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SUMMARY

The general properties of linear predictors are discussed For 
genetic models with a small number of Cnon-3additive l o c i . The 
usefulness of mixed model approach is studied by simulations making 
allowance For selection. The BLUP estimates are satisfactory except 
when selection limit is reached and when an inadequate model is used 
under dominance. The ways to improve the estimation and utilization 
of dominance values are discussed.

INTRODUCTION

It may not be an exaggeration to suggest that every locus 
contributes in one way or another to any given quantitative trait, 
although the effects of most loci are vastly u n e q u a l , there being a 
small number of major loci and a large number of minor loci. Genes 
with considerable effects on a metric trait have been found, e.g. 
dwarf in poultry, halothane in pigs, and booroola in sheep.

UJe know that when the variation in a trait is governed by a large 
number of loci or alternatively by a locus with a large number of 
alleles without epistatic interaction and linkage disequilibrium 
between loci and when the environmental deviations are independent 
of the genotypic values and normally distributed, we end up having a 
normal phenotypic distribution. Hence linear methods are adequate. 
The question we would like to address is how do mixed model 
techniques Cor, in general, procedures making linear assumptions 
about various components which might affect phenotype! behave when 
the genetic variation in a trait is due to a Finite, or small, 
number of loci. The earlier studies CRobertson, 1977; Bulmer, 
1980; Maki-Tanila, 198E3 suggest to deal with the answer under four 
different topics.

Ci) In the presence of dominance an anim a l ’s breeding value or 
additive value and genotypic value are not linearly related. 
Largest departures from linearity are due to alleles which are 
almost completely recessive and very rare. IF the allele with a 
smaller effect is recessive, the regression is curved upwards. 
Non-linearity vanishes naturally very quickly (proportionally to 
l/n! as the number of loci Cn) goes up. One aspect which interests 
us here with respect to mixed model technique is, does the inclusion 
of dominance effect in the linear model have any corrective effect.

1 Present address: Dept, of Animal Breeding, Agricultural Research
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Cii) A mars ssrious reason for non-linBar relationship bBtwBen 
additive value and phenotypic value is the departure of genotypic 
distribution From normality. In this case the observed response can 
be larger or smaller than is linearly predicted, i.B. linear 
predictors produce biassed values. Uie keep the earlier assumption 
about the normality of environmental deviations. Although the 
relationship between additive value and genotypic value is in the 
absence of dominance always linear, the linearity with respect to 
phenotypic value depends on the skewness of genotypic distribution. 
IF allele Frequencies are intermediate Caround .55, linearity will 
hold while extreme Frequencies lead to skewed distributions and 
non-linearity. For similar reasons dominance causes non-linearity. 
The genotypic skewness decreases proportionally to 1/C/n. The degree 
of curvature depends also on the magnitude of environmental variance 
or on the ratio of genotypic Ccr* 5 to phenotypic Co-*' 5 variance. 
Without going into details Cc.F. tlaki-Tanila, 19B2) we summarize 
the results in Table 1 CO for complete or approximate linearity, + 
and - For positive and negative curvilinearity, respectively, and 
their number for the degree of curvature) For the case where there 
are Few loci with a similar state of alleles. The Frequency Cq) and 
dominance Cd, -/+ 1 - complete recessivity/dominance, 0 _ complete 
additivity) is expressed in terms of the allele with a smaller 
e f f e c t .

Table 1

The largest deviations From linearity Follow when the allele is rare 
and completely recessive and the proportion of genotypic variance is 
l o w .

Ciii) Whatever genetic model we have (allowing For a very small n, 
dominance, epistasis, linkage), the additive value of an offspring 
is in terms of his p a r e n t ’s breeding values Cp and m to subscript 
s i r e ’s and d a m ’s value respectively) a p/ 2  + a ra/ 2  + e where e varies 
depending on the heterozygosity of the parents. If the genetic 
variation is mediated by a large number of loci, e is normally 
distributed with mean 0 and variance o^Cl-F)/2 (ojis the additive
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variance and F is the mean of parents’ inbreeding coefficients). 
Hence we can express the variance-covariance matrix of breeding 
values as T U T ’oJ- Ao£ CThompson, 1977). ft is the relationship 
matrix, T is a matrix describing the flow of genes from one 
generation to the next and U is a diagonal matrix with an element 
Cl-F. )/E for the ith animal. ~i
If the source of genetic variation is a small number of loci, the 
variance of e is no longer independent of p a r e n t s ’ breeding values 
CBulmer, 1900). Although the heteroscedasticity of the regression 
is in most cases negligible, it is of interest to study the validity 
of the use of the relationship matrix in the mixed model context 
under extreme genetic models.

Civ) Finally, how will mixed model methods behave under the major 
activity in animal breeding, that is, under selection when the 
variation is due to a small number of loci. Sorensen and Kennedy 
C19B4) have found that if we have a full knowledge of the 
relationship matrix, by averaging ’BLUP estimates’ we get unbiassed 
estimates of selection response with smaller sampling errors than 
the straightforward Cleast-squares) phenotypic generation means.

SIMULATION AND STATISTICAL METHODS

The following parameters describe the genetic model: n “ n'umber of
Cunlinked) loci affecting the trait, d - degree of dominance such 
that - 1 , 0 , and + 1  represent complete recessivity, additivity, and 
dominance of the allele with a larger effect, q “ initial frequency 
of the allele. The expected value of the additive variance at the 
generation 0 is made to equal 10 at each run. A normally 
distributed environmental deviation is added to genotypic value 
according to the initial ratio o-g/o-*. At each generation S males 
and 0 females are used to produce B offspring of both sexes. On the 
male side either random sampling or truncation selection upwards on 
phenotype is used. The selection is started at generation 1. In 
all runs simulation is carried over until the 3rd generation. The 
simulation consists of 1 0 0 replicates for each set of parameters.

The generation means were estimated as simple generation means from 
phenotypic values or starting from a mixed linear model. In the 
latter the phenotypic value Cy ̂  ) for an i'Un individual can be 
written Ce.g. Henderson, 1905)

y£ “ P + mi + Bi
where u is the base population mean and m is the total genetic value 
of animal i, and e the residual. In matrix form the model is

y - l / j + I m  + e

ECm) - 0, UarCm) - A cr*+ D a-* and it is assumed that UarCe) - l cr*. 
In~the analyses the true values for the variances are used.

When there is no inbreeding, the construction of □, the dominance 
relationship matrix, is fairly simple Ce.g. Falconer, 1901). In our 
analyses D was computed modifying the algorithm reported by Smith
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and Allaire (19B51. LBt us havB individuals X and Y of which, say, 
Y is older with a sire S. If we denote by subscripts m and p the 
genome halves originating from dam and sire, respectively, we can 
form a genomic table for these individuals from the rule illustrated 
by an example

P<Xm“V  “ CPCX» " V  + PCXm-S»” /B
By definition the dominance relationship

PCX,-Yr ) PCXm -Ym l + P(Xp ”Ym 1 P C X . - y .

RESULTS

Random mating. The results are summarized in Table 2 for n - B and 
a-g/o-p- .5. When there is no dominance, the linear predictors give 
satisfactory estimates with smaller sampling errors. The results do 
not differ from the infinitesimal ones CSorensen & Kennedy, 19B41. 
In the case of dominance we obtain inbreeding depression; in all 
runs Cincluding selection! the degree of inbreeding is . 14 + .003 at 
the 3rd generation. The analyses based on models having only the 
additive effect grossly underestimate the depression, while its 
estimates are better when the dominance effect is also considered.
In both 
simpler

cases the sampling errors are 
estimates.

smaller than those of the

Table B, The genetic means and their LS and BLUP estimates For
three generations of random mating. In finCal model the dominance 
effect is ignored while it is included in MtlCa+dl . n “ B; a! gen. 
1 and bl gen. 3.

q d true mean LS estimate Mf1(al e s t . f1M(a+dl e s t .

0 a )- . 1 1 ( 1 .471 .09 ( 1  ,,631 . 1 1 ( 1  ,,511
bl- .35 ( 1 .871 - .08 ( 2 .151 - . 1 1 ( 1 . B 9 1

1 .34 ( 1  ..411 .27 ( 1  ,,631 ,09 ( 1  ,.511 . 13 ( 1  ..501
- . 17 ( 2 .141 . 14 ( 2 .451 .05 ( 2 .051 -.07 ( 2 . 141

0 - .06 ( 1  ,.331 ,07 ( 1  ,,511 , 16 ( 1  ,. 2 2 1
1 .41 ( . B 4 1 1 .42 ( 1 . 2 2 1 1 .59 ( .981

1 — .07 (B ..351 —  (, 20 (3,,161 - (,42 (2 ,.421 - .32 (2 ,.541
- ■ BB (4 .091 - 1 .04 (4 .551 .59 ( 2 .991 - .79 (3 .671

Selection. With complete additivity we would expect from the 
earlier results (Table 1) that linear predictors would slightly 
overCunder^estimate the response when the allele frequencies are 
high (low!. The simulation results (Table 31 do support this, 
although the biases are fairly small. Had the selection lasted mare 
generations the predicted response would have deviated more and not 
plateaued even after the selection limit had been reached (R. 
Fernando, personal communication!. This bias is further augmented 
by dominance. In addition, when the recessive allele is very rare, 
most of the genetic variation is due to dominance, and because of
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either larger or smaller than the predicted one CHill, 1969). In 
Table 3 this is clearer for the case where q = .1 and d = -1 whilst 
the opposite case leads to fixation very quickly if the number of 
loci causing variation is very small CTable 4). The addition of 
dominance value makes a considerable improvement in predicting the 
total genetic value.
Table 3 . The genetic means and their LS and BLUP estimates for 
three generations of selection. n - 5, cr*/crp = .5.

q d true mean LS estimate tinea) est. nriCa+d) est
. l - 1 .13 

3.36
C2.54) 
C0.38)

. 1 0  

3.3B
C3.29)
C8.36)

.69
2.05

C3.39) 
C 5.04)

.26
3.00

(2.96)
(6.79)

0 . 2 1

3.03
Cl.57) 
CB.94)

. 1 0  

3.05
Cl.93) 
C3.15)

.26
2.95

Cl .76) 
(2.81)

.5 - 1 - . 14 
B . 79

Cl.3B) 
CB.34)

-.97 
2 . B1

Cl.64) 
C2.77)

.14
2.52

Cl.50) 
C2.16)

. 0 0

2.65
(1.40)
C2.31)

0 .19 
B .30

Cl.30) 
Cl.71)

.24
2.19

C1 .54) 
Cl.08)

.17
2.26

Cl .36) 
Cl.69)

1 -.13
1.13

Cl.54) 
Cl.34)

-.27 
1 .16

Cl.79) 
Cl.03)

- .23 
1.35

Cl.37) 
Cl.45)

- .27 
1.36

Cl .44) 
Cl.53)

.9 0 - .06 
1.41

Cl.33) 
C .94)

- .07 
1.42

Cl.51) 
Cl.22)

-.16
1.59

Cl .51) 
Cl.22)

1 -.30 
- .BO

C3.00) 
CB.6 B)

-.17 
- .44

C3.29) 
C3.54)

- .42 
.15

C2.30) 
C2.25)

- .44 
. 1 1

C2.67) 
(2.72)

Table 4 . The genetic means and and their LS and BLUP estimates for 
three generations of selection. cr^/crp = .5.

q d n true mean LS estimate nnca) e s t . HflCa+d) est

. 1  - 1 8 . 16 
7.05

C2.59) 
C 6 .09)

.23
7.06

(3.33)
(7.00)

2 . 0 0
4.35

C3.4B)
(4.71)

.94
6 . 0 2

(3.17)
(5.90)

30 - .40 
7.94

(2 .2 2 )
(5.10)

- .98 
7.94

(3.14)
(5.30)

2.03
4.61

(2.50)
C3.34)

.40
6.57

C2.61)
(4.29)

.9 1 B -.26 
-1.30

(2 .2 1 )
(3.34)

- . 2 2  
-1.57

(2.99)
C3.6B)

- 1 . 1 0  
-.71

C2.36)
C2.46)

- . 0 2  
-.06

C2.4B)
(2.90)

30 .26
-2.99

(2.40) 
C 3 .87)

-.23
-3.00

(3.03)
(4.20)

-1.44 
- 1 . 2 2

C 2.19) 
C2.41)

-1.04 
-1 .75

(2.42)
(3.14)
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DISCUSSIDN

If uje have the right model and know the true parameters, the linear 
predictors work satisfactorily even if the number of loci governing 
the variation is very small. The only major exception is due to 
fixation. Although a common practical problem, a completely 
different question is the use of wrong models and parameters. Wb 
may conclude that the assumptions for the use of relationship 
matrices do not seem to be grossly violated even with a small number 
of l o c i . The accuracy of estimating dominance values can be 
improved by carrying out heavier inbreeding and thus making more 
links between individuals over generations. The closest practical 
applications may be found in poultry. As in another example of 
non-linearity, i.e. quadratic indexes, the optimum way to utilize 
the dominance values or, in general, non-additive values might be to 
predict them for progeny from all possible mating pairs and do 
selection on the outcome Cc.f. Jansen & Ulilton, 1 9 B 5 1 .
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