðIfold; 0Þ in the

parameter space ðI; eÞ is the accumulation point of the

wedges corresponding to spike adding transitions. We add

that the transition we study results in a system that has a

folded node singularity with a global return that includes

bursting dynamics of square wave type and which maps the

trajectories leaving the folded node region back to the funnel

region of the folded node. This description is a generaliza-

tion of the characterization of the MMO dynamics given in

Ref. 4.

The results of this article may be generalized to other

problems where a spike-adding transition occurs. The princi-

pal requirement is that the parameter which unfolds this tran-

sition evolves slowly in the full system.

The H-R model has been used as a simple framework

for single-cell dynamics, in relation to neurological diseases

such as epilepsy.26 We extend the H-R model by putting a

slow dynamics on the applied current I. Kispersky et al.28

created a biophysically accurate model of a stellate cell from

the entorhinal cortex and argued that the STO dynamics

occurring in this model could be linked to the presence of

hyperexcitability in models of temporal lobe epilepsy.21 This

mechanism relies on strong sensitivity of the neuronal model

to parameter variation, which is a property of the dynamics

considered in this paper. We provide a canonical description

of a very sensitive parameter region where small variation of

a parameter could lead to large changes of dynamics and in

particular of the firing rate. Moreover, the use of a phenome-

nological model (as opposed to a biophysical model) pro-

vides a theoretical/canonical framework to analyze dynamic

properties of MMBOs observed in both healthy and diseased

neurons in a way that is independent of the details of the par-

ticipating ionic currents that are responsible for each aspect

of the dynamics.

The article is organized as follows. In Sec. II, we

review the canard explosion phenomenon in classical pla-

nar fast-slow systems. In Sec. III, we examine the phe-

nomenon of spike-adding via canards in the third-order

vector-field (1)–(3), with I as a parameter. Then, in Sec.

IV, we present the dynamics of Eqs. (1)–(4), and the

appearance of orbits formed by a slow passage through

a spike-adding transition: these are MMBOs; we then

state the main characteristics of MMBOs. The article

ends with a discussion in Sec. V.

II. BRIEF REVIEW OF CLASSICAL CANARD
EXPLOSION

In this section, we briefly review the classical limit cycle

canards and the canard explosion in planar slow-fast systems

x0 ¼ f ðx; yÞ; (8)

y0 ¼ egðx; y; kÞ: (9)

FIG. 2. Canard explosion at the lower fold in the van der Pol system: the slow and the fast dynamics must be as shown and the slow nullcline (shown in black),

must cross the fold transversely. Four cycles are presented (in blue): headless canard in panel (a), maximal canard in panel (b), canard with head in panel (c),

and relaxation oscillation in panel (d). In each panel, the left plot corresponds to a phase plane representation of the cycle together with the fast cubic nullcline

S0 and the slow linear nullcline (both in black); the right panel shows the time series of the x variable during the cycle.
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Here, 0 < e � 1 is the small parameter measuring the sepa-

ration of time scales, and k 2 R is a parameter.

For e ¼ 0, these systems have a critical manifold (the

fast nullcline) S0 ¼ ff ðx; yÞ ¼ 0g. This manifold is often an

S-shaped curve with two non-degenerate quadratic fold

points (xm, ym) and (xM, yM), where f ðxi; yiÞ ¼ 0 and

@f=@xðxi; yiÞ ¼ 0 for i¼m, M. In addition, we assume that

for a locally unique value, k0, of the parameter k,

gðxm; ym; k0Þ ¼ 0 and
@g
@k ðxm; ym; k0Þ 6¼ 0. Hence, the slow

nullcline transversely intersects S0 at one of the fold points,

here the local minimum (xm, ym), and the slow nullcline

passes through this fold point with non-zero speed as k

changes through k0.

Under these conditions, system (8) and (9) exhibits a

standard canard explosion.1,3,9,10,18 We illustrate this for the

van der Pol equation in Fig. 2, with f ðx; yÞ ¼ y� ðx3=3� xÞ
and gðx; y; kÞ ¼ k� x. There is a Hopf bifurcation when the

slow nullcline crosses any of the fold points of S0, that is, at

k ¼ kH ¼ 61. In Fig. 2(a), a limit cycle canard known as a

headless duck is shown. It has long segments near the attract-

ing slow manifold (near the right branch of S0) and the repel-

ling slow manifold (near the middle branch of S0) in

alternation and a fast jump from the latter back to the former

to complete the cycle. Fig. 2(b) illustrates the maximal head-

less canard, which occurs for the unique parameter

value, kc ¼ k0 � ð1=8Þe� ð3=32Þe2 þ Oðe3Þ, at which the

attracting and repelling slow manifolds coincide. Then, for k

on the other side of kc, the limit cycle canard jumps from the

repelling (middle) branch to the left attracting slow mani-

fold, forming a duck with a head, as shown in Fig. 2(c).

Finally, for values of k at the extreme of the canard explo-

sion interval, the periodic solution is a full-blown relaxation

oscillation, see Fig. 2(d).

We observe that even a standard canard explosion in

slow-fast systems with one slow variable and one fast vari-

able need not always be monotonic in the regular parameter

(k in the context of this section), see, e.g., Ref. 18. In other

words, for some systems, the sequence of parameter values

of k corresponding to the canards in the canard explosion is

a non-monotone sequence, within the exponentially small

interval. A very simple example of this is, for some parame-

ter values, the FitzHugh-Nagumo system. This feature may

result in the presence of turning points as well the coexis-

tence of canard cycles for the same value of k, but it does not

alter the fundamental features of canard explosion, like the

closeness to singular cycles and the exponentially narrow

FIG. 3. Panel (a) shows the bifurcation diagram of the fast subsystem of the Hindmarsh-Rose burster, i.e., Eqs. (1) and (2), with z acting as a parameter. All pa-

rameter values are taken to be the classical ones (Sec. I) and I is fixed at the value corresponding to the canard explosion taking place in the full system and dis-

played in Fig. 4, that is, I¼ 1.3278138. Panels (b1)-(b3) show snapshots of the phase portrait of the fast system for three different values of z, namely,

z¼ 1.449 (lower homoclinic), z¼ 1.75 and z¼ 2.180 (upper homoclinic). For each value of z in between the lower and upper homoclinics, the unstable mani-

fold of the saddle returns to a neighbourhood of the saddle and gives the leading-order location of the spike in the full system.
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width of the parameter interval. Due to this complication,

one usually does not think of a branch of canard cycles as

parametrized by k but rather as a curve parametrized by k

and another quantity characterizing the solution, which could

be amplitude, often used in the context of Hopf bifurcations,

L2 norm, the height of the corresponding singular canard,18

etc. The choice often made in the case of canards, partly

imposed by the continuation program AUTO,8 is to use L2
norm. Keeping in mind this non-monotonicity, we will

describe the evolution of canard solutions referring as a func-

tion of their position on the branch rather the corresponding

value of the parameter, which does not need to be unique.

III. SPIKE-ADDING CANARD EXPLOSION IN THE
HINDMARSH-ROSE SYSTEM

In this section, we examine the transition from a stable

equilibrium (quiescence) to stable square-wave bursting in

the Hindmarsh-Rose system (1)–(3) for a sequence of fixed

values of the parameter I. This sequence is centered about

the value of I corresponding to the value of the canard explo-

sion in the full system, and a sequence of phase portraits of

the fast system (1)–(2) for this value of I is shown in Figure

3, for some representative values of z. This transition occurs

via the well-known mechanism of spike-adding, see Refs.

12, 24, 25, and 34, first analyzed in the Morris-Lecar-

Terman model, see Ref. 33. For each N¼ 0, 1, 2…, there is

an exponentially narrow interval of parameter values I over

which the system exhibits a continuous transition from peri-

odic solutions with N spikes to periodic solutions with Nþ 1

spikes. Each periodic solution in the transition sequence is

referred to as a canard of limit cycle type, or limit cycle ca-

nard, since each periodic orbit has alternating segments near

attracting and repelling branches of fixed points interspersed

with fast jumps from the latter to the former that reinitiate

the cycle. Each transition sequence is referred to as a canard

explosion, and the transitions for N¼ 0 and N¼ 1 are illus-

trated in Figs. 4 and 5, respectively.

FIG. 4. Spike-adding phenomenon: time series and phase portraits for the sequence of limit cycle canards observed in the transition from 0 to 1 spike in the

Hindmarsh-Rose system (1)–(3). Parameter values are those given below Eqs. (1)–(3), with e ¼ 5� 10�4 and I varying by an exponentially small amount

around the value of 1.3278138026. The top plot in each panel (a) to (i) shows the time series of the x-variable, with the period normalised to 1. The bottom

plot shows the limit cycle canard in the phase plane (x, z). In each frame, the behaviour of the trajectory at the end of the canard segment can be understood by

looking at the phase portrait of the fast system (1) and (2) shown in Fig. 3.
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A detailed description of the transition for N¼ 0 from

quiescence to a limit cycle with one large-amplitude spike is

as follows. At I� 1.413, there is a Hopf bifurcation of the

full system (1)–(3). This Hopf bifurcation induces the canard

explosion, in exact analogy to that in the planar van der Pol

and FitzHugh-Nagumo equations. For I¼ 1.3278138093, the

H-R system (1)–(3) exhibits a small-amplitude limit cycle

canard without any spike, also known as a headless canard,

see Fig. 4(a). As I is decreased, see Fig. 4(b), the limit cycle

grows in amplitude until, at I¼ 1.3278138026, it reaches the

far right fold near z¼ 2.328, see Fig. 4(c). This is the maxi-

mal headless canard, and as in the canonical planar systems

with canards, such as the van der Pol and FitzHugh-Nagumo

equations, it occurs precisely when the persistent attracting

and repelling slow manifolds near the branches of equilibria

coincide. Although slow manifolds are in general not unique,

there are unique analytic slow manifolds near the attracting

branches of the critical manifold.35 Besides, one can choose

a repelling slow manifold that starts Oð ffiffi

e
p Þ near the canard

point and continues to Oðe1=3Þ close to the jump point fol-

lowing the repelling branch; the power of e is dictated by the

choice of the blow-up transformation needed to analyse the

underlying singularity: canard point or fold point. Therefore,

one can study the intersection between the attracting and the

repelling slow manifolds; see Ref. 19 for details.

Further along the branch, the limit cycle continues to

have long segments near both the attracting and the repelling

branches of the critical manifold, but now at the end of the

segment near the repelling branch there is a brief segment of

small oscillations, see Figs. 4(d) and 4(e), since the orbit

now jumps from the critical manifold up to the branch of

attracting periodic orbits, instead of back down to the branch

of the critical manifold corresponding to attracting fixed

points of the fast system. The attracting slow manifold now

lies above the repelling slow manifold so that solutions

must jump up to the branch of attracting periodic orbits.

Even further along the branch, the up-jump occurs near

the homoclinic orbit near z¼ 2.180, and the oscillations

disappear, see Fig. 4(f). There is a long segment near the

branch of repelling fixed points again, so that the canard

cycles in this range have two canard segments, with the

spike in between them.

FIG. 5. Spike-adding phenomenon: time series and phase plane projections for limit cycles along the transition from 1 spike to 2 spikes. The first spike, created

during the previous spike-adding transition, remains in essentially the same place during the transition in which the second spike is generated. Along the explo-

sion that leads to the addition of a second spike, the parameter I varies by an exponentially amount around the value of 1.3317831217.
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The second canard segment disappears as we move yet

further along the branch, see Fig. 4(g). Then, toward the end

of the canard explosion, the location of the spike shifts

downward in z, see Fig. 5(h), until the spike occurs near the

lower homoclinic (z¼ 1.449). This completes the description

of how the first large-amplitude spike is created in a continu-

ous manner as the parameter I is changed, so that continuous

dependence of solutions on parameters is respected, and it

completes the description of the first cycle of spike-adding,

for N¼ 0.

The continuous transition for N¼ 1, from a limit cycle

canard with one spike to a limit cycle canard with two

spikes, occurs in a completely analogous fashion, see Fig. 5.

During this second canard explosion, the first spike remains

near z¼ 1.449. The sequence in which the second spike is

created is precisely the same as that in which the first spike

was created in Fig. 4 above. Moreover, we refer to this as the

knitting mechanism. One creates loops in knitting in a simi-

lar manner, by hooking the yarn over the tip of the needle

(here the far right fold point) and then pulling it back along

the needle.

It is worth observing also that, not only are the intervals

of parameter values I in which each of these canard explo-

sions for N¼ 0, 1, 2,… occur exponentially small in the limit

as e ! 0, but the critical values of I, at which the maximal

headless ducks with N spikes occur, also approach each other

as e ! 0. Hence, the entire sequence of canard explosions

occurs in an exponentially small interval of I values.

The dynamics of the canard limit cycles during each of

these canard explosions is richer than that observed in planar

systems such as the van der Pol and the FitzHugh-Nagumo

equations because the repelling slow manifold is of saddle

type here with two-dimensional stable and unstable mani-

folds. Indeed, according to the position of the orbit with

respect to these manifolds, it will either follow the slow

manifold along a canard segment or escape from it along a

fast fiber; see Ref. 12 for details. The transition can be under-

stood by invoking the Exchange Lemma.17

For parameter values of I when the spike is first created,

see Figs. 4(f) and 5(c), the spike lies close to the (upper)

homoclinic of the fast system. Then, further along the

branch, the limit cycle canard still exhibits a spike, however

there is no homoclinic orbit of the fast system nearby,

see Fig. 3(b2). Nevertheless, in the full third-order system,

the one-dimensional repelling slow manifold has two-

dimensional stable and unstable manifolds whose relative

positions are responsible for the creation of the spike. These

positions are given to leading order by the stable and unsta-

ble manifolds of the saddle repelling fixed point in the fast

system, as shown in Fig. 3(b2).

Finally, to give further perspective on these results, we

describe the classical square wave burster, as analyzed by

Terman.33 In general position, such a solution behaves as a

relaxation oscillator near the lower fold and jumps to an

attracting manifold corresponding to fast oscillations.

Subsequently, the solution follows the manifold of stable

fast oscillations until it terminates near the homoclinic orbit

of the fast system, whereupon the solution jumps down to

the stable branch of the slow manifold. As explained in

Ref. 33, the number of fast oscillations is unbounded as

e ! 0. Although we are sure that this is folklore information,

we have not found an asymptotic estimate of the number of

such oscillations. We have derived such an estimate and

included it in this paper in Appendix. Our calculation implies

that the number of such oscillations is Oð1=eÞ. It follows that
changes of I by OðeÞ may result in spike adding transitions

of the same kind as the latter part of our spike adding canard

explosion as well as the spike adding transitions described

by Terman33 or Guckenheimer and Kuehn.12 Such spike add-

ing transitions do not contain classical canard cycles but they

contain canard segments corresponding to passage near the

middle part of the critical manifold (see Figure 3(b) of Ref.

33) and they occur in exponentially small intervals of I. As

pointed out by Terman33 and further elaborated on by

Guckenheimer and Kuehn,12 such transitions do not have to

be monotonic in I and may lead to chaotic dynamics. Due to

the computational complexity (a large number of spikes), we

do not show an AUTO plot of such a transition.

IV. MMBOs AS A SLOW PASSAGE THROUGH
A SPIKE-ADDING CANARD EXPLOSION

In this section, we study the full system (1)–(4), in

which I is also a slow variable. We show that the full system

exhibits a broad class of new solutions known as MMBOs,

which are periodic or aperiodic solutions that consist of two

distinct phases: a segment of SAOs in alternation with a

burst event or multiple burst events, with each burst compris-

ing one or more LAOs or spikes. A prototypical MMBO of

the full system has been presented in Fig. 1. There, a variable

number of SAOs (ranging from one to three) occur in alter-

nation with a burst event that consists of four LAOs.

In Sec. IVA, we study the MMBOs in the slow passage

through canard explosion regime. We show that the LAOs

occur due to slow passage through the spike-adding bifurca-

tion, coupled with a global return mechanism. In this regime,

for moderate values of e, the MMBO patterns found are quite

complicated and can evolve dynamically in time. In contrast,

in Sec. IVB, we use the theory of folded nodes for fast-slow

systems to show that the number of SAOs in a MMBO may

be controlled by the system parameter k. The observed

MMBO patterns are then much more regular and correspond

to smaller values of e. The notation for a MMBO with s

SAOs and ‘ LAOs per burst is ‘s. With this notation, MMOs

are simple examples of MMBOs.

A. Understanding MMBOs as a slow passage through
a canard explosion

In this section, we focus on the dynamics of MMBO tra-

jectories as a slow passage through a canard explosion.

Hence, in this section, we consider the case of e relatively

large.

The MMBOs are characterized by the number of SAO

during the first phase and the number of bursts during the

second phase, as well as the number of LAOs within each

burst. An elementary example is given by the MMBO shown

in Fig. 6(a). It consists of one SAO followed by a single burst

event, which consists of eight LAOs, and this pattern repeats

046106-7 Desroches, Kaper, and Krupa Chaos 23, 046106 (2013)



five times. Then, after the fifth transition of this type, there is a

burst with seven LAOs, which is not preceded by a SAO. Overall,

this 818181818170 repeats itself for time up to at least t¼ 100000,

and only a segment of amplitude about 20000 is shown.

Within the cycle of the five successive 81, the SAO have

increasing amplitudes. The time series for the variable I

shown in Fig. 6 reveals that the I variable repeatedly passes

through the interval (centered about I¼ 0.869) corresponding

to the spike-adding mechanism; this value corresponds to the

I-value of the folded node, we indicate it as a dashed red

curve in both panels (c) and (d) for each value of k. With

each passage, the value of z at which the jump from the

branch of repelling equilibria up to the branch of attracting

periodic orbits occurs decreases slightly, so that the resulting

SAO has a larger amplitude.

Next, the fact that after the fifth 81 there is no SAO pre-

ceding the LAOs may be understood as follows. From the

plots of the x and I variables, one sees that if the orbit

reaches the fold of S0 after I goes above the value of the

folded node then it does not complete a SAO but directly

jumps to the LAO regime; see the blue boxes in Figs. 6(a)

and 6(c). Hence, there is no SAO preceding the subsequent

LAOs. Also, within the sequence of 81, the amplitudes of the

successive SAOs increase, marking a dynamic approach to

the first secondary canard.

Finally, the fact that after the fifth 81 the following burst

has lost one LAO can be understood by looking at the time

evolution of I; see Fig. 6(c). Indeed, the loss of the SAO due

to the slow passage through a canard explosion induces the

orbit to jump at the lower fold and start the burst earlier. The

dynamics of I is affected and as a result it changes the loca-

tion of the homoclinic connection of the fast subsystem,

whose associated saddle equilibrium happens for a lower

value of z. This explains why the burst is shorter in this case.

Another prototypical MMBO is shown in Fig. 6(b), but

now the pattern is highly irregular. We see alternations

between the basic blocks 22, 20 and 21. Focusing on the

LAOs which are not preceded by SAOs, three of which occur

in the time series shown, one near the beginning and two

near the end, we see from the times series of the I-variable

that the value of I does not dip below Ifold, which explains

the absence of SAOs. One may use a similar explanation by

looking at the behaviour of the I-variable during the three

corresponding peaks.

What we have just seen with the two examples of

MMBOs shown in Fig. 6 is valid for “moderate” values of e,

that is, such that e does not become very small relative to k.

In this situation, the slow passage through canard explosion

can modify dynamically the number of SAOs within one

transition, and the I dynamics can also alter the number of

LAOs within each burst due to changes in the location of the

homoclinic connection in the underlying fast subsystem.

However, in order to understand the MMBO pattern using

folded node theory, one has to decrease e substantially.

FIG. 6. Periodic MMBOs of system (1)–(4), for k ¼ 0:45; e ¼ 2:5 � 10�4 (panel (a) for the x variable and panel (c) for the I variable) and k ¼ 0:35; e ¼ 10�3

(panels (b) and (d) for the x variable and the I variable, respectively); in all panels, hx¼ 5 and hy ¼ hI ¼ 10�2. In panels (c) and (d), the dashed red curve indi-

cates the value of I corresponding to the folded node. The unlabelled panels to the side of panel (a) and panel (b) show zooms into one burst of the correspond-

ing MMBO, with 8 LAOs (left panel) and 2 LAOs (right panel).
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The patterns gain more LAOs per burst and become

more regular as the parameter e is decreased. The

MMBOs shown in Figs. 7(a) and 7(b) are for the same

parameter values as those shown in Figs. 6(a) and 6(b),

however the values of e are much smaller. In particular,

while one sees the pattern 818181818170 for k¼ 0.45 and

e ¼ 0:001 in Fig. 6(a), one sees a periodic N3 pattern

with N¼ 192 for the much smaller value e ¼ 10�5, as

shown in Fig. 7(a). Similarly, with k¼ 0.35, the pattern

becomes a regular N5 pattern with N¼ 194 for e ¼ 10�5,

as shown in Fig. 7(b). The number of spikes per burst

has increased dramatically because of the chasm between

the fast and slow timescales when e ¼ 10�5. Moreover,

as we will show in Subsection IV B, the number of

SAOs has increased from 3 to 5 as k is decreased, due

to the dynamics near the folded node.

B. Controlling the number of SAOs in MMBOs using
folded node theory

In Sec. IVA, we have discussed a series of transitions

which occur upon variation of I and lead to MMBO dy-

namics. As a result one obtains a system with a folded

node point and a global return passing through bursting

dynamics. This is a generalization of the perspective on

MMOs given in Ref. 4; consequently a prototypical con-

text of MMBOs is a combination of folded node dynamics

with a global return including bursting dynamics and

returning the trajectories which leave the folded node

region back to the funnel of the folded node, see also

Ref. 2. In this section, we consider the case when I < Ifold
(sufficiently close to Ifold). In this case, there is a folded

node in the four-dimensional extended Hindmarsh-Rose

system (1)–(4). We determine the number of SAOs in a

given MMBO by using the local folded node theory from

Ref. 31 and its extension to systems with two fast

dimensions.4

Changing to the slow time s ¼ et gives the equivalent

system

e _x ¼ y� ax3 þ bx2 þ I � z;

e _y ¼ c� dx2 � y;

_z ¼ sðx� x1Þ � z;

_I ¼ k � hxðx� xfoldÞ2 � hyðy� yfoldÞ2 � hIðI � IfoldÞ:
(10)

The e ¼ 0 limit of system (10) gives the singular approxima-

tion to the slow dynamics or reduced system, that is, differen-

tial equations for the slow variables z and I constrained by

algebraic equations defining the fast nullsurface, that is, the

critical manifold S0, recall (5). This manifold is a cubic

hypersurface inR4. By projection onto the three-dimensional

phase space (x, z, I), S0 is a cubic surface with two curves of

fold points (with respect to the fast variable x) Fþ and F–,

given by

Fþ ¼ x ¼ 0f g; F� ¼ x ¼ 2ðb� dÞ
3a

� �

:

Differentiating the algebraic condition (5) defining S0 with

respect to time gives a differential equation for x

xð3ax� 2ðb� dÞÞ _x ¼ _I � _z

¼ �ax3 þ ðb� dÞx2 þ I þ c� sðx� x1Þ
þ k � hxðx� xfoldÞ2 � hyðy� yfoldÞ2

� hIðI � IfoldÞ:

It is customary to append to that equation one slow equation,

for instance that of I. The resulting two-dimensional system

is singular along the fold set F ¼ Fþ [ F� of S0. In order to

FIG. 7. Periodic MMBOs of system (1)–(4), for k¼ 0.45 (panel (a)) and k¼ 0.35 (panel (b)) and for e ¼ 10�5; in both panels hx¼ 5 and hy ¼ hI ¼ 10�2.

Decreasing e allows to find MMBOs with the correct number of SAOs as predicted by folded node theory via formula (16). In both cases, the number of LAOs

is very large, about 200.
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extend that system up to the fold set F, one typically desin-

gularises it by performing a time rescaling, here with a factor

xð3ax� 2ðb� dÞÞ; see, for instance, Refs. 4 and 32 for the

general theory. Therefore, one obtains a planar non-singular

system given by

_x ¼ �ax3 þ ðb� dÞx2 þ I þ c� sðx� x1Þ þ k

� hxðx� xfoldÞ2 � hyðy� yfoldÞ2 � hIðI � IfoldÞ; (11)

_I ¼ xð3ax� 2ðb� dÞÞðk � hxðx� xfoldÞ2 � hyðy� yfoldÞ2

�hIðI � IfoldÞÞ: (12)

System (11) and (12) is called the Desingularised Reduced

System (DRS). Equilibria of the DRS lying on F are called

pseudo-equilibria or folded singularities for the original sys-

tem given that they are not equilibrium solutions there. We

focus on the folded singularity satisfying xf 6¼ 0, that is,

xf ¼
2ðb� dÞ

3a
¼ xfold: (13)

From the previous equality comes immediately that

yf ¼ yfold. Using the x-equation of the DRS, we find that

If ¼
ax3fold � ðb� dÞx2fold � cþ sðxfold � x1Þ � k � hIIfold

1� hI
:

In the first four terms of the numerator above, we recognise

the expression of Ifold given in (7). Therefore, we have

If ¼ Ifold �
k

1� hI
: (14)

Now, the Jacobian matrix of the DRS at the folded singular-

ity ðxf ; IfÞ is given by

�s 1� hI
ð6axf � 2ðb� dÞÞðk � hIðIf � IfoldÞÞ 0

� �

:

Using Eqs. (13) and (14), we see that the lower left entry fur-

ther simplifies to

2ðb� dÞ k

1� hI
:

Consequently, the two eigenvalues of the folded singularity

are given by

k6 ¼ 0:5
�

�s6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ 8kðb� dÞ
p

�

;

which gives a node provided that s2 þ 8kðb� dÞ > 0 and

b� d < 0. Finally, we obtain the following expression for

the eigenvalue ratio l at the folded node

l ¼ kþ
k�

¼
s
�

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ 8kðb� dÞ
p

�

þ 4kðb� dÞ
4kðd � bÞ : (15)

This ratio l determines n, the number of SAOs, as follows.

The general theory, see, for instance, Ref. 4, states that for

0 < e � 1 small enough, there are at most nþ 1 small oscil-

lations near the folded node, that is, n secondary canards and

nþ 1 sectors of rotation, where

2nþ 1 <
1

l
< 2nþ 3 ðn 2 NÞ:

In the present case, for the fixed (classical) parameter values

s¼ 4, b¼ 3, and d¼ 5, formula (15) reduces to

l ¼ 2ð1�
ffiffiffiffiffiffiffiffiffiffiffi

1� k
p

Þ � k

k
: (16)

In Fig. 7, we show a periodic MMBO pattern 11923 obtained

by direct simulation for k¼ 0.45, that is, 1=l � 6:74, and
e ¼ 10�5. Therefore, based on Eq. (16), one expects at most

three small oscillations and three sectors of rotation, sepa-

rated by the strong canard cs and two secondary canards. We

show both the time profile of that solution as well as its pro-

jection onto the (x, y, z)-space. Reducing e allows one to

observe the correct number of SAOs around the folded node

pf of the system, as predicted by theory; see Ref. 4. Indeed,

in Fig. 7(a), we find 3 SAOs, as predicted by formula (16).

Similarly, for k¼ 0.35, the theory predicts 1/l� 9.32, that is,

5 SAOs and that is exactly what is shown in Fig. 7(b), which

shows the MMBO pattern of 1945.

The number of SAOs will typically be constant and

maximal only for MMBOs which are not close to spike add-

ing in their burst segment. As a MMBO undergoes a spike

adding transition the return point on the stable slow manifold

can move quite wildly, passing between different sectors of

rotation. This can result in the presence of very complicated

patterns, not just in the part of the burst segment of the dy-

namics but also in the segment corresponding to SAOs.

C. Slow manifolds and sectors of rotation

We present in Fig. 8 the trajectory shown in Fig. 7(a)

projected onto the (x, z, I)-space and plotted together the crit-

ical manifold S0, the lower fold curve F– as well as the

folded node pf . Near the folded node of system (1)–(4), the

flow is essentially three-dimensional and the dynamics is

organised by the two-dimensional slow manifolds that exist

in this region of phase space. The attracting and repelling

slow manifolds can intersect transversely along trajectories:

these are the secondary canards; see Ref. 4 for details.

We computed slow manifolds near the folded node of

system (1)–(4) for parameter values that correspond to the

MMBO C shown in Figs. 7 and 8, using a computational

strategy developed in Ref. 6, namely, the numerical continu-

ation of orbit segment solution of boundary-value problems.

The result is presented in Fig. 9 where we show the computa-

tion of an attracting slow manifold Sae as well as the associ-

ated maximal canards for the chosen parameter values

(corresponding to the MMBO C): the strong canard cS as

well as two secondary canards. They form a partition of Sae
into three sectors of rotations, which we named si, i¼ 1, 2, 3.

It is clear from that figure that the periodic MMBO C returns

in the maximal sector s3, which justifies that it has the maxi-

mal number of small oscillations. The return of trajectories
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is organised by the dynamics of I and thus it depends on the

parameter k and hi, i¼ x, y, I. For a fixed value of k, that is a

fixed value of l, we can vary any of the parameters hi (using

numerical continuation) and we can compute the distance d

between the point where the associated trajectories return on

Sae and the strong canard cs. As d increases, all the sectors

can be visited by the corresponding trajectories; see Refs. 7

and 20 for more details on the effect of d. This parameter d

behaves linearly as a function of hi, i¼ x, y, I (data not

shown).

V. DISCUSSION AND FUTURE WORK

In this article, we presented the new phenomenon of

MMBOs in 4D slow-fast systems with two slow variables

and two fast variables. MMBOs are solutions with both

small-amplitude slow oscillations and large-amplitude fast

oscillations organised in bursts. We constructed a minimal

system, based on the Hindmarsh-Rose burster, displaying

MMBOs by considering an extension of the Hindmarsh-

Rose burster in the spike-adding regime. The MMBOs were

all created as a result of slow passage the through spike-

adding transition. There is a folded node in the full system

(1)–(4), and we verified that, for e sufficiently small, the

number of SAOs in MMBO trajectories follows the formula

predicted by folded node theory. Moreover, we showed that

the LAOs in MMBO trajectories are generated by the slow

passage through the spike-adding transition.

The parameter region of MMBOs is defined by the pres-

ence of a folded node as well as bursting dynamics. At the

boundary of the MMBO parameter region, one can access

different dynamical regimes: MMOs without bursting, burst-

ing without SAOs, spiking, and quiescence. More specifi-

cally, if the return to the stable branch is not into the funnel

region then SAOs will disappear and the observed behavior

will be that of classical bursting. Moving in another parame-

ter direction, e.g., towards the folded saddle-node transition,

will result in the number of SAOs tending to infinity, thus,

making the quiescent phase longer. Eventually, spiking will

cease. Finally, an important transition in bursters is when

bursting solutions give way to spiking solutions; one can

expect that, in some parameter direction, one can lose the

burst, replaced by isolated LAOs, then the full solution will

become a MMO in the usual sense.

The analysis presented in this article holds for any sys-

tem with two slow and two fast variables with a folded node

or a folded saddle-node of type II7,20 and with a fast dynam-

ics qualitatively similar to the Hindmarsh-Rose model. In

particular, the current results are of interest for other bur-

sters, including the Morris-Lecar-Terman model.12,33 The

Morris-Lecar-Terman system is known to display spike-

adding transitions. Furthermore, the bifurcation structure

of the fast system is slightly simpler due to the absence

of Hopf bifurcation on the upper branch of the critical

manifold. Therefore, it is to be expected that by allow-

ing the corresponding parameter to evolve slowly, one

will create MMBO dynamics in the resulting extended

system.

FIG. 9. Periodic 12-MMBOs C of system (1)–(4), obtained for k¼ 0.45, that

is, 1/l� 6.74, and e ¼ 10�5, and projected onto the (x, z, I)-space; also

shown are a numerical computation of an attracting slow manifold Sae . We

highlight three orbits on Sae : the strong canard cs as well as two (unlabelled)

secondary canards; these define three rotation sectors named si, i¼ 1, 2, 3.

The number of SAO in a given solution depends on which sector it lies in; in

particular, in sector si solutions have i SAOs.

FIG. 8. Periodic 1923-MMBOs of system (1)–(4), obtained for k¼ 0.45, that is, 1/l� 6.74, and e ¼ 10�5, and projected onto the (x, z, I)-space; also shown are

the critical manifold S0 and the lower fold curve F
–. Panel (b) is an enlargement of panel (a) near the folded node pf ¼ ðxf ; yf ; zf ; IfÞ.
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Note that we chose to construct MMBOs starting from a

burster and adding a second slow variable, hence creating a

slow passage, and therefore, the possibility for SAOs; how-

ever, one could as well construct MMBOs, by starting from

a folded node type system with two slow and one fast dimen-

sions and suitably adding a fast dimension. In this paper, we

focused on the first “route” to MMBO dynamics as we

thought it was the most natural; finding an example of the

second one is an interesting topic for future work.

The MMBO dynamics is relevant for other neuronal

models. We were initially inspired by the time series from a

model of pancreatic b-cells by Bertram et al.,2 see Figure 3.

MMBO dynamics should also be relevant for models of

secreting neurons, in particular GnRH neurons.5

As mentioned in the introduction, the H-R model has

been used as a phenomenological description of neurons in

the context of epilepsy.26 The generalised H-R model studied

in this work supports a variety of dynamical regimes, includ-

ing MMBOs. Different dynamical behaviours can be reached

by small variation of parameters and can correspond to both

healthy and pathological neuronal activity. Future work

should include addressing questions about the dynamics of

these neurons embedded in networks with different types of

architectures, for instance in the small-world network archi-

tecture, which has been used to study epilepsy.23

It is interesting to note that elliptic bursting oscillations

could be seen as a type of generalized MMBOs. Elliptic

bursting time series are certainly visually similar to that of

MMBOs; however, they appear to be different in nature

since their SAOs correspond to fast oscillations, rather than

oscillations on a slow or intermediate time scale. This con-

trasts with the time series of the MMBOs studied in this arti-

cle, which are a combination of the time series of canard-

mediated MMOs and of bursters.

Finally, there are a number of mathematical questions

that this work has generated. For instance, proving rigorously

the persistence of periodic orbits in the extended system

where the main parameter organising the spike-adding tran-

sition evolves slowly. These questions are the subject of cur-

rent investigation.
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APPENDIX: ASYMPTOTICS OF THE NUMBER OF
SPIKES PER BURSTAS efi 0

Given a system of the form

x0 ¼ f ðx; yÞ
y0 ¼ egðx; yÞ; x 2 R

2; y 2 R:
(A1)

Suppose that for e ¼ 0 there exists a family of periodic orbits

of the layer problem x0 ¼ f ðx; yÞ, parametrized monotoni-

cally by y, continuing from a Hopf bifurcation to a

homoclinic orbit. We denote the periodic orbits in this family

by p(t, y), with Ty denoting the period of the orbit

t ! pðt; yÞ. The set

M0 ¼ [fpðt; yÞ : t 2 ½0; TyÞ; y 2 ðyHopf ; yhomÞg;

is a normally hyperbolic attracting invariant manifold M0 for

e ¼ 0 (excluding the immediate neighborhood of the Hopf

bifurcation). Since it is normally hyperbolic, it persists to a

nearby invariant manifold Me. The evolution of y for the vec-

tor field restricted to Me, is given by

y0 ¼ egðpðt; yÞ; yÞ þ Oðe2Þ:

Discarding the OðeÞ and averaging, we obtain

y0 ¼ e
1

Ty
GðyÞ;

where

GðyÞ ¼
ðTy

0

gðpðs; yÞ; yÞds;

see, for example, Ref. 29 or Ref. 30. To find the lowest order

approximation to the number of rotations incurred as the

flow passes from y¼ 0 to y ¼ yhom, we note that the incre-

ment in the amount of rotation incurred as y moves from

some y0 to y0þDy is given by

DR ¼ Dt

Ty0
¼ 1

e

Dy

Gðy0Þ
:

Hence,

R ¼ 1

e

ðyhom

yHopf

dy

GðyÞ:

Finally, if a trajectory of Eq. (A1) is attracted to Me close to

a periodic orbit corresponding to some y0 between yHopf and

yhom, then the estimate of the number of fast oscillations it

makes is given by

Rðy0Þ ¼
1

e

ðyhom

y0

dy

GðyÞ:
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