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MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES

MATHIEU DESROCHES; JOHN GUCKENHEIMER! BERND KRAUSKOPF; CHRISTIAN KUEHN?
HINKE M. OSINGA} MARTIN WECHSELBERGER$

Abstract. Mixed-mode oscillations (MMOs) are trajectories of a dynamical system in which there is an altern-
ation between oscillations of distinct large and small amplitudes. MMOs have been observed and studied for over
thirty years in chemical, physical and biological systems. Few attempts have been made thus far to classify different
patterns of MMOs, in contrast to the classification of the related phenomena of bursting oscillations. This paper
gives a survey of different types of MMOs, concentrating its analysis on MMOs whose small-amplitude oscillations
are produced by a local, multiple-time-scale “mechanism.” Recent work gives substantially improved insight into
the mathematical properties of these mechanisms. In this survey, we unify diverse observations about MMOs and
establish a systematic framework for studying their properties. Numerical methods for computing different types of
invariant manifolds and their intersections are an important aspect of the analysis described in this paper.

1. Introduction. Oscillations with clearly separated amplitudes have been observed in
several application areas, notably in chemical reaction dynamics. Figure 1 reproduces Fig-
ure 12 in Hudson, Hart and Marinko [103]. It shows a time series of complex chemical
oscillations of the Belousov-Zhabotinsky (BZ) reaction [18, 237] in a stirred tank reactor.
The series appears to be periodic, and there is evident structure of the oscillations within
each period. In particular, pairs of small-amplitude oscillations (SAOs) alternate with pairs
of large-amplitude oscillations (LAOs). The result is an example of a mixed-mode oscilla-
tion, or MMO, displaying cycles of (at least) two distinct amplitudes. There is no accepted
criterion for this distinction between amplitudes, but the separation between large and small
is clear in the case of Figure 1. The pattern of consecutive large and small oscillations in
an MMO is an aspect that draws immediate attention. Customarily, the notation L' L5? - - - .
is used to label series that begin with L, large amplitude oscillations, followed by s; small-
amplitude oscillations, Ly large-amplitude oscillations, s small-amplitude oscillations, and
so on. We will call Li*L3? - - - the MMO signature; it may be periodic or aperiodic. Sig-
natures of periodic orbits are abbreviated by giving the signature of one period. Thus, the
time series in Figure 1, which appears to be periodic, has signature 22. As Hudson, Hart
and Marinko varied the flow rate through their reactor, MMOs with varied signatures were
observed, as well as simple oscillations with only large or only small amplitudes. Similar
results to those presented in their paper have been found in other experimental and model
chemical systems. Additionally, MMOs have been observed in laser systems and in neurons.
We present an overview with references to experimental studies of MMOs in these and other
areas in Table 9.1 of the last section of this survey.

Dynamical systems theory studies qualitative properties of solutions of differential equa-
tions. The theory investigates bifurcations of equilibria and periodic orbits, describing how
these limit sets depend upon system parameters. Mixed-mode oscillations may be periodic or-
bits, but we then ask questions that go beyond those typically examined by standard/classical
dynamical systems theory. Specifically, we seek to dissect the MMOs into their epochs of
small- and large-amplitude oscillations, identify each of these epochs with geometric objects
in the state space of the system, and determine how transitions are made between these. When
the transitions between epochs are much faster than the oscillations within the epochs, we are
led to seek models for MMOs with multiple time scales.
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FIG. 1. Bromide ion electrode potential in the Belousov-Zhabotinsky reaction; reproduced from Hudson, Hart
and Marinko, J. Chem. Phys. 71(4): 1601-1606, 1979.

Early studies of MMOs in model systems typically limited their investigations to cata-
loging the patterns of MMO signatures found as a parameter is varied. Barkley [16] is an
exception: he assessed the capability of multiple-time-scale models for MMOs to produce the
behavior observed by Hudson, Hart and Marinko [103]. He compared the MMOs from these
experiments and from a seven-dimensional model for the BZ reaction proposed by Showalter,
Noyes and Bar-Eli [205] with three-dimensional multiple-time-scale models. The MMOs that
Barkley studied in some respects resembled homoclinic orbits to a saddle-focus equilibrium.
In particular, small-amplitude oscillations of growing amplitude were produced by trajector-
ies that spiraled away from the equilibrium along its unstable manifold. This type of homo-
clinic orbit was studied by L. Shilnikov[204], but Barkley noted that the MMOs appeared
to persist over open regions of system parameters rather than to occur along a codimension-
one submanifold of parameter space as is the case with homoclinic orbits in generic systems.
Moreover, large parts of the state space of model systems appeared to converge to a tiny re-
gion at the beginning of the small-amplitude growing oscillations. Barkley was unable to
produce a three-dimensional model with these characteristics, but such models were sub-
sequently found. This paper discusses two of these models, emphasizing the one proposed
and studied by Koper [122]. Koper’s model is similar to a normal form for singular Hopf
bifurcation [85], a codimension-one bifurcation that arises in the context of systems with two
slow variables and one fast variable. Our central focus is upon MMOs whose SAOs are a
byproduct of local phenomena occurring in generic multiple-time-scale systems. Analog-
ous to the role of normal forms in bifurcation theory, understanding the multiple-time-scale
dynamics of MMOs in their simplest manifestations leads to insights into the properties of
MMOs in more complex systems.

The geometry of multiple-time-scale dynamical systems is intricate. Section 2 provides a
short review. Beginning with the work of the “Strasbourg” school [48] and Takens’ work [214]
on “constrained vector fields” in the 1970’s, geometric methods have been used to study gen-
eric multiple-time-scale systems with two slow variables and one fast variable. Folded sin-
gularities are a prominent phenomenon in this work. As described in Section 2, they lie on
a fold of the critical manifold, where an attracting and a repelling sheet meet. Folded sin-
gularities yield equilibria of a desingularized reduced vector field that is constructed in the
singular limit of the time scale parameter. More recently, Dumortier and Roussarie [55], and
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Szmolyan and Wechselberger [212] introduced singular blow-up techniques for the analyt-
ical study of the dynamics near folded singularities. These methods give information about
canard orbits that connect attracting and repelling slow manifolds.

Canard orbits organize the number of small-amplitude oscillations for MMOs associated
with folded nodes. The unfoldings of folded nodes [86, 233], folded saddle-nodes [84, 143]
and singular Hopf bifurcations [85] give insight into the characteristics of MMOs and how
they are formed as system parameters vary. Passage of trajectories through the region of a
folded node is one mechanism for generating MMOs that we discuss at length in Section 3.1
and illustrate with examples in Sections 4 and 5. Singular Hopf bifurcation and the closely
related folded saddle-node bifurcation of type II together constitute a second mechanism that
produces SAOs and MMOs in a robust manner within systems having two slow variables and
one fast variable. These bifurcations occur when a (true) equilibrium of the slow-fast system
crosses a fold curve of a critical manifold. Singular Hopf bifurcation is discussed in Sec-
tion 3.2 and also illustrated in Sections 4 and 5. We discuss a third mechanism for producing
small-amplitude oscillations in slow-fast systems that is organized by a Hopf bifurcation in
the layer equations and requires two fast variables. We call this mechanism a dynamic Hopf
bifurcation and distinguish trajectories that pass by a dynamic Hopf bifurcation with a delay
and trajectories with a tourbillion [232] whose small-amplitude oscillations have larger mag-
nitude than those of a delayed Hopf bifurcation. Dynamic Hopf bifurcation is discussed in
Section 3.4 and illustrated in Sections 6 and 7.

Complementary to theoretical advances in the analysis of slow-fast systems, numerical
methods have been developed to compute and visualize geometric structures that shape the
dynamics of these systems. Slow manifolds and canard orbits can now be computed in con-
crete systems; see Guckenheimer [85, 89] and Desroches, Krauskopf and Osinga [40, 41, 42,
43]. The combination of new theory and new numerics has produced new understanding of
MMOs in many examples that have been previously studied. This paper reviews and synthes-
izes these advances. It is organized as follows. Section 2 gives background about relevant
parts of geometric singular perturbation theory. Multiple-time-scale mechanisms that produce
SAOs in MMOs are then discussed and illustrated in Section 3. The four subsequent sections
provide case studies that illustrate and highlight recent theoretical advances and computa-
tional techniques. More details on the computational methods used in this paper can be found
in Section 8. The final Section 9 includes a brief survey of the MMO literature and discusses
other mechanisms that are not associated with a split between slow and fast variables.

2. Geometric singular perturbation theory of slow-fast systems. We consider here a
slow-fast vector field that takes the form

ex = 6% = f(xaya)‘75)7 (2 1)
y = % g(xvya)‘vg)v

where (z,y) € R™ x R™ are state space variables, A € RP? are system parameters, and
€ is a small parameter 0 < e < 1 representing the ratio of time scales. The functions
fR”"XR"XxRP xR — R™and g : R™ x R” x RP x R — R” are assumed to
be sufficiently smooth, typically C'™°. The variables x are fast and the variables y are slow.
System (2.1) can be rescaled to

{ .Z'/ = % f<x3y7)‘75>7

2.2)
y = eg(z,y,\€),

by switching from the slow time scale 7 to the fast time scale t = 7 /e.
3



Several viewpoints have been adopted to study slow-fast systems, starting with asymp-
totic analysis [56, 164] using techniques such as matched asymptotic expansions [118, 148].
Geometric Singular Perturbation Theory (GSPT) takes a geometric point of view and fo-
cuses upon invariant manifolds, normal forms for singularities and analysis of their unfold-
ings [10, 69, 110, 111, 215]. Fenichel’s seminal work [69] on invariant manifolds was an
initial foundation of GSPT and it is also called Fenichel theory. A third viewpoint was ad-
opted by a group of French mathematicians in Strasbourg. Using nonstandard analysis, they
made many important discoveries [19, 20, 22, 23, 47, 48] about slow-fast systems. This paper
adopts the GSPT viewpoint. We only focus on the results of GSPT that are necessary to study
MMOs. There are other important techniques that are part of GSPT, such as the Exchange
Lemma [110, 112], the blow-up method [55, 142, 233] and slow-fast normal form theory [10]
that are not described in this paper.

2.1. The critical manifold and the slow flow. Solutions of a slow-fast system fre-
quently exhibit slow and fast epochs characterized by the speed at which the solution ad-
vances. As € — 0, the trajectories of (2.1) converge during fast epochs to solutions of the fast
subsystem or layer equations

1:/ = f(x7 y’ A? 0)’
{ Yo~ 0, 2.3)
During slow epochs, on the other hand, trajectories of (2.2) converge to solutions of
0 = f(xa Y, >‘a O)»
. 24
{ g = g(z,y,\0), @4

which is a differential-algebraic equation (DAE) called the slow flow or reduced system. One
goal of GSPT is to use the fast and slow subsystems, (2.3) and (2.4), to understand the dy-
namics of the full system (2.1) or (2.2) for € > 0. The algebraic equation in (2.4) defines the
critical manifold

S:={(z,y) e R xR" | f(x,y,\,0) =0}

We remark that S may have singularities [141], but we assume here that this does not hap-
pen so that S is a smooth manifold. The points of S are equilibrium points for the layer
equations (2.3).

Fenichel theory [69] guarantees persistence of .S (or a subset M/ C S) as a slow manifold
of (2.1) or (2.2) for € > 0 small enough if S (or M) is normally hyperbolic. The notion of
normal hyperbolicity is defined for invariant manifolds more generally, effectively stating
that the attraction to and/or repulsion from the manifold is stronger than the dynamics on the
manifold itself; see [66, 67, 68, 95] for the exact definition. Normal hyperbolicity is often
difficult to verify when there is only a single time scale. However, in our slow-fast setting,
S consists entirely of equilibria and the requirement of normal hyperbolicity of M C S
is satisfied as soon as all p € M are hyperbolic equilibria of the layer equations, that is, the
Jacobian (D, f)(p, A, 0) has no eigenvalues with zero real part. We call a normally hyperbolic
subset M C S attracting if all eigenvalues of (D, f)(p, A, 0) have negative real parts for
p € M; similarly M is called repelling if all eigenvalues have positive real parts. If M is
normally hyperbolic and neither attracting nor repelling we say it is of saddle type.

Hyperbolicity of the layer equations fails at points on .S where its projection onto the
space of slow variables is singular. Generically, such points are folds in the sense of singu-
larity theory [10]. At a fold point p., we have f(p., A,0) = 0 and (D, f)(p«, A, 0) has rank
m — 1 with left and right null vectors w and v, such that w - [( D2, f)(p«, A, 0) (v,v)] # 0 and
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w - [(Dy f)(p«, A, 0)] # 0. The set of fold points forms a submanifold of codimension one in
the n-dimensional critical manifold .S. In particular, when m = 1 and n = 2, the fold points
form smooth curves that separate attracting and repelling sheets of the two-dimensional crit-
ical manifold S. In this paper we do not consider more degenerate singular points of the
projection of .S onto the space of slow variables.

Away from fold points the implicit function theorem implies that S is locally the graph
of a function h(y) = x. Then the reduced system (2.4) can be expressed as

v =g(h(y),y,A,0). (2.5)

We can also keep the DAE structure and write (2.4) as the restriction to S of the vector field

{j; = — (D) (Dyf) g, (2.6)
y = 9

on R™ x R™ by observing that f = 0 and y = g imply £ = — (Dmf)f1 (Dyf) g. The
vector field (2.6) blows up when f is singular. It can be desingularized by scaling time by
—det (Dyf), at the expense of changing the direction of the flow in the region where this
determinant is positive. This desingularized system plays a prominent role in much of our
analysis. If S is normally hyperbolic, not only S, but also the slow flow on S persists for
€ > 0; this is made precise in the following fundamental theorem.

THEOREM 2.1 (Fenichel’s Theorem [69]). Suppose M = My is a compact normally
hyperbolic submanifold (possibly with boundary) of the critical manifold S of (2.2) and that
f,9 € C", r < co. Then for € > 0 sufficiently small the following holds:

(F1) There exists a locally invariant manifold M. diffeomorphic to My. Local invariance
means that M. can have boundaries through which trajectories enter or leave.

(F2) M. has a Hausdorff distance of O(¢) from M.

(F3) The flow on M. converges to the slow flow as € — 0.

(F4) M. is C"-smooth.

(F5) M. is normally hyperbolic and has the same stability properties with respect to the
fast variables as My (attracting, repelling or saddle type).

(F6) M. is usually not unique. In regions that remain at a fixed distance from the bound-
ary of M., all manifolds satisfying (F1)~(F5) lie at a Hausdorff distance O(e~%/¢)
from each other for some K > 0 with K = O(1).

The normally hyperbolic manifold My has associated local stable and unstable manifolds

Wloc MO U Wloc and VVloc MO U I/Vloc
pEMy pEMy

where W (p) and W (p) are the local stable and unstable manifolds of p as a hyperbolic
equilibrium of the layer equations, respectively. These manifolds also persist for ¢ > 0
sufficiently small: there exist local stable and unstable manifolds W (M) and W} (M.),
respectively, for which conclusions (F1)—(F6) hold if we replace M. and My by W2 (M)
and Wi (M) (or similarly by W' (M) and Wi . (Mp)).

We call M. a Fenichel manifold. Fenichel manifolds are a subclass of slow manifolds,
invariant manifolds on which the vector field has speed that tends to O on the fast time scale
as € — 0. We use the convention that objects in the singular limit have subscript 0, whereas
the associated perturbed objects have subscripts €.

2.1.1. The critical manifold and the slow flow in the Van der Pol equation. Let us
illustrate these general concepts of GSPT with an example. One of the simplest systems in
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FIG. 2. Phase portraits of the Van der Pol equation (2.7) for A = 0 (a) and for A = 1 (b). Shown are
the critical manifold S (grey solid curve) and the y-nullcline (dashed line); double arrows indicate the direction
of the fast flow and single arrows that of the slow flow. Panel (a) shows a candidate for a relaxation oscillation
(black) surrounding an unstable equilibrium. Panel (b) is the moment of the singular Hopf bifurcation with a folded
singularity at the local minimum p4-.

which the concepts are manifest, and historically perhaps also the first, is the Van der Pol
equation [222, 223, 224] with constant forcing A € R given by

{555 = v+ 2.7

y = A—uzx.
This slow-fast system has only one fast and one slow variable, but it already exhibits com-
plicated dynamics that were truly surprising when they were first discovered [48]. By setting
e = 01n (2.7), we obtain the reduced system with an algebraic equation that defines the
critical manifold of (2.7) as the cubic curve

S={(z,y) eR* |y =12® -z =i c(a)}. (2.8)

It is normally hyperbolic away from the local maximum and minimum py = (+1, jF%) of
the cubic, where .S has a fold with respect to the fast variable z. At p+ normal hyperbolicity
fails, since a% f(x,y,\,0) = 1 — 22 is zero at p.. Hence, p+ are the fold points and they
naturally decompose the critical manifold into three branches,

§=8""U{p-tuS U{pstusmT,

where %~ = SN{zx < -1}, %" :=SN{x > 1}and S" = SN{-1 < z < 1}. From
the sign of % f(x,y,\,0) we conclude that the two branches S~ and S®™ are attracting,
and the branch S™ is repelling. The critical manifold .S is shown as the grey cubic curve in
Figure 2; note that S and its attracting/repelling nature does not depend on A, so it is the same
both in panel (a), where A = 0, and panel (b), where A = 1. The dynamics of any point not on
S is entirely controlled by the direction of the fast variable x, which is indicated in Figure 2
by the horizontal double arrows; observe that the middle branch of S is repelling and the two
unbounded branches are attracting.

To obtain the slow flow (2.5) on S in the Van der Pol equation (2.7) it is not actually
necessary to solve the cubic equation y = c¢(z) for z on S*~, S” and S**. It is more
convenient to write the slow (reduced) flow in terms of the fast variable x. To this end, we
differentiate f(x,y,\,0) =y — ¢(x) = 0 with respect to 7 and obtain

y=da®—i=i(x*—1).
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Combining this result with the equation for ¢ we get:

A—T

S 2.9)

(*—1Di=A—z or i=
The direction of the slow flow on S is indicated in Figure 2 by the arrows on the grey curve;
panel (a) is for A = 0 and panel (b) for A = 1. The slow flow does depend on A, because the
direction of the flow is partly determined by the location of the equilibrium at x = A on S.
The slow flow is well defined on S%~, S” and S“ ™, but not at z = &1 (as long as A # %1).
We can desingularize the slow flow near z = £1 by rescaling time with the factor (2% — 1).
This gives the equation © = \ — x of the desingularized flow. Note that this time rescaling
reverses the direction of time on the repelling branch S”, so care must be taken when relating
the phase portrait of the desingularized system to the phase portrait of the slow flow.

Let us now focus specifically on the case for A = 0, shown in Figure 2(a), because it is
representative for the range |A\| < 1. The y-nullcline of (2.7) is shown as the dashed black
vertical line (the x-nullcline is .S) and the origin is the only equilibrium, which is a source for
this value of A. The closed curve is a singular orbit composed of two fast trajectories starting
at the two fold points p+ concatenated with segments of S. Such continuous concatenations
of trajectories of the layer equations and the slow flow are called candidates [20]. The singular
orbit follows the slow flow on S to a fold point, then it jumps, that is, it makes a transition
to a fast trajectory segment that flows to another branch of S. The same mechanism returns
the singular orbit to the initial branch of S. It can be shown [142, 164] that the singular orbit
perturbs for £ > 0 to a periodic orbit of the Van der Pol equation that lies O(z) close to this
candidate. Van der Pol introduced the term relaxation oscillation to describe periodic orbits
that alternate between epochs of slow and fast motion.

2.2. Singular Hopf bifurcation and canard explosion. The dynamics of slow-fast sys-
tems in the vicinity of points on the critical manifold where normal hyperbolicity is lost can
be surprisingly complicated and nothing like what we know from systems with a single time
scale. This section addresses the phenomenon known as a canard explosion, which occurs
in planar slow-fast systems after a singular Hopf bifurcation. We discuss this first for the
example of the Van der Pol equation (2.7).

2.2.1. Canard explosion in the Van der Pol equation. As mentioned above, the phase
portrait in Figure 2(a) is representative for a range of A-values. However, the phase portrait
for A\ = 1, shown in Figure 2(b), is degenerate. Linear stability analysis shows that for
e > 0 the unique equilibrium point (z,y) = (X, 2A* — X) is a source for [A| < 1, but a
sink for |A| > 1. Supercritical Hopf bifurcations occur at Ay = £1. The analysis of how
the observed stable dynamics of the Van der Pol equation (2.7) changes with A from a stable
focus to relaxation oscillations when € > 0 is small was a major development in the theory of
slow-fast systems. Figure 3(a) shows the result of a numerical continuation in the parameter
A of the periodic orbit for ¢ = 0.05 that emerges from the Hopf bifurcation. Close to the
Hopf bifurcation at Ay = 1.0 the periodic orbit is small (cyan curve), as is to be expected.
However, as A decreases, the periodic orbit grows very rapidly, where it follows the repelling
slow manifold ST for a long time. In fact, the values of A for all orange orbits in Figure 3(a)
are A\ =~ 0.993491, that is, they agree to six decimal places. Note that we show the growing
orbits only up to a characteristic intermediate size: the largest periodic orbit in Figure 3(a) just
encompasses the fold point p_. Upon further continuation in A this periodic orbit continues to
grow rapidly until it reaches the shape of a relaxation oscillation; compare with Figure 2(a).

The Hopf bifurcation at Ay = 1 occurs when the equilibrium moves over the fold point
p+. It is called a singular Hopf bifurcation. The eigenvalues at the Hopf bifurcation have
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FIG. 3. Numerical continuation of periodic orbits in the Van der Pol’s equation (2.7) for € = 0.05. Panel (a)
shows a selection of periodic orbits: the cyan orbit is a typical small limit cycle near the Hopf bifurcation at X = Ay,
whereas all the orange orbits occur in a very small parameter interval at A ~ 0.993491. Panels (b) and (c) are
sketched bifurcation diagrams corresponding to supercritical and subcritical singular Hopf bifurcations; here A
denotes the amplitude of the limit cycle.

magnitude O(e~1/2), so that the periodic orbit is born at the Hopf bifurcation with an inter-
mediate period between the fast O(¢~!) and slow O(1) time scales. The size of this periodic
orbit grows rapidly from diameter O(£'/?) to diameter O(1) in an interval of parameter val-
ues A of length O(exp(—K/¢)) (for some K > 0 fixed) that is O(e) close to Agr. Figures 3(b)
and (c) are sketches of possible bifurcation diagrams in A for the singular Hopf bifurcation
in a supercritical case (which one finds in the Van der Pol system) and in a subcritical case,
respectively; the vertical axis represents the maximal amplitude of the periodic orbits. The
two bifurcation diagrams are sketches that highlight the features described above. There is a
very small interval of A where the amplitude of the oscillation grows in a square-root fashion,
as is to be expected near a Hopf bifurcation. However, the amplitude then grows extremely
rapidly until it reaches a plateau that corresponds to relaxation oscillations.

The rapid growth in amplitude of the periodic orbit near the Hopf bifurcation is called a
canard explosion. The name canard derives originally from the fact that some periodic orbits
during the canard explosion look a bit like a duck [48]. In fact, the largest periodic orbit in
Figure 3(a) is an example of such a “duck-shaped” orbit. More generally, and irrespective of
its actual shape, one now refers to a trajectory as a canard orbit if it follows a repelling slow
manifold for a time of O(1) on the slow time scale. A canard orbit is called a maximal canard
if it joins attracting and repelling slow manifolds. Since the slow manifolds are not unique,
this definition depends upon the selection of specific attracting and repelling slow manifolds;
compare (F6) of Theorem 2.1. Other choices yield trajectories that are exponentially close to
one another. In the Van der Pol equation (2.7) the canard explosion occurs O(e~%/¢)-close in
parameter space to the point where the manifolds S and S” intersect in a maximal canard.
It is associated with the parameter value A = 1 where the equilibrium lies at the fold point
p4+ of the critical manifold S; see Figure 2(b).

2.3. Singular Hopf bifurcation and canard explosion in generic planar systems. In
the Van der Pol equation (2.7) the singular Hopf bifurcation takes place at A = 1 where the
equilibrium lies at a fold point. In a generic family of slow-fast planar systems a singular
Hopf bifurcation does not happen exactly at a fold point, but at a distance O(¢) in both phase
space and parameter space from the coincidence of the equilibrium and fold point. One can
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obtain a generic family by modifying the slow equation of the Van der Pol equation (2.7) to
y=A—x+ay.

In this modified system the equilibrium and fold point still coincide at x = 1, but the Hopf
bifurcation occurs for x = /1 4 € a. A detailed dynamical analysis of canard explosion and
the associated singular Hopf bifurcation using geometric or asymptotic methods exists for
planar slow-fast systems [12, 13, 55, 56, 140, 142]; we summarize these results as follows.

THEOREM 2.2 (Canard Explosion in R? [142]). Suppose a planar slow-fast system has
a generic fold point p, = (xp,yp) € S, that is,

2

0 0 0
f(p*7 )\,0) = O, %f(]l“ )\,O) = O, @f(p*, A, 0) # O7 %f(p*, A, O) 7é O
(2.10)

Assume the critical manifold is locally attracting for x < x, and repelling for v > x,, and
there exists a folded singularity for A\ = 0 at p., namely,

0 0

Then a singular Hopf bifurcation and a canard explosion occur at

g(p*7070) = O’

Aip = Hie+0(%?)  and (2.12)

e = (Hy + K1) e +O0(3/?). (2.13)
The coefficients H1 and K1 can be calculated explicitly from normal form transformations [ 142 ]
or by considering the first Lyapunov coefficient of the Hopf bifurcation [144].

In the singular limit we have Ay = A.. For any € > 0 sufficiently small, the linearized
system [88, 147] at the Hopf bifurcation point has a pair of singular eigenvalues [27]

o(Xe) = a(Xe) +i (X e),
with a(Ag;e) = 0, Za(Ag;e) # 0and

lir% B(Am;e) = oo, onthe slow time scale 7, and
e—

liII(l) B(Am;e) = 0, on the fast time scale ¢.

E—

2.4. Folded singularities in systems with one fast and two slow variables. A canard
explosion for a planar system happens in an exponentially small parameter interval. However,
as soon as there is more than one slow variable, canard orbits can exist for O(1) ranges of a
parameter. To illustrate this, we consider (2.1) for the special case m = 1 and n = 2, and
write it as

ex = f(x7y7>\a€)7
yl = 91(1’»%)\,5), (214)
2 = g2(x,9,\€).

We assume that the critical manifold S = {f = 0} of (2.14) has an attracting sheet S* and a
repelling sheet S” that meet at a fold curve [’ as is shown in Figure 4. We also assume that
the fold points p, € F on S are generic in the sense of singularity theory, that is,

f(p*7)\70) = 0) %(p*a)VO) = 07
0% f
902 (ps, A,0) # 0, Dy f(p«,A,0) has full rank one.
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FIG. 4. The critical manifold S with attracting sheet S* (red) and repelling sheet S™ (blue) that meet at a fold
curve F' (grey). The fast flow transverse to S is indicated by double (large) arrows and the slow flow on S near a
folded node by single (small) arrows; see also Figure 5(b).

7

The slow flow is not defined on the fold curve before desingularization. At most fold points,
trajectories approach or depart from both the attracting and repelling sheets of S. In generic
systems, there may be isolated points, called folded singularities, where the trajectories of
the slow flow switch from incoming to outgoing. Figure 4 shows an example of the slow flow
on S and the thick dot on F' is the folded singularity at which F' changes from attracting to
repelling (with respect to the slow flow).

Folded singularities are equilibrium points of the desingularized slow flow. As described
above, the desingularized slow flow can be expressed as

& o= (%f) a o+ (%f) g2,

o= — (3f) 9, (2.15)
Y2 = - (&) o,
restricted to S. A fold point p,. € F'is a folded singularity if
of of
*,)\30 a *7>\a0 *,)\70 a *,)\,O =0.
91(ps, A, 0) o P+, A, 0) + g2(ps, A, 0) s (P« A, 0)

There are different possibilities for the stability of p, in (2.15). Let o1 and o9 denote the
eigenvalues of the Jacobian matrix restricted to S and evaluated at a folded singularity p,.
We call p, a

folded saddle, if o102 <0, o012 €R,
folded node, if 0102>0, o012€R,
folded focus, if o0102>0, Im(o12)#0.

Figure 5 shows phase portraits of the (linearized) slow flow, in panels (a) and (b), and the
associated desingularized slow flow, in panels (c) and (d), respectively. Panels (a) and (c) are
for the case of a folded saddle and panels (b) and (d) of a folded node. For the case of a folded
node one generically has an inequality of the form |o1| > |o2|, and we write |o5| > |04,
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FIG. 5. Phase portraits of the locally linearized slow flow near a folded saddle (a) and a folded node (b); the
singular canards defined by the eigendirections are shown as thick lines. The corresponding desingularized slow
flow is shown in panels (c) and (d), respectively.

replacing the numeric labels with s and w to emphasize the strong and weak eigendirections.
Note that the phase portraits for the slow flow in Figure 5(a) and (b) are obtained by reversing
the direction of the flow on S™ where % f > 0, that is, by reversing the arrows above F' in
the phase portraits of the desingularized slow flow in panels (c) and (d). It is an important
observation that the trajectories of the slow flow that lie along the eigendirections of the folded
saddle or node connect the two sheets of the critical manifold through the folded singularity
in finite (slow) time; such a trajectory is called a singular canard. We remark that there
are no singular canards for the case of a folded focus, which is why it is not shown here.
Notice further for the case of the folded node in Figure 5(b) that the strong singular canard
75 and the fold curve bound a full (shaded) sector of trajectories that cross from S® to S” by
passing through the folded node. The linearized system in Figure 5(b) should be compared
with Figure 4, which shows a nonlinear slow flow near a folded node and, hence, also has a
full sector of trajectories that pass through the folded singularity.

Singular canards act as candidates of maximal canards of the full system for € > 0. This
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is described in the next theorem [19, 23, 31, 212, 233].
THEOREM 2.3 (Canards in R3). For the slow-fast system (2.14) with ¢ > 0 sufficiently
small the following holds:
(C1) There are no maximal canards generated by a folded focus.
(C2) For a folded saddle the two singular canards 7y, o perturb to maximal canards 71 2.

(C3.1) For a folded node let i := oy /0s < 1. The singular canard 75 (“the strong
canard”) always perturbs to a maximal canard ~v,. If u=' & N then the singular
canard 7,, (“the weak canard”) also perturbs to a maximal canard ~y,,. We call s
and y,, primary canards.

(C3.2) For a folded node suppose k > 0 is an integer such that 2k +1 < p=' < 2k + 3
and u‘l # 2(k + 1). Then, in addition to s ., there are k other maximal canards,
which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation for
odd ;i=' € N and a pitchfork bifurcation for even p~! € N.

3. Slow-fast mechanisms for MMOs. In this section we present key theoretical results
of how MMOs arise in slow-fast systems with SAOs occurring in a localized region of the
phase space. The LAOs, on the other hand, are associated with large excursions away from
the localized region of SAOs. More specifically, we discuss four local mechanisms that give
rise to such SAOs:

e passage near a folded node, discussed in Section 3.1;

e singular Hopf bifurcation, discussed in Section 3.2;

o three-time-scale problems with a singular Hopf bifurcation, discussed in Section 3.3;

e tourbillion, discussed in Section 3.4.
Each of these local mechanisms has its distinctive characteristics and can give rise to MMOs
when combined with a global return mechanism that takes the trajectory back to the region
with SAOs. Such global return mechanisms arise naturally in models from applications and
a classic example is an S-shaped slow manifold; see Section 3.2 and the examples in Sec-
tions 4-6. We do not discuss global returns in detail, but rather concentrate on the nature of
the local mechanisms. From the analysis of normal forms we estimate quantities that can be
measured in examples of MMOs produced from both numerical simulations and experimental
data. Specifically, we consider the number of SAOs and the changes in their amplitudes from
cycle to cycle. We also consider in model systems the geometry of nearby slow manifolds
that are associated with the approach to and departure from the SAO regions.

3.1. MMOs due to a folded node. Folded nodes are only defined for the singular
limit (2.4) of system (2.1) on the slow time scale. However, they are directly relevant to
MMOs because for € > 0 small enough, trajectories of (2.1) that flow through a region where
the reduced system has a folded node, undergo small oscillations. Benoit [19, 20] first re-
cognized these oscillations. Wechselberger and collaborators [31, 212, 233] gave a detailed
analysis of folded nodes while Guckenheimer and Haiduc [86] and Guckenheimer [84] com-
puted intersections of slow manifolds near a folded node and maps along trajectories passing
through these regions. From Theorem 2.3 we know that the eigenvalue ratio 0 < p < 1 at
the folded node is a crucial quantity that determines the dynamics in a neighborhood of the
folded node. In particular, p controls the maximal number of oscillations. The studies men-
tioned above use normal forms to describe the dynamics of oscillations near a folded node.
Two equivalent versions of these normal forms are

2

exr = y—ux*
Yy = z—ux, 3.1
z = —u,



and

2

exr = y—uzx*
j o= —(p+la-z (3.2)
z = %u.

Note that y is the eigenvalue ratio of system (3.2) and that v # 0 and p # 0 imply that no
equilibria exist in (3.1) and (3.2). If we replace (z,y, ) in system (3.1) by (u, v, w) and call
the time variable 71, then we obtain system (3.2) via the coordinate change

=1+ y=0+po, z2=—(1+p)"w,
and the rescaling of time 7 = 71 /1/1 + p, which gives

I or _ —1+v1-8v
2(1+ 11)2 L ;A

Therefore, in system (3.1) the number of secondary canards changes with the parameter v.
When v is small, u ~ 2v. If the “standard” scaling [212] z = e'/2 %,y = €7, z = /2 Z,

and t = ¢'/2¢, is applied to system (3.1), we obtain
¥ o= y—1
y = zZ-7, (3.3)
A —v.

Hence, the phase portraits of system (3.1) for different values of ¢ are topologically equivalent
via linear maps. The normal form (3.3) describes the dynamics in the neighborhood of a
folded node, which is at the origin here. Trajectories that come from y = oo with x > 0
and pass through the folded-node region make a number of oscillations in the process, before
going off to y = oo with < 0. There are no returns to the folded-node region in this system.

Let us first focus on the number of small oscillations. If 2k + 1 < p~! < 2k + 3, for
some k € N, and 1~ # 2(k + 1) then the primary strong canard v, twists once and the
i-th secondary canard &;, 1 < ¢ < k, twists 2¢ + 1 times around the primary weak canard 7,
in an O(1) neighborhood of the folded node singularity in system (3.3), which corresponds
to an O(+/€) neighborhood in systems (3.1) and (3.2) [212, 233]. (A twist corresponds to
a half rotation.) We illustrate this in Figure 6 for system (3.3) with v = 0.025. Note that
v = 0.025 corresponds to yu ~ 0.0557. Hence, 2k + 1 < p~! ~ 17.953 < 2k + 3
for k = 8, so Theorem 2.3 states that there exist eight secondary canards &;, 1 < i < §,
along with the strong and weak canards -, /,,. Figure 6 shows the attracting slow manifold
S¢ and the repelling slow manifold S of (3.3) in a three-dimensional region bounded by
the planes {z = +a}, denoted X, and ¥_,, with @ = 0.14; see Section 8 for details on
how these computations were done. Even though the rescaled normal form (3.3) does not
depend on € anymore, we still indicate the e-dependence of the slow manifolds to distinguish
them from the attracting and repelling sheets of the critical manifold; furthermore, S¢ and S?
can be thought of as the slow manifolds of (3.1) or (3.2). Both manifolds are extensions of
Fenichel manifolds and illustrate how the slow manifolds intersect near the fold curve of the
critical manifold; the fold curve is the z-axis. The intersection curves are the canard orbits;
highlighted are the primary strong canard -y, (black) and the first three secondary canards &;
(orange), £ (magenta) and &3 (cyan). The inset shows the intersection curves of S¢ and ST
with the plane X, := {2z = 0} that contains the folded node at the origin; the intersection
points of the highlighted canard orbits are also indicated. Due to the symmetry of the normal

13



1.1

-1.1

L5

-1.5=
1.4

FIG. 6. Invariant slow manifolds of (3.3) with v = 0.025 in a neighborhood of the folded node. Both the
attracting slow manifold Sg (red) and the repelling slow manifold ST (blue) are extensions of Fenichel manifolds.
The primary strong canard s (black curve) and three secondary canards &1 (orange), {2 (magenta) and &3 (cyan)
are the first four intersection curves of S¢ and ST, the inset shows how these objects intersect a cross-section
orthogonal to the fold curve {x = 0,y = 0}.

form (3.3), the two slow manifolds S¢ and S] are each other’s image under rotation by
about the y-axis in Figure 6(a).

A trajectory entering the fold region becomes trapped in a region bounded by strips
of S¢ and ST and two of their intersection curves. The intersection curves are maximal
canards, and the trajectory is forced to follow the oscillations of these two bounding canard
orbits. Figure 6 does not show very clearly how many canards there are, nor does it indicate
the precise number of oscillations. We calculate the flow map of (3.3) with v = 0.025 to
illustrate this better. Due to the strong contraction along S¢, the flow map through the fold
region is strongly contracting in one direction for trajectories that do not extend along ST.
Hence, the flow map will be almost one dimensional and can be approximated by following
trajectories starting on the critical manifold far away from the fold curve. Figure 7(a) shows
the result of integrating 500 equally-spaced initial values on the line segment {z = 20, y =
2% = 400, —3.25 < 2 < —0.75} until they reach the plane = —10; plotted are the
z-coordinates of the final values versus the initial values. One can see ten segments in this
flow map that are separated by discontinuities. These discontinuities mark sectors on the
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F1G. 7. Numerical study of the number of rotational sectors for system (3.3) with v = 0.025. Panel (a)
illustrates the flow map through the folded node by plotting the z-coordinates z out of the first return to a cross-
section x = —10 of 500 trajectories with equally-spaced initial values (z,y, z) = (20,400, ziy ), where —3.25 <
zin < —0.75. Panels (b1)—~(b4) show four trajectories projected onto the (xz,y)-plane that correspond to the points
labeled in panel (c), where zi, = —1.25 in panel (bl), ziy = —1.5 in panel (b2), zi, = —2 in panel (b3), and
Zin = —2.25 in panel (b4).

line segment {x = 20, y = 2% = 400, —3.25 < z < —0.75} that correspond to an
increasing number of SAOs; in fact, each segment corresponds to a two-dimensional sector
1;,0 < ¢ <9, on the attracting sheet S¢ of the slow manifold. The outer sector I, on the right
in Figure 7(a) is bounded on the left by the primary strong canard ~,; sector /; is bounded
by s and the first maximal secondary canard &7; sectors I;, ¢« = 2,...,8, are bounded by
maximal secondary canard orbits &_; and &;; and the last (left outer) sector Iy is bounded
on the right by £s. On one side of the primary strong canard -5 and each maximal secondary
canard §;, 1 < ¢ < 8, trajectories follow the repelling slow manifold S and then jump with
decreasing values of x. On the other side of s and §;, trajectories jump back to the attracting
slow manifold and make one more oscillation through the folded node region before flowing

toward z = —oo. The four panels (b1)—(b4) in Figure 7 show portions of four trajectories
projected onto the (x, y)-plane; their initial values are (z,y, z) = (20,400, z,) with z;, as
marked in panel (a), that is, z;, = —1.25, z;, = —1.5, zin = —2 and z;, = —2.25 for

(b1)—(b4), respectively. The trajectory in panel (b1) was chosen from the sector /5, bounded
by &1 and &9 this trajectory makes two oscillations. The trajectory in panel (b2) comes from
I5 and, indeed, it makes five oscillations. The other two trajectories, in panel (b3) and (b4),
make seven and nine oscillations, respectively, but some of these oscillations are too small to
be visible.

The actual widths of the rotational sectors in Figure 7 are very similar due to the e-
dependent rescaling used to obtain (3.3). When the equations depend on ¢ as in (3.1) and
(3.2), however, the widths of the sectors depend on . In fact, every sector is very small
except for the sector corresponding to maximal rotation, which is bounded by &, and the fold
curve. For an asymptotic analysis of the widths of the rotational sectors that organize the
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FIG. 8. Schematic diagram of the candidate periodic orbit I that gives rise to MMOs with SAOs produced by
a folded node singularity. The candidate I'. approaches the folded node along the attracting sheet S® (red) of the
critical manifold (red) in the sector of maximal rotation associated with the weak singular canard 7,. The distance
to the strong singular canard 7 is labeled 5. When the trajectory reaches the folded node (filled circle) it jumps
along a layer and proceeds to make a global return.

oscillations, system (3.2) is more convenient, because the eigenvalues of the desingularized
slow flow are —u and —1. Brgns, Krupa and Wechselberger [31] found the following.

THEOREM 3.1. Consider system (2.14) and assume it has a folded node singularity.
At an O(1)-distance from the fold curve, all secondary canards are in an O =1)/2).
neighborhood of the primary strong canard. Hence, the widths of the rotational sectors I,
1 <i <k, is O(e'=M/2) and the width of sector I,y is O(1).

Note that, as ¢ — 0 (the folded saddle-node limit), the number of rotational sectors
increases indefinitely, and the upper bounds on their widths decrease to O(£!/?).

3.1.1. Folded node with a global return mechanism. A global return mechanism may
reinject trajectories to the folded node funnel to create an MMO. Assuming that the return
happens O(1) away from the fold curve, Theorem 3.1 predicts the number of SAOs that
follow. We create a candidate trajectory by following the fast flow starting at the folded
node until it returns to the folded node region; this is sketched in Figure 8. The global
return mechanism produces one LAO. Let § denote the distance of the global return point
of a trajectory from the singular strong canard s measured on a cross-section at a distance
O(1) away from the fold; we use the convention that 6 > 0 indicates a return into the funnel
region. Provided ¢ is large enough, so that the global return point lands in the sector Iy 1 of
maximal rotation, one can show the existence of a stable MMO with signature 1%+1 where
k is determined by p [31]. We summarize this existence result (in a more general setting) in
the following theorem.

THEOREM 3.2 (Generic 11 MMOs). Consider system (2.14) with the following as-
sumptions:

(AO) Assume that 0 < € < 1 is sufficiently small, €'/> < p and k € N is such that
2k +1 < put <2k +3.
(Al) The critical manifold S is (locally) a folded surface.
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(A2) The corresponding reduced problem possesses a folded node singularity.

(A3) There exists a candidate periodic orbit (as constructed in Figure 8) which consists of
a segment on S (red) within the singular funnel (bounded by F' and s such that it
contains 7,,) with the folded node singularity as an endpoint, fast fibers of the layer
problem and a global return segment.

(A4) A transversality hypothesis is satisfied that is not stated here because it is cumber-
some to formulate precisely in a general setting; see e.g., [31] for the case of a
cubic-shaped critical manifold.

Then there exists a stable MMO with signature 11,

Theorem 3.2 not only requires sufficiently small 0 < & < 1 but also x> /2 (while
0 < p < 1). However, ¢ is usually of the order O(10~2) in applications, so that z must be
close to 1 in order for the theorem to apply. Therefore, such maximal MMO signatures are
seldom seen in applications. Furthermore, the SAOs for an MMO with signature 1%+ tend
to be too small to be readily visible.

Figure 7 illustrates that the amplitudes of the SAOs are much larger for trajectories that
approach the folded node close to the strong canard and lie in one of the sectors I; with
1 < k rather than Ij, ;. We know from Theorem 3.1 that the maximal width of a sector I;
with i < k is bounded from above by O(s(1=#)/2) with i < 1/3. When § is O(¢1=#)/2)
one can, indeed, find MMOs with i« < k£ SAOs that are stable. Geometrically, different
stable MMOs are selected as one moves the flow map in Figure 7(a) up or down; since the
rotational sector Iy for general e-dependent systems has much larger width than the other
sectors, one should expect that the transitions through I; with ¢ < k happen rather quickly
during a parameter-induced variation of 6. We have the following result [31].

THEOREM 3.3. Suppose system (2.14) satisfies assumptions (A0)—(A3) of Theorem 3.2
and additionally:

(AS5) For § = 0, the global return point is on the singular strong canard 75 and as §
passes through zero the return point crosses v with nonzero speed.

Suppose now that § = O(e'=M/2) > 0. Then, for sufficiently small 0 < ¢ < 1 and
k € N such that 2k +1 < p~' < 2k + 3 the following holds. For each i, 1 < i <
k, there exist subsectors I; C I; with corresponding distance intervals (9; 5i+ ) of widths
O(e1=m/2), which have the property that if § € (57, 6;7) then there exists a stable MMO
with signature 1°.

Theorem 3.3 says that we should observe a succession of stable 1° MMOs with increas-
ingly more SAOs as 4 increases (assuming that ; remains fixed in such a parameter variation).
In the transition from a 1¢ to a 1°t1 MMO signature, that is, in the regions in between intervals
(6;, 6;") and (67, 6;, 1) we expect to find more complicated signatures, which are usually
a mix of 17 and 1'*!. As with Theorem 3.2, the amplitudes of most SAOs will be tiny if ¢ is
small, except for those MMOs that have only a few SAOs after each LAO.

Ifu= 0(51/ 2), that is, assumption (A0) does not hold, then we may still expect stable
MMO signatures of type 11, as soon as the global returns falls inside the funnel region and
§ = O(1) [143]; note that k = O(1/£'/?) and the amplitudes of the SAOs for such an MMO
will again be tiny. If 4 = O(¢/?) and § = O(£'/?) as well, the mixed MMO signatures
with larger-amplitude SAOs are more likely to occur. For example, Figure 20 in Section 4
displays an MMO of type 1212 in the Koper model. Here, global returns come very close to
the secondary maximal canard &, first slightly to the left (hence, into the rotational sector I
with two SAOs) and then slightly to the right (hence, into the rotational sector I3 with three
SAOQOs), creating this MMO signature.

The theory described so far does not capture all of the possible dynamics near a folded
node. If higher-order terms are included in the normal forms (3.1)-(3.2), then equilibria may
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appear in an O(g!/2) neighborhood of the folded node as soon as y = O(£'/?) or smaller.
This observation motivates our study of the singular Hopf bifurcation in three dimensions.

3.2. MMOs due to a singular Hopf bifurcation. Equilibria of a slow-fast system (2.1)
always satisfy f(z,y, A, €) = 0; generically, they are located in regions where the associated
critical manifold S is normally hyperbolic. However, in generic one-parameter families of
slow-fast systems, the equilibrium may cross a fold of S. In generic families with two slow
variables, the fold point (including the specific parameter value) at which the equilibrium
crosses the fold curve of the critical manifold has been called a folded saddle-node of type
11 [161]. Folded nodes and saddles of the reduced system are not projections of equilibria of
the full slow-fast system, but the folded saddle-nodes of type II are. When € > 0, the system
has a singular Hopf bifurcation, which occurs generically at a distance O(¢) in parameter
space from the folded saddle-node of type II [85].

In order to obtain a normal form for the singular Hopf bifurcation, we follow [85] and
add higher-order terms to the normal form (3.1) of the folded node, to obtain

2

er = y-—z°,
y = z-ux, (3.4)
2 = —v—ax—by—-cz.

As with (3.1), we apply the standard scaling [212] z = €'/ %, y = €7, 2 = ¢'/? Z, and

t=el/2¢; system (3.4) then becomes
o= -1’
y = Z-1, (3.5)
7 = —v—ec2az—cby—e'l?cz.

This scaled vector field provides an O(£!/2)-zoom of the neighborhood of the folded sin-
gularity where SAOs are expected to occur. The scaling removes € from the first equations
while the coefficients a, b and c of the third equation become e-dependent; v remains fixed.
Note that the coefficient of ¢ tends to O faster than those of z, z as € — 0. This feature makes
the definition of normal forms for slow-fast systems somewhat problematic: scalings of the
state-space variables and the singular perturbation parameter ¢ interact with each other. These
e-dependent scalings play an important role in “blow-up” analysis of fold points and folded
singularities.

In contrast to the normal form (3.1) of a folded node, system (3.5) possesses equilibria
for all values of v. If v = O(1) then these equilibria are far from the origin, with coordinates
that are O(¢~'/2) or larger. Since we want to study the dynamics near a folded singularity,
the e-dependent terms in (3.5) play little role in this parameter regime and the system can be
regarded as an inconsequential perturbation of the folded node normal form (3.3) and Theor-
ems 3.2 and 3.3 apply. On the other hand, if v = 0(51/ 2) or smaller then one equilibrium
lies within an O(1)-size domain of the phase space. This equilibrium is determined by the
coefficients a and c (to leading order) and plays an important role in the local dynamics near a
folded singularity [85, 143]. In particular, the equilibrium undergoes a singular Hopf bifurca-
tion for v = O(e) [85]. Thus, for parameter values v = O(£'/?) or smaller, the higher-order
terms in the third equation of (3.5) are crucial.

So what is the most appropriate normal form of a system that undergoes a singular Hopf
bifurcation? Several groups have derived system (3.4), but drop the term by because it has
higher order in ¢ after the scaling. However, this term appears in the formula for the lowest-
order term in ¢ of the first Lyapunov coefficient of the Hopf bifurcation of (3.4) and, hence,
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FIG. 9. Phase portrait of an MMO periodic orbit T (black curve) for system (3.6) with (v,a,b,c,e) =
(0.0072168, —0.3872, —0.3251,1.17,0.01). The critical manifold S (grey) is the S-shaped surface with folds at
x = 0and x = —2. The orbit T" is composed of two slow segments near the two attracting sheets of S and two fast
segments, with SAOs in the region near the equilibrium p on the repelling sheet S™ of S just past the fold at x = 0.
Panel (a) shows a three-dimensional view and panel (b) the projection onto the (x,y)-plane.

must be retained if we hope to determine a complete unfolding of the singular Hopf bifurca-
tion [85].

The MMOs that occur close to the singular Hopf bifurcation have a somewhat dif-
ferent character than those generated via the folded node mechanism. Guckenheimer and
Willms [93] observed that a subcritical (ordinary) Hopf bifurcation may result in large regions
of the parameter space being funneled into a small neighborhood of a saddle equilibrium with
unstable complex eigenvalues. After trajectories come close to the equilibrium, SAOs grow
in magnitude as the trajectory spirals away from the equilibrium. Similar MMOs may pass
near a singular Hopf bifurcation. Then the equilibrium is a saddle-focus and trajectories on
the attracting Fenichel manifold are funneled into a region close to the one-dimensional stable
manifold of the equilibrium. SAOs occur as the trajectory spirals away from the equilibrium.
We review here our incomplete understanding of singular Hopf bifurcations and the MMOs
passing nearby.

The normal form (3.4) does not yield MMOs because there is no global return mech-
anism; trajectories that leave the vicinity of the equilibrium point and the fold curve flow to
infinity in finite time. This property can be changed by adding a cubic term to the normal
form that makes the critical manifold S-shaped, similar to the Van der Pol equation:

ex = y—a—a’,
y = z—ux, 3.6)
Z = —v—ax—by—cz.

This version of the normal form for singular Hopf bifurcation with global reinjection has been
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Fig. 10. A chaotic  MMO trajectory of system (3.6) with (v,a,b,c,¢e) =
(0.004564, —0.2317,0.2053,1.17,0.01).  Panel (a) shows the time series of the wz-coordinate of the tra-
Jectory from t = 100 to t = 200, and panel () the projection of the trajectory onto the (x,y)-plane.

derived repeatedly as a “reduced” model for MMOs [122, 138]. An example of the overall
structure of MMOs in system (3.6) with small v is shown in Figure 9 for (v,a,b,c,e) =
(0.0072168, —0.3872, —0.3251, 1.17,0.01); note that v = O(e). The S-shaped critical man-
ifold S is the grey surface in Figure 9(a); a top view is shown in panel (b). The manifold S has
two fold curves, one at z = 0 and one at z = f%, that decompose .S into one repelling and
two attracting sheets. For our choice of parameters there exists a saddle-focus equilibrium p
on the repelling sheet that is close to the origin (which is the folded node singularity). The
equilibrium p has a pair of unstable complex conjugate eigenvalues. A stable MMO periodic
orbit I', shown as the black curve in Figure 9, interacts with p as follows. Starting just past
the fold at z = 0, that is, in the region near the origin with z < 0, the orbit I' spirals away
from p along its two-dimensional unstable manifold and repeatedly intersects the repelling
sheet S” of S. As soon as I intersects the repelling slow manifold (not shown), it jumps to
the attracting sheet of S with x < —%. The orbit I' then follows this sheet to the fold at
T = —%, after which it jumps to the attracting sheet of .S with x > 0. Then I returns to the
neighborhood of p and the periodic motion repeats.

The MMO periodic orbit I" displayed in Figure 9 is only one of many types of complex
dynamics present in system (3.6). One aspect of the complex dynamics in system (3.6) is
the fate of the periodic orbits created in the Hopf bifurcation. There are parameter regimes
for (3.6) with stable periodic orbits of small amplitude created by a supercritical Hopf bi-
furcation. Subsequent bifurcations of these periodic orbits may be period-doubling or torus
bifurcations [85]. Period-doubling cascades can give rise to small-amplitude chaotic invariant
sets that may be associated with chaotic MMOs. For example, Figure 10 plots a chaotic MMO
trajectory for (3.6) with (v, a, b, c,e) = (0.004564, —0.2317,0.2053,1.17,0.01) that arises
from such a period-doubling cascade of the periodic orbit emerging from the singular Hopf
bifurcation. It appears that it is chaotic because of the nonperiodicity of its time series, shown
for the z-coordinate in Figure 10(a). A two-dimensional projection onto the (x,y)-plane
is shown in panel (b). Note that this trajectory does not come close to either the equilibrium
point p or the folded singularity at the origin. As v decreases from the value used in Figure 10
(where v is already of order O(¢)), the large-amplitude epochs of the trajectories become less
frequent and soon disappear, resulting in a small-amplitude chaotic attractor. Section 4 dis-
cusses a rescaled subfamily of (3.6), giving further examples of complex dynamics and some
analysis of the organization of MMOs associated with this system.

We would like to characterize the parameter regimes with MMOs for which the SAOs
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FIG. 11. Tangency between the unstable manifold W* (p) of the equilibrium and the repelling slow manifold
ST of (3.6) with (v,a,b,c,e) = (0.007057,0.008870, —0.5045,1.17,0.01). Panel (a) shows trajectories of
W (p) (red) and ST (blue) that are terminated on the green cross-section X defined by y = 0.3. The intersections
W (p) N X (with points on computed trajectories marked '0’) and ST N X (with points on computed trajectories
marked 'x’) are shown in panel (D).

are solely or partially due to spiraling along the unstable manifold W™ (p) of a saddle-focus
p. Analysis of this issue appears to be significantly more complicated than that for folded
nodes and has barely begun. We offer a few insights in locating these parameter regimes.
First, we think of v in the normal form (3.6) of the singular Hopf bifurcation as the “primary”
bifurcation parameter and seek ranges of ¥ where MMOs are found. If the Hopf bifurca-
tion at ¥ = vy is supercritical then, for parameters close enough to the Hopf bifurcation,
the limit set of W*(p) is just the bifurcating stable periodic orbit. The onset of MMOs is
observed to occur at a distance v = O(g) from the Hopf bifurcation due to a new type
of bifurcation [85]. This bifurcation occurs at parameters where p is a saddle-focus and
W*(p) is tangent to the two-dimensional repelling Fenichel manifold ST. At first glance
one might think that two unstable objects in a dynamical system cannot intersect. However,
recall that W™ (p) consists of trajectories that approach p as ¢ — —oo while ST consists
of forward trajectories that remain slow for an O(1) time on the slow time scale. Con-
sequently, it is possible for a single trajectory to satisfy the criteria to belong to both of these
objects. Figure 11 illustrates an example of a tangency between W (p) and S? for (3.6) with
(v,a,b,c,e) = (0.007057,0.008870, —0.5045,1.17,0.01) (note that v = O(e) and, hence,
very close to vg ~ —8.587 x 10~°). Shown are a collection of trajectories on W*(p) (red)
that start close to p and end in the cross-section ¥ := {y = 0.3}, together with a collection
of trajectories on S7 that start on the repelling sheet of the critical manifold and also end in
>; see Section 8.1 for details of the method used to compute these manifolds. Figure 11(b)
shows the tangency of the two intersection curves of W*(p) and ST with ¥. The manifold
S? is a surface that separates trajectories that make large-amplitude excursions from ones that
remain in the vicinity of p. For values of v such that W*"(p) and S? do not intersect, the limit
set of W*(p) remains small. By varying v such that we move further away from vy, the
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MMOs arise as soon as W"(p) and ST begin to intersect; see also Section 4.

The number of SAOs that an MMO periodic orbit I" makes along W*(p) is determined
by how close I' comes to p and by the ratio of real to imaginary parts of the complex eigen-
values of p. The only way to approach p is along its stable manifold W*#(p), so an MMO
like that displayed in Figure 9 must come very close to W*(p). The minimum distance d
between an MMO and W #(p) is analogous to the distance 6 of a trajectory from the primary
strong canard in the case of folded nodes. Unlike the case of a folded node, the maximal
amplitude of the SAOs observed near W*(p) is largely independent of d. What does change
as d — 0 is that the epoch of SAOs increases in length and begins with oscillations that are
too small to be detectable. There has been little investigation of how the parameters of the
normal form (3.6) influence d, but Figure 8 in Guckenheimer [85] illustrates that d depends
upon the parameter ¢ in a complex manner. There are parameter regions where the global
returns of MMO trajectories are funneled close to W*#(p). Since MMOs are not found im-
mediately adjacent to supercritical Hopf bifurcations, the ratio of real to imaginary parts of
the complex eigenvalues remains bounded away from 0 on MMO trajectories. This prevents
the appearance of extraordinarily long transients with oscillations that grow arbitrarily slowly
like those found near a subcritical Hopf bifurcation; see Section 5 and also [87, Figure 5].

The singular-Hopf and folded-node mechanisms for creating SAOs are not mutually ex-
clusive and can be present in a single MMO in the transition regime with v = O(e!/ 2). The
specific behavior that one finds depends in part on whether the equilibrium p near the singular
Hopf bifurcation is a saddle-focus with a pair of complex eigenvalues or a saddle with two
real eigenvalues. The MMO displayed in Figure 21 contains some SAOs that lie inside the
rotational sectors between the attracting and repelling slow manifolds and some SAOs that
follow the unstable manifold of the saddle-focus equilibrium. On the other hand, we note
that SAOs cannot be associated with a saddle equilibrium that has only real eigenvalues; this
occurs in a parameter region with v > (a + ¢)e'/? (to leading order), but v = O(¢'/2).
In this case, SAOs are solely associated with the folded node-type mechanism described for
v = O(1) (thatis, u = O(1)). Krupa and Wechselberger [143] analyzed the transition regime
v = O(£'/?) and showed that the folded node theory can be extended into this parameter re-
gime provided the global return mechanism projects into the funnel region.

3.3. MMOs in three-time-scale systems. When the coefficients v, a, b and c in the
normal forms (3.4) and (3.6) of the singular Hopf bifurcation are of order O(e) or smaller,
then z evolves slowly relative to y and the system actually has three time scales: fast, slow
and super slow. Krupa et al. [138] studied this regime with geometric methods and asymptotic
expansions for the case a = ¢ = 0. They observed MMOs for which the amplitudes of the
SAOs remain relatively large. Their analysis is based upon rescaling the system such that it
has two fast variables and one slow variable. To make the three-time-scale structure explicit,
wesetv = eb, a = e, b= cband ¢ = £é. Rescaling the singular-Hopf normal form (3.6) of
Section3.2byx =e'/2 %,y =7, 2 ='/2z, and t = '/2 ¥ yields

T y—x2—51/2x3,
y = z—ux, 3.7
3 = e(-v—eax—cby—c'/?éz),

which is still a singularly perturbed system, but now with two fast variables,  and y, and a
slow variable z. An equilibrium lies within an O(1)-size domain around the origin if 7 =
O(c'/?) or smaller, i.e., v = O(¢/2) or smaller. This equilibrium plays an important role in
the dynamics if it is of saddle-focus type. In particular, it undergoes a Hopf bifurcation for
v =0(e),ie.,v=0(?).
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FIG. 12. Phase portraits of system (3.8) for three different values of z. Shown are several trajectories (blue)
and one trajectory (red) that approximates a separatrix. For each z, there is a single equilibrium point p at (z,y) =
(2, z2). Panels (a)—(c) are for z = 2, z = 0.25 and z = 0, for which p is a stable node, a stable focus and a
center surrounded by a continuous family of periodic orbits, respectively. The boundary of this family is the maximal
canard.

The two-dimensional layer problem of (3.7)

2

T = y-—x°
Yy = z—ux, 3.8)
z = 0,

in which z acts as a parameter, is exactly the same system obtained in the analysis of the
planar canard problem, where the parameter A is replaced by z; compare with system (2.7).

Note that (3.8) has a unique equilibrium p for each value of z, given by (x,7) = (z, 2?).
Figure 12 shows phase portraits of (3.8) in the (x,y)-plane for three different values of z,
namely z = 2, z = 0.25 and z = 0 in panels (a), (b) and (c), respectively. For z > 0,
the equilibrium p is an attracting fixed point in the (z,y)-plane; it is a node for z > 1 and
a focus for 0 < z < 1; note that this information also determines the type of equilibrium
of (3.7) obtained for 7 = O(£'/?) to leading order — the same argument can also be used
to determine the basin boundary of the saddle-focus equilibrium in Section 3.2. The basin
boundary of p is an unbounded trajectory that is shown in red in panels (a) and (b). When
z = 0, the vector field (3.8) has a time-reversing symmetry that induces the existence of
a family of periodic orbits. Indeed, the function H(z,y) = exp(—2y) (y — 2? + 1) is an
integral of the motion and the level curve H = 0 is a parabola that separates periodic orbits
surrounding p (the origin) from unbounded orbits that lie below the parabola and become
unbounded with £ — o0 in finite time.

System (3.7) can be viewed as a perturbation of (3.8) when z remains small and is slowly
varying compared to = and y. In this case, changes in H can be used to monitor the SAOs of
trajectories. We focus on the case a = ¢ = 0 studied in [138]. To find parameters for which
system (3.6) has MMOs, we fix b = —0.005 and € = 0.01 and vary v so that z increases
when y is large but decreases when the system has SAOs. More precisely, we want the
average value of z to increase during epochs of SAOs and decrease during epochs of LAOs.
The changes in z should be of sufficient magnitude to drive the trajectory across the slow
manifolds and trigger a transition between these epochs. Figure 13(a) displays a periodic
MMO with signature 1* found at v = 0.00015 (which is of order O(g?)). The projection
in panel (a2) of the orbit onto the (z,y)-plane shows that z decreases approximately from
—0.003713 to —0.004143 while the trajectory makes four SAOs, and z increases during a
single LAO. Note that 2 = 0 on the plane y = 0.03. System (3.6) also possesses two
equilibria with z-coordinates given by 4-+/—v/(b¢), which equals £+/3 in this case. Since
the MMO signature shown in Figure 13(a2) is confined to the area near the origin (in the
z-direction), these two equilibria have no influence on the dynamics.

As v increases, the value of y for which 2 = 0 increases, and trajectories have a
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FIG. 13. Stable periodic MMOs of system (3.6) with (a, b, c,e) = (0, —0.005,0,0.01). Row (a) shows the
periodic MMO with signature 1* for v = 0.00015 as a time series of x in panel (al) and in projection onto the
(2, y)-plane in panel (a2); similar projections are shown in row (b) for v = 0.00032, where the periodic MMO has
signature 91.

propensity to pass more quickly through the region of SAOs. Figure 13(b) shows a peri-
odic MMO with signature 9! obtained for v = 0.00032. This value of v lies close to the
upper end of the range in which MMOs seem to exist for the chosen values of (a, b, c,e) =
(0,—0.005,0,0.01). As the projection in panel (b2) illustrates, the average value of z in-
creases (|z| decreases) during each LAO, but it takes nine LAOs before it crosses the threshold
into the region of SAOs. On the other hand, a single SAO takes the trajectory back to the re-
gion of LAO:s.

For intermediate values of v € (0.00015, 0.00032), the system displays aperiodic MMOs
as well as periodic MMOs with a variety of signatures. These signatures can be analyzed via
an approximately one-dimensional return map to a cross-section at x = 0. Returns to this
cross-section with = decreasing appear to lie along a thin strip; this is illustrated in Fig-
ure 14(a) for v = 0.0003, for which the system appears to have aperiodic MMOs. The thin
strip in Figure 14(a) is approximately given by the line y = 0.1153 2 —0.004626 (and = = 0).
If we take 600 initial conditions on this line with z € [—0.0043, —0.004] then their next return
to the cross-section fall onto two segments that are close to the initial line and within the seg-
ment z € [—0.0043, —0.004]. Figure 14(b) graphs these returns, showing the z-coordinates
Z out Of returns of the 600 initial conditions versus their inital z-coordinates z;,; the diagonal
Zout = Zin 18 also pictured. This figure suggests that the return map near the line segment
can be approximated by a rank-one map with two segments of slopes close to one, separated
by a steep segment for initial values z;, ~ —0.004055. The return map increases z on the
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FIG. 14. Return map of system (3.6) with (v, a, b, c,e) = (0.0003, 0, —0.005, 0, 0.01) to the section x = 0.
Panel (a) shows that the return is almost one dimensional along a line that is approximately given by y = 0.1153 z—
0.004626. The z-coordinates of the returns for initial conditions along this line with z € [—0.0043, —0.004] are
plotted versus their initial z-values in panel (b).

left “branch” of this map and decreases z on the right branch. This is the behavior described
above since larger values of z correspond to SAOs, the smaller values to LAOs. Trajectories
that do not hit the steep section of the map go back and forth repeatedly between the two
branches. As v varies, the “shape” of the return map remains qualitatively the same: the two
branches still have slopes close to one, but their off-set from the diagonal varies. Approx-
imately for v < 0.00013, the image of the right branch, representing SAOs, maps to itself,
while for v > 0.00034, the image of the left branch maps to itself, and the system only has a
large periodic relaxation oscillation with no SAOs. In the range of v where MMOs do exist,
kneading theory for one-dimensional maps [38] can be applied to the numerically generated
return maps to predict the signatures of the MMOs.

Further insight into the steep segment of the return map at z = z;, ~ —0.004055
comes from computing intersections of the attracting and repelling slow manifolds. We com-
puted forward trajectories from initial conditions on the attracting sheet (with z < —%
and backward trajectories from initial conditions on the repelling sheet of the critical man-
ifold to their intersection with the cross-section {x = 0}. Since the trajectories quickly
converge to the attracting and repelling slow manifolds, their intersections with {x = 0}
give a good approximation of the intersection curves of the slow manifolds with {x = 0}.
These two intersection curves have one point in common, which is approximately (y, z) =
(—0.0050941, —0.0040564). Hence, this point lies in the region that gives rise to the steep
segment shown in Figure 14(b). By definition, the intersection of the attracting and repelling
slow manifolds is a maximal canard. Initial conditions on the cross-section {z = 0} to one
side of the repelling manifold result in SAOs while trajectories on the other side result in fast
jumps to the other sheet of the attracting slow manifold (with > 0). Thus, we have con-
firmed numerically that canard orbits separate the two branches of the return map displayed
in Figure 14(b); compare also with Figure 7(a), which illustrates that the one-dimensional
return map calculated near a folded node has several steep sections that correspond to the
primary strong canard and the maximal secondary canards of the problem.

3.4. MMOs due to dynamic Hopf bifurcation and tourbillion. Recall from Sec-
tion 3.3 that the abrupt transitions between SAOs and LAOs in system (3.7) are a consequence
of the three-time-scale structure, which allows us to view the system as having two fast vari-
ables and only one slow variable. Such a system with two or more fast variables may have
a Hopf bifurcation in the layer equations. We now consider this situation, and assume that a
pair of complex eigenvalues of the layer equations cross the imaginary axis as one follows a
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trajectory of the reduced system. When ¢ # 0 one observes a slow motion or drift of traject-
ories through the region near the Hopf bifurcation in the layer equations. Due to the complex
eigenvalues in the fast directions, trajectories spiral around the slow manifold, which gives
rise to oscillations. The amplitude of such an oscillation initially decreases (while the real
part of the complex eigenvalues is negative) and then increase again (after the real part be-
comes positive). We refer to this situation as a dynamic Hopf bifurcation. Our primary goal
is to determine when MMOs have SAOs that are associated with a dynamic Hopf bifurcation.
Note that, unlike in systems with a single fast variable, this type of SAO is neither associated
with a folded singularity of the critical manifold nor with a (singular) Hopf bifurcation of the
system for ¢ # 0.

A well-known example of a dynamic Hopf bifurcation is the phenomenon of delayed
Hopf bifurcation. For simplicity, we discuss it here for a system with o