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MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES

MATHIEU DESROCHES∗, JOHN GUCKENHEIMER†, BERND KRAUSKOPF∗, CHRISTIAN KUEHN‡,

HINKE M. OSINGA∗, MARTIN WECHSELBERGER§

Abstract. Mixed-mode oscillations (MMOs) are trajectories of a dynamical system in which there is an altern-
ation between oscillations of distinct large and small amplitudes. MMOs have been observed and studied for over
thirty years in chemical, physical and biological systems. Few attempts have been made thus far to classify different
patterns of MMOs, in contrast to the classification of the related phenomena of bursting oscillations. This paper
gives a survey of different types of MMOs, concentrating its analysis on MMOs whose small-amplitude oscillations
are produced by a local, multiple-time-scale “mechanism.” Recent work gives substantially improved insight into
the mathematical properties of these mechanisms. In this survey, we unify diverse observations about MMOs and
establish a systematic framework for studying their properties. Numerical methods for computing different types of
invariant manifolds and their intersections are an important aspect of the analysis described in this paper.

1. Introduction. Oscillations with clearly separated amplitudes have been observed in

several application areas, notably in chemical reaction dynamics. Figure 1 reproduces Fig-

ure 12 in Hudson, Hart and Marinko [103]. It shows a time series of complex chemical

oscillations of the Belousov-Zhabotinsky (BZ) reaction [18, 237] in a stirred tank reactor.

The series appears to be periodic, and there is evident structure of the oscillations within

each period. In particular, pairs of small-amplitude oscillations (SAOs) alternate with pairs

of large-amplitude oscillations (LAOs). The result is an example of a mixed-mode oscilla-

tion, or MMO, displaying cycles of (at least) two distinct amplitudes. There is no accepted

criterion for this distinction between amplitudes, but the separation between large and small

is clear in the case of Figure 1. The pattern of consecutive large and small oscillations in

an MMO is an aspect that draws immediate attention. Customarily, the notation Ls1

1 Ls2

2 · · · .

is used to label series that begin with L1 large amplitude oscillations, followed by s1 small-

amplitude oscillations, L2 large-amplitude oscillations, s2 small-amplitude oscillations, and

so on. We will call Ls1

1 Ls2

2 · · · the MMO signature; it may be periodic or aperiodic. Sig-

natures of periodic orbits are abbreviated by giving the signature of one period. Thus, the

time series in Figure 1, which appears to be periodic, has signature 22. As Hudson, Hart

and Marinko varied the flow rate through their reactor, MMOs with varied signatures were

observed, as well as simple oscillations with only large or only small amplitudes. Similar

results to those presented in their paper have been found in other experimental and model

chemical systems. Additionally, MMOs have been observed in laser systems and in neurons.

We present an overview with references to experimental studies of MMOs in these and other

areas in Table 9.1 of the last section of this survey.

Dynamical systems theory studies qualitative properties of solutions of differential equa-

tions. The theory investigates bifurcations of equilibria and periodic orbits, describing how

these limit sets depend upon system parameters. Mixed-mode oscillations may be periodic or-

bits, but we then ask questions that go beyond those typically examined by standard/classical

dynamical systems theory. Specifically, we seek to dissect the MMOs into their epochs of

small- and large-amplitude oscillations, identify each of these epochs with geometric objects

in the state space of the system, and determine how transitions are made between these. When

the transitions between epochs are much faster than the oscillations within the epochs, we are

led to seek models for MMOs with multiple time scales.
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FIG. 1. Bromide ion electrode potential in the Belousov-Zhabotinsky reaction; reproduced from Hudson, Hart

and Marinko, J. Chem. Phys. 71(4): 1601–1606, 1979.

Early studies of MMOs in model systems typically limited their investigations to cata-

loging the patterns of MMO signatures found as a parameter is varied. Barkley [16] is an

exception: he assessed the capability of multiple-time-scale models for MMOs to produce the

behavior observed by Hudson, Hart and Marinko [103]. He compared the MMOs from these

experiments and from a seven-dimensional model for the BZ reaction proposed by Showalter,

Noyes and Bar-Eli [205] with three-dimensional multiple-time-scale models. The MMOs that

Barkley studied in some respects resembled homoclinic orbits to a saddle-focus equilibrium.

In particular, small-amplitude oscillations of growing amplitude were produced by trajector-

ies that spiraled away from the equilibrium along its unstable manifold. This type of homo-

clinic orbit was studied by L. Shilnikov[204], but Barkley noted that the MMOs appeared

to persist over open regions of system parameters rather than to occur along a codimension-

one submanifold of parameter space as is the case with homoclinic orbits in generic systems.

Moreover, large parts of the state space of model systems appeared to converge to a tiny re-

gion at the beginning of the small-amplitude growing oscillations. Barkley was unable to

produce a three-dimensional model with these characteristics, but such models were sub-

sequently found. This paper discusses two of these models, emphasizing the one proposed

and studied by Koper [122]. Koper’s model is similar to a normal form for singular Hopf

bifurcation [85], a codimension-one bifurcation that arises in the context of systems with two

slow variables and one fast variable. Our central focus is upon MMOs whose SAOs are a

byproduct of local phenomena occurring in generic multiple-time-scale systems. Analog-

ous to the role of normal forms in bifurcation theory, understanding the multiple-time-scale

dynamics of MMOs in their simplest manifestations leads to insights into the properties of

MMOs in more complex systems.

The geometry of multiple-time-scale dynamical systems is intricate. Section 2 provides a

short review. Beginning with the work of the “Strasbourg” school [48] and Takens’ work [214]

on “constrained vector fields” in the 1970’s, geometric methods have been used to study gen-

eric multiple-time-scale systems with two slow variables and one fast variable. Folded sin-

gularities are a prominent phenomenon in this work. As described in Section 2, they lie on

a fold of the critical manifold, where an attracting and a repelling sheet meet. Folded sin-

gularities yield equilibria of a desingularized reduced vector field that is constructed in the

singular limit of the time scale parameter. More recently, Dumortier and Roussarie [55], and
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Szmolyan and Wechselberger [212] introduced singular blow-up techniques for the analyt-

ical study of the dynamics near folded singularities. These methods give information about

canard orbits that connect attracting and repelling slow manifolds.

Canard orbits organize the number of small-amplitude oscillations for MMOs associated

with folded nodes. The unfoldings of folded nodes [86, 233], folded saddle-nodes [84, 143]

and singular Hopf bifurcations [85] give insight into the characteristics of MMOs and how

they are formed as system parameters vary. Passage of trajectories through the region of a

folded node is one mechanism for generating MMOs that we discuss at length in Section 3.1

and illustrate with examples in Sections 4 and 5. Singular Hopf bifurcation and the closely

related folded saddle-node bifurcation of type II together constitute a second mechanism that

produces SAOs and MMOs in a robust manner within systems having two slow variables and

one fast variable. These bifurcations occur when a (true) equilibrium of the slow-fast system

crosses a fold curve of a critical manifold. Singular Hopf bifurcation is discussed in Sec-

tion 3.2 and also illustrated in Sections 4 and 5. We discuss a third mechanism for producing

small-amplitude oscillations in slow-fast systems that is organized by a Hopf bifurcation in

the layer equations and requires two fast variables. We call this mechanism a dynamic Hopf

bifurcation and distinguish trajectories that pass by a dynamic Hopf bifurcation with a delay

and trajectories with a tourbillion [232] whose small-amplitude oscillations have larger mag-

nitude than those of a delayed Hopf bifurcation. Dynamic Hopf bifurcation is discussed in

Section 3.4 and illustrated in Sections 6 and 7.

Complementary to theoretical advances in the analysis of slow-fast systems, numerical

methods have been developed to compute and visualize geometric structures that shape the

dynamics of these systems. Slow manifolds and canard orbits can now be computed in con-

crete systems; see Guckenheimer [85, 89] and Desroches, Krauskopf and Osinga [40, 41, 42,

43]. The combination of new theory and new numerics has produced new understanding of

MMOs in many examples that have been previously studied. This paper reviews and synthes-

izes these advances. It is organized as follows. Section 2 gives background about relevant

parts of geometric singular perturbation theory. Multiple-time-scale mechanisms that produce

SAOs in MMOs are then discussed and illustrated in Section 3. The four subsequent sections

provide case studies that illustrate and highlight recent theoretical advances and computa-

tional techniques. More details on the computational methods used in this paper can be found

in Section 8. The final Section 9 includes a brief survey of the MMO literature and discusses

other mechanisms that are not associated with a split between slow and fast variables.

2. Geometric singular perturbation theory of slow-fast systems. We consider here a

slow-fast vector field that takes the form

{
ε ẋ = ε dx

dτ = f(x, y, λ, ε),

ẏ = dy
dτ = g(x, y, λ, ε),

(2.1)

where (x, y) ∈ R
m × R

n are state space variables, λ ∈ R
p are system parameters, and

ε is a small parameter 0 < ε ¿ 1 representing the ratio of time scales. The functions

f : R
m × R

n × R
p × R → R

m and g : R
m × R

n × R
p × R → R

n are assumed to

be sufficiently smooth, typically C∞. The variables x are fast and the variables y are slow.

System (2.1) can be rescaled to

{
x′ = dx

dt = f(x, y, λ, ε),

y′ = dy
dt = ε g(x, y, λ, ε),

(2.2)

by switching from the slow time scale τ to the fast time scale t = τ/ε.
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Several viewpoints have been adopted to study slow-fast systems, starting with asymp-

totic analysis [56, 164] using techniques such as matched asymptotic expansions [118, 148].

Geometric Singular Perturbation Theory (GSPT) takes a geometric point of view and fo-

cuses upon invariant manifolds, normal forms for singularities and analysis of their unfold-

ings [10, 69, 110, 111, 215]. Fenichel’s seminal work [69] on invariant manifolds was an

initial foundation of GSPT and it is also called Fenichel theory. A third viewpoint was ad-

opted by a group of French mathematicians in Strasbourg. Using nonstandard analysis, they

made many important discoveries [19, 20, 22, 23, 47, 48] about slow-fast systems. This paper

adopts the GSPT viewpoint. We only focus on the results of GSPT that are necessary to study

MMOs. There are other important techniques that are part of GSPT, such as the Exchange

Lemma [110, 112], the blow-up method [55, 142, 233] and slow-fast normal form theory [10]

that are not described in this paper.

2.1. The critical manifold and the slow flow. Solutions of a slow-fast system fre-

quently exhibit slow and fast epochs characterized by the speed at which the solution ad-

vances. As ε → 0, the trajectories of (2.1) converge during fast epochs to solutions of the fast

subsystem or layer equations

{
x′ = f(x, y, λ, 0),
y′ = 0.

(2.3)

During slow epochs, on the other hand, trajectories of (2.2) converge to solutions of

{
0 = f(x, y, λ, 0),
ẏ = g(x, y, λ, 0),

(2.4)

which is a differential-algebraic equation (DAE) called the slow flow or reduced system. One

goal of GSPT is to use the fast and slow subsystems, (2.3) and (2.4), to understand the dy-

namics of the full system (2.1) or (2.2) for ε > 0. The algebraic equation in (2.4) defines the

critical manifold

S := {(x, y) ∈ R
m × R

n | f(x, y, λ, 0) = 0}.

We remark that S may have singularities [141], but we assume here that this does not hap-

pen so that S is a smooth manifold. The points of S are equilibrium points for the layer

equations (2.3).

Fenichel theory [69] guarantees persistence of S (or a subset M ⊂ S) as a slow manifold

of (2.1) or (2.2) for ε > 0 small enough if S (or M ) is normally hyperbolic. The notion of

normal hyperbolicity is defined for invariant manifolds more generally, effectively stating

that the attraction to and/or repulsion from the manifold is stronger than the dynamics on the

manifold itself; see [66, 67, 68, 95] for the exact definition. Normal hyperbolicity is often

difficult to verify when there is only a single time scale. However, in our slow-fast setting,

S consists entirely of equilibria and the requirement of normal hyperbolicity of M ⊂ S
is satisfied as soon as all p ∈ M are hyperbolic equilibria of the layer equations, that is, the

Jacobian (Dxf)(p, λ, 0) has no eigenvalues with zero real part. We call a normally hyperbolic

subset M ⊂ S attracting if all eigenvalues of (Dxf)(p, λ, 0) have negative real parts for

p ∈ M ; similarly M is called repelling if all eigenvalues have positive real parts. If M is

normally hyperbolic and neither attracting nor repelling we say it is of saddle type.

Hyperbolicity of the layer equations fails at points on S where its projection onto the

space of slow variables is singular. Generically, such points are folds in the sense of singu-

larity theory [10]. At a fold point p∗, we have f(p∗, λ, 0) = 0 and (Dxf)(p∗, λ, 0) has rank

m−1 with left and right null vectors w and v, such that w · [(D2
xxf)(p∗, λ, 0) (v, v)] 6= 0 and
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w · [(Dyf)(p∗, λ, 0)] 6= 0. The set of fold points forms a submanifold of codimension one in

the n-dimensional critical manifold S. In particular, when m = 1 and n = 2, the fold points

form smooth curves that separate attracting and repelling sheets of the two-dimensional crit-

ical manifold S. In this paper we do not consider more degenerate singular points of the

projection of S onto the space of slow variables.

Away from fold points the implicit function theorem implies that S is locally the graph

of a function h(y) = x. Then the reduced system (2.4) can be expressed as

ẏ = g(h(y), y, λ, 0). (2.5)

We can also keep the DAE structure and write (2.4) as the restriction to S of the vector field

{
ẋ = − (Dxf)

−1
(Dyf) g,

ẏ = g,
(2.6)

on R
m × R

n by observing that f = 0 and ẏ = g imply ẋ = − (Dxf)
−1

(Dyf) g. The

vector field (2.6) blows up when f is singular. It can be desingularized by scaling time by

−det (Dxf), at the expense of changing the direction of the flow in the region where this

determinant is positive. This desingularized system plays a prominent role in much of our

analysis. If S is normally hyperbolic, not only S, but also the slow flow on S persists for

ε > 0; this is made precise in the following fundamental theorem.

THEOREM 2.1 (Fenichel’s Theorem [69]). Suppose M = M0 is a compact normally

hyperbolic submanifold (possibly with boundary) of the critical manifold S of (2.2) and that

f, g ∈ Cr, r < ∞. Then for ε > 0 sufficiently small the following holds:

(F1) There exists a locally invariant manifold Mε diffeomorphic to M0. Local invariance

means that Mε can have boundaries through which trajectories enter or leave.

(F2) Mε has a Hausdorff distance of O(ε) from M0.

(F3) The flow on Mε converges to the slow flow as ε → 0.

(F4) Mε is Cr-smooth.

(F5) Mε is normally hyperbolic and has the same stability properties with respect to the

fast variables as M0 (attracting, repelling or saddle type).

(F6) Mε is usually not unique. In regions that remain at a fixed distance from the bound-

ary of Mε, all manifolds satisfying (F1)–(F5) lie at a Hausdorff distance O(e−K/ε)
from each other for some K > 0 with K = O(1).

The normally hyperbolic manifold M0 has associated local stable and unstable manifolds

W s
loc(M0) =

⋃

p∈M0

W s
loc(p), and Wu

loc(M0) =
⋃

p∈M0

Wu
loc(p),

where W s
loc(p) and Wu

loc(p) are the local stable and unstable manifolds of p as a hyperbolic

equilibrium of the layer equations, respectively. These manifolds also persist for ε > 0
sufficiently small: there exist local stable and unstable manifolds W s

loc(Mε) and Wu
loc(Mε),

respectively, for which conclusions (F1)–(F6) hold if we replace Mε and M0 by W s
loc(Mε)

and W s
loc(M0) (or similarly by Wu

loc(Mε) and Wu
loc(M0)).

We call Mε a Fenichel manifold. Fenichel manifolds are a subclass of slow manifolds,

invariant manifolds on which the vector field has speed that tends to 0 on the fast time scale

as ε → 0. We use the convention that objects in the singular limit have subscript 0, whereas

the associated perturbed objects have subscripts ε.

2.1.1. The critical manifold and the slow flow in the Van der Pol equation. Let us

illustrate these general concepts of GSPT with an example. One of the simplest systems in
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FIG. 2. Phase portraits of the Van der Pol equation (2.7) for λ = 0 (a) and for λ = 1 (b). Shown are

the critical manifold S (grey solid curve) and the y-nullcline (dashed line); double arrows indicate the direction

of the fast flow and single arrows that of the slow flow. Panel (a) shows a candidate for a relaxation oscillation

(black) surrounding an unstable equilibrium. Panel (b) is the moment of the singular Hopf bifurcation with a folded

singularity at the local minimum p+.

which the concepts are manifest, and historically perhaps also the first, is the Van der Pol

equation [222, 223, 224] with constant forcing λ ∈ R given by
{

ε ẋ = y − 1
3x3 + x,

ẏ = λ − x.
(2.7)

This slow-fast system has only one fast and one slow variable, but it already exhibits com-

plicated dynamics that were truly surprising when they were first discovered [48]. By setting

ε = 0 in (2.7), we obtain the reduced system with an algebraic equation that defines the

critical manifold of (2.7) as the cubic curve

S = {(x, y) ∈ R
2 | y = 1

3x3 − x =: c(x)}. (2.8)

It is normally hyperbolic away from the local maximum and minimum p± = (±1,∓ 2
3 ) of

the cubic, where S has a fold with respect to the fast variable x. At p± normal hyperbolicity

fails, since ∂
∂xf(x, y, λ, 0) = 1 − x2 is zero at p±. Hence, p± are the fold points and they

naturally decompose the critical manifold into three branches,

S = Sa,− ∪ {p−} ∪ Sr ∪ {p+} ∪ Sa,+,

where Sa,− := S ∩ {x < −1}, Sa,+ := S ∩ {x > 1} and Sr = S ∩ {−1 < x < 1}. From

the sign of ∂
∂xf(x, y, λ, 0) we conclude that the two branches Sa,− and Sa,+ are attracting,

and the branch Sr is repelling. The critical manifold S is shown as the grey cubic curve in

Figure 2; note that S and its attracting/repelling nature does not depend on λ, so it is the same

both in panel (a), where λ = 0, and panel (b), where λ = 1. The dynamics of any point not on

S is entirely controlled by the direction of the fast variable x, which is indicated in Figure 2

by the horizontal double arrows; observe that the middle branch of S is repelling and the two

unbounded branches are attracting.

To obtain the slow flow (2.5) on S in the Van der Pol equation (2.7) it is not actually

necessary to solve the cubic equation y = c(x) for x on Sa,−, Sr and Sa,+. It is more

convenient to write the slow (reduced) flow in terms of the fast variable x. To this end, we

differentiate f(x, y, λ, 0) = y − c(x) = 0 with respect to τ and obtain

ẏ = ẋ x2 − ẋ = ẋ (x2 − 1).
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Combining this result with the equation for ẏ we get:

(x2 − 1) ẋ = λ − x or ẋ =
λ − x

x2 − 1
. (2.9)

The direction of the slow flow on S is indicated in Figure 2 by the arrows on the grey curve;

panel (a) is for λ = 0 and panel (b) for λ = 1. The slow flow does depend on λ, because the

direction of the flow is partly determined by the location of the equilibrium at x = λ on S.

The slow flow is well defined on Sa,−, Sr and Sa,+, but not at x = ±1 (as long as λ 6= ±1).

We can desingularize the slow flow near x = ±1 by rescaling time with the factor (x2 − 1).
This gives the equation ẋ = λ − x of the desingularized flow. Note that this time rescaling

reverses the direction of time on the repelling branch Sr, so care must be taken when relating

the phase portrait of the desingularized system to the phase portrait of the slow flow.

Let us now focus specifically on the case for λ = 0, shown in Figure 2(a), because it is

representative for the range |λ| < 1. The y-nullcline of (2.7) is shown as the dashed black

vertical line (the x-nullcline is S) and the origin is the only equilibrium, which is a source for

this value of λ. The closed curve is a singular orbit composed of two fast trajectories starting

at the two fold points p± concatenated with segments of S. Such continuous concatenations

of trajectories of the layer equations and the slow flow are called candidates [20]. The singular

orbit follows the slow flow on S to a fold point, then it jumps, that is, it makes a transition

to a fast trajectory segment that flows to another branch of S. The same mechanism returns

the singular orbit to the initial branch of S. It can be shown [142, 164] that the singular orbit

perturbs for ε > 0 to a periodic orbit of the Van der Pol equation that lies O(ε) close to this

candidate. Van der Pol introduced the term relaxation oscillation to describe periodic orbits

that alternate between epochs of slow and fast motion.

2.2. Singular Hopf bifurcation and canard explosion. The dynamics of slow-fast sys-

tems in the vicinity of points on the critical manifold where normal hyperbolicity is lost can

be surprisingly complicated and nothing like what we know from systems with a single time

scale. This section addresses the phenomenon known as a canard explosion, which occurs

in planar slow-fast systems after a singular Hopf bifurcation. We discuss this first for the

example of the Van der Pol equation (2.7).

2.2.1. Canard explosion in the Van der Pol equation. As mentioned above, the phase

portrait in Figure 2(a) is representative for a range of λ-values. However, the phase portrait

for λ = 1, shown in Figure 2(b), is degenerate. Linear stability analysis shows that for

ε > 0 the unique equilibrium point (x, y) = (λ, 1
3λ3 − λ) is a source for |λ| < 1, but a

sink for |λ| > 1. Supercritical Hopf bifurcations occur at λH = ±1. The analysis of how

the observed stable dynamics of the Van der Pol equation (2.7) changes with λ from a stable

focus to relaxation oscillations when ε > 0 is small was a major development in the theory of

slow-fast systems. Figure 3(a) shows the result of a numerical continuation in the parameter

λ of the periodic orbit for ε = 0.05 that emerges from the Hopf bifurcation. Close to the

Hopf bifurcation at λH = 1.0 the periodic orbit is small (cyan curve), as is to be expected.

However, as λ decreases, the periodic orbit grows very rapidly, where it follows the repelling

slow manifold Sr
ε for a long time. In fact, the values of λ for all orange orbits in Figure 3(a)

are λ ≈ 0.993491, that is, they agree to six decimal places. Note that we show the growing

orbits only up to a characteristic intermediate size: the largest periodic orbit in Figure 3(a) just

encompasses the fold point p−. Upon further continuation in λ this periodic orbit continues to

grow rapidly until it reaches the shape of a relaxation oscillation; compare with Figure 2(a).

The Hopf bifurcation at λH = 1 occurs when the equilibrium moves over the fold point

p+. It is called a singular Hopf bifurcation. The eigenvalues at the Hopf bifurcation have
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FIG. 3. Numerical continuation of periodic orbits in the Van der Pol’s equation (2.7) for ε = 0.05. Panel (a)

shows a selection of periodic orbits: the cyan orbit is a typical small limit cycle near the Hopf bifurcation at λ = λH ,

whereas all the orange orbits occur in a very small parameter interval at λ ≈ 0.993491. Panels (b) and (c) are

sketched bifurcation diagrams corresponding to supercritical and subcritical singular Hopf bifurcations; here A
denotes the amplitude of the limit cycle.

magnitude O(ε−1/2), so that the periodic orbit is born at the Hopf bifurcation with an inter-

mediate period between the fast O(ε−1) and slow O(1) time scales. The size of this periodic

orbit grows rapidly from diameter O(ε1/2) to diameter O(1) in an interval of parameter val-

ues λ of length O(exp(−K/ε)) (for some K > 0 fixed) that is O(ε) close to λH . Figures 3(b)

and (c) are sketches of possible bifurcation diagrams in λ for the singular Hopf bifurcation

in a supercritical case (which one finds in the Van der Pol system) and in a subcritical case,

respectively; the vertical axis represents the maximal amplitude of the periodic orbits. The

two bifurcation diagrams are sketches that highlight the features described above. There is a

very small interval of λ where the amplitude of the oscillation grows in a square-root fashion,

as is to be expected near a Hopf bifurcation. However, the amplitude then grows extremely

rapidly until it reaches a plateau that corresponds to relaxation oscillations.

The rapid growth in amplitude of the periodic orbit near the Hopf bifurcation is called a

canard explosion. The name canard derives originally from the fact that some periodic orbits

during the canard explosion look a bit like a duck [48]. In fact, the largest periodic orbit in

Figure 3(a) is an example of such a “duck-shaped” orbit. More generally, and irrespective of

its actual shape, one now refers to a trajectory as a canard orbit if it follows a repelling slow

manifold for a time of O(1) on the slow time scale. A canard orbit is called a maximal canard

if it joins attracting and repelling slow manifolds. Since the slow manifolds are not unique,

this definition depends upon the selection of specific attracting and repelling slow manifolds;

compare (F6) of Theorem 2.1. Other choices yield trajectories that are exponentially close to

one another. In the Van der Pol equation (2.7) the canard explosion occurs O(e−K/ε)-close in

parameter space to the point where the manifolds Sa,+
ε and Sr

ε intersect in a maximal canard.

It is associated with the parameter value λ = 1 where the equilibrium lies at the fold point

p+ of the critical manifold S; see Figure 2(b).

2.3. Singular Hopf bifurcation and canard explosion in generic planar systems. In

the Van der Pol equation (2.7) the singular Hopf bifurcation takes place at λ = 1 where the

equilibrium lies at a fold point. In a generic family of slow-fast planar systems a singular

Hopf bifurcation does not happen exactly at a fold point, but at a distance O(ε) in both phase

space and parameter space from the coincidence of the equilibrium and fold point. One can
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obtain a generic family by modifying the slow equation of the Van der Pol equation (2.7) to

ẏ = λ − x + a y.

In this modified system the equilibrium and fold point still coincide at x = 1, but the Hopf

bifurcation occurs for x =
√

1 + ε a. A detailed dynamical analysis of canard explosion and

the associated singular Hopf bifurcation using geometric or asymptotic methods exists for

planar slow-fast systems [12, 13, 55, 56, 140, 142]; we summarize these results as follows.

THEOREM 2.2 (Canard Explosion in R
2 [142]). Suppose a planar slow-fast system has

a generic fold point p∗ = (xp, yp) ∈ S, that is,

f(p∗, λ, 0) = 0,
∂

∂x
f(p∗, λ, 0) = 0,

∂2

∂x2
f(p∗, λ, 0) 6= 0,

∂

∂y
f(p∗, λ, 0) 6= 0.

(2.10)

Assume the critical manifold is locally attracting for x < xp and repelling for x > xp and

there exists a folded singularity for λ = 0 at p∗, namely,

g(p∗, 0, 0) = 0,
∂

∂x
g(p∗, 0, 0) 6= 0,

∂

∂λ
g(p∗, 0, 0) 6= 0. (2.11)

Then a singular Hopf bifurcation and a canard explosion occur at

λH = H1 ε + O(ε3/2) and (2.12)

λc = (H1 + K1) ε + O(ε3/2). (2.13)

The coefficients H1 and K1 can be calculated explicitly from normal form transformations [142]

or by considering the first Lyapunov coefficient of the Hopf bifurcation [144].

In the singular limit we have λH = λc. For any ε > 0 sufficiently small, the linearized

system [88, 147] at the Hopf bifurcation point has a pair of singular eigenvalues [27]

σ(λ; ε) = α(λ; ε) + i β(λ; ε),

with α(λH ; ε) = 0, ∂
∂λα(λH ; ε) 6= 0 and

lim
ε→0

β(λH ; ε) = ∞, on the slow time scale τ , and

lim
ε→0

β(λH ; ε) = 0, on the fast time scale t.

2.4. Folded singularities in systems with one fast and two slow variables. A canard

explosion for a planar system happens in an exponentially small parameter interval. However,

as soon as there is more than one slow variable, canard orbits can exist for O(1) ranges of a

parameter. To illustrate this, we consider (2.1) for the special case m = 1 and n = 2, and

write it as




ε ẋ = f(x, y, λ, ε),
ẏ1 = g1(x, y, λ, ε),
ẏ2 = g2(x, y, λ, ε).

(2.14)

We assume that the critical manifold S = {f = 0} of (2.14) has an attracting sheet Sa and a

repelling sheet Sr that meet at a fold curve F as is shown in Figure 4. We also assume that

the fold points p∗ ∈ F on S are generic in the sense of singularity theory, that is,

f(p∗, λ, 0) = 0,
∂f

∂x
(p∗, λ, 0) = 0,

∂2f

∂x2
(p∗, λ, 0) 6= 0, Dyf(p∗, λ, 0) has full rank one.
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FIG. 4. The critical manifold S with attracting sheet Sa (red) and repelling sheet Sr (blue) that meet at a fold

curve F (grey). The fast flow transverse to S is indicated by double (large) arrows and the slow flow on S near a

folded node by single (small) arrows; see also Figure 5(b).

The slow flow is not defined on the fold curve before desingularization. At most fold points,

trajectories approach or depart from both the attracting and repelling sheets of S. In generic

systems, there may be isolated points, called folded singularities, where the trajectories of

the slow flow switch from incoming to outgoing. Figure 4 shows an example of the slow flow

on S and the thick dot on F is the folded singularity at which F changes from attracting to

repelling (with respect to the slow flow).

Folded singularities are equilibrium points of the desingularized slow flow. As described

above, the desingularized slow flow can be expressed as





ẋ =
(

∂
∂y1

f
)

g1 +
(

∂
∂y2

f
)

g2 ,

ẏ1 = −
(

∂
∂xf

)
g1,

ẏ2 = −
(

∂
∂xf

)
g2,

(2.15)

restricted to S. A fold point p∗ ∈ F is a folded singularity if

g1(p∗, λ, 0)
∂f

∂y1
(p∗, λ, 0) + g2(p∗, λ, 0)

∂f

∂y2
(p∗, λ, 0) = 0.

There are different possibilities for the stability of p∗ in (2.15). Let σ1 and σ2 denote the

eigenvalues of the Jacobian matrix restricted to S and evaluated at a folded singularity p∗.

We call p∗ a





folded saddle, if σ1 σ2 < 0, σ1,2 ∈ R,
folded node, if σ1 σ2 > 0, σ1,2 ∈ R,
folded focus, if σ1 σ2 > 0, Im(σ1,2) 6= 0.

Figure 5 shows phase portraits of the (linearized) slow flow, in panels (a) and (b), and the

associated desingularized slow flow, in panels (c) and (d), respectively. Panels (a) and (c) are

for the case of a folded saddle and panels (b) and (d) of a folded node. For the case of a folded

node one generically has an inequality of the form |σ1| > |σ2|, and we write |σs| > |σw|,
10
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FIG. 5. Phase portraits of the locally linearized slow flow near a folded saddle (a) and a folded node (b); the

singular canards defined by the eigendirections are shown as thick lines. The corresponding desingularized slow

flow is shown in panels (c) and (d), respectively.

replacing the numeric labels with s and w to emphasize the strong and weak eigendirections.

Note that the phase portraits for the slow flow in Figure 5(a) and (b) are obtained by reversing

the direction of the flow on Sr where ∂
∂xf > 0, that is, by reversing the arrows above F in

the phase portraits of the desingularized slow flow in panels (c) and (d). It is an important

observation that the trajectories of the slow flow that lie along the eigendirections of the folded

saddle or node connect the two sheets of the critical manifold through the folded singularity

in finite (slow) time; such a trajectory is called a singular canard. We remark that there

are no singular canards for the case of a folded focus, which is why it is not shown here.

Notice further for the case of the folded node in Figure 5(b) that the strong singular canard

γ̃s and the fold curve bound a full (shaded) sector of trajectories that cross from Sa to Sr by

passing through the folded node. The linearized system in Figure 5(b) should be compared

with Figure 4, which shows a nonlinear slow flow near a folded node and, hence, also has a

full sector of trajectories that pass through the folded singularity.

Singular canards act as candidates of maximal canards of the full system for ε > 0. This

11



is described in the next theorem [19, 23, 31, 212, 233].

THEOREM 2.3 (Canards in R
3). For the slow-fast system (2.14) with ε > 0 sufficiently

small the following holds:

(C1) There are no maximal canards generated by a folded focus.

(C2) For a folded saddle the two singular canards γ̃1,2 perturb to maximal canards γ1,2.

(C3.1) For a folded node let µ := σw/σs < 1. The singular canard γ̃s (“the strong

canard”) always perturbs to a maximal canard γs. If µ−1 6∈ N then the singular

canard γ̃w (“the weak canard”) also perturbs to a maximal canard γw. We call γs

and γw primary canards.

(C3.2) For a folded node suppose k > 0 is an integer such that 2k + 1 < µ−1 < 2k + 3
and µ−1 6= 2(k + 1). Then, in addition to γs,w, there are k other maximal canards,

which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation for

odd µ−1 ∈ N and a pitchfork bifurcation for even µ−1 ∈ N.

3. Slow-fast mechanisms for MMOs. In this section we present key theoretical results

of how MMOs arise in slow-fast systems with SAOs occurring in a localized region of the

phase space. The LAOs, on the other hand, are associated with large excursions away from

the localized region of SAOs. More specifically, we discuss four local mechanisms that give

rise to such SAOs:

• passage near a folded node, discussed in Section 3.1;

• singular Hopf bifurcation, discussed in Section 3.2;

• three-time-scale problems with a singular Hopf bifurcation, discussed in Section 3.3;

• tourbillion, discussed in Section 3.4.

Each of these local mechanisms has its distinctive characteristics and can give rise to MMOs

when combined with a global return mechanism that takes the trajectory back to the region

with SAOs. Such global return mechanisms arise naturally in models from applications and

a classic example is an S-shaped slow manifold; see Section 3.2 and the examples in Sec-

tions 4–6. We do not discuss global returns in detail, but rather concentrate on the nature of

the local mechanisms. From the analysis of normal forms we estimate quantities that can be

measured in examples of MMOs produced from both numerical simulations and experimental

data. Specifically, we consider the number of SAOs and the changes in their amplitudes from

cycle to cycle. We also consider in model systems the geometry of nearby slow manifolds

that are associated with the approach to and departure from the SAO regions.

3.1. MMOs due to a folded node. Folded nodes are only defined for the singular

limit (2.4) of system (2.1) on the slow time scale. However, they are directly relevant to

MMOs because for ε > 0 small enough, trajectories of (2.1) that flow through a region where

the reduced system has a folded node, undergo small oscillations. Benoit [19, 20] first re-

cognized these oscillations. Wechselberger and collaborators [31, 212, 233] gave a detailed

analysis of folded nodes while Guckenheimer and Haiduc [86] and Guckenheimer [84] com-

puted intersections of slow manifolds near a folded node and maps along trajectories passing

through these regions. From Theorem 2.3 we know that the eigenvalue ratio 0 < µ < 1 at

the folded node is a crucial quantity that determines the dynamics in a neighborhood of the

folded node. In particular, µ controls the maximal number of oscillations. The studies men-

tioned above use normal forms to describe the dynamics of oscillations near a folded node.

Two equivalent versions of these normal forms are





ε ẋ = y − x2,
ẏ = z − x,
ż = −ν,

(3.1)

12



and




ε ẋ = y − x2,
ẏ = −(µ + 1)x − z,
ż = 1

2µ.
(3.2)

Note that µ is the eigenvalue ratio of system (3.2) and that ν 6= 0 and µ 6= 0 imply that no

equilibria exist in (3.1) and (3.2). If we replace (x, y, z) in system (3.1) by (u, v, w) and call

the time variable τ1, then we obtain system (3.2) via the coordinate change

x = (1 + µ)1/2 u, y = (1 + µ) v, z = −(1 + µ)3/2 w,

and the rescaling of time τ = τ1/
√

1 + µ, which gives

ν =
µ

2(1 + µ)2
or µ =

−1 +
√

1 − 8ν

−1 −
√

1 − 8ν
.

Therefore, in system (3.1) the number of secondary canards changes with the parameter ν.

When ν is small, µ ≈ 2ν. If the “standard” scaling [212] x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄,

and t = ε1/2 t̄, is applied to system (3.1), we obtain





x̄′ = ȳ − x̄2,
ȳ′ = z̄ − x̄,

z̄′ = −ν .

(3.3)

Hence, the phase portraits of system (3.1) for different values of ε are topologically equivalent

via linear maps. The normal form (3.3) describes the dynamics in the neighborhood of a

folded node, which is at the origin here. Trajectories that come from y = ∞ with x > 0
and pass through the folded-node region make a number of oscillations in the process, before

going off to y = ∞ with x < 0. There are no returns to the folded-node region in this system.

Let us first focus on the number of small oscillations. If 2k + 1 < µ−1 < 2k + 3, for

some k ∈ N, and µ−1 6= 2(k + 1) then the primary strong canard γs twists once and the

i-th secondary canard ξi, 1 ≤ i ≤ k, twists 2i + 1 times around the primary weak canard γw

in an O(1) neighborhood of the folded node singularity in system (3.3), which corresponds

to an O(
√

ε) neighborhood in systems (3.1) and (3.2) [212, 233]. (A twist corresponds to

a half rotation.) We illustrate this in Figure 6 for system (3.3) with ν = 0.025. Note that

ν = 0.025 corresponds to µ ≈ 0.0557. Hence, 2k + 1 < µ−1 ≈ 17.953 < 2k + 3
for k = 8, so Theorem 2.3 states that there exist eight secondary canards ξi, 1 ≤ i ≤ 8,

along with the strong and weak canards γs/w. Figure 6 shows the attracting slow manifold

Sa
ε and the repelling slow manifold Sr

ε of (3.3) in a three-dimensional region bounded by

the planes {z = ±α}, denoted Σα and Σ−α, with α = 0.14; see Section 8 for details on

how these computations were done. Even though the rescaled normal form (3.3) does not

depend on ε anymore, we still indicate the ε-dependence of the slow manifolds to distinguish

them from the attracting and repelling sheets of the critical manifold; furthermore, Sa
ε and Sr

ε

can be thought of as the slow manifolds of (3.1) or (3.2). Both manifolds are extensions of

Fenichel manifolds and illustrate how the slow manifolds intersect near the fold curve of the

critical manifold; the fold curve is the z-axis. The intersection curves are the canard orbits;

highlighted are the primary strong canard γs (black) and the first three secondary canards ξ1

(orange), ξ2 (magenta) and ξ3 (cyan). The inset shows the intersection curves of Sa
ε and Sr

ε

with the plane Σfn := {z = 0} that contains the folded node at the origin; the intersection

points of the highlighted canard orbits are also indicated. Due to the symmetry of the normal
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FIG. 6. Invariant slow manifolds of (3.3) with ν = 0.025 in a neighborhood of the folded node. Both the

attracting slow manifold Sa
ε (red) and the repelling slow manifold Sr

ε (blue) are extensions of Fenichel manifolds.

The primary strong canard γs (black curve) and three secondary canards ξ1 (orange), ξ2 (magenta) and ξ3 (cyan)

are the first four intersection curves of Sa
ε and Sr

ε ; the inset shows how these objects intersect a cross-section

orthogonal to the fold curve {x = 0, y = 0}.

form (3.3), the two slow manifolds Sa
ε and Sr

ε are each other’s image under rotation by π
about the y-axis in Figure 6(a).

A trajectory entering the fold region becomes trapped in a region bounded by strips

of Sa
ε and Sr

ε and two of their intersection curves. The intersection curves are maximal

canards, and the trajectory is forced to follow the oscillations of these two bounding canard

orbits. Figure 6 does not show very clearly how many canards there are, nor does it indicate

the precise number of oscillations. We calculate the flow map of (3.3) with ν = 0.025 to

illustrate this better. Due to the strong contraction along Sa
ε , the flow map through the fold

region is strongly contracting in one direction for trajectories that do not extend along Sr
ε .

Hence, the flow map will be almost one dimensional and can be approximated by following

trajectories starting on the critical manifold far away from the fold curve. Figure 7(a) shows

the result of integrating 500 equally-spaced initial values on the line segment {x = 20, y =
x2 = 400, −3.25 ≤ z ≤ −0.75} until they reach the plane x = −10; plotted are the

z-coordinates of the final values versus the initial values. One can see ten segments in this

flow map that are separated by discontinuities. These discontinuities mark sectors on the
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FIG. 7. Numerical study of the number of rotational sectors for system (3.3) with ν = 0.025. Panel (a)

illustrates the flow map through the folded node by plotting the z-coordinates z out of the first return to a cross-

section x = −10 of 500 trajectories with equally-spaced initial values (x, y, z) = (20, 400, z in), where −3.25 ≤
z in ≤ −0.75. Panels (b1)–(b4) show four trajectories projected onto the (x, y)-plane that correspond to the points

labeled in panel (c), where z in = −1.25 in panel (b1), z in = −1.5 in panel (b2), z in = −2 in panel (b3), and

z in = −2.25 in panel (b4).

line segment {x = 20, y = x2 = 400, −3.25 ≤ z ≤ −0.75} that correspond to an

increasing number of SAOs; in fact, each segment corresponds to a two-dimensional sector

Ii, 0 ≤ i ≤ 9, on the attracting sheet Sa
ε of the slow manifold. The outer sector I0 on the right

in Figure 7(a) is bounded on the left by the primary strong canard γs; sector I1 is bounded

by γs and the first maximal secondary canard ξ1; sectors Ii, i = 2, . . . , 8, are bounded by

maximal secondary canard orbits ξi−1 and ξi; and the last (left outer) sector I9 is bounded

on the right by ξ8. On one side of the primary strong canard γs and each maximal secondary

canard ξi, 1 ≤ i ≤ 8, trajectories follow the repelling slow manifold Sr
ε and then jump with

decreasing values of x. On the other side of γs and ξi, trajectories jump back to the attracting

slow manifold and make one more oscillation through the folded node region before flowing

toward x = −∞. The four panels (b1)–(b4) in Figure 7 show portions of four trajectories

projected onto the (x, y)-plane; their initial values are (x, y, z) = (20, 400, z in) with z in as

marked in panel (a), that is, z in = −1.25, z in = −1.5, z in = −2 and z in = −2.25 for

(b1)–(b4), respectively. The trajectory in panel (b1) was chosen from the sector I2, bounded

by ξ1 and ξ2; this trajectory makes two oscillations. The trajectory in panel (b2) comes from

I5 and, indeed, it makes five oscillations. The other two trajectories, in panel (b3) and (b4),

make seven and nine oscillations, respectively, but some of these oscillations are too small to

be visible.

The actual widths of the rotational sectors in Figure 7 are very similar due to the ε-

dependent rescaling used to obtain (3.3). When the equations depend on ε as in (3.1) and

(3.2), however, the widths of the sectors depend on ε. In fact, every sector is very small

except for the sector corresponding to maximal rotation, which is bounded by ξk and the fold

curve. For an asymptotic analysis of the widths of the rotational sectors that organize the
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FIG. 8. Schematic diagram of the candidate periodic orbit Γc that gives rise to MMOs with SAOs produced by

a folded node singularity. The candidate Γc approaches the folded node along the attracting sheet Sa (red) of the

critical manifold (red) in the sector of maximal rotation associated with the weak singular canard γ̃w . The distance

to the strong singular canard γ̃s is labeled δ. When the trajectory reaches the folded node (filled circle) it jumps

along a layer and proceeds to make a global return.

oscillations, system (3.2) is more convenient, because the eigenvalues of the desingularized

slow flow are −µ and −1. Brøns, Krupa and Wechselberger [31] found the following.

THEOREM 3.1. Consider system (2.14) and assume it has a folded node singularity.

At an O(1)-distance from the fold curve, all secondary canards are in an O(ε(1−µ)/2)-
neighborhood of the primary strong canard. Hence, the widths of the rotational sectors Ii,

1 ≤ i ≤ k, is O(ε(1−µ)/2) and the width of sector Ik+1 is O(1).
Note that, as µ → 0 (the folded saddle-node limit), the number of rotational sectors

increases indefinitely, and the upper bounds on their widths decrease to O(ε1/2).

3.1.1. Folded node with a global return mechanism. A global return mechanism may

reinject trajectories to the folded node funnel to create an MMO. Assuming that the return

happens O(1) away from the fold curve, Theorem 3.1 predicts the number of SAOs that

follow. We create a candidate trajectory by following the fast flow starting at the folded

node until it returns to the folded node region; this is sketched in Figure 8. The global

return mechanism produces one LAO. Let δ denote the distance of the global return point

of a trajectory from the singular strong canard γ̃s measured on a cross-section at a distance

O(1) away from the fold; we use the convention that δ > 0 indicates a return into the funnel

region. Provided δ is large enough, so that the global return point lands in the sector Ik+1 of

maximal rotation, one can show the existence of a stable MMO with signature 1k+1, where

k is determined by µ [31]. We summarize this existence result (in a more general setting) in

the following theorem.

THEOREM 3.2 (Generic 1k+1 MMOs). Consider system (2.14) with the following as-

sumptions:

(A0) Assume that 0 < ε ¿ 1 is sufficiently small, ε1/2 ¿ µ and k ∈ N is such that

2k + 1 < µ−1 < 2k + 3.

(A1) The critical manifold S is (locally) a folded surface.

16



(A2) The corresponding reduced problem possesses a folded node singularity.

(A3) There exists a candidate periodic orbit (as constructed in Figure 8) which consists of

a segment on Sa (red) within the singular funnel (bounded by F and γ̃s such that it

contains γ̃w) with the folded node singularity as an endpoint, fast fibers of the layer

problem and a global return segment.

(A4) A transversality hypothesis is satisfied that is not stated here because it is cumber-

some to formulate precisely in a general setting; see e.g., [31] for the case of a

cubic-shaped critical manifold.

Then there exists a stable MMO with signature 1k+1.

Theorem 3.2 not only requires sufficiently small 0 < ε ¿ 1 but also µ À ε1/2 (while

0 < µ < 1). However, ε is usually of the order O(10−2) in applications, so that µ must be

close to 1 in order for the theorem to apply. Therefore, such maximal MMO signatures are

seldom seen in applications. Furthermore, the SAOs for an MMO with signature 1k+1 tend

to be too small to be readily visible.

Figure 7 illustrates that the amplitudes of the SAOs are much larger for trajectories that

approach the folded node close to the strong canard and lie in one of the sectors Ii with

i ≤ k rather than Ik+1. We know from Theorem 3.1 that the maximal width of a sector Ii

with i ≤ k is bounded from above by O(ε(1−µ)/2) with µ < 1/3. When δ is O(ε(1−µ)/2)
one can, indeed, find MMOs with i ≤ k SAOs that are stable. Geometrically, different

stable MMOs are selected as one moves the flow map in Figure 7(a) up or down; since the

rotational sector Ik+1 for general ε-dependent systems has much larger width than the other

sectors, one should expect that the transitions through Ii with i ≤ k happen rather quickly

during a parameter-induced variation of δ. We have the following result [31].

THEOREM 3.3. Suppose system (2.14) satisfies assumptions (A0)–(A3) of Theorem 3.2

and additionally:

(A5) For δ = 0, the global return point is on the singular strong canard γ̃s and as δ
passes through zero the return point crosses γ̃s with nonzero speed.

Suppose now that δ = O(ε(1−µ)/2) > 0. Then, for sufficiently small 0 < ε ¿ 1 and

k ∈ N such that 2k + 1 < µ−1 < 2k + 3 the following holds. For each i, 1 ≤ i ≤
k, there exist subsectors Ĩi ⊂ Ii with corresponding distance intervals (δ−i , δ+

i ) of widths

O(ε(1−µ)/2), which have the property that if δ ∈ (δ−i , δ+
i ) then there exists a stable MMO

with signature 1i.

Theorem 3.3 says that we should observe a succession of stable 1i MMOs with increas-

ingly more SAOs as δ increases (assuming that µ remains fixed in such a parameter variation).

In the transition from a 1i to a 1i+1 MMO signature, that is, in the regions in between intervals

(δ−i , δ+
i ) and (δ−i+1, δ+

i+1) we expect to find more complicated signatures, which are usually

a mix of 1i and 1i+1. As with Theorem 3.2, the amplitudes of most SAOs will be tiny if ε is

small, except for those MMOs that have only a few SAOs after each LAO.

If µ = O(ε1/2), that is, assumption (A0) does not hold, then we may still expect stable

MMO signatures of type 1k+1, as soon as the global returns falls inside the funnel region and

δ = O(1) [143]; note that k = O(1/ε1/2) and the amplitudes of the SAOs for such an MMO

will again be tiny. If µ = O(ε1/2) and δ = O(ε1/2) as well, the mixed MMO signatures

with larger-amplitude SAOs are more likely to occur. For example, Figure 20 in Section 4

displays an MMO of type 1213 in the Koper model. Here, global returns come very close to

the secondary maximal canard ξ2, first slightly to the left (hence, into the rotational sector I2

with two SAOs) and then slightly to the right (hence, into the rotational sector I3 with three

SAOs), creating this MMO signature.

The theory described so far does not capture all of the possible dynamics near a folded

node. If higher-order terms are included in the normal forms (3.1)-(3.2), then equilibria may
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appear in an O(ε1/2) neighborhood of the folded node as soon as µ = O(ε1/2) or smaller.

This observation motivates our study of the singular Hopf bifurcation in three dimensions.

3.2. MMOs due to a singular Hopf bifurcation. Equilibria of a slow-fast system (2.1)

always satisfy f(x, y, λ, ε) = 0; generically, they are located in regions where the associated

critical manifold S is normally hyperbolic. However, in generic one-parameter families of

slow-fast systems, the equilibrium may cross a fold of S. In generic families with two slow

variables, the fold point (including the specific parameter value) at which the equilibrium

crosses the fold curve of the critical manifold has been called a folded saddle-node of type

II [161]. Folded nodes and saddles of the reduced system are not projections of equilibria of

the full slow-fast system, but the folded saddle-nodes of type II are. When ε > 0, the system

has a singular Hopf bifurcation, which occurs generically at a distance O(ε) in parameter

space from the folded saddle-node of type II [85].

In order to obtain a normal form for the singular Hopf bifurcation, we follow [85] and

add higher-order terms to the normal form (3.1) of the folded node, to obtain





ε ẋ = y − x2,
ẏ = z − x,
ż = −ν − a x − b y − c z.

(3.4)

As with (3.1), we apply the standard scaling [212] x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, and

t = ε1/2 t̄; system (3.4) then becomes





x̄′ = ȳ − x̄2,
ȳ′ = z̄ − x̄,

z̄′ = −ν − ε1/2 a x̄ − ε b ȳ − ε1/2 c z̄.

(3.5)

This scaled vector field provides an O(ε1/2)-zoom of the neighborhood of the folded sin-

gularity where SAOs are expected to occur. The scaling removes ε from the first equations

while the coefficients a, b and c of the third equation become ε-dependent; ν remains fixed.

Note that the coefficient of ȳ tends to 0 faster than those of x̄, z̄ as ε → 0. This feature makes

the definition of normal forms for slow-fast systems somewhat problematic: scalings of the

state-space variables and the singular perturbation parameter ε interact with each other. These

ε-dependent scalings play an important role in “blow-up” analysis of fold points and folded

singularities.

In contrast to the normal form (3.1) of a folded node, system (3.5) possesses equilibria

for all values of ν. If ν = O(1) then these equilibria are far from the origin, with coordinates

that are O(ε−1/2) or larger. Since we want to study the dynamics near a folded singularity,

the ε-dependent terms in (3.5) play little role in this parameter regime and the system can be

regarded as an inconsequential perturbation of the folded node normal form (3.3) and Theor-

ems 3.2 and 3.3 apply. On the other hand, if ν = O(ε1/2) or smaller then one equilibrium

lies within an O(1)-size domain of the phase space. This equilibrium is determined by the

coefficients a and c (to leading order) and plays an important role in the local dynamics near a

folded singularity [85, 143]. In particular, the equilibrium undergoes a singular Hopf bifurca-

tion for ν = O(ε) [85]. Thus, for parameter values ν = O(ε1/2) or smaller, the higher-order

terms in the third equation of (3.5) are crucial.

So what is the most appropriate normal form of a system that undergoes a singular Hopf

bifurcation? Several groups have derived system (3.4), but drop the term by because it has

higher order in ε after the scaling. However, this term appears in the formula for the lowest-

order term in ε of the first Lyapunov coefficient of the Hopf bifurcation of (3.4) and, hence,
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FIG. 9. Phase portrait of an MMO periodic orbit Γ (black curve) for system (3.6) with (ν, a, b, c, ε) =
(0.0072168,−0.3872,−0.3251, 1.17, 0.01). The critical manifold S (grey) is the S-shaped surface with folds at

x = 0 and x = − 2

3
. The orbit Γ is composed of two slow segments near the two attracting sheets of S and two fast

segments, with SAOs in the region near the equilibrium p on the repelling sheet Sr of S just past the fold at x = 0.

Panel (a) shows a three-dimensional view and panel (b) the projection onto the (x, y)-plane.

must be retained if we hope to determine a complete unfolding of the singular Hopf bifurca-

tion [85].

The MMOs that occur close to the singular Hopf bifurcation have a somewhat dif-

ferent character than those generated via the folded node mechanism. Guckenheimer and

Willms [93] observed that a subcritical (ordinary) Hopf bifurcation may result in large regions

of the parameter space being funneled into a small neighborhood of a saddle equilibrium with

unstable complex eigenvalues. After trajectories come close to the equilibrium, SAOs grow

in magnitude as the trajectory spirals away from the equilibrium. Similar MMOs may pass

near a singular Hopf bifurcation. Then the equilibrium is a saddle-focus and trajectories on

the attracting Fenichel manifold are funneled into a region close to the one-dimensional stable

manifold of the equilibrium. SAOs occur as the trajectory spirals away from the equilibrium.

We review here our incomplete understanding of singular Hopf bifurcations and the MMOs

passing nearby.

The normal form (3.4) does not yield MMOs because there is no global return mech-

anism; trajectories that leave the vicinity of the equilibrium point and the fold curve flow to

infinity in finite time. This property can be changed by adding a cubic term to the normal

form that makes the critical manifold S-shaped, similar to the Van der Pol equation:





ε ẋ = y − x2 − x3,
ẏ = z − x,
ż = −ν − a x − b y − c z.

(3.6)

This version of the normal form for singular Hopf bifurcation with global reinjection has been
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FIG. 10. A chaotic MMO trajectory of system (3.6) with (ν, a, b, c, ε) =
(0.004564,−0.2317, 0.2053, 1.17, 0.01). Panel (a) shows the time series of the x-coordinate of the tra-

jectory from t = 100 to t = 200, and panel (b) the projection of the trajectory onto the (x, y)-plane.

derived repeatedly as a “reduced” model for MMOs [122, 138]. An example of the overall

structure of MMOs in system (3.6) with small ν is shown in Figure 9 for (ν, a, b, c, ε) =
(0.0072168,−0.3872,−0.3251, 1.17, 0.01); note that ν = O(ε). The S-shaped critical man-

ifold S is the grey surface in Figure 9(a); a top view is shown in panel (b). The manifold S has

two fold curves, one at x = 0 and one at x = − 2
3 , that decompose S into one repelling and

two attracting sheets. For our choice of parameters there exists a saddle-focus equilibrium p
on the repelling sheet that is close to the origin (which is the folded node singularity). The

equilibrium p has a pair of unstable complex conjugate eigenvalues. A stable MMO periodic

orbit Γ, shown as the black curve in Figure 9, interacts with p as follows. Starting just past

the fold at x = 0, that is, in the region near the origin with x < 0, the orbit Γ spirals away

from p along its two-dimensional unstable manifold and repeatedly intersects the repelling

sheet Sr of S. As soon as Γ intersects the repelling slow manifold (not shown), it jumps to

the attracting sheet of S with x < − 2
3 . The orbit Γ then follows this sheet to the fold at

x = − 2
3 , after which it jumps to the attracting sheet of S with x > 0. Then Γ returns to the

neighborhood of p and the periodic motion repeats.

The MMO periodic orbit Γ displayed in Figure 9 is only one of many types of complex

dynamics present in system (3.6). One aspect of the complex dynamics in system (3.6) is

the fate of the periodic orbits created in the Hopf bifurcation. There are parameter regimes

for (3.6) with stable periodic orbits of small amplitude created by a supercritical Hopf bi-

furcation. Subsequent bifurcations of these periodic orbits may be period-doubling or torus

bifurcations [85]. Period-doubling cascades can give rise to small-amplitude chaotic invariant

sets that may be associated with chaotic MMOs. For example, Figure 10 plots a chaotic MMO

trajectory for (3.6) with (ν, a, b, c, ε) = (0.004564,−0.2317, 0.2053, 1.17, 0.01) that arises

from such a period-doubling cascade of the periodic orbit emerging from the singular Hopf

bifurcation. It appears that it is chaotic because of the nonperiodicity of its time series, shown

for the x-coordinate in Figure 10(a). A two-dimensional projection onto the (x, y)-plane

is shown in panel (b). Note that this trajectory does not come close to either the equilibrium

point p or the folded singularity at the origin. As ν decreases from the value used in Figure 10

(where ν is already of order O(ε)), the large-amplitude epochs of the trajectories become less

frequent and soon disappear, resulting in a small-amplitude chaotic attractor. Section 4 dis-

cusses a rescaled subfamily of (3.6), giving further examples of complex dynamics and some

analysis of the organization of MMOs associated with this system.

We would like to characterize the parameter regimes with MMOs for which the SAOs
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FIG. 11. Tangency between the unstable manifold W u(p) of the equilibrium and the repelling slow manifold

Sr
ε of (3.6) with (ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01). Panel (a) shows trajectories of

W u(p) (red) and Sr
ε (blue) that are terminated on the green cross-section Σ defined by y = 0.3. The intersections

W u(p) ∩ Σ (with points on computed trajectories marked ’o’) and Sr
ε ∩ Σ (with points on computed trajectories

marked ’x’) are shown in panel (b).

are solely or partially due to spiraling along the unstable manifold Wu(p) of a saddle-focus

p. Analysis of this issue appears to be significantly more complicated than that for folded

nodes and has barely begun. We offer a few insights in locating these parameter regimes.

First, we think of ν in the normal form (3.6) of the singular Hopf bifurcation as the “primary”

bifurcation parameter and seek ranges of ν where MMOs are found. If the Hopf bifurca-

tion at ν = νH is supercritical then, for parameters close enough to the Hopf bifurcation,

the limit set of Wu(p) is just the bifurcating stable periodic orbit. The onset of MMOs is

observed to occur at a distance ν = O(ε) from the Hopf bifurcation due to a new type

of bifurcation [85]. This bifurcation occurs at parameters where p is a saddle-focus and

Wu(p) is tangent to the two-dimensional repelling Fenichel manifold Sr
ε . At first glance

one might think that two unstable objects in a dynamical system cannot intersect. However,

recall that Wu(p) consists of trajectories that approach p as t → −∞ while Sr
ε consists

of forward trajectories that remain slow for an O(1) time on the slow time scale. Con-

sequently, it is possible for a single trajectory to satisfy the criteria to belong to both of these

objects. Figure 11 illustrates an example of a tangency between Wu(p) and Sr
ε for (3.6) with

(ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01) (note that ν = O(ε) and, hence,

very close to νH ≈ −8.587 × 10−5). Shown are a collection of trajectories on Wu(p) (red)

that start close to p and end in the cross-section Σ := {y = 0.3}, together with a collection

of trajectories on Sr
ε that start on the repelling sheet of the critical manifold and also end in

Σ; see Section 8.1 for details of the method used to compute these manifolds. Figure 11(b)

shows the tangency of the two intersection curves of Wu(p) and Sr
ε with Σ. The manifold

Sr
ε is a surface that separates trajectories that make large-amplitude excursions from ones that

remain in the vicinity of p. For values of ν such that Wu(p) and Sr
ε do not intersect, the limit

set of Wu(p) remains small. By varying ν such that we move further away from νH , the
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MMOs arise as soon as Wu(p) and Sr
ε begin to intersect; see also Section 4.

The number of SAOs that an MMO periodic orbit Γ makes along Wu(p) is determined

by how close Γ comes to p and by the ratio of real to imaginary parts of the complex eigen-

values of p. The only way to approach p is along its stable manifold W s(p), so an MMO

like that displayed in Figure 9 must come very close to W s(p). The minimum distance d
between an MMO and W s(p) is analogous to the distance δ of a trajectory from the primary

strong canard in the case of folded nodes. Unlike the case of a folded node, the maximal

amplitude of the SAOs observed near Wu(p) is largely independent of d. What does change

as d → 0 is that the epoch of SAOs increases in length and begins with oscillations that are

too small to be detectable. There has been little investigation of how the parameters of the

normal form (3.6) influence d, but Figure 8 in Guckenheimer [85] illustrates that d depends

upon the parameter c in a complex manner. There are parameter regions where the global

returns of MMO trajectories are funneled close to W s(p). Since MMOs are not found im-

mediately adjacent to supercritical Hopf bifurcations, the ratio of real to imaginary parts of

the complex eigenvalues remains bounded away from 0 on MMO trajectories. This prevents

the appearance of extraordinarily long transients with oscillations that grow arbitrarily slowly

like those found near a subcritical Hopf bifurcation; see Section 5 and also [87, Figure 5].

The singular-Hopf and folded-node mechanisms for creating SAOs are not mutually ex-

clusive and can be present in a single MMO in the transition regime with ν = O(ε1/2). The

specific behavior that one finds depends in part on whether the equilibrium p near the singular

Hopf bifurcation is a saddle-focus with a pair of complex eigenvalues or a saddle with two

real eigenvalues. The MMO displayed in Figure 21 contains some SAOs that lie inside the

rotational sectors between the attracting and repelling slow manifolds and some SAOs that

follow the unstable manifold of the saddle-focus equilibrium. On the other hand, we note

that SAOs cannot be associated with a saddle equilibrium that has only real eigenvalues; this

occurs in a parameter region with ν > (a + c)ε1/2 (to leading order), but ν = O(ε1/2).
In this case, SAOs are solely associated with the folded node-type mechanism described for

ν = O(1) (that is, µ = O(1)). Krupa and Wechselberger [143] analyzed the transition regime

ν = O(ε1/2) and showed that the folded node theory can be extended into this parameter re-

gime provided the global return mechanism projects into the funnel region.

3.3. MMOs in three-time-scale systems. When the coefficients ν, a, b and c in the

normal forms (3.4) and (3.6) of the singular Hopf bifurcation are of order O(ε) or smaller,

then z evolves slowly relative to y and the system actually has three time scales: fast, slow

and super slow. Krupa et al. [138] studied this regime with geometric methods and asymptotic

expansions for the case a = c = 0. They observed MMOs for which the amplitudes of the

SAOs remain relatively large. Their analysis is based upon rescaling the system such that it

has two fast variables and one slow variable. To make the three-time-scale structure explicit,

we set ν = εν̂, a = εâ, b = εb̂ and c = εĉ. Rescaling the singular-Hopf normal form (3.6) of

Section 3.2 by x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, and t = ε1/2 t̄ yields





ẋ = y − x2 − ε1/2x3,
ẏ = z − x,

ż = ε(−ν̂ − ε1/2 â x − ε b̂ y − ε1/2 ĉ z),

(3.7)

which is still a singularly perturbed system, but now with two fast variables, x and y, and a

slow variable z. An equilibrium lies within an O(1)-size domain around the origin if ν̂ =
O(ε1/2) or smaller, i.e., ν = O(ε3/2) or smaller. This equilibrium plays an important role in

the dynamics if it is of saddle-focus type. In particular, it undergoes a Hopf bifurcation for

ν̂ = O(ε), i.e., ν = O(ε2).
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FIG. 12. Phase portraits of system (3.8) for three different values of z. Shown are several trajectories (blue)

and one trajectory (red) that approximates a separatrix. For each z, there is a single equilibrium point p at (x, y) =
(z, z2). Panels (a)–(c) are for z = 2, z = 0.25 and z = 0, for which p is a stable node, a stable focus and a

center surrounded by a continuous family of periodic orbits, respectively. The boundary of this family is the maximal

canard.

The two-dimensional layer problem of (3.7)





ẋ = y − x2,
ẏ = z − x,
ż = 0,

(3.8)

in which z acts as a parameter, is exactly the same system obtained in the analysis of the

planar canard problem, where the parameter λ is replaced by z; compare with system (2.7).

Note that (3.8) has a unique equilibrium p for each value of z, given by (x, y) = (z, z2).
Figure 12 shows phase portraits of (3.8) in the (x, y)-plane for three different values of z,

namely z = 2, z = 0.25 and z = 0 in panels (a), (b) and (c), respectively. For z > 0,

the equilibrium p is an attracting fixed point in the (x, y)-plane; it is a node for z > 1 and

a focus for 0 < z < 1; note that this information also determines the type of equilibrium

of (3.7) obtained for ν̂ = O(ε1/2) to leading order — the same argument can also be used

to determine the basin boundary of the saddle-focus equilibrium in Section 3.2. The basin

boundary of p is an unbounded trajectory that is shown in red in panels (a) and (b). When

z = 0, the vector field (3.8) has a time-reversing symmetry that induces the existence of

a family of periodic orbits. Indeed, the function H(x, y) = exp(−2y) (y − x2 + 1
2 ) is an

integral of the motion and the level curve H = 0 is a parabola that separates periodic orbits

surrounding p (the origin) from unbounded orbits that lie below the parabola and become

unbounded with x → ±∞ in finite time.

System (3.7) can be viewed as a perturbation of (3.8) when z remains small and is slowly

varying compared to x and y. In this case, changes in H can be used to monitor the SAOs of

trajectories. We focus on the case a = c = 0 studied in [138]. To find parameters for which

system (3.6) has MMOs, we fix b = −0.005 and ε = 0.01 and vary ν so that z increases

when y is large but decreases when the system has SAOs. More precisely, we want the

average value of z to increase during epochs of SAOs and decrease during epochs of LAOs.

The changes in z should be of sufficient magnitude to drive the trajectory across the slow

manifolds and trigger a transition between these epochs. Figure 13(a) displays a periodic

MMO with signature 14 found at ν = 0.00015 (which is of order O(ε2)). The projection

in panel (a2) of the orbit onto the (z, y)-plane shows that z decreases approximately from

−0.003713 to −0.004143 while the trajectory makes four SAOs, and z increases during a

single LAO. Note that ż = 0 on the plane y = 0.03. System (3.6) also possesses two

equilibria with z-coordinates given by ±
√
−ν/(b ε), which equals ±

√
3 in this case. Since

the MMO signature shown in Figure 13(a2) is confined to the area near the origin (in the

z-direction), these two equilibria have no influence on the dynamics.

As ν increases, the value of y for which ż = 0 increases, and trajectories have a
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FIG. 13. Stable periodic MMOs of system (3.6) with (a, b, c, ε) = (0,−0.005, 0, 0.01). Row (a) shows the

periodic MMO with signature 14 for ν = 0.00015 as a time series of x in panel (a1) and in projection onto the

(z, y)-plane in panel (a2); similar projections are shown in row (b) for ν = 0.00032, where the periodic MMO has

signature 91.

propensity to pass more quickly through the region of SAOs. Figure 13(b) shows a peri-

odic MMO with signature 91 obtained for ν = 0.00032. This value of ν lies close to the

upper end of the range in which MMOs seem to exist for the chosen values of (a, b, c, ε) =
(0,−0.005, 0, 0.01). As the projection in panel (b2) illustrates, the average value of z in-

creases (|z| decreases) during each LAO, but it takes nine LAOs before it crosses the threshold

into the region of SAOs. On the other hand, a single SAO takes the trajectory back to the re-

gion of LAOs.

For intermediate values of ν ∈ (0.00015, 0.00032), the system displays aperiodic MMOs

as well as periodic MMOs with a variety of signatures. These signatures can be analyzed via

an approximately one-dimensional return map to a cross-section at x = 0. Returns to this

cross-section with x decreasing appear to lie along a thin strip; this is illustrated in Fig-

ure 14(a) for ν = 0.0003, for which the system appears to have aperiodic MMOs. The thin

strip in Figure 14(a) is approximately given by the line y = 0.1153 z−0.004626 (and x = 0).

If we take 600 initial conditions on this line with z ∈ [−0.0043,−0.004] then their next return

to the cross-section fall onto two segments that are close to the initial line and within the seg-

ment z ∈ [−0.0043,−0.004]. Figure 14(b) graphs these returns, showing the z-coordinates

z out of returns of the 600 initial conditions versus their inital z-coordinates z in; the diagonal

z out = z in is also pictured. This figure suggests that the return map near the line segment

can be approximated by a rank-one map with two segments of slopes close to one, separated

by a steep segment for initial values z in ≈ −0.004055. The return map increases z on the
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FIG. 14. Return map of system (3.6) with (ν, a, b, c, ε) = (0.0003, 0,−0.005, 0, 0.01) to the section x = 0.

Panel (a) shows that the return is almost one dimensional along a line that is approximately given by y = 0.1153 z−
0.004626. The z-coordinates of the returns for initial conditions along this line with z ∈ [−0.0043,−0.004] are

plotted versus their initial z-values in panel (b).

left “branch” of this map and decreases z on the right branch. This is the behavior described

above since larger values of z correspond to SAOs, the smaller values to LAOs. Trajectories

that do not hit the steep section of the map go back and forth repeatedly between the two

branches. As ν varies, the “shape” of the return map remains qualitatively the same: the two

branches still have slopes close to one, but their off-set from the diagonal varies. Approx-

imately for ν < 0.00013, the image of the right branch, representing SAOs, maps to itself,

while for ν > 0.00034, the image of the left branch maps to itself, and the system only has a

large periodic relaxation oscillation with no SAOs. In the range of ν where MMOs do exist,

kneading theory for one-dimensional maps [38] can be applied to the numerically generated

return maps to predict the signatures of the MMOs.

Further insight into the steep segment of the return map at z = z in ≈ −0.004055
comes from computing intersections of the attracting and repelling slow manifolds. We com-

puted forward trajectories from initial conditions on the attracting sheet (with x < − 2
3 )

and backward trajectories from initial conditions on the repelling sheet of the critical man-

ifold to their intersection with the cross-section {x = 0}. Since the trajectories quickly

converge to the attracting and repelling slow manifolds, their intersections with {x = 0}
give a good approximation of the intersection curves of the slow manifolds with {x = 0}.

These two intersection curves have one point in common, which is approximately (y, z) =
(−0.0050941,−0.0040564). Hence, this point lies in the region that gives rise to the steep

segment shown in Figure 14(b). By definition, the intersection of the attracting and repelling

slow manifolds is a maximal canard. Initial conditions on the cross-section {x = 0} to one

side of the repelling manifold result in SAOs while trajectories on the other side result in fast

jumps to the other sheet of the attracting slow manifold (with x > 0). Thus, we have con-

firmed numerically that canard orbits separate the two branches of the return map displayed

in Figure 14(b); compare also with Figure 7(a), which illustrates that the one-dimensional

return map calculated near a folded node has several steep sections that correspond to the

primary strong canard and the maximal secondary canards of the problem.

3.4. MMOs due to dynamic Hopf bifurcation and tourbillion. Recall from Sec-

tion 3.3 that the abrupt transitions between SAOs and LAOs in system (3.7) are a consequence

of the three-time-scale structure, which allows us to view the system as having two fast vari-

ables and only one slow variable. Such a system with two or more fast variables may have

a Hopf bifurcation in the layer equations. We now consider this situation, and assume that a

pair of complex eigenvalues of the layer equations cross the imaginary axis as one follows a
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trajectory of the reduced system. When ε 6= 0 one observes a slow motion or drift of traject-

ories through the region near the Hopf bifurcation in the layer equations. Due to the complex

eigenvalues in the fast directions, trajectories spiral around the slow manifold, which gives

rise to oscillations. The amplitude of such an oscillation initially decreases (while the real

part of the complex eigenvalues is negative) and then increase again (after the real part be-

comes positive). We refer to this situation as a dynamic Hopf bifurcation. Our primary goal

is to determine when MMOs have SAOs that are associated with a dynamic Hopf bifurcation.

Note that, unlike in systems with a single fast variable, this type of SAO is neither associated

with a folded singularity of the critical manifold nor with a (singular) Hopf bifurcation of the

system for ε 6= 0.

A well-known example of a dynamic Hopf bifurcation is the phenomenon of delayed

Hopf bifurcation. For simplicity, we discuss it here for a system with one slow and two fast

variables, the lowest dimensions possible. Consider a segment L on the one-dimensional

critical manifold S along which the layer equations undergo a Hopf bifurcation. That means

that the linearization of the layer equations along L has a pair of complex eigenvalues α± iβ
that cross the imaginary axis transversally. In the case of a supercritical Hopf bifurcation, a

one-parameter family of attracting periodic orbits of the layer equations, parameterized by the

slow variable, emanates from the point L0 ∈ L where α = 0. If a trajectory u(t) of the full

system comes close to L near a point Lu ∈ L that lies at a distance δ = |Lu − L0| = O(1)
from L0, then u(t) will come exponentially close to L on the slow time scale. The layer

equations undergo a Hopf bifurcation, but, in analytic systems, u(t) remains close to L for

an O(1)-distance after the Hopf bifurcation has occurred [168]. This delay happens because

it takes an O(1) time for u(t) to be repelled away from L. In particular, u(t) does not

immediately follow the periodic orbits of the layer equations emanating from L0. The slow-

fast analysis identifies a definite “jump” point (called a buffer point) at which u(t) leaves

L and approaches the periodic orbits, if it has not done so earlier. There are SAOs along

L in a delayed Hopf bifurcation, but they are exponentially small near L0 and the jump

from L to the periodic orbits may occur within a single period of the SAOs. Thus, SAOs

near a delayed Hopf bifurcation are typically so small that they are unobservable in practical

examples. This situation is reminiscent of MMOs associated with folded nodes with δ =
O(1). More specifically, Theorem 3.2 predicts maximal 1k+1 MMO signatures but, due to

strong contraction toward the primary weak canard γw on Sa,ε, only the final rotation is

actually observed; see Figure 7(b4).

In a number of examples, such as those in Sections 6 and 7, one actually observes MMOs

with SAOs near a dynamic Hopf bifurcation whose amplitudes remain observably large. We

adopt the term tourbillion from Wallet [232] to describe the trajectories passing through a

dynamic Hopf bifurcation with oscillations whose amplitude remains above an observable

threshold. We discuss the tourbillion and how it gives rise to MMOs also in systems with one

slow and two fast variables. Consider the model system





ẋ = −y + z x,
ẏ = x + z y,
ż = ε,

(3.9)

that is obtained by linearization of the layer equations for a dynamic Hopf bifurcation. This

equation is separable in polar coordinates, yielding ṙ = ε t r for trajectories that have initial

conditions in the plane {z = 0}. Hence, the general solution is r(t) = r(0) exp(ε t2/2),
which means that the amplitude of a solution decreases for z < 0 and then increases for

z > 0. We conclude that
r(1/

√
ε)

r(0) = exp( 1
2 ) and that the oscillations have almost constant

amplitude over a time interval of 1/
√

ε. If the r coordinate of a trajectory decreases to r = 1
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FIG. 15. Time series of the x-coordinate of a trajectory of (3.10) with initial point (x, y, z) =
(−1, 0.8,−0.12). Panels (a)–(c) are for λ = 0.1 and for ε = 0.006, ε = 0.012 and ε = 0.02, respectively.

at a value of z that is O(
√

ε), then the minimum amplitude of the oscillations associated with

the dynamic Hopf bifurcation will still be observable. The amplitudes of these oscillations

and the coupling of ε with the distance of approach to the dynamic Hopf point characterize the

tourbillion regime and distinguishes it from a delayed Hopf bifurcation. In a delayed Hopf

bifurcation, a trajectory approaches the slow manifold at distance O(1) from the dynamic

Hopf point, while in a tourbillion, the approach to the slow manifold occurs within O(
√

ε)
of the layer containing the dynamic Hopf point. When ε is fixed in a system, the distinction

between a delayed Hopf point and a tourbillion becomes blurred, but the distinction is clear

in many examples.

The system (3.9) describes SAOs with distinctly nonzero amplitudes locally near the

point where the dynamic Hopf bifurcation occurs in the layer not account for characteristic

abrupt transitions at the beginning and end of an SAO epoch within an MMO, such as those in

Sections 6 and 7, because these transitions depend upon mechanisms that are not part of the

local analysis of system (3.9) . There is as yet no comprehensive study of possible geometric

mechanisms that determine the sudden start and the end of a section of SAOs arising from

a tourbillion. This paper largely avoids this issue and concentrates on local mechanisms for

generating the SAOs of MMOs. Nevertheless, the following example illustrates one mech-

anism for an abrupt jump away from SAOs of a tourbillion. Consider a “dynamic” section

through the unfolding of the codimension-two Bogdanov-Takens bifurcation [88], defined as





ẋ = y,
ẏ = λ + z y − x2 − x y,
ż = ε.

(3.10)

As before, we regard z as a slowly varying parameter. For λ > 0 and ε = 0, the system has

two straight lines of equilibria defined by x = ±
√

λ and y = 0. A supercritical Hopf bifurc-

ation occurs along the line of equilibria with x > 0. The family of periodic orbits born at

this bifurcation terminates at a homoclinic orbit. Moreover, there is always a bounded region

of the (x, y)-plane in which oscillations around the equilibrium occur; this is the tourbillion

region. The line of (saddle) equilibria with x < 0 of the layer equations perturbs to a Fenichel

manifold of saddle type and its stable and unstable manifolds guide the entrance and exit to

the tourbillion in this example. As we have seen, the number of oscillations and their min-

imum amplitude is determined both by the magnitude of the initial condition and of ε. This

is illustrated in Figure 15 with trajectories of system (3.10) for λ = 0.1 and different values

of ε — all starting from the initial condition (x, y, z) = (−1, 0.8,−0.12) that lies outside the

tourbillion region. Note that x and y are O(1) quantities, and so the condition for a tourbil-

lion is that |z| is of order
√

ε. In Figure 15(a) for ε = 0.006 we do not find a tourbillion but
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observe oscillations that decay rapidly, are very small for a while and then grow rapidly again

before the trajectory jumps away. In panel (b) for ε = 0.012, on the other hand, the oscil-

lations decay and then grow more gradually and they remain of observable size throughout.

We conclude that ε is now just about large enough to speak of a tourbillion region, passage

through which results in seven SAOs before the jump occurs. For even larger values of ε the

same initial condition results in oscillations that maintain an almost constant amplitiude; see

Figure 15(c) for ε = 0.02. Observe that, owing to the faster drift through the region near the

Hopf bifurcation in the layer system, we now find only four SAOs before the trajectory jumps

away.

It is interesting to compare the SAOs associated with a tourbillion with those occurring

near a folded node or near a singular Hopf bifurcation. One difference is that the period of the

oscillations is O(ε) (slow time) for the tourbillion, while it is O(
√

ε) for the other two cases.

In each of the cases, the data that determines the number of SAOs is slightly different. For

the folded node, the eigenvalue ration µ determines the number of rotational sectors, and the

distance of the global return to the weak canard relative to the singular perturbation parameter

determines which rotational sector a trajectory enters. For the singular Hopf bifurcation, the

distance of the global return to the stable manifold of the saddle-focus equilibrium sets the

minimum amplitude and duration of the SAOs. For a tourbillion, the number of SAOs is

governed by the singular perturbation parameter and the distance of the global return to the

delayed Hopf bifurcation point. Moreover, the termination of the SAOs for a tourbillion

depends upon either a global mechanism or an arbitrary threshold for the amplitude of SAOs.

In contrast, the oscillations of a folded node end “on their own,” while the intersections of

the unstable manifold of the equilibrium and the repelling slow manifold typically limit the

amplitude of SAOs near a singular Hopf bifurcation.

3.5. Summary of local mechanisms for SAOs. We now summarize the main results

of this review section on the local mechanisms that give rise to MMOs. For systems with a

single fast variable, the local mechanisms responsible for SAOs must involve a mixture of the

two time scales. We distinguish three regions near folded nodes and folded saddle-nodes that

yield MMOs:

1. Folded Nodes: If the parameters satisfy suitable order conditions (ν = O(1)) so

that no equilibrium of the full system is near the folded node then the theory of

Section 3.1 applies and SAOs are due to the twisting of slow manifolds.

2. Singular Hopf: As is shown in the Section 3.2, the dynamics near a singular Hopf bi-

furcation (ν = O(ε)) tends to be quite complicated. SAOs occur when the trajectory

follows the unstable manifold of a saddle-focus.

3. Transition Regime: The folded-node and singular-Hopf regimes are separated by a

transition regime with intermediate values of ν = O(
√

ε). Extensions of the folded

node theory have been developed in [143]; note that the parameter µ in [143] not

only represents the eigenvalue ratio but also describes the distance of the equilibrium

to the folded node in a blown-up system. In this transition regime, it is possible for

the SAOs to pass through the rotational sectors of the folded node as well as spiral

along the unstable manifold of the saddle-focus equilibrium.

In systems with at least two fast variables the tourbillion provides a different local mech-

anism that generates SAOs. Here, the layer equations have complex eigenvalues and the

SAOs are aligned with the fast directions of the system. Little systematic study of the tour-

billion as a mechanism that generates MMOs has been carried out, and the theory remains

fragmentary.

Finally, three-dimensional systems with three time scales can exhibit all of the mech-

anisms discussed in this section. Namely a three-time-scale system may be considered as

28



having two slow variables, in which case the folded-node and singular-Hopf mechanisms

may be found, or, alternatively, as having two fast variables, which allows for the possibility

of a tourbillion.

The following sections are case studies that illustrate these different local mechanisms

for MMOs:

• The Koper model in Section 4 is a three-dimensional slow-fast system with a folded

node and a supercritical singular Hopf bifurcation.

• The three-dimensional reduced Hodgkin–Huxley model in Section 5 also features a

folded node, but has a subcritical singular Hopf bifurcation.

• The four-dimensional Olsen model of the peroxidase-oxidase reaction in Section 6

displays MMOs associated with a tourbillion.

• The Showalter–Noyes–Bar-Eli model in Section 7 is a seven-dimensional system

that exhibits MMOs. The global mechanism that organizes these MMOs is un-

known, but we show here that their SAOs are due to a tourbillion.

4. MMOs in the Koper model of chemical reactors. Our first case study is a system

introduced by Koper [122]. We use it to illustrate how MMOs arise near a folded node and

near a (supercritical) singular Hopf bifurcation in a specific model equation. The equations

of the Koper model are





ε1 ẋ = k y − x3 + 3 x − λ,
ẏ = x − 2 y + z,
ż = ε2 (y − z),

(4.1)

where λ and k are parameters. Koper studied this three-dimensional idealized model of chem-

ical reactions with MMOs. While this example is well known, we revisit its analysis and

enhance it by using the recently developed theory outlined in the previous sections. When

ε1 and ε2 are both small, system (4.1) has three time scales; when only ε1 is small, it is a

slow-fast system with two slow variables y and z and one fast variable x. We note that a

two-dimensional variant of (4.1) was first studied by Boissonade and De Kepper [26] in their

efforts to understand bistability and oscillations of chemical systems. The first analysis of

MMOs in the three-dimensional extended model was carried out by Koper who explained the

MMOs by invoking the presence of a Shil′nikov homoclinic bifurcation.

As mentioned in Section 3.2, the Koper model (4.1) is a rescaled subfamily of the cubic

normal form (3.6) for the singular Hopf bifurcation. To see this, replace (x, y, z) in sys-

tem (4.1) by (u, v, w) and consider the affine coordinate change

x =
u − 1

3
, y =

k v − λ + 2

27
, z =

2 v − w − 1

3
.

Now also scale time by the factor −k
9 , where we assume that k < 0. Then (4.1) becomes (3.6)

with ε = −k ε1/81, a = 18/k, b = 81 ε2/k2, c = −9 (ε2 + 2)/k and ν = (3 ε2 λ − 6 ε2 −
3 k ε2/k2. Note that the coefficients of the normal form satisfy

2 b − a c + a2 = 0,

which means that the Koper model (4.1) is only equivalent to a subfamily of the singular-Hopf

normal form (3.6). However, (4.1) still has a folded node and a singular Hopf bifurcation in

certain parameter regimes.

Let us first analyze the parameter regimes where SAOs are organized by a folded node.
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To this end, we work both with system (4.1) and the equivalent system





ε1 ẋ = y − x3 + 3 x,
ẏ = k x − 2 (y + λ) + z,
ż = ε2 (λ + y − z),

(4.2)

which we refer to as the symmetric Koper model, because it has the symmetry

(x, y, z, λ, k, τ) → (−x,−y,−z,−λ, k, τ). (4.3)

System (4.2) is obtained by replacing (x, y, z) in system (4.1) by (u, v, w) and applying the

coordinate change x = u, y = k v − λ and z = k w. We focus our analysis on the case

ε2 = 1 and consider (4.2) as a system with two slow variables. Observe that the critical

manifold of (4.2),

S = {(x, y, z) ∈ R
3 | y = x3 − 3 x =: c(x)},

no longer depends on k and λ. This cubic-shaped critical manifold S has two fold curves

F± = {(x, y, z) ∈ R
3 | x = ±1, y = ∓2}, which gives the decomposition

S = Sa,− ∪ F− ∪ Sr ∪ F+ ∪ Sa,+,

where Sa,− = S ∩ {x < −1}, Sr = S ∩ {−1 < x < 1} and Sa,+ = S ∩ {1 < x}
are normally hyperbolic. Note that Sa,± are attracting and Sr is repelling. To derive the

desingularized slow flow on S we consider the algebraic equation 0 = y − c(x), obtained by

setting ε1 = 0 in (4.2), and differentiate implicitly with respect to τ . Then the time rescaling

τ 7→ τ(3x2 − 3) gives

{
ẋ = k x − 2 (c(x) + λ) + z,
ż = (3x2 − 3) (λ + c(x) − z).

(4.4)

The desingularization reverses the direction of time on the repelling part Sr of S. We find

folded singularities as equilibria of (4.4) that lie on the fold lines F±. The only equilibrium

on F+ is (x, z) = (1, 2λ − 4 − k), with y = −2, and the only one on F− is (x, z) =
(−1, 2λ + 4 + k), with y = 2. The associated Jacobian matrices are

A± =

(
k 1

6 (2 + k ∓ λ) 0

)
. (4.5)

By classifying the folded singularities according to their type and stability, we obtain a

“singular” bifurcation diagram; we then use results from Section 3 to identify possible MMO

regions. Figure 16 shows this singular bifurcation diagram in (k, λ)-space, where we use the

notation eh
± to indicate the type e and stability h of the folded singularities; e is f , n or s for

focus, node or saddle, and h is a, r or sa for attractor, repellor or saddle, respectively. The

different parameter regions are divided by three types of curves. Folded saddle-nodes of type

II occur when det(A±) = 0 ⇔ λ = ±(k + 2). The eigenvalues change from real to complex

conjugate along the parabolic curves tr(A±)2 − 4 det(A±) = k2 + 24 (k ∓ λ) + 48 = 0.

The vertical line tr(A±) = k = 0 is the locus where the real part of a complex eigenvalue

changes sign. The enlargement in panel (b) resolves the region near (k, λ) = (−2, 0).
MMOs are likely to exist in the regions where system (4.2) has a folded node, provided

the global return mechanism brings orbits back into the associated funnel region. Recall from

Section 3.1 the construction of a candidate periodic orbit Γc that consists of a segment on Sa
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FIG. 16. The “singular” bifurcation diagram in the (k, λ)-plane of the desingularized slow flow (4.4). Shown

are the folded saddle-node of type II (straight lines), the transition from a folded node to a folded focus (parabolas),

and the curve indicating where the candidate trajectory from the folded node returns with δ = 0 (dashed curve,

obtained numerically), which is not shown in panel (b). Panel (a) gives a global view and panel (b) is an enlargement

of the region near the right intersection point of the two parabolic curves. The types of folded equilibria in each

parameter region are indicated as follows: f = folded focus, n = folded node and s = folded saddle. The

subscripts indicate whether the equilibrium lies on F+ or F−. The superscripts a, r and sa stand for attractor,

repellor and saddle, respectively.
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FIG. 17. The candidate periodic orbit Γc of the folded node na
+ of (4.2) with (ε1, ε2, λ, k) = (0, 1,−7,−10)

returns at a distance δ from the strong singular canard γ̃s. Panel (a1) shows all of Γc and panel (a2) an enlargement

near na
+ to illustrate the definition of δ. Panel (b) shows δ as a function of λ, with all other parameters fixed. The

distance δ only has meaning for δ > 0 and for values of λ larger than its value at the folded saddle-node of type II

at λ = −8.
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FIG. 18. Bifurcation diagram for equilibria of the full system (4.2) with ε1 = 0.01. Shown are saddle-node

bifurcations (green, labeled SN) and Hopf bifurcations (blue, labeled H). The saddle-node bifurcation curve has

a cusp point (labeled C) and meets the Hopf bifurcation curve in two Bogdanov-Takens points (labeled BT). The

dashed curves are folded saddle-nodes of type II (red, labeled FSN II) that occur in the singular limit (4.4).

ending at the folded node, followed by a fast fiber of the layer problem and a global return

mechanism. Figure 17(a1) illustrates this construction for a candidate periodic orbit passing

through na
+, where we used k = −10 and λ = −7; this is a computational example of the

sketch shown in Figure 8. Starting at na
+, the candidate Γc jumps to Sa,−, which is followed

by a slow segment until Γc reaches F−. After another jump Γc returns inside the singular

funnel, as shown in Figure 17(a2), and we measure the distance δ to the strong singular

canard γ̃s. This distance δ depends on the parameters, for example, δ varies as a function of

λ with k = −10 fixed in Figure 17(b). Note that δ < 0 means that Γc no longer returns to the

singular funnel; as long as δ > 0 the candidate Γc gives rise to periodic MMOs as ε1 > 0.

Hence, the curve in the (k, λ)-plane along which δ = 0 marks the start of the MMO regime.

Figure 16(a) shows the locus of δ = 0 as a dashed curve; its symmetrical image corresponds

to candidate periodic orbits for na
−. The two (symmetric) parameter regions bounded by the

lines of folded saddle-nodes of type II, where ssa
± changes to na

±, and the curves where δ = 0
are the regimes where MMOs are predicted to exist; note that the curves δ = 0 run all the

way up to the folded saddle-nodes of type II, which is not shown in Figure 16(b).

Koper identified a parameter region of “complex and mixed-mode oscillations” for ε > 0
by using continuation methods; see Figure 1 on page 75 of [122]. We can interpret his results

as perturbations of the MMO regimes we identified in the singular bifurcation diagram in

Figure 16(a). To this end we consider bifurcations of equilibria of (4.2) for ε > 0; this

analysis was already carried out by Koper [122] for (4.1). The bifurcation diagram in the

(k, λ)-plane is shown in Figure 18 for ε1 = 0.01, with the saddle-node curves (green) labeled

SN, the Hopf curves (blue) labeled H. Included are the curves of folded saddle-nodes of

type II (dashed red) labeled FSN II; the curves FSN II already predict the “cross-shaped”

bifurcation diagram for the full system with ε1 > 0 sufficiently small [26]. The cross-shaped

bifurcation structure persists over a wide range of ε1. We find the saddle-node and Hopf
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curves as follows. The Jacobian matrix A of (4.2) on the fast time scale has the characteristic

polynomial σ3 + c2 σ2 + c1 σ + c0 with coefficients

c2 = 3 (ε1 + x2 − 1), c1 = ε1 (ε1 + 9 x2 − k − 9), c0 = ε2
1 (3x2 − 3 − k),

where x corresponds to an equilibirum, that is, x3 − (k +3) x+λ = 0. Hence, a saddle-node

bifurcation occurs for

c0 = − det(A) = 0 ⇔ λ = ±2

(
1 +

k

3

)3/2

,

which has a cusp point at k = −3 and does not depend on ε1; the cusp point is labeled C in

Figure 18. The Hopf bifurcation is defined by c0 − c1 c2 = 0, provided c1 > 0. To first order

in ε1, we find

λ = ±
(

2 + k − 1

3
k ε1 + O(ε2

1)

)
,

which lies O(ε1) close to the curves of folded saddle-nodes of type II, as expected; The

saddle-node and Hopf bifurcation curves coincide at two Bogdanov-Takens points (labeled

BT) defined by k = − 1
2 ε1. The MMO regime for ε1 > 0 lies in the region with k < 0 and it

has a lower bound with respect to λ along a curve that is close to H. We discuss this in more

detail for fixed k = −10. Note that from now on we use the original equations (4.1), but this

does not alter the bifurcation diagrams of the (k, λ)-plane in Figures 16 and 18.

Koper [122] computed a numerical bifurcation diagram for fixed k = −10 and ε1 = 0.1
with λ > 0 as the free parameter; he found isolated closed curves of MMO periodic orbits.

We computed more detailed bifurcation diagrams, using the same system (4.1) as Koper,

where we concentrate on the (symmetrically related) region λ < 0 and used ε1 = 0.01 as

well as ε1 = 0.1. The result is shown in Figure 19, where row (a) is for ε1 = 0.1 and

row (b) for ε1 = 0.01. The vertical axis in panels (a1) and (b1) is the period T of the periodic

orbits, while in panels (a2) and (b2) it is the maximum absolute value of the x-coordinate.

A family of stable periodic orbits emanates from the Hopf bifurcation H, but it quickly loses

stability in a period-doubling bifurcation PD. We abuse notation and label this family 10;

the period-doubled family is labeled 20 and note that it appears as a disconnected curve in

the (λ, T )-projection because the period doubled. The 10 orbit becomes stable again in a

second period-doubling bifurcation, which is quickly followed by a fold (not labeled) that

renders it unstable, until a second fold SL, after which relaxation oscillations are persistent.

The MMOs reside on isolas that exist for the range of λ roughly in between the two period-

doubling bifurcations. We used alternatingly light- and dark-blue colors to highlight these

families; we found MMOs with signatures 1s with s ranging from 3 to 14 as indicated in

Figure 19.

The MMOs on the isolas in Figure 19 are generated by the folded node mechanism; we

refer to Section 5 for a more detailed discussion of MMOs on such isolas. Here, we focus on

the fact that MMOs with more complicated signatures can be found as soon as the candidate

periodic orbit returns close to a maximal canard. Figure 20 shows the stable MMO that exists

for λ = −7; here, we used ε1 = 0.1. Panel (a) shows a time series of the x-coordinate,

which identifies the signature of this MMO as 1213; a projection onto the (z, y)-plane is

shown in panel (b). We computed the attracting and repelling slow manifolds Sa
ε1

and Sr
ε1

,

respectively. They are shown in Figure 20(c) along with three maximal secondary canard

orbits ξ2, ξ3 and ξ4 that are also drawn in panel (b). The figure shows how both LAOs are

funneled into the folded node region, practically on Sa
ε1

and very close to ξ2. Figure 20(b)
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FIG. 19. Bifurcation diagram in λ for the Koper model (4.1) with (ε2, k) = (1,−10). Panels (a1) and (a2)

are for ε1 = 0.01 and panels (b1) and (b2) for ε1 = 0.1 as used by Koper. Panels (a1) and (b1) plot the period

T and panels (a2) and (b2) maxima of |x| versus λ. A branch of periodic orbits (an “MMO” with signature 10)

emanates from the Hopf bifurcation H and coexists with isolas of MMOs with different signatures.

illustrates that they are actually separated by Sr
ε1

on either “side” of ξ2, which means that

the number of SAOs that follow for one of the LAOs is two, while for the other it is three,

as dictated by ξ3. Referring to Figure 7(a), a one-dimensional approximation of the return

map will have branches corresponding to trajectories that make increasingly larger numbers

of SAOs as they pass through the folded node, and the trajectory shown in Figure 20(c) has

returns that alternate between the branches corresponding to two and three SAOs.

We observe that the last of the three SAOs has a distinctly larger amplitude, which Fig-

ure 20 suggests is due to this oscillation following a canard and then executing a jump back

to Sa
ε1

. However, there is also an equilibrium q nearby. For k = −10 a singular Hopf bi-

furcation occurs for λ = λH ≈ −7.67. We found that the folded node in Figure 20 is at

(x, y, z) = (1, [λ − 2]/k, [2λ − 4 − k]/k) = (1, 0.9, 0.8) and the nearby equilibrium q at

(x, y, z) = (xq, xq, xq), where xq ≈ 0.897 is a root of x3 − (k + 3)x + λ.
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FIG. 20. An MMO with signature 1213 (black) generated by a folded node singulartiy of (4.1) for
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together with the attracting and repelling slow manifolds Sa
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(blue), respectively.
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FIG. 21. An MMO near a singular Hopf bifurcation for (4.1) with (ε1, ε2, λ, k) = (0.1, 1,−7.52,−10).

Panel (a) shows the time series of the x-coordinate. The bifurcation diagram in panel (b) illustrates how close

the parameters are to a tangency bifurcation between W u(q) and Sr
ε (dashed cyan); the Hopf H (solid blue),

folded saddle-node of type II FSN II (dashed red), and δ = 0 (dashed black) curves are shown as well; see

also Figure 16. The slow manifolds Sa
ε and Sr

ε shown in panel (c) guide the MMO toward the equilibrium

q ≈ (0.951, 0.951, 0.951), after which W u(q) organizes the SAOs. The high compression and twisting of Sr
ε

near W u(q) is highlighted in panel (d).
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FIG. 22. A periodic MMO of (4.1) for (ε1, ε2, λ, k) = (0.01, 1,−0.063,−2.1) that exhibits SAOs near the

maximum as well as the minimum of the LAO.

We find pronounced SAOs generated by a singular Hopf bifurcation if we decrease λ closer

to the value λH ; note that we have to stay above the value of λ for which there is a tangency

between the unstable manifold Wu(q) of q and the repelling slow manifold Sr
ε1

; see also

Section 3.2. Figure 21 shows the MMO of (4.1) for λ = −7.52. The time series of the x-

coordinate shows SAOs that are quite different from the SAOs in Figure 20(a). Figure 21(b)

shows an enlarged bifurcation diagram in the (k, λ)-plane with the parameter location of the

two MMOs for Figures 20 and 21 indicated by two black dots at k = −10. The Hopf curve

(solid blue) and the curve of folded saddle-nodes of type II (dashed red) are labeled H and

FSN II, respectively. The MMO region is bounded by the curve δ = 0 (dashed black) and

the tangency between Wu(q) and Sr
ε1

(dashed cyan); in between the Hopf and this tangency

bifurcation the periodic orbits have small amplitudes and the transition to MMOs occurs

O(ε) away from the Hopf curve. The dot corresponding to Figure 21 lies very close to the

tangency curve, while the dot corresponding to Figure 20 lies well inside the MMO region.

Figure 21(c) shows geometrically how the SAOs are organized. The red and blue surfaces are

the attracting and repelling slow manifolds Sa
ε1

and Sr
ε1

, respectively. During the epoch of

SAOs, the MMO periodic obit lies almost on Sa
ε1

and it cannot pass through Sr
ε1

, which twists

very tightly and forces a decrease in the amplitudes of the SAOs; this first part of the SAOs

is still reminiscent of the passage through a folded node, which lies at (1, [λ − 2]/k, [2λ −
4 − k]/k) = (1, 0.952, 0.904), and their amplitudes decrease with ε1. Since Sr

ε1
spirals

around the one-dimensional stable manifold of q, the MMO periodic orbit comes very close

to q = (xq, xq, xq), with xq ≈ 0.951. The SAOs that follow are organized by Wu(q) and

their amplitudes are increasing to relatively large values before the LAO.

In summary, if we fix k in Figure 21(b) and increase λ, we observe the following typical

sequence of events near a singular Hopf bifurcation of an equilibrium q. For small enough

λ there are no MMOs and the attractor is an equilibrium. This equilibrium crosses a fold

of the critical manifold at FSN II, but it remains stable until a supercritical (singular) Hopf

bifurcation at distance O(ε1) away gives rise to small oscillations. The transition to MMOs

occurs after a tangency between Wu(q) and Sr
ε1

; for λ-values just past this tangency the

MMOs have many SAOs that all lie near Wu(q). As λ increases further, the MMOs exhibit

SAOs organized by the folded node. Finally, a crossing of the curve δ = 0 corresponds to a
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transition to relaxation oscillations.

To end this case study, we report the existence of a different type of MMO not found

by Koper; it is shown in Figure 22. The MMO has SAOs both near the maximum and the

minimum of the LAO. Hence, this MMO passes near folded nodes na
± on both fold curves.

The parameter region where this occurs is quite small, so that it is difficult to locate such an

MMO using simulation; it is the region in Figure 16 near k = −2 that can only be seen in

the enlargement in panel (b). We found the MMO by selecting parameters k = −2.1 and

λ = −0.063 in this region and choose ε1 = 0.01 rather small; a more detailed study of the

range of parameters for which such MMOs with two SAO epochs remains future work.

5. MMOs in a reduced Hodgkin–Huxley system. As the next case study we consider

a three-dimensional reduced version of the famous Hodgkin–Huxley equations [102] that

describe the generation of action potentials in the squid giant axon; see [115, 196] for the

derivation and also [43], where the same example was used. The reduced model only de-

scribes the dynamics for voltage (V ), the activation of the potassium channels (n) and the

inactivation of the sodium channels (h); the activation of the sodium channels (m) is very

fast and it reaches its equilibrum state m = m∞(V ) (almost) instantaneously which can be

justified mathematically by a center-manifold reduction [196]. The evolution of the gates n
and h is considered slow while the evolution of the voltage V is considered fast. To justify

this time-scale separation, we nondimensionalize the Hodgkin–Huxley equations by introdu-

cing a dimensionless voltage variable v = V/kv and a dimensionless time τ = t/kt where

kv = 100 mV is a reference voltage scale and kt = 1 ms is a fast reference time scale; this

gives




εv̇ = f(v, h, n) := Ī − m3
∞(v)h (v − ĒNa)

− ḡk n4 (v − ĒK) − ḡl (v − ĒL),

ḣ = g1(v, h) :=
kt

τh

(h∞(v) − h)

th(v)
,

ṅ = g2(v, n) :=
kt

τn

(n∞(v) − n)

tn(v)
,

(5.1)

with dimensionless parameters Ēx = Ex/kv , ḡx = gx/gNa, with x ∈ {m, n, h}, Ī =
I/(kvgNa) and ε = C/(ktgNa) =: τv/kt. The original Hodgkin–Huxley parameter values

are given in Table 5.1. Thus, ε = 1
120 ≈ 0.01 ¿ 1 and system (5.1) represents a singularly

perturbed system with v as a fast variable and (n, h) as slow variables. The functions x∞(v)
and tx(v), with x ∈ {m, n, h}, describe the (dimensionless) steady-state values and time

constants of the gating variables, respectively; they are given by

x∞(v) =
αx(v)

αx(v) + βx(v)
and tx(v) =

1

αx(v) + βx(v)
,

with

αm(v) = (kvv+40)/10
1−exp(−(kvv+40)/10) , βm(v) = 4 exp(−(kvv + 65)/18),

αh(v) = 0.07 exp(−(kvv + 65)/20), βh(v) = 1
1+exp(−(kvv+35)/10) ,

αn(v) = (kvv+55)/100
1−exp(−(kvv+55)/10) , βn(v) = 0.125 exp(−(kvv + 65)/80).

The orginal Hodgkin–Huxley equations with scaling parameters τh = τn = τm = 1
shows no MMOs [102], but if τh > τh,e > 1 or τn > τn,e > 1 are beyond certain threshold
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gNa gk gl ENa EK EL τh τn C

120.0 36.0 0.3 50.0 −77.0 −54.4 1.0 1.0 1.0
TABLE 5.1

Original parameter values of the Hodgkin–Huxley equations (5.1).

values then MMOs are observed [43, 196, 197]. Here, we focus on a specific case with

τh = 6.0, τn = 1.0 and C = 1.2 (so that ε = 0.01). We use the applied current I (in units

of µA/cm
2
) of the original Hodgkin–Huxley equations, that is, the rescaled Ī in (5.1), as the

only free parameter. Furthermore, in order to facilitate comparison with other studies, we

represent output in terms of the non-rescaled voltage V = 100 v, which is in units of mV.

From a mathematical point of view, the MMOs are generated due to the presence of a

(subcritical) singular Hopf bifurcation at I = IH ≈ 8.359 and a folded node in the singular

limit ε = 0. The critical manifold of (5.1) is defined by,

n4(v, h) =
Ī − m∞(v)3 h (v − ĒNa) − ḡL (v − Ēl)

ḡk (v − Ēk)
,

which is a cubic-shaped surface S = Sa,−∪F−∪Sr∪F+∪Sa,+ for physiologically relevant

values of I . The outer sheets Sa,± are stable, the middle sheet Sr is unstable, and F± denote

fold curves [196]. The desingularized reduced system on this manifold is given by

{
v̇ =

(
∂

∂hf
)

g1 +
(

∂
∂nf

)
g2,

ḣ = −
(

∂
∂v f

)
g1.

A phase-plane analysis of the desingularized reduced flow in the physiologically relevant

range shows that there exists a folded node singularity on F− for I > IFSN ≈ 4.83. Fur-

thermore, it can be shown that the global-return mechanism projects into the funnel region

for I < Ir ≈ 15.6; see [196, 197]. Hence, the folded node theory predicts the existence of

stable MMOs for a range of I-values that converges to IFSN < I < Ir in the singular limit

as ε → 0.

Figure 23(a) shows the folded node singularity for I = 12, where it lies approximately

at (v, h, n) = (−0.593, 0.298, 0.407), in projection onto the (n, V )-plane. The two black

curves are the strong singular canard γ̃s and the primary weak canard γw that pass through

the folded node. The other two curves are maximal secondary canards ξ5 and ξ6 that were

found as intersections of extended slow manifolds computed near the folded node; see also

Section 8 and [43, Figure 6]. Their projections onto the (h, V )-plane, which illustrate the

oscillating nature of ξ5 and ξ6, are shown in Figure 23(b). Notice that the final oscillations

of the primary weak canard γw in Figure 23(a) show the distinct characteristics of saddle-

focus-induced SAOs. Indeed, a saddle-focus equilibrium q ≈ (−0.589, 0.379, 0.414) exists

relatively close to the folded node, due to the singular Hopf bifurcation at IH ≈ 8.359.

Decreasing I from I = 12 toward I = IH causes q to move closer to the folded node and the

mix of folded node induced SAOs and saddle-focus induced SAOs will be more pronounced;

compare with Figure 21(c).

The equilibrium q for I = 12 persists when I is varied. A partial bifurcation diagram is

shown in Figure 24(a), where we plot the maximum of V versus I . Similar to the analysis

in [43], a unique equilibrium exists for all I and it is stable for I < IH and, approximately,

I > 270.772. The (singular) Hopf bifurcation (labeled H) at IH gives rise to a family of

saddle-type periodic orbits. This family of periodic orbits undergoes three fold bifurcations

(SL) at I ≈ 6.839, I ≈ 27.417 and I = ISL ≈ 14.860, after which both non-trivial Floquet
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FIG. 23. Maximal secondary canard orbits ξ5 and ξ6 of the three-dimensional reduced Hodgkin–Huxley

equations (5.1) with τh = 6.0, τn = 1.0, C = 1.2 and I = 12. Panel (a) shows the two canard orbits in

projection onto the (n, V )-plane; also shown are the strong singular canard γ̃s and the weak primary canard γw .

The projection of ξ5 and ξ6 onto the (h, V )-plane in panel (b) shows that they make five and six oscillations,

respectively.
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FIG. 24. MMO periodic orbits of the three-dimensional reduced Hodgkin–Huxley equations (5.1) with τh =
6.0, τn = 1.0 and C = 1.2. Panel (a) shows a bifurcation diagram where the maximal V -value is plotted

versus the applied current I . Isolas of MMO periodic orbits exist over a range of I bounded by a period-doubling

bifurcation PD and a saddle-node of limit cycle bifurcation SL. The isolas are colored in alternating light and

dark blue. Panel (b) shows an enlargement near the Hopf bifurcation. All isolas shown have a fold bifurcation for

ISL ≈ 8.087. The periodic orbit Γ shown in panel (c) is the stable MMO for I = 12; panel (d) shows Γ when it

has a maximal V -value of −20 mV.
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multipliers are less than 1 in modulus and the associated stable periodic orbits correspond to

tonic spiking. Figure 24(a) shows that the first SL is quickly followed by a period-doubling

bifurcation (PD) at I ≈ 7.651, where one of the Floquet multipliers, which are both unstable

after this first SL, passes through −1. Hence, the periodic orbits after PD are non-orientable

and of saddle type. Note that a second PD (not shown in Figure 24(a)) must take place before

the second SL.

MMOs exist as isolated families of periodic orbits for a range of I; Figure 24(a) shows

eleven of these isolas colored in alternating light and dark blue. All periodic orbits on a

single isola have the same number of oscillations. Each isola contains a short plateau with

large maximal V near V = 40 mV where the associated MMOs are stable and have signatures

1s. For our specific choice ε = 0.01, we found that the stable MMO interval appears to be

bounded by IH on the left and by ISL on the right, that is, 8.359 < I < 14.860. Recall that

the theory based on the singular limit as ε → 0 predicts the existence of stable MMO periodic

orbits with signatures 1s for 4.83 ≈ IFSN < I < Ir ≈ 15.6; the match is surprisingly good,

even though ε is relatively large. As I ↓ IH , the number s in the stable 1s MMO signatures

approaches infinity, since a homoclinic orbit through the Hopf singularity is formed; see

also [43]. Furthermore, there exist stable MMO signatures with more complicated signatures

1s11s2 · · · ; see [197]. The MMO periodic orbits go through several bifurcations along the

isolas (mostly period-doubling and/or saddle-node of limit cycle bifurcations); compare also

Figure 19 for the Koper model in Section 4. The maximal V -value indicates the amplitude of

the largest of the oscillations of the respective MMO periodic orbit. Note the folded structure

of the isolas for V = VF+
≈ −20 mV which is approximately the repolarization threshold

value for action potentials. This value also corresponds to the V -value of the upper fold curve

F+, at which a trajectory jumps back. For MMOs on a plateau, the LAOs correspond to a full

action potential, while the s SAOs that follow are subthreshold oscillations.

Figure 24(b) shows an enlargement of how the isolas of MMO periodic orbits accumulate

near the Hopf bifurcation, which is the region where theory predicts a signature 1s, that

is, an MMO with one large excursions and s SAOs. This is organised by how the global-

return mechanism projects onto the critical manifold S as I varies. If the return projects onto

a secondary canard then part of the periodic orbit follows the secondary canards onto the

unstable branch Sr,ε of the slow manifold. However, only canard periodic orbits that reach the

region of the upper fold curve F+ are maximal secondary canards. Hence, the corresponding

family of secondary canards can be split into two groups: we call the secondary canards with

maximum V < VF+
jump-back canards and those with maximum V > VF+

jump-away

canards. This is an important distinction in this application, because the jump-away canards

will create action potentials, the jump-back canards will not.

We illustrate the canards along one of the isolas in Figures 24(a) and (b). The stable

MMO periodic orbit Γ that exists on the plateau for I = 12 is shown in Figure 24(c); its

signature is 16 and it lies on the isola that corresponds to periodic orbits with a total of seven

oscillations. Note that the large excursion of Γ is above threshold. The six SAOs of Γ are due

to the fact that the global return lands on the rotational sector bounded by the maximal sec-

ondary canards ξ5 and ξ6 for I = 12 (not shown); compare Figures 23(b). When the periodic

orbit Γ is continued in the direction of increasing I , the maximal V -value decreases and the

LAO changes from an action potential to a sub-threshold oscillation. Figure 24(d) shows Γ
(which is now unstable) when its maximal V -value is approximately −20 mV. Observe that

Γ still has a total of seven oscillations, but now two of them have a fast segment. These fast

segments are jump-back canards. More precisely, the periodic orbit Γ consists of a segment of

a jump-back canard of the ξ6 canard family that connects to a segment of a jump-back canard

of the strong canard family, which in turn connects to the former segment, hence, closing the
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FIG. 25. Continuation of a family of periodic orbits that consist of ten oscillations. The continuation starts and

ends at I = 12 with a fold at I ≈ 8.087. Panel (a) shows a three-dimensional “waterfall diagram” visualization

of the time series of V for 90 computed periodic orbits along this part of the isola; the boldface periodic orbit lies

at the fold point. The orbits in blue correspond to the part of isola in between the fold point and the I-value that

corresponds to the Hopf bifurcation, that is, IH ≈ 8.359. Panel (b) shows the maximal V -value along the branch

in the (I, V )-plane, where the arrows indicate the direction of the continuation. Panel (c) shows the periodic orbit

at the fold together with a coexisting small periodic orbit in projection onto the (n, v)-plane.

loop. One could classify Γ in Figure 24(d) as an MMO with signature 25, because only five

of its oscillations have really small amplitude due to the passage near the folded node, while

there are two clearly distinguishable larger oscillations with fast segments due to jump-back

canards. However, none of these larger canard oscillations of Γ are full action potentials,

meaning that all oscillations are classified as SAOs in this application context.

Figure 25 illustrates the characteristics of the periodic orbits along the lower parts of

the isolas in Figure 24(a), where they are very close to the branch of saddle periodic orbits

bifurcating from the Hopf bifurcation. More specifically, Figure 25(a) shows a “waterfall

diagram” representation of the time series of 90 periodic orbits along the lower part, for

I ≤ 12, of the isola along which one finds a total of ten oscillations. This part of the branch is
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TABLE 6.1
Parameter values used in the four-dimensional Olsen model (6.1)

k1 k2 k3 k4 k5 k6 k7 k−7 k8 α
0.28 250 0.035 20 5.35 0 0.8 0.1 0.825 1

shown in Figure 25(b). The fold point for this isola is at I = ISL ≈ 8.087, and the associated

periodic orbit is drawn in boldface in Figure 25(a). The periodic orbits on the part of the

branch for ISL ≤ I ≤ IH are highlighted in blue. The periodic orbits along this part of the

isola are quite different from the MMOs one finds near the plateaux of the isolas; Namely,

they consist of a mix of SAOs and jump-back canards, ten in total. Figure 25(c) shows the

projection of the periodic orbit at the fold onto the (n, V )-plane; also shown is the coexisting

small periodic orbit that lies on the branch emanating from the Hopf bifurcation. This figure

suggests that the periodic orbit at the fold is approaching a homoclinic cycle of the small

periodic orbit.

6. MMOs in Olsen’s four-dimensional model of the PO reaction. Many applications

do not lead to models that have a clear split into slow and fast time scales. Often some

assumptions to that extent can be made, but most variables will be slow in certain regions

of phase space and fast in others. The following case study illustrates how the geometrical

ideas from slow-fast systems can be used in such a context. We study a four-dimensional

model of the peroxidase-oxidase (PO) biochemical reaction that was introduced by Olsen

and collaborators [37, 172]; see also [42], where this same example was used. The Olsen

model describes dynamics of the concentrations of two substrates (O2 and NADH) and two

free radicals, denoted A, B, X and Y , respectively; it is given by the differential equations





A′ = −k3ABY + k7 − k−7A,
B′ = α(−k3ABY − k1BX + k8),
X ′ = k1BX − 2k2X

2 + 3k3ABY − k4X + k6,
Y ′ = −k3ABY + 2k2X

2 − k5Y.

(6.1)

Note that α is an artificial time-scale parameter that we introduced for the purpose of this

case study; α = 1 in [37, 172]. The other parameters are reaction rates and we chose their

values as given in Table 6.1, such that the periodic orbits that exist for these parameter values

are representative for the Olsen model (6.1). We focus our study on a stable MMO periodic

orbit, denoted Γ; its time series of the variable A is shown in Figure 26(b). We observe that

Γ has signature 1s, and we estimate that s is about 15. Below, we show that the SAOs of

this example occur during passage through a dynamic Hopf bifurcation, and we analyze the

global return mechanism of this trajectory.

6.1. Bifurcations of the fast subsystem. There is no clear split between the different

time scales in the Olsen model (6.1), but it is known that B evolves on a slower time scale

than the other variables [153]. Hence, it makes sense to consider the fast subsystem obtained

by setting α = 0, that is, B′ = 0 and B acts as a parameter in (6.1). The bifurcation

diagram is shown in projection onto the (A, B)-plane in Figure 26(a), which is invariant

because k6 = 0; see Table (6.1). There are two branches of equilibria that intersect at a

transcritical bifurcation T for B = k4/k1 ≈ 71.426; solid lines indicate stable and dashed

lines unstable equilibria. The equilibria that are colored black in Figure 26(a) are physically

relevant because they have non-negative values of X and Y ; for grey equilibria, on the other

hand, X or Y is negative. One branch is the black horizontal line at A = 8; it lies in the

(A,B)-plane (where X = Y = 0), which is invariant since k6 = 0. Equilibria along this
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FIG. 26. The stable MMO periodic orbit Γ of the Olsen model (6.1) with parameters as in Table 6.1. Panel (a)

shows Γ (blue) projected onto the (A, B)-plane and superimposed on the bifurcation diagram of (6.1) with α = 0;

solid (dashed) black and grey curves are stable (unstable) equilibria, where the grey color indicates that X or Y
are negative, and SN , H and T are saddle-node, Hopf and transcritical bifurcations, respectively. The family
bΓ of periodic orbits that emanates H is represented by its maxima and minima in A (green curve); the line Σ⊥

(cyan) indicates where the (A, B)-plane changes from attracting to repelling. Panel (b) shows the time series of the

variable A along Γ. The inset panel shows a blow-up of the region where SAOs undergo a slow decay.

branch are stable for B < k4/k1. A second branch intersects the horizontal branch and

the (A, B)-plane at the point T ; only the black part of this second branch with positive X
and Y is physically relevant; it consists near T of saddles with one unstable and two stable

real eigenvalues. Two further bifurcations along this physically relevant branch change the

stability of the equilibria; there is a saddle-node bifurcation SN at B = BSN ≈ 35.144
and a subcritical Hopf bifurcation H at B = BH ≈ 57.949. The emanating branch of

saddle periodic orbits (green) is labeled Γ̂, for which only minimal and maximal values of

A are shown. The hyperplane Σ⊥ = {(A,B, X, Y ) |B = k4/k1} marks where the linear

contraction normal to the (A,B)-plane is zero; note that T ∈ Σ⊥. Overlaid on this bifurcation

diagram is the MMO periodic orbit Γ of (6.1) (with α = 1) and we can now see how Γ is

composed of a segment of SAOs, generated by passage through a dynamic Hopf bifurcation,

and a global return: starting from the minimum of Γ, the trajectory spirals in and out of a

vortex structure due to the presence of the family of equilibria of the fast subsystem with a

pair of complex conjugate eigenvalues that cross the imaginary axis. The presence of the Hopf

bifurcation in the fast subsystem explains the observed slow decay and increase in amplitude

of the SAOs of the attractor Γ of the full system. The reinjection back to a neighborhood

of the attracting branch is mediated by an increase in A, which triggers a slow increase in

B, as the trajectory closely follows the invariant (A, B)-plane toward the curve of stable

equilibria with A = 8. As soon as B > k4/k1, that is, the trajectory crosses Σ⊥, the

(A,B)-plane is unstable and the trajectory begins to move away from it. Finally, the sharp

decay in A appears to be a fast segment that brings the trajectory back to the entrance of the

dynamic Hopf bifurcation; compare also with the time series of the A-variable along Γ in

Figure 26(b). The rapid decrease in amplitude of the SAOs is an indication that Γ is in an

intermediate regime between the tourbillion and delayed Hopf bifurcations, but we label it as

a tourbillion.

6.2. Slow manifolds of the Olsen model. The SAOs of Γ in Figure 26 terminate ab-

ruptly via a mechanism that can be visualized by computing slow manifolds. The shape of

these manifolds and the geometry of their interactions in the fast subsystem allows us to

unravel the organisation of MMOs in the Olsen model (6.1). Consider the curve of saddle
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FIG. 27. The repelling slow manifold Sr

B
(blue) of the fast subsystem of the Olsen model (6.1) (α = 0),

where X was eliminated via the QSSA (6.2). The manifold Sr

B
was computed as the family of one-dimensional

stable manifolds W s

B
(one side only) of saddle equilibria (dashed black curve) for 53 ≤ B ≤ 63. The branch

of equilibria (dashed/solid black curve) in the vicinity of the Hopf bifurcation point (dot) is also shown, along with

several unstable periodic orbits (green curves) born at this Hopf bifurcation; the periodic orbits are almost the same

as those in Figure 26 for the fast subsystem. Panel (b) shows W s
60 and the corresponding unstable periodic orbit cΓ60

for B = 60 in the (A, Y )-plane. Note that the viewpoint in both panels was chosen such that A increases toward

the left; this is also the case in subsequent three-dimensional figures.

equilibria for B < k4/k1 in Figure 26(a) between the points SN and T . Each equilibrium

has one positive and two negative eigenvalues and the family of associated two-dimensional

stable manifolds acts as a limiting (three-dimensional) repelling slow manifold that organizes

the termination of the SAOs. Since this termination still takes place extremely close to the

invariant (A,B)-plane, we may assume that X is a fast variable in this region. Therefore, we

may reduce the dimension by way of a quasi steady-state assumption (QSSA) [72], where we

assume that X has reached its steady-state value

X =
k1B − k4 +

√
(k1B − k4)2 + 8k2(3k3ABY + k6)

4k2
. (6.2)

Using the QSSA, we approximate the fast subsystem (6.1) with α = 0 as a B-dependent

family of two-dimensional vector fields in the (A, Y )-plane, and the repelling slow manifold

is now approximated by a family Sr
B of one-dimensional stable manifolds. Note that the

QSSA (6.2) preserves the equilibria of the fast subsystem and their stability properties change

only in the sense that essentially one contracting direction (for B < k4/k1) is removed. The

equilibria on the branch bounded by SN and T are still saddles, but now with only one

stable eigenvalue. The equilibria on the branch on the other side of SN are repelling for the

planar system if B lies in between BSN and BH , and attracting past BH . We computed Sr
B

with AUTO [50] by defining a suitable two-point boundary value problem; see Section 8.2.

Figure 27 illustrates how Sr
B rolls up (in backward time) around the lower equilibrium branch
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FIG. 28. The attracting slow manifold Sa

B
(red) of the full Olsen model (6.1) (α = 1), computed from near the

equilibria for A = 8 and B > k4/k1 up to the section Σ53 = {B = 53}. The black solid/dashed curves are the

physically relevant equilibria of the fast subsystem (α = 0).

for BSN ≤ B ≤ BH and around the family of unstable periodic orbits for B ≥ BH until the

homoclinic bifurcation for B ≈ 66.480 < k4/k1; to emphasize the B-dependent nature, we

show this planar dynamics for the fixed value B = 60 in panel (b).

The repelling slow manifold Sr
B is only an approximation and it is not an invariant ob-

ject for the full system (6.1). However, it provides an indication of how an MMO trajectory

is trapped by an actual repelling slow manifold as it passes through the tourbillion and in-

dicates how the trajectory flows toward the curve of saddle equilibria. By combining this

approximation of a repelling slow manifold with an approximation Sa
B of the attracting slow

manifold that guides trajectories back to the entrance of the tourbillion, we can visualize the

mechanism that organizes the SAOs.

To find Sa
B , we consider the curve L of saddle equilibria with A = 8 and B > k4/k1

(past T ); see Figure 26(a). These equilibria have one-dimensional unstable manifolds in

(A,X, Y )-space, that is, in the full fast subsystem without the QSSA (6.2). The B-dependent

family Wu(L) of unstable manifolds is a two-dimensional surface that makes a large excur-

sion before spiraling toward the attracting equilibrium branch that lies just above the invariant

(A,B)-plane. We define the attracting slow manifold Sa
B in this setting as the equivalent of

Wu(L) when B is not fixed but allowed to vary. In particular, with this definition Sa
B enters

a neighborhood of H and interacts with the repelling slow manifold Sr
B that only exists for

B < k4/k1. We compute the two-dimensional manifold Sa
B with AUTO [50] by using a

boundary value problem setup as in Section 8; specifically, we require that one end point of

the computed orbit segments lies along a line La very close to the curve L of equilibria and

in the linear approximation to Wu(L); see [42] for more details on how this computation can

be performed. Figure 28 illustrates how Sa
B provides a global return mechanism from near

La via a large excursion and then guides trajectories through the tourbillion.
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FIG. 29. (a) Approximations of the attracting and repelling slow manifolds of the Olsen model (6.1). Panel (a)

shows the surfaces Sa

B
(blue) and Sr

B
(red) projected into (A, B, Y )-space between the sections Σ53 and Σ63 (green

planes). Also shown are three orbits η1 in orange, η2 in magenta and η3 in cyan; they lie in the intersection of Sa

B

and Sr

B
. Intersections of Sa

B
and Sr

B
with Σ53 are shown in panel (b); the intersections of η1, η2 and η3 with Σ53

are labelled.

Figure 29 illustrates how the interaction of Sa
B and Sr

B determines the behavior in the

tourbillion regime. The two surfaces are shown in (B, A, Y )-space in panel (a). Recall that

Sa
B is a two-dimensional surface in (B, A,X, Y )-space, and shown is its projection. The man-

ifold Sr
B , on the other hand, was computed by assuming the QSSA (6.2), which is due to an

additional strongly attracting direction. Hence, Sr
B is a two-dimensional surface in (B, A, Y )-

space that corresponds to a three-dimensional surface in (B,A, X, Y )-space. Therefore, the

intersections of Sa
B and Sr

B with the plane Σ53 = {B = 53} are isolated points, and they are

shown in Figure 29(b); note that Sr
B ∩Σ53 = W s

53, while the computation of Sa
B ∩Σ53 is more

involved. The intersection points of these two curves define trajectories that resemble canard

orbits near a folded node, because they spiral in the tourbillion region, making an increasing

number of turns. The first three intersection points are labeled in Figure 29(b) and their cor-

responding trajectories η1, η2 and η3 are shown in Figure 29(a). These trajectories η1, η2 and

η3 are contained in Sa
B , but only their intersection points with Σ53 lie on Sr

B . Indeed, Sr
B is

not an actual invariant manfiold of (6.1) and only serves as an approximation of the repelling

slow manifold. Nevertheless, Sa
B and Sr

B give a qualitative illustration of the nature of SAOs

generated by slow passage through the tourbillion. In particular, the intersection curves of Sa
B

and Sr
B with Σ53 provide an approximate location of the sectors of oscillations in this region

of phase space.
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7. The Showalter–Noyes–Bar-Eli model of MMOs in the BZ Reaction. The Showalter–

Noyes–Bar-Eli (SNB) model [205] is one of many kinetic models that have been proposed

for the Belousov-Zhabotinskii (BZ) reaction. It is a seven-dimensional vector fields derived

from a system of reactions

A + Y ⇄ X + P

X + Y ⇄ 2P

A + X ⇄ 2W

C + W ⇄ X + Z

2X ⇄ A + P

Z → gY + C

that satisfy the law of mass-action, resulting in the equations





A′ = k0(A0 − A) − k1AY + k−1PX − k3AX + k−3W
2 + k5X

2 − k−5AP,
C ′ = k0(C0 − C) − k4CW + k−4XZ + k6Z,
P ′ = −k0P + k1AY + 2k2XY − 2k−2P

2 + k5X
2 − k−5AP − k−1PX,

W ′ = −k0W + 2k3AX − 2k−3W
2 − k4CW + k−4XZ,

X ′ = −k0X + k1AY − k−1PX − k2XY + k−2P
2 − k3AX + k−3W

2

+k4CW − k−4XZ − 2k5X
2 + 2k−5AP,

Y ′ = k0(Y0 − Y ) − k1AY + k−1PX − k2XY + k−2P
2 + gk6Z,

Z ′ = −k0Z + k4CW − k−4XZ − k6Z,
(7.1)

where we use the same letter to identify a chemical species and its concentration. Note that

C ′ + Z ′ = k0(C0 − C − Z), so the hyperplane C + Z = C0 is invariant and attracting. We

reduce (7.1) to a six-dimensional vector field on this hyperplane by setting C = C0 − Z and

eliminating the equation for C ′. The model is “realistic” in the sense that each variable is

associated with a definite chemical species. The reaction rates are based upon experimental

measurements. As is typical with chemical reactions, the concentrations of intermediate spe-

cies differ from each other by many orders of magnitude. Nevertheless, some intermediate

species that have very low concentrations are still dynamically important. The variable Y
represents concentration of bromide which is often measured in experiments to monitor the

state of the system. The variable A in the model represents the concentration of bromate. This

chemical has much larger concentrations than the other species, but the chemically relevant

quantity is its variation, which is of comparable order to the variations of other concentra-

tions. See Showalter et al. [205] for more details about the chemistry. In previous studies of

this model, Barkley [16] was unable to clearly identify a dynamical explanation of the MMOs

it exhibits.

We study this system for a single set of parameters where Showalter, Noyes and Bar-Eli

observed a mixed mode oscillation, specifically

k1 = 0.084 (Ms)
−1

, k−1 = 1 × 104 (Ms)
−1

,

k2 = 4 × 108 (Ms)
−1

, k−2 = 5 × 10−5 (Ms)
−1

,

k3 = 2 × 103 (Ms)
−1

, k−3 = 2 × 107 (Ms)
−1

k4 = 1.3 × 105 (Ms)
−1

, k−4 = 2.4 × 107 (Ms)
−1

,

k5 = 4.0 × 107 (Ms)
−1

, k−5 = 4.0 × 10−11 (Ms)
−1

,

k6 = 0.65 (Ms)
−1

, k0 = 7.97 × 10−3 s−1

A0 = 0.14 M, C0 = 1.25 × 10−4 M
Y0 = 1.51 × 10−6 M g = 0.462,

(7.2)
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FIG. 30. Time series of an MMO periodic orbit for (7.1), with parameters given in 7.2. The time series of

each variable is scaled to the interval [0,1] and the trajectory is plotted over one period. Panel (a) shows the slow

variables A (black) and P (red), and panel (b) the fast variables W (blue), X (orange), Y (magenta), and Z (grey).

Note that the system (7.1) and the parameters in (7.2) have dimensional units; throughout,

concentrations are measured in molar (M) and time in seconds (s).

Figure 30 shows time series of the MMO periodic orbit of (7.1) with parameters given

by (7.2), plotted over one period T ≈ 209 s. In the time series, each variable is scaled by

an affine transformation so that it varies on the interval [0, 1]. To relate back to the dynamics

of (7.2) the minimum and maximum values of each variable prior to rescaling are listed in

Table 7.1. Figure 30 displays the characteristics of an MMO. There are small oscillations

that occur while the relative concentration of Y is small and the relative concentration of Z
is large. Note from Table 7.1 that these concentrations are varying by over two orders of

magnitude. The periodic orbit makes two circuits and has signature 1415.

A P W X Y Z

black red blue orange magenta grey

1.39856 × 10−1 1.83 × 10−4 1.45 × 10−9 4.2 × 10−11 2.39 × 10−8 3.89 × 10−8

1.39907 × 10−1 2.80 × 10−4 1.38 × 10−6 1.5 × 10−7 2.28 × 10−6 6.41 × 10−6

TABLE 7.1
Minimum and maximum ranges of variation of each coordinate in Figure 30(a).

There is no explicit slow-fast structure in the equations (7.1). We infer that (A,P ) vary

slowly relative to (W,X, Y, Z) in an ad-hoc manner from Figure 30 by making two obser-

vations. First, the variables (A,P ) show a monotone decrease and increase during the times

that the variables (W,X, Y, Z) undergo small oscillations. Second, (A,P ) do not undergo

rapid changes at the beginning or end of the small oscillations as (W,X, Y, Z) do. There-

fore, to investigate the mechanisms producing the small amplitude oscillations in this MMO,

we identify the system as a slow-fast system with slow variables (A, P ) and fast variables

(W,X, Y, Z) as far as the MMO dynamics is concerned. Figure 31(a) projects the MMO

periodic orbit Γ onto the (P, Y, Z)-plane. Notice the region of SAOs, which is visited twice.

Panel (b) shows Γ projected onto the (A,P )-plane of slow variables. We observe from this

projection that Γ lies close to the hyperplane 2A + P = 2A0 (grey line), which means that

the change of A and P along the MMO periodic orbit is of the same order.
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FIG. 31. (a) A three dimensional plot of the trajectory onto the space spanned by the coordinates (P, Y, Z). A

curve along the critical manifold is plotted as a grey line, and the black dot marks the location of a Hopf bifurcation

in the fast subsystem. (b) The MMO is projected onto the coordinates A and P . The grey line is defined by 2A+P =
2A0 and the ranges of A and P are [0.13985, 0.13991] and [0.00018, 0.0003].
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FIG. 32. Panel (a) shows the curve of Hopf bifurcations (blue) and the line defined by 2A + P = 2A0 (grey)

in the (A, P )-plane. Panel (b) shows the SAOs projected onto the three-dimensional space spanned by the center

manifold of the Hopf bifurcation and the direction of the line {2A + P = 2A0} in the (A, P ) plane. The MMO

periodic orbit Γ visits this region twice and each time spirals around the center manifold of the Hopf bifurcation

(grey); the Hopf bifurcation point of the layer system itself is the black dot.

Figure 31(a) suggests that the SAOs of the MMO periodic orbit Γ are due to a tourbillion.

To ascertain this, we compute the critical manifold near the vicinity of the SAOs with con-

tinuation methods using the program Matcont [44]. Figure 32(a) shows the the curve of Hopf

bifurcations in the fast subsystem in the (A,P )- plane of the slow variables together with the

curve 2A + P = 2A0. The small portion of the Hopf curve plotted in Figure 32(a) is almost

horizontal, so the two curves cross transversally. Matcont also calculates the first Lyapunov

coefficient of the Hopf bifurcations along this part of the branch, showing that they are all

subcritical. To demonstrate further that the tourbillion associated with the Hopf bifurcation

is indeed the basis for SAOs, we project Γ onto the three-dimensional space spanned by the

two dimensional center manifold of the Hopf bifurcation in the space of fast variables and the

direction defined by 2A + P = 2A0. The projection of the center manifold is plotted as a

grey curve and the Hopf point of the layer equation is the black dot. The two parts of Γ that

correspond to SAOs surround the center manifold and have minimal amplitudes close to the

Hopf point. This is clear evidence that the MMO of (7.1) has a tourbillion with SAOs that
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are generated by the passage through a dynamic Hopf bifurcation, similar to the one observed

for the Olsen model in Section 6. This example illustrates how the methods described in this

paper can be applied effectively to a system of higher dimension than just three or four.

8. Numerical methods for slow-fast systems. This section discusses numerical meth-

ods that we used to compute the two-dimensional slow manifolds shown in many of the

figures, as well as stable and unstable manifolds of equilibrium points. The slow manifold

computations choose an end point of each orbit segment on the critical manifold away from

a fold; this approximation yields errors that are O(ε) but decay quickly as one moves away

from the end point. For stable or unstable manifolds of equilibria, orbit segments are chosen

to lie in the linear eigenspace associated with the stable or unstable eigenvalues, respectively.

The computational error associated with this approximation also decays quickly as one moves

away from the endpoint; see [41, 130] for analysis of these approximation errors .

A simple and effective method for computing invariant manifolds as families of orbit

segments is to use initial value solvers as the basic algorithm with initial conditions chosen

on a mesh of points transverse to the flow in the invariant manifold; we call this the “sweep-

ing” method. Despite its simplicity, this sweeping method fails to produce satisfactory results

in some cases. In particular, strong convergence or divergence of trajectories toward one an-

other makes the choice of the initial mesh problematic and can produce very non-uniform

“coverage” of the desired manifold; see [59, 60]. In multiple-time-scale systems, the fast ex-

ponential instability of Fenichel manifolds that are not attracting makes initial value solvers

incapable of tracking these manifolds by forward integration. These issues prompt the use of

boundary value methods combined with continuation as an alternate strategy for computing

invariant manifolds [131, 132] . We have used both strategies in this paper. This section

presents more details of the techniques used to compute attracting and repelling slow mani-

folds of systems with one fast and two slow variables, as well as the continuation of canard

orbits when a parameter is varied.

8.1. Sweeping invariant manifolds. The Fenichel manifolds of systems with a single

fast variable are either attracting or repelling. As a result, forward trajectories with initial con-

ditions on the critical manifold will converge quickly to an attracting Fenichel manifold and

backward trajectories with initial conditions on the critical manifold will converge quickly

to a repelling Fenichel manifold. Thus, one way to compute two-dimensional attracting and

repelling Fenichel manifolds of a three-dimensional flow is to apply an initial value solver in

the appropriate time direction to a mesh of initial conditions along a curve of the critical man-

ifold transverse to the slow flow. We used this sweeping method to compute Sr
ε in Figure 11;

see also [162] for an early use of this method to compute two-dimensional invariant mani-

folds and Wechselberger [233] and Guckenheimer and Haiduc [86] for an example involving

folded nodes.

When incorporated into a continuation framework, the sweeping method can also be used

if the critical manifold is not known in closed form and the mesh of initial conditions can-

not be selected beforehand. Continuation methods [49] provide well-established algorithms

that augment equation solvers like Newton’s method with strategies for choosing new start-

ing points when solving under-determined systems of equations. More precisely, suppose

F : R
m+n → R

m is a smooth function given by m equations of m + n variables. The impli-

cit function theorem states that the zeros of F form a smooth n-dimensional manifold M near

points where the matrix DF of partial derivatives has full rank m. Moreover, the theorem

gives a formula for the tangent space of M . Most continuation methods treat the case n = 1
where the set of solutions is a curve; see [101] for the case n > 1. In general, the methods

are based on a predictor-corrector procedure: given a point on M , tangent (or higher-order)

information is used to choose a new seed for the solver to find a new point on M . The sweep-
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ing method described above selects the continuation step size based on equal increments of

a specific coordinate or direction, but more sophisticated step size adaptations can be used

as well. For example, pseudo-arclength continuation as implemented in AUTO [50] chooses

points based on their distances from each other in R
m+n.

We also used a sweeping method to compute the global unstable manifold Wu(p) in

Figure 11. The mesh of initial conditions was taken to lie along a ray in the tangent space of

Wu(p), with endpoints of the mesh at successive intersections of a trajectory of the linear-

ized system with this ray. The sweeping method works well here, because the selected orbit

segments provide adequate “coverage” of Wu(p).

8.2. Continuation of orbit segments with boundary value solvers. The core algorithms

of AUTO [50] are boundary value solvers and continuation methods. The sweeping method

described in the previous section can also be implemented in AUTO [50], so that the initial

value problems are solved using a collocation method; see [49] for details. The techniques de-

scribed in this section impose boundary conditions on both end points of the orbit segments,

which makes the method more versatile and suitable in a wider context; see also [131]. We

describe here how to formulate two-point boundary value problems (BVP) in order to com-

pute slow manifolds and associated canard orbits.

We consider two-point boundary value problems of the form





u̇ = Tg(u, λ),
u(0) ∈ L,
u(1) ∈ Σ,

(8.1)

where g : R
n × R

p → R
n is sufficiently smooth, T ∈ R, λ ∈ R

p are parameters and L and

Σ are submanifolds of R
n. The parameter T rescales time so that the orbit segments always

correspond to trajectories in the time interval [0, 1]. Hence, the boundary conditions at the

two end points always apply to u(0) and u(1). In order to have a well-posed problem with

isolated solutions, the number of boundary conditions should equal the number of equations

(n, because (̇u) ∈ R
n) plus the number of free parameters (at most p + 1 for the parameter

λ and the total integration time T ). We are interested in one-parameter families of solutions

of (8.1), which means that we allow one fewer boundary condition (or one additional free

parameter). Note that T is typically unknown and we may view T as the extra free parameter.

Let us first consider the computation of two-dimensional attracting and repelling slow

manifolds Sa
ε and Sr

ε . To simplify the explanation, we assume that we have a three-dimensional

slow-fast system with two slow variables and a folded node. In this context, the parameter

λ remains fixed, and we obtain a one-parameter family of orbit segments (with unkown total

integration times T ) by imposing a total of three boundary conditions. This means that the

dimensions of L and Σ in (8.1) sum up to n = 3. Our approach is to choose L as a curve

(or straight line) on the critical manifold, which requires two boundary conditions, and Σ as

a surface (or plane), which requires one boundary condition, such that the associated one-

parameter family of orbit segments covers the desired portion of the slow manifold. For

example, in order for Sa
ε to come into the folded node region, we let L be a curve on the

attracting sheet of the critical manifold transverse to the slow flow and Σ be a surface ortho-

gonal to the fold curve F at the folded node. The same approach works for Sr
ε , where we

choose L on the repelling sheet of the critical manifold; note that T < 0 for such a family

of orbit segments. We remark that these choices can also be used with the sweeping method

and an initial value solver that detects a “stopping condition” defined by the level set of a

function. With the boundary value solvers, we can exchange the roles of L and Σ, which

is more appropriate for finding canard orbits; see Section 8.3. The slow manifolds can be
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extended by choosing cross-sections Σ orthogonal to F at points that lie beyond the folded

node. Figures 6, 20 and 29 give examples of such visualizations; see also [40, 41, 43].

As with all continuation, an important issue is to find a first solution. When continuing

solutions of a boundary value problem, explicit solutions may be known from which such a

first solution may be constructed; see [41] for an example. However, in general no explicit

solution is known and a first solution must be found in a different way. We use a homotopy

method to generate an initial orbit segment; the main idea is to continue intermediate orbit

segments via two auxiliary BVPs — the first to obtain an orbit segment from a point on the

fold curve F to the section, and the second to move the end point on F along the critical

manifold to a suitable distance from F ; see [40] for details.

We now illustrate this method with the Koper model (4.1), which was also used for the

case study in Section 4. We use the parameters (ε1, ε2, λ, k) = (0.1, 1, 7,−10); note that

λ > 0 as in [122], which is symmetrically related to the case with λ = −7 considered in

Section 4. As shown in Section 4, there is a folded node in this model, which organizes the

SAOs in some of the observed MMOs; in original coordinates it is at

pfn =

(
−1,

2 + λ

k
,
2λ + 4 + k

k

)
= (−1,−0.9,−0.8). (8.2)

We compute Sa
ε1

and Sr
ε1

as solutions to the BVPs given by (8.1), where g is defined as the

right-hand side of (4.1). As boundary conditions, we use the same section Σ for both Sa
ε1

and

Sr
ε1

with respective lines L = La and L = Lr as follows

Σfn := {(x, y, z) ∈ R
3 | z = −0.8}, (8.3)

La := S ∩ {x = −1.5}, (8.4)

Lr := S ∩ {x = −0.2}. (8.5)

Figure 33 shows the result of the computations. We find a first orbit segment on Sa
ε1

using

two homotopy steps; this is illustrated in Figure 33(a). Starting from the trivial solution

u = {pfn | 0 ≤ t ≤ 1}, with total integration time T = 0, we continue the family of orbit

segments that solves (4.1) subject to u(1) ∈ Σfn and u(0) ∈ F . We stopped the computation,

detected by a user-defined function in AUTO, as soon as

u(0) ∈ Σ̃a := {(x, y, z) ∈ R
3 | z = −0.76}.

The orbit segment with its end point on F in Figure 33(a) is this last computed solution of

the family. The second step of the homotopy moves u(0) ∈ S away from F (approximately)

parallel to Σ, that is, we next continue the family of orbit segments that solves (4.1) subject

to u(1) ∈ Σfn and u(0) ∈ L̃a = S ∩ Σ̃a. The continuation stops when La is reached, which

is again detected by a user-defined function in AUTO. A selection of orbit segments in this

family are shown in Figure 33(a) (red curves); only the last orbit segment ua (dark red) lies on

Sa
ε1

to good approximation. A similar computation was done to obtain a first orbit segment

on Sr
ε1

, where we use the intermediate section Σ̃r := {z = −0.87}; this is illustrated in

Figure 33(b), where the orbit segment ur (cyan) serves as a first solution on Sr
ε1

.

Once the first orbit segments u
a and u

r have been found we start the continuation of (8.1)

with (8.3) and (8.4) for the attracting slow manifold Sa
ε1

and with (8.3) and (8.5) for the

repelling slow manifold Sr
ε1

. The result is presented in Figure 33(c), and the intersection

curves of Sa
ε1

and Sr
ε1

with Σfn are shown in Figure 33(d). The transverse intersection points

of Sa
ε1

∩ Σfn and Sr
ε1

∩ Σfn in panel (d) correspond to secondary canard orbits; the three-

dimensional view in panel (c) shows three of these, labeled ξ1, ξ2 and ξ3. Precisely for the

purpose of locating and continuing canard orbits it is necessary to choose the common cross-

section Σfn for the calculations of Sa
ε1

and Sr
ε1

; see also the next section.
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FIG. 33. Computation of the slow manifolds Sa
ε1

and Sr
ε1

of the Koper model (4.1) with (ε1, ε2, λ, k) =
(0.1, 1, 7,−10). Panels (a) and (b) show the homotopy steps to construct first orbit segments u

a (dark red) on Sa
ε1

(red) and u
r (cyan) on Sr

ε1
(blue) that connect the section Σfn with curves La and Lr on the critical manifold S

(grey), respectively. The red and blue families are generated during the second homotopy step, which starts from

solutions that have one of their end points on the fold curve F of S. Panel (c) shows Sa
ε1

and Sr
ε1

together with

three secondary canards ξ1, ξ2 and ξ3. Panel (d) shows the intersection curves of Sa
ε1

and Sr
ε in Σfn that are used

to detect canard orbits.

8.3. Finding and following canard orbits. Maximal canards near a folded node are

transverse intersection curves of the two-dimensional attracting and repelling slow manifolds

Sa
ε and Sr

ε . We briefly discuss here how to detect the canard orbits and subsequently continue

them in a system parameter; see also [40, 41, 43]. To represent a maximal canard we must

compute Sa
ε and Sr

ε using a common cross-section Σ of the fold curve at or near the folded

node. The common cross-section allows us to obtain a representation of the canard orbit as

the concatenation u
c of an orbit segment u

a ⊂ Sa
ε with an orbit segment u

r ⊂ Sr
ε , where

u
a and u

r are chosen such that u
a ∩ Σ = u

r ∩ Σ. The concatenated orbit u
c located with
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FIG. 34. Continuation of secondary canards of the Koper model (4.1) with (ε2, λ, k) = (1, 7,−10) starting

from ε1 = 0.1. Panel (a) shows the canard orbit ξ4 represented by the concatenation u
c of two orbit segments u

a

and u
r that match up in Σfn. Panel (b) shows the continuation of the canard orbits ξ1–ξ7 in ε1; plotted as total

integration time T versus ε1. Panel (c) shows a two-dimensional “waterfall diagram” of the time profiles of the

fast variable x (subject to an offset δi) of computed orbit segments along the branch ξ4. The bold black curve in

panel (c) is the canard orbit ξ4 at the fold point of the (boldfaced) branch in panel (b).

this method can be continued in a system parameter without the need to recompute the slow

manifolds at each step. Recall that AUTO always scales boundary value problems to the time

interval [0, 1], so we rescale time on u
c appropriately and set T = T a + T r in (8.1). We can

then start the continuation (in a system parameter) subject to the boundary conditions

u
c(0) ∈ La, (8.6)

u
c(1) ∈ Lr, (8.7)

which determine u
c as an isolated solution. In fact, such a continuation typically starts already

provided that u
a ∩ Σ ≈ u

r ∩ Σ; any small gap in Σ is forced to close by the first Newton
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step. These two boundary conditions (8.6) and (8.7) force the orbit segment u
c to stay very

close to the attracting sheet of the critical manifold S until near the fold curve F , and then

stay close to the repelling sheet of S up to Lr.

Figure 34 illustrates canard continuation with the Koper model (4.1), where we used

ε1 as the second free parameter (together with T ) and kept (ε2, λ, k) = (1, 7,−10) fixed.

Figure 34(a) shows the two orbit segments u
a and u

r with (almost) equal end points in the

section Σ = Σfn; they have been detected as a good approximation of the maximal secondary

canard orbit ξ4, which is then represented by the concatenated orbit u
c. We continued ξ4,

along with six other maximal secondary canards, for increasing and decreasing ε1; see also

Figure 33. Figure 34(b) shows these seven branches, labeled ξ1–ξ7; here, the vertical axis

shows the total integration time T because it clearly distinguishes the branches. When ξ1–

ξ7 are continued in the direction of increasing ε1, a fold in ε1 is detected for each branch;

we have already seen this in Section 5 and it has also been observed in other systems [43].

Figure 34(c) is a “waterfall diagram” that shows how the maximal secondary canard orbit ξ4

evolves along the branch as ε1 is varied; specifically, the time profile of the fast variable x of

consecutively computed orbit segments along the branch ξ4 are plotted with a suitable off-set

δi. The orbit segment that corresponds to the fold of ξ4 is highlighted in bold black. Observe

that the orbit segments to the left of the fold have four SAOs, whereas past the fold there are

only three SAOs followed by a fast segment. Hence the canard orbits past the fold are no

longer maximal canards; see also Section 5.

9. Discussion. We described several mechanisms in slow-fast systems that produce

mixed-mode oscillations, namely the twisting of slow invariant manifolds near a folded node,

oscillations that follow the two-dimensional unstable manifold of a saddle-focus equilibrium

near a singular Hopf bifurcation, and the tourbillion mechanism of a dynamic Hopf bifurc-

ation. Geometric singular perturbation theory provides tools to identify the geometry asso-

ciated with each mechanism, to quantify the MMO signatures, and to describe associated

bifurcations. Analysis of the folded node case is more complete than the other cases. Re-

cent work on singular Hopf bifurcation [85] and the transition from singular Hopf to folded

nodes [143] provides substantial detail on the second case, but much remains to be discovered

about the unfolding of a singular Hopf bifurcation that is relevant to MMOs. Historically, the

dynamic Hopf bifurcation was discovered first, and detailed analysis exists for the case of a

delayed Hopf bifurcation of the layer equations [168]. Together, these mechanisms constitute

a partial framework for classifying MMOs in multiple-time-scale systems that can be further

extended. Perhaps the most surprising aspect of the theory we have described is that oscilla-

tions can appear from the interaction of fast and slow time scales even when neither of these

time scales individually displays oscillations.

We have used four case studies to illustrate theoretical concepts and they serve as a test-

bed for the development of numerical methods. The MMOs in the Koper model and the

three-dimensional reduction of the Hodgkin–Huxley equations have SAOs that occur on in-

termediate time scales due to folded nodes and singular Hopf bifurcations. In the folded-node

mechanism, three parameters play key roles in determining the geometry of the small oscilla-

tions: the ratio ε of time scales, the eigenvalue ratio µ of the folded node in the desingularized

reduced system, and the distance δ of global return trajectories from certain invariant man-

ifolds. Intersections of invariant manifolds are prerequisite to global returns that produce

MMOs in these examples, and tangencies between these manifolds constitutes a new type of

bifurcation that is found on the boundaries of parameter regions yielding MMOs. We found

fast oscillations of the layer equations in the Olsen and Showalter–Noyes–Bar-Eli models of

chemical reactions. Both models exhibit MMOs due to the dynamic Hopf mechanism. These

two case studies also illustrate how the theory applies in higher dimensions and how numer-
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System / Reaction References

Belousov-Zhabotinskii (BZ) reaction

- Virginia [83, 103, 104, 105, 202]

- Texas [156, 157, 158, 194, 195]

- Bordeaux [8, 9, 183, 193, 228]

- Other groups [107, 155, 184, 185, 206]

Briggs-Rauscher (BR) reaction [28, 73, 171, 231]

peroxidase-oxidase (PO) reaction [76, 97, 98, 99, 100, 106, 173, 207]

HPTCu reaction [15, 137, 175, 176, 227]

Bray-Liebhafsky (BL) reaction [73, 149, 230]

copper and phosphoric acid [6, 200]

indium/thiocyanate (IT) reaction [125, 126]

BSFA-system [128]

p-CuInSe2/H2O2-system [167, 182]

spin-wave experiment [5]

rhythm neural network (PreBötC) [39]

stellate cells [45, 46, 61]

pituitary cells [225, 229]

combustion oscillations [82]

dusty plasmas [160]

semiconductor lasers [7, 81, 226]

CO oxidation [57, 58, 136]
TABLE 9.1

References for experimental investigations of MMOs.

ical tools can be extended to investigate and identify the mechanisms for generating MMOs

in higher-dimensional systems.

One of our goals for this paper is to facilitate fitting dynamical models to data. In the

case of MMOs, this task has been less successful than with many other nonlinear dynamical

phenomena. On the one hand, MMOs are a complex phenomenon, and on the other hand,

numerical studies of models have yielded puzzling and sometimes paradoxical results. The

theory that has been developed thus far deals best with circumstances where the SAOs have

amplitudes that are far too small to be observed even in numerical simulations, but model

studies frequently show MMOs with SAOs that are readily visible. Thus, numerical meth-

ods that identify the geometric objects highlighted by the theory are essential for bringing

theory, models and empirical data together. We have reviewed recent advances in computing

two-dimensional invariant manifolds and their intersections that are especially important in

three-dimensional models. Extension of these methods to higher dimensions is one of the

challenges for further advances in this subject.

We conclude this survey with a brief review of the MMO literature, and a short discussion

of other mechanisms for MMOs in ODEs and beyond.

9.1. MMO literature review. This section provides an overview, in the form of three

tables, of references where examples of MMOs have been studied experimentally or in model

systems. We do not claim that this overview is complete; rather, these tables are intended as

an entry point into the extensive literature on the subject. Table 9.1 lists experimental work on

MMOs. The majority of these experiments have been carried out for chemical reactions. As

suggested in [8], we subdivided the large number of references on the Belousov-Zhabotinskii
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Mathematical Model Dimension References

Belousov-Zhabotinskii (BZ) reaction

- Field–Koros–Noyes (FKN) 11 [70]

- FKN-extended (GTF-model) 26 [96]

- Showalter–Noyes–Bar-Eli (SNB) 7 [16, 36, 154, 188, 205]

- (Minimal) Oregonator 3 [71, 179, 203, 218, 220]

- Model K (“Kyoto”) 3 [216, 221]

- IUator (“Indiana University”) 4 [201, 221]

- Geiseler–Föllner oregonator 3 [77, 221]

- FKN-modified 7 [186]

- Zhabotinskii-Korzuhkin 3 [240]

BR-reaction

- De Kepper, Epstein; Furrow, Noyes 11 [117, 170, 171, 219, 231]

- Kim, Lee, Shin 8 [120, 121]

- Vukojević, Sørensen, Hynne 13 [231]

PO-reaction

- Olsen / DOP models 4 [4, 37, 42, 150, 152, 153, 173, 208]

- BFSO model, Urbanalator 10 [29, 30, 99, 151, 174, 198]

- Yokota-Yamazaki (YY) model 8 [65, 199, 238]

- FAB model 7 [64, 199]

- Model A, Model C 9, 10 [2, 3]

- Model C-HSR 12 [106]

Plenge model (hydrogen oxidation) 4 [11]

IT-reaction 3 [123, 124, 125, 127]

BSFA-system 4 [128]

p-CuInSe2/H2O2-system 2, 4 [167, 182]

self-replicating dimer 3 [178, 181]

autocatalytic SU3 unit 3 [217]

Hodgkin–Huxley (HH) 4 [52, 196, 197]

self-coupled HH 3 [53]

CO oxidation 3 [58, 136]

self-coupled FitzHugh-Nagumo (FHN) 3 [40, 233]

FHN, traveling frame 3 [89, 91]

combustion oscillations 3 [75, 82]

stellate cells

- Acker, Kopell, White (AKW) 7 [1, 191, 234]

- reduction of AKW 3 [109, 192, 234]

pituitary cells 3, 4 [169, 209, 213, 229]

dopamine neurons 4 [139, 159]

autocatalator 3 [92, 161, 162, 180]

LP neuron 14 [87]

Erisir model 5 [62, 63]

semiconductor lasers 3 [7, 51, 133, 135, 177]
TABLE 9.2

References for realistic mathematical models that exhibit MMOs.

(BZ) reaction into research groups. Table 9.2 lists references to mathematical models that
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Abstract Model Dimension References

Boissonade and De Kepper; Koper 2, 3 [26, 116, 122]

Boissonade and De Kepper; Strizhak 2, 3 [26, 80, 119]

Kawczynski and Strizhak 3 [113, 114, 184, 185]

folded node toy model 3 [31]

3-scale: Krupa, Popovic, Kopell 3 [138, 139]

Hopf-hysteresis normal form 3 [16, 186]

two coupled oscillators 4 [210]

Rössler; Gaspard and Nicolis 3 [16, 74]

Barkley 4 [16]
TABLE 9.3

References for abstract models exhibiting MMOs.

were derived or proposed for a particular application that features MMOs; several papers

from Table 9.1 also contain a theoretical model and are, hence, listed again in Table 9.2.

Finally, Table 9.3 lists several abstract models that are designed to be among the simplest

systems that yield MMOs with specified characteristics; the first five rows of the table repres-

ent frameworks of folded nodes, folded saddle-nodes and singular Hopf bifurcation that are

presented in this paper.

Chemical reactions feature strongly in Tables 9.1–9.3. There have been substantial ef-

forts to develop models, from the law of mass-action, that reproduce experimental observa-

tions. We remark that detailed models that attempt to capture the full chemistry of a reaction

are typically very stiff and contain large numbers of parameters; as a result, it is often diffi-

cult to fit the models to experimental data. We hope that the theory and numerical methods

reviewed in this paper lead to better fits of models to data. Note that recent interest in MMOs

in neuroscience is also reflected in the three tables.

9.2. Other MMO mechanisms in ODEs. Historically, MMOs have also been studied

in the context of bifurcations of systems with a single time scale. More specifically, homo-

clinic or heteroclinic cycles involving one or several invariant objects provide a mechanism

for MMOs that does not require an explicit slow-fast structure. The best-known case is that

of a homoclinic orbit to a saddle-focus in R
3. A theorem by Shil′nikov [88, 147, 204] proves

that (depending on a condition on the eigenvalues of the saddle-focus) there exist one or

an infinite number of periodic orbits in a tubular neighborhood of the homoclinic orbit; see

also [79]. Each such periodic orbit near this global bifurcation involves one or several large

excursions along the homoclinic orbit, as well as small oscillations when the trajectory spir-

als away from, or back toward the saddle-focus. This type of oscillations near Shil′nikov

bifurcations can be found readily in laser systems: one or several large pulses of the laser

power are followed by small damped oscillations near the saddle-focus; see, for example,

[7, 51, 81, 133, 135, 177, 226, 236]. The small oscillations are at a characteristic frequency

and are due to a periodic exchange of energy between the optical field and the carrier reservoir

(electron-hole pairs in the case of a semiconductor laser). Similarly, more complicated het-

eroclinic cycles may give rise to large excursions followed by small oscillations. A concrete

example is a heteroclinic cycle between a saddle equilibrium and a saddle periodic orbit, as

can be found, for example, near a saddle-node Hopf bifurcation with global reinjection. Near

this global bifurcation one can find large attracting periodic orbits that visit a neighborhood of

the equilibrium and also have an arbitrary number of smaller loops around the saddle-periodic

orbit; see [129, 134].

While such global bifurcations are generic and require no special properties of the sys-
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FIG. 35. An MMO periodic orbit Γ in the Gaspard-Nicolis-Rössler model [74]. Panel (a) shows Γ relative to

the S-shaped critical manifold; this illustrates that the SAOs are taking place entirely on the slow manifold. Panel (b)

shows the time series of the x-coordinate of Γ.

tem, they often appear in slow-fast systems and proving their existence is greatly simplified

in this context [163, 211]. A notable example was introduced by Rössler [189, 190] and later

illustrated by a model due to Gaspard and Nicolis [74]. Figure 35(a) shows the geometry of

this model; it has a classical S-shaped critical manifold S with two fold lines and there exists

a stable MMO periodic orbit Γ that contains two fast segments. Figure 35(b) shows the cor-

responding time series of one of the coordinates of Γ and illustrates that Γ has signature 12.

The LAOs of Γ are formed by the usual relaxation-oscillation mechanism. The phase portrait

in Figure 35(a) is near (the simple case of) a Shil′nikov bifurcation; the SAOs occur because,

after one fast transition, Γ is in the vicinity of a saddle-focus equilibrium, which is an un-

stable focus of the slow flow. Note that the time series also show that the SAOs happen on the

slow time scale. Barkley [16] observed that this mechanism does not account for MMOs in

the BZ reaction because there the SAOs also have a fast component. Morever, this particular

mechanism does not seem to occur in other models as commonly as the slow-fast mechanisms

presented in Section 3. Intuitively this is expected since the global-return mechanism has to

be special (namely, near a Shil′nikov bifurcation) to provide returns to a small neighborhood

of a slow-flow focus. Nevertheless, the Rössler mechanism is of interest historically as one

of the first proposed geometric mechanisms for MMOs. It is also another nice example that

illustrates the geometric approach of exploiting the slow-fast nature of a system to understand

MMOs.

Subcritical Hopf bifurcation in a system with a single time scale has also been observed

to give rise to MMOs. The appearance of these MMOs resembles those associated with

Shil′nikov bifurcation. Guckenheimer and Willms [93] analyze this phenomenon, which we

briefly sketch here. Consider a three-dimensional system in which an equilibrium q makes
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the transition from a sink to a saddle-focus via a subcritical Hopf bifurcation. When q is a

saddle-focus, it has a real eigenvalue of magnitude O(1) and a pair of complex eigenvalues

whose real parts are small and positive. Trajectories that come close to the stable manifold of

q will flow close to q and then slowly spiral away with oscillations of increasing magnitude,

similar to those observed near a singular Hopf bifurcation; see Figure 21. MMOs will occur

if these spiraling trajectories make a global return to the vicinity of q. Global returns for

portions of the unstable manifold of q are robust and may exist already at the Hopf bifurc-

ation where the center manifold of q is weakly unstable. In this case, the returns are likely

to come close enough to q that they will give rise to long epochs of small, slowly growing

oscillations. See Guckenheimer and Willms [93] for a three-dimensional example and Guck-

enheimer et al. [87] for a high-dimensional example occurring in a neural model. We remark

that, although this mechanism for creating MMOs applies to a single-time system, the Hopf

bifurcation naturally introduces a slow time scale in the system associated with the real parts

of the unstable complex eigenvalues.

The MMOs that we have discussed in this survey have SAOs generated by a local mech-

anism near a special point of the limiting system. However, SAOs and associated MMOs may

also arise in other ways in slow-fast systems. An example of this are MMOs with two well-

defined separate oscillations that occur when the layer equations have two families of periodic

orbits, one large and one small, and fast jumps between them. This scenario is analogous to

the phenomenon of bursting, which is common in neural systems. In bursting, oscillations

alternate with quiescent epochs (associated with a slow drift along a stable equilibrium of the

layer equations) instead of there being oscillations of different amplitudes. Since the sem-

inal work of Rinzel [187], bursting has been viewed as a multiple-time-scale phenomenon.

In this context, bursts occur when the layer equations of a model have both equilibria and

limit-cycle attractors and the full system makes fast jumps between these in both directions.

Izhikevich [108] compiled an extensive classification of bursting patterns based upon the bi-

furcations of the layer equations that initiate and terminate the oscillations in a burst. A

similar table could be constructed for MMOs, but it would be even larger. Golubitsky, Josiç

and Kaper [78] use a different classification of bursting patterns based on singularity theory,

which is more in the spirit of this survey. Section 6 gives a brief taste of the analysis of global

mechanisms for transitions between large and small oscillations in MMOs.

9.3. MMOs beyond ODEs. This survey only considers MMOs that arise in slow-fast

ODEs, but they have also been found in dynamical systems that are described by stochastic

differential equations (SDEs), delay differential equations (DDEs) and partial differential

equations (PDEs). The analysis of MMOs in these more involved settings is much less de-

veloped than that for ODEs. To give a flavor, we now describe briefly a few recent examples

in which a slow-fast structure is an important aspect of the MMOs that have been identified.

9.3.1. Stochastic MMOs. Muratov and Vanden-Eijnden [165] study the Van der Pol

oscillator with small (additive) noise; they use λ as the bifurcation parameter and consider

the case 0 < ε ¿ 1. Their analysis shows an intricate interplay between the noise and the

singular perturbation parameter ε, and how this depends on λ. For example, it can be shown

that even if the deterministic limit without noise has just a stable fixed point for suitable

λ, the stochastic differential equation (SDE) can exhibit relaxation-type oscillations; also

MMOs that are composed of “small canard orbits” and relaxation LAOs can occur. Borowski

and Kuske [145] consider a similar stochastic slow-fast equation of FitzHugh–Nagumo type

and find MMOs due to noise as well; see also [146]. Closely related is the work by Berglund

and Gentz [24, 25] who study spike generation in slow-fast neural models with noise in the

framework of SDEs. The common ingredient in these examples is excitability: while small

noise only leads to small irregular oscillations, a sufficiently large noise perturbation can kick
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the system beyond a threshold that results in a large excursion. There is a noise level when

the system is most coherent or regular and, hence, shows well-defined but irregular MMOs.

Excitability as a mechanism to generate large pulses as the result of external and/or internal

noise has also been observed and studied in several laser systems [54, 133].

Another possible mechanism for noise-induced MMOs was investigated by Yu et al. [239],

who consider a system of coupled-oscillator SDEs. If the deterministic limit is at least bistable

then noise can provide a mechanism for sample paths to alternate between the basins of at-

traction of deterministically stable invariant sets. The simplest way to visualize this idea is to

consider two stable limit cycles for an ODE, one with a small and the other with a large amp-

litude. If the basins of attraction are suitably located, noise can induce repeated transitions

between tubular neighborhoods of each cycle. Hence, a typical sample path will then be an

irregular MMO.

9.3.2. MMOs in delay differential equations. One can ask the question what happens

when one adds delay terms to a slow-fast system. Sriram and Gopinathan [206] consider

the Belousov-Zhabotinskii reaction with delay in an experiment. They compare the results

with a version of the classical three-dimensional Oregonator model [71, 203] with delay and

claim that the delay induces MMOs [206]. This prompts the question whether DDEs have

slow-fast phenomena, such as canards, similar to their ODE counterparts. In principle, this

should be expected at least for the case of a finite number of fixed delays, for which the

DDE does not feature a continuous spectrum [94]. Indeed a positive answer was recently

obtained by Campbell, Stone and Erneux [32] for a two-dimensional DDE model of high-

speed machining. In their system a small delay induces perturbation from a degenerate Hopf

bifurcation, which results in a canard explosion as discussed in Section 2.2; see also [34] for

details of the underlying theory for slow-fast DDEs with small delay.

9.3.3. MMOs in partial differential equations. Given a time-dependent PDE on a do-

main in R
n, one can look for MMOs in space, time or a mixture of space and time. Nagumo’s

equation [166], which models the evolution of an activator v(x, t) and a slow inhibitor u(x, t),
is an example that has been studied extensively as an idealized model for propagation of ac-

tion potentials. Traveling-wave profiles are found via the ansatz v(x, t) = v(x + σt) = v(τ)
and w(x, t) = w(x + σt) = w(τ) as homoclinic solutions of a three-dimensional ODE with

two fast variables and one slow variable [90]; here σ is the wave speed. It has been shown

that MMOs exist as solutions of this reduced ODE [91]. More generally, work on evolution

equations given by PDEs suggests that oscillatory patterns with alternating amplitudes [35]

and slow-fast structures [17] exist in many common models. Hence, the study of this type of

MMOs for PDEs will benefit from multiple-time-scale methods.
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