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ABSTRACT

In many biomedical studies, one jointly collects longitudinal continuous,
binary, and survival outcomes, possibly with some observations missing.
Random-effects models, sometimes called shared-parameter models or
frailty models, received a lot of attention. In such models, the correspond-
ing variance components can be employed to capture the association
between the various sequences. In some cases, random effects are consid-
ered common to various sequences, perhaps up to a scaling factor; in
others, there are different but correlated random effects. Even though a
variety of data types has been considered in the literature, less attention
has been devoted to ordinal data. For univariate longitudinal or hierarchical
data, the proportional odds mixed model (POMM) is an instance of the
generalized linear mixed model (GLMM; Breslow and Clayton, 1993). Ordinal
data are conveniently replaced by a parsimonious set of dummies, which in
the longitudinal setting leads to a repeated set of dummies. When ordinal
longitudinal data are part of a joint model, the complexity increases further.
This is the setting considered in this paper. We formulate a random-effects
based model that, in addition, allows for overdispersion. Using two case
studies, it is shown that the combination of random effects to capture
association with further correction for overdispersion can improve the
model’s fit considerably and that the resulting models allow to answer
research questions that could not be addressed otherwise. Parameters can
be estimated in a fairly straightforward way, using the SAS procedure
NLMIXED.
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1. Introduction

When conducting longitudinal studies, investigators often find themselves faced with a combination
of continuous, binary, ordinal, and even other data types. Many statistical models have been
developed for analyzing longitudinal data and at a given time the random-effects approach became
very popular. The introduction of linear mixed models for continuous data by Laird and Ware,
(1982) was extended to noncontinuous data (generalized linear mixed models) by Breslow and
Clayton, (1993), Wolfinger and O’Connell, (1993), and Engel and Keen, (1994). The proportional
odds mixed model can be regarded as a special case of the latter as it also considers ordinal
responses.

In a longitudinal context, joint modeling is sometimes preferred over a separate analysis of the
different responses given that it allows every outcome to have its own random effects and the
association between different outcomes can be captured in terms of the correlation between random
effects. The big advantage is that researchers can obtain answers to various research questions, all in
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one format. The average trend for different outcomes can be estimated and the difference in
evolution between several outcomes tested.

A further advantage is that the effect of a covariate on the outcomes can be assessed simulta-
neously, rather than outcome by outcome or by assuming that the outcomes are independent of each
other, usually contrary to fact. For example, in the case of drug treatment, the duration of the disease
prior to the start of the trial can simultaneously diminish the effect of therapy and increase the
severity of side effects. It is possible that each of these effects separately fail to show up significantly,
while jointly they may pass the bar. In addition, the association between various responses can be
measured, and its evolution over time monitored. Chakraborty et al. (2003) considered joint
modeling in a continuous-continuous setting and obtained estimates of the correlation between
HIV-1 RNA concentration in blood and semen.

As already mentioned, very often longitudinal studies generate data that are of different types.
In the literature, a wide array of techniques can be found to address specific instances. It is the
main reason for the variety in modeling applications reported in the literature. For example,
Thiébaut et al. (2002) performed the joint modeling of two continuous outcomes and applied it to
the analysis of some HIV infection markers. Gueorguieva (2001) considered the joint modeling of
continuous-binary measures in a toxicity study of pregnant/nonpregnant mice. Also, Iddi and
Molenberghs, (2012) considered joint modeling of continuous visual activity and a binary vision-
loss outcome in an age-related macular degeneration study; these authors also considered two
binary longitudinal outcomes: the number of positive HCV and HIV cases in serological data.
Molenberghs and Verbeke, (2005) discussed a number of techniques that jointly model contin-
uous and binary outcomes. Even the high-dimensional issue, when including (substantially) more
than two responses in the joint model, received a certain degree of attention in the research
community. For example, Morrell et al. (2012) considered three continuous responses for screen-
ing prostate data, and further used the outcome for classification purposes. Fieuws and Verbeke
(2006) suggested a pairwise bivariate modeling approach for continuous data to resolve the
computational complexity issue when jointly modeling random effects in the high-dimensional
case. An extension of this approach was the application of the pairwise technique on binary data
(Fieuws et al., 2006) and on the combination of continuous-binary data types (Fieuws et al., 2008).
The latter approach was used for predicting rental graft failures based on a set of biochemical and
physiological markers. The prediction improvement obtained when considering joint modeling
can also be regarded as very important. When one wishes to improve the quality of the survival
prediction of a patient, then one should have the option to include several of the available
responses or even all of them in the analysis. An example is the work of Horrocks and van den
Heuvel (2009). They used a joint continuous-binary mixed model to predict pregnancy in a group
of women undergoing infertility treatment given measurements of adhesiveness of certain blood
lymphocytes.

There are also many approaches to joint modeling of longitudinal and time-to-event data. For an
excellent relatively early review; see Tsiatis and Davidian, (2004). These techniques are intended to
be flexible and cope with different types of longitudinal outcomes. We mention in particular the
implementations developed by Xu and Zeger, (2001), Yu et al., (2004), Efendi et al., (2013), and
Njeru Njagi et al., (2013), among others. Rizopoulos, (2012) offers a recent review and considered
applications using R for joint modeling longitudinal and time-to-event data. The important point of
such a joint setting is the correction for nonrandom dropouts. Due to the ability of joint modeling to
provide valid inferences for cases where traditional techniques fail, they became popular in recent
years. Li et al., (2010) considered joint models for an ordinal outcome, with the partial proportional
odds assumptions, and time-to-event outcomes, in a competing risks setting. These authors devel-
oped an expectation-maximization algorithm for parameter estimation. Some packages with specific
interest, such as OpenMx, can handle versions of such joint models. Our approach, in contrast,
allows the easy use of standard software tools, such as the NLMIXED procedure in SAS. In
particular, this procedure will allow us to formulate parts of the models in a multiplicative fashion;
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this is useful for scale parameters that allow sharing the same effect between different outcomes that
are recorded on different measurement scales.

Combinations of continuous and binary, as well as continuous and time-to-event data types
in joint modeling have been sufficiently covered in the literature. But what is lacking is the case
of one or more ordinal responses in joint modeling. The focus of this article is on bivariate
analysis with the modeling done by joining a linear mixed model and a proportional odds mixed
model.

The remainder of the paper is organized as follows. Section 2 introduces two datasets that are
further analyzed in Section 6. The existing methodology for single longitudinal responses is reviewed
together with the joint modeling approach in Section 3. Joint models for various outcome types are
discussed in Section 4. The estimation method is described in Section 5.

2. Case studies

2.1. Diabetes study

In Belgium, the diabetes project was conducted from January 2005 until December 2006, with
the aim to study the effect of implementing a structured model for chronic diabetes care based
on the patients’ clinical outcomes. General practitioners (GPs) were offered assistance and could
redirect patients to the diabetes care team, consisting of a nurse educator, a dietician, an
ophthalmologist, and an internal medicine doctor. A total of 120 GPs and 2495 patients took
part in the study.

During the project, several outcomes useful to evaluate how well diabetes is controlled were
measured, at the moment the program was initiated (time T0) and one year later (T1). The most
important outcomes were HbA1c (glycosylated hemoglobin), LDL-cholesterol (low-density lipopro-
tein cholesterol), and SBP (systolic blood pressure). Furthermore, experts specified cutoff values
defining a so-called clinical targets (CTs) for all outcomes: HbA1c < 7 %, LDL-cholesterol < 100 mg/
dl, and SBP ≤ 130 mmHg. As a result, for a particular time point, every patient could reach
minimum 0 and maximum 3 clinical targets. If at least one measurement per patient was missing,
the value for the number of CTs was set to missing as well. The data are discussed in detail in
Borgermans et al., (2009). A summary is given in Table 1. Arguably, the definition of CT is
debatable; one could consider alternative components, and even treat them jointly rather than in
the form of a sum score, we will follow the original definition, for compatibility with the protocol
and the study’s basic analysis.

Several continuous outcomes were collected as well. In this paper, we will study the BMI (body
mass index) and build a joint model for BMI and CT, in order to be able to study the association
between both outcomes, and how it evolves over time, as well as to explore what sociological and
demographic factors are related to both outcomes simultaneously. Note that BMI is not a part of the
outcomes producing CTs, which makes studying BMI and CT a meaningful endeavor. Given that the
distribution of BMI is skewed, a logarithmic transformation will be used in all our analyses. Some
descriptive statistics, at both time points, are given in Table 2.

Table 1. Diabetes data: number of observations with the corresponding clinical targets reached at
every time point.

No. of observations

No. of clin. targets T0 T1

0 307 128
1 828 598
2 726 834
3 281 501

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 3
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2.2. Fluvoxamine trial

The data are from a multicenter study involving 315 patients that were treated by fluvoxamine for
psychiatric symptoms described as possibly resulting from a dysregulation of serotonine in the
brain. The data are discussed in Molenberghs and Lesaffre, (1994), Kenward et al., (1994),
Molenberghs et al., (1997), Michiels and Molenberghs, (1997), and Molenberghs and Verbeke,
(2005). After recruitment to the study, patients were assessed at four visits. The therapeutic effect
and the extent of side effects were scored at each visit on an ordinal scale. The side effect response is
coded as follows: 1: none; 2: not interfering; 3: interfering significantly with functionality; 4: side
effects surpass the therapeutic effect. Similarly, the effect of therapy is recorded on a four point
ordinal scale: 1: no improvement or worsening; 2: minimal improvement; 3: moderate improvement;
and 4: important improvement. Thus, a side effect occurs if new symptoms occur while there is
therapeutic effect if old symptoms disappear. A total of 299 patients have at least one measurement,
including 242 completers. A summary is given in Table 3. There is also baseline covariate informa-
tion on each subject, including gender, age, presence of psychiatric antecedents, initial severity of the
disease, and duration of the actual mental illness. Obviously, it would be expected that in the context
of this study the improvement of the patient’s condition measured by the therapeutic effect is
correlated with the side effect of the therapy, and this association can only be studied if both
outcomes are modeled jointly.

3. Models for a single longitudinal response

3.1. General mixed model

Assume that each of the longitudinal outcomes can be modeled using a mixed model. For one
outcome, let Yij denote the jth measurement for subject i ¼ 1; . . . ;N, j ¼ 1; . . . ; ni. The ni measure-
ments are grouped into a vector Yi. The main model assumption is that the Yi, conditionally on a
q-dimensional vector bi of normally distributed, zero mean random effects, follows a prespecified
distribution Fi : Y ijbi~Fiðψ; biÞ, which is allowed to depend on known covariates, and parameterized
in terms of a vector ψ of unknown parameters, common to all subjects. Often, it is assumed that the

Table 2. Diabetes data: descriptive statistics for BMI and log of BMI at every time point.

T0 T1

Q0.25 Mean Median Q0.75 Q0.25 Mean Median Q0.75

BMI 25.94 29.60 29.06 32.46 25.73 29.28 28.87 32.10
log(BMI) 3.26 3.37 3.37 3.48 3.25 3.36 3.36 3.47

Table 3. Fluvoxamine trial. Number of observations with side and therapeutic effects categories for
each of the four follow-up time points.

No. of observations

Ther. effect Week 2 Week 4 Week 8 Week 12

0 19 64 110 135
1 95 114 93 62
2 102 62 30 19
3 83 29 10 10

Side effect Week 2 Week 4 Week 8 Week 12

0 128 144 156 148
1 128 103 79 71
2 28 17 6 7
3 15 5 2 0

4 A. IVANOVA ET AL.
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components of Yi are independent, conditionally on bi, but extensions are possible. Inference is
based on the marginal distribution of Yi with density:

f ðyiÞ ¼
ð

f ðyijbiÞf ðbiÞdbi: (1)

in which f ðyijbiÞ and f ðbiÞare the conditional density of Yi given bi and the the density of bi,
respectively. Estimation and inference of the parameters in (1) is based on the maximum
likelihood (ML) approach, assuming independence across subjects (Laird and Ware 1982;
Verbeke and Molen-berghs, 2000; Molenberghs and Verbeke, 2005). Important special cases of
mixed models are the linear mixed model (LMM) for continuous outcomes, and the generalized
linear mixed model (GLMM) for discrete outcomes, which will be briefly discussed in the next
sections.

3.2. The linear mixed model

The general formulation of an LMM is that Yi satisfies

Y ijbi,NðXiξ þ Zibi;�iÞ;

where Xi and Zi are ðni � kÞ and ðni � qÞ dimensional matrices of known covariates, ξ a k-dimen-
sional vector of regression parameters, and �i an ðni � niÞcovariance matrix that depends on i only
through its dimension ni. In case of conditional independence, we have �i ¼ σ2Ini . Finally, the
marginal distribution of Y i equals

Y i,N Xiξ;ZiDZ0i þ �ið Þ;

in which D is the covariance matrix of the random effects bi.

3.3. The generalized linear mixed model

In case of a GLMM (Engel and Keen, 1994; Breslow and Clayton, 1993; Wolfinger and O’Connell,
1993), it is assumed that the outcomes Y ij, conditionally on the random effects bi, with densities that
belong to the exponential family, i.e., of the form:

fi yij bi;ξ;ϕ
�

�

� �

¼ exp ϕ�1 yijλij � ψ λij
� �� �

þ c yij;ϕ
� �� �

;

with

η ψ0 λij
� �� �

¼ η μij

	 


¼ η E Yij bi;ξ
�

�

� �� �

¼ x0ijξ þ z0ijbi;

in which xij and zij k-dimensional and q-dimensional vectors of known covariate values, ξ a
k-dimensional vector of unknown fixed regression coefficients, and ϕ a scale parameter. In contrast
to the above result for linear mixed models, the integral in (1) cannot be calculated analytically for a
number of generalized linear mixed models. Even if there are analytical expressions, they tend to be
cumbersome (Molenberghs et al., 2007, 2010). Hence, numerical approximations are needed (see
Molenberghs and Verbeke, 2005).

3.4. The proportional odds mixed model

A special case of GLMM, of particular interest in this work, is the proportional odds mixed model
(POMM) for ordinal outcomes. Let Yij be ordinal, with values r ¼ 1; . . . ;R. We first define R
indicator variables as

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 5
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Wr;ij ¼ 1 if Yij ¼ r;
0 otherwise:

�

Evidently, these are redundant, but any subset of R� 1 components is not. Group the dummies
into vectors Wij for a specific subject i and occasion j, and further into Wi for all dummies across
all occasions for subject i. We assume a multinomial distribution Wij, multinomial πij

� �

, with
πij ¼ π1;ij; . . . ; πr;ij; . . . ; πR;ij

� �

. The multinomial distribution at a given occasion is determined by
the modeling choice made for the ordinal outcome. The probabilities can be written as

πr;ij ¼
κ1;ij if r ¼ 1;

κr;ij � κr�1;ij if 1 < r < R;

1� κR�1;ij if r ¼ R:

8

<

:

(2)

where assuming proportional odds:

κr;ij ¼
exp ξ0r þ x0ikξ þ z0ijbi

� �

1þ exp ξ0r þ x0ikξ þ z0ijbi
� � :

Here, ξo1 � . . . � ξ0 R�1ð Þ are intercepts, ξ are fixed regression coefficients, bi is a vector of normally
distributed random effects, and xij zij

� �

is the design vector for the fixed (random) effects at occasion
j. Note that these parameter constraints are identical to the ones routinely used with proportional
odds logistic regression; that is, they already commonly occur with univariate ordinal outcomes
(Agresti, 1990).

4. Joint models for multiple outcomes

Consider two longitudinal outcomes, for example, a continuous one and an ordinal one. Furthermore,
let Y1ij and Y2ij0 denote the jth and the j′th measurement on the ith subject for the continuous and the
ordinal outcome, respectively (i ¼ 1; . . . ;N, j ¼ 1; . . . ; n1i and j0 ¼ 1; . . . ; n2i). A joint model is built by
describing the joint density f Y1i;Y2ið Þ of the continuous vector Y1i and ordinal vector Y2i. A very
flexible way forward to this end is by considering a mixed model for both outcomes, and to allow the
random effects in these to be correlated. This allows for joint modeling of outcomes of a different nature
and does not alter the interpretation of the parameters in the submodels for individual outcomes. This
approach has been applied already by Fieuws and Verbeke, (2006) and Iddi and Molenberghs, (2012),
but it has not been used in the context of ordinal outcomes.

The mixed models assumed for each outcome are as described in Section 3, i.e., an LMM for a
continuous outcome and a POMM for an ordinal outcome. In case two ordinal outcomes are to be
analyzed jointly, as in the fluvoxamine trial, two POMMs would be used. Note also that the covariates in
both models may but do not need to be the same. Let b1i and b2i be the vectors of random effects for the
first and second outcome, respectively. A joint model is now obtained by assuming a distribution for
both sets of random effects b1i and b2i jointly. More specifically, it will be assumed that bi ¼ b1i; b2ið Þ0 is
normally distributed with mean zero and covariance matrix D, which contains components to model
the association within each each outcome sequence separately, as well as components to model the
association between the sequences. It will also be assumed that, conditionally on bi, the outcome vectors
Y1i and Y2i are independent; that is, we assume that the association between the outcome vectors is
completely captured by the association between the random effects.

Often, a general unstructured matrix D will be assumed, but specific restrictions can be imposed
as well. For example, assuming perfect correlations between elements in b1i and elements in b2i
would lead to a joint model in which some random effects are shared between the two outcomes
(Molenberghs and Verbeke, 2005). Evidently, this is equivalent to sharing components between b1i

6 A. IVANOVA ET AL.
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and b2i. When both outcomes are of a different nature, some rescaling may be necessary, leading to a
model with perfectly correlated random effects but with variances that differ by a scaling factor.

5. Estimation and inference

Assuming subjects to be independent, then it immediately follows from the independence of Y1i and
Y2i, conditional on bi, that the likelihood function corresponding to the joint model is given by

L θð Þ ¼
Y

N

i¼1

ð

f1i y1i b1ij
� �

f2i y2i b2ij
� �

f bið Þdbi; (3)

in which θ is the vector of all parameters in the conditional distributions and the multivariate normal
distribution for bi. Except for special cases (e.g., with linear models), the integral in (3) cannot be
calculated analytically and numerical approaches are needed. In this paper, we will use numerical
integration, more specifically adaptive Gaussian quadrature, which has been implemented in the SAS
procedure NLMIXED (Pinheiro and Bates, 1995, 2000; Molenberghs and Verbeke, 2005). The order
Q of the integration is determined manually by fitting the model for increasing values of Q until
numerical stability is obtained in the approximated likelihood value and parameter estimates. An
example of the implementation can be found in the Appendix B. Once the model has been fitted,
inferences for all elements in θ become available using standard likelihood theory (e.g., likelihood
ratio tests, Wald tests, score tests).

6. Analysis of case studies

6.1. Diabetes study

We will analyze the diabetes data, introduced in Section 2.1. In the analysis, the longitudinal
continuous outcome log(BMI) and the ordinal outcome CTs on a scale from 0 to 3, will be used.
For simplicity, we will use the same covariate structure across all models implemented. For log
(BMI), we assume the predictor to be of the form:

E Y1ij

� �

¼ ξ0;1 þ ξ1;1tij þ ξ1;2X1;i þ ξ1;3X2;i þ ξ1;4X3;i;

and for CT:

log it P Y2ij � r
� �� �

¼ ξ2;0r þ ξ2;1tij þ ξ2;2X1;i þ ξ2;3X2;i þ ξ2;4X3;i;

where tij is the time point at which outcome j is measured, i.e., tij ¼ 0 or 1. In the corresponding
conditional models, the following random effects are included: b1i and b2i are the random intercept
and random slope for log(BMI), and b3i is the random intercept for CT. To capture the correlation
between the responses, various assumptions about the distribution of the random effects can be
made. For example, if we want to implement Model 4 (as in Table 4), with (a) uncorrelated random
intercept and random slope for log(BMI), (b) random intercept for CT, and (c) further with the
random intercepts taken to be correlated, then the following structure emerges:

b1i
b2i
b3i

0

@

1

A

,N
0
0
0

0

@

1

A

;

d11 0 d13
0 d22 0
d13 0 d33

0

@

1

A

2

4

3

5

: (4)

Upon simplifying this structure, by backward model selection, and removing the random slope
for log(BMI) from the model, we obtain Model 2, with two correlated random intercepts. If we
further remove the correlation between the random intercepts, then separate modeling of the
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responses follows, leading to Model 1. Also, a joint model was considered, fitted by making use
of a random intercept shared between both outcomes, with of course an inflation factor λð Þ to
account for the different scales at which they are measures; this is Model 3. In this case, the
random effects vector in (4) reduces to a single, normally distributed random effect only.
Evidently, rather than simplifying the model, one can also consider more elaborate models, for
example, with correlated random intercept and slope for log(BMI), etc. From a data-analytic
viewpoint, if the D matrix is overly simple, then incorrect inferences might result. In many
cases, there will come a point where fitting such more and more complex models becomes
computationally challenging.

Table 4 shows the modeling results. Because Models 1, 2, and 4 are nested, we can compare them
using likelihood ratio tests. We start with the most complex Model 4 and compare it with the simpler

Table 4. Diabetes study.

102.Est. (102.s.e.) 102.Est. (102.s.e.)

Outcome Effect Par. Model 1 Model 2

log(BMI) int. ξ1;0 338.15 (0.6010) 338.13 (0.6010)
time ξ1;1 −1.4195 (0.1495) −1.4185 (0.1495)
second. edu. ξ1;2 −0.6714 (0.8389) −0.6373 (0.8388)
higher edu. ξ1;3 −1.2479 (1.1029) −1.2426 (1.1028)
gender ξ1;4 −0.7445 (0.7773) −0.7508 (0.7773)
res.sd. σ 4.6605 (0.0750) 4.6602 (0.0750)
RI sd.

ffiffiffiffiffiffi

d11
p

17.060 (0.2686) 17.063 (0.2686)
RS sd.

ffiffiffiffiffiffi

d22
p

– –

Scale λ – –

CT int. 0 ξ2;00 −2.2758 (0.1009) −2.2770 (0.1010)
int. 1 ξ2;01 0.3635 (0.0824) 0.3650 (0.0824)
int. 2 ξ2;02 2.7786 (0.1055) 2.7819 (0.1055)
time ξ2;1 −1.0382 (0.0683) −1.0438 (0.0683)
second. edu. ξ2;2 −0.0307 (0.1023) −0.0324 (0.1023)
higher edu. ξ2;3 −0.3064 (0.1352) −0.3068 (0.1352)
gender ξ2;4 −0.2810 (0.0950) −0.2777 (0.0950)
RI sd.

ffiffiffiffiffiffi

d33
p

1.5025 (0.0752) 1.5054 (0.0752)
log(BMI)& CT Cov. RI’s d1,3 – 4.2897 (0.8214)
−2 log-likelihood 38,298.67 38,270.40

Model 3 Model 4

log(BMI) int. ξ1;0 338.10 (0.6010) 338.15 (0.5991)
time ξ1;1 −1.4185 (0.1496) −1.4268 (0.1496)
second. edu. ξ1;1 −0.5739 (0.8389) −0.6774 (0.8387)
higher edu. ξ1;1 −1.1318 (1.1028) −1.2621 (1.1023)
gender ξ1;1 −0.7923 (0.7773) −0.7563 (0.7766)
res.sd. σσ 4.6609 (0.0751) 4.0471 (0.3320)
RI sd.

ffiffiffiffiffiffi

d11
p

– 17.079 (0.2690)
RS sd.

ffiffiffiffiffiffi

d22
p

– 3.2638 (0.8072)
Scale λ 89.286 (14.688) –

CT int. 0 ξ2;00 −1.7041 (0.0679) −2.2771 (0.1009)
int. 1 ξ2;01 0.2905 (0.0573) 0.3647 (0.0824)
int. 2 ξ2;02 2.0570 (0.0667) 2.7817 (0.1055)
time ξ2;1 −0.7857 (0.0598) −1.0436 (0.0683)
second. edu. ξ2;2 −0.0215 (0.0670) −0.0314 (0.1023)
higher edu. ξ2;3 −0.2373 (0.0883) −0.3073 (0.1352)
gender ξ2;4 −0.2118 (0.0621) −0.2786 (0.0950)
RI sd.

ffiffiffiffiffiffi

d33
p

0.1911 (0.0316) 1.5054 (0.0752)
log(BMI) & CT Cov. RI’s d13 – 4.3010 (0.8210)
−2 log-likelihood 38,504.22 38,266.20

Parameter estimates (standard errors) from the regression coefficients in four models. Model 1: two independent models with
random intercepts; Model 2: model with two correlated random intercepts; Model 3: model with one random intercept and scale
parameter for log(BMI); Model 4: model with uncorrelated random intercept and random slope for log (BMI), random intercept
for clinical targets, with random intercepts taken as correlated. Estimation was done by maximum likelihood using numerical
integration over the normal random effects, if present.
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Model 2, and then Model 2 with the simplest Model 1. The deviance for the comparison of Model 4
with Model 2 equals 4.2. Care needs to be taken when selecting the null distribution. As explained in
Verbeke and Molenberghs, (2000, 2003) and Molenberghs and Verbeke, (2007), two different points
of view can be adopted: a hierarchical and a marginal view. In a hierarchical view, scientific interest
is directed, at least in part, to the random effects. This means that a hierarchical (two-stage) view is
maintained, with subjects and their individual random effects at the first stage, and repeated
measurements given the subject at the second. Marginally, one is merely interested in the popula-
tion-level effects (fixed effects) and variance components. The hierarchical model is then used merely
as a vehicle to conveniently and ideally parsimoniously generate the marginal distribution for the
outcomes.

Thus, in the hierarchical view, the variance components are taken to describe random
effects and have the meaning of a variance. According to this, the null value lies on the
boundary of the parameter space. Such a nontraditional situation for testing was discussed
Stram and Lee, (1994, 1995), Self and Liang (1987), Verbeke and Molenberghs, (2003), and
Molenberghs and Verbeke, (2007). The null distributions of the likelihood ratio, score, and
Wald tests then take the form of a mixture of χ2 distributions. The precise form of the mixture
depends on the geometry of the null space. For a single variance parameter, as in our case, it
becomes a 50:50 mixture of a χ20 (the degenerate distribution with mass in 0) and a χ21
distribution. The likelihood ratio test yields p ¼ 0:5Pðχ20 � 4:2Þ þ0:5Pðχ21 � 4:2Þ ¼ 0:02.
However, in the marginal view, only the marginal distribution needs to be valid (i.e., the
one containing the fixed effects to describe the mean and all variance components combined to
describe the variance–covariance matrix Vi ¼ ZiDZ0i þ �i; not the distribution conditional on
the random effects, for which D and �i are needed to be postivie-definite separately, rather
than merely as contributions to Vi). This is obviously a weaker condition because then only the
corresponding marginal variance–covariance matrix needs to be positive-definite and the
boundary issue on the variance components describing the random effects vanishes.
Variance parameters then reduce to a mere variance component. Hence, in the marginal
case, the likelihood ratio produces p ¼ P χ21 � 4:2

� �

¼ 0:04. Clearly, the p-value of the marginal
test is, in this case, twice that of its hierarchical version. The comparison of Models 2 and 1 is
different from the previous case, because here the models differ in the covariance, which is a
nonboundary problem. The likelihood ratio test statistic of 28.27 is then simply compared with
a χ21 as the reference distribution, and produces p < 0.001. Hence, a highly significant
association between log(BMI) and CTs is obtained, a conclusion that could not have been
reached without modeling both outcomes jointly.

Model 3 is not nested in any other model but the difference in log-likelihood with Models 1, 2,
and 4 is very large: 205.55, 233.82, and 238.02, respectively. We can conclude with high confidence
that the performance of Model 3 is much poorer in comparison to the other models considered.

We further consider the effect of the covariate practice with more than two GPs. To assess the
importance of this covariate, a likelihood ratio test is applied. For example, for Model 1 we obtain
38298.67–38294.27 = 4.4 for the χ22 distributed test statistic with corresponding p ¼ P χ22 � 4:40

� �

¼ 0:11. The result of this test for Model 2 is p ¼ P χ22 � 4:64
� �

¼ 0:10; for Model 3,
p ¼ P χ22 � 5:89

� �

¼ 0:05; and for Model 4, p ¼ P χ22 � 4:58
� �

¼ 0:10. Clearly, we did not observe
significance of the test for the new covariate in any of the aforementioned models. Of course, our
results suggest that a change in significance could occur in different but similar situations, under-
scoring the need for joint modeling. However, by going from separate modeling (Model 1) to the
models with associated random intercepts (Model 2 and 4), the p-value for testing the importance of
the new covariate decreased by 0.01. This suggests that careful joint modeling is necessary so as to
reach proper conclusions. The p-value of the test for Models 2 and 3 decreases from 0.10 to 0.05 and
is not too far away from significance of the covariate. Knowing that the assumption of perfect
association in Model 3 overestimates the relationship between the responses, we conclude that the
significance of the new covariate cannot be considered adequate. This is why we advocate the
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consideration of different but correlated random effects that place less stringent restrictions on the
association structure.

In addition, to assess the effect on model fitting when including the correlation between random
intercept and random slope into the continuous part of the joint model, an extended model (Model
5, see Table A1 in Appendix A) was implemented. When comparing the point and precision
estimates of the covariance structure related to the log(BMI) part, we observe the presence of
collinearity: the standard errors of the covariance components related to log(BMI) are very high
in Model 5. The effect disappeared after removing the correlation between the random intercept and
random slope and by adhering to Model 4. There is also no difference in log-likelihood between the
two models. Obviously, when including the correlation between random intercept and random slope
in the continuous part, the D matrix is overspecified.

Further, to investigate the sample size effect on the precision of the covariance component
estimates, a series of targeted simulations were conducted. The selected scenario was similar to
the diabetes study and was performed for 100 and 500 subjects measured longitudinally with two
outcomes: continuous and ordinal. For each setting, 500 random samples were generated from
the joint population of continuous and ordinal variables with the following covariance structure:
correlated random intercept and random slope for the continuous part, and correlated random
intercepts for both variables. Both correlations were set to the same magnitude of 0.4. Then, two
joint models, one with uncorrelated and another with correlated random intercept and random
slope for the continuous variable, were fitted. They can be considered similar to the aforemen-
tioned Models 4 and 5, respectively. For both sample sizes, the mean squared error (MSE) was
calculated for each parameter. Finally, all results were summarized in Table A2 (see Appendix
A). For the case of 100 subjects, for Models 4 and 5, the MSE of the covariance components
turned out to be relatively large. However, when considering the case of 500 subjects, the MSE of
the covariance components becomes very small. Hence, we can conclude that, when collecting
sufficiently large datasets, the inferences of the covariance components completely fall under the
asymptotic theory of estimation by maximization of the likelihood. Under this condition, the
MSE for the covariance component becomes stable, and at the same time, there is no observable
bias issue after simplifying the structure of the D matrix by removing the correlation between
random intercept and random slope for the continuous variable.

6.2. Fluvoxamine trial

Recall from Section 2.2 that the study encompasses four time points, at each of which side effects and
therapeutic effect are assessed on a four-point ordinal scale. Let Y1ij be the score for therapeutic
effect for patient i at time point j. Then, proportional odds logistic regression with random intercept
can be expressed as follows:

logit½PðY1ij � rÞ� ¼ ξ1;0r þ b1i þ ξ1;11t1ij þ ξ1;12t2ij þ ξ1;13t3ij þ ξ1;2X1i þ . . .þ ξ1;5X4i;

where t1ij, t2ij, and t3ij are dummies corresponding to weeks 4, 8, and 12, respectively. In a similar
way, the model for proportional odds model with random intercept b2i for side effect can be defined.
Clinically, one cannot separate therapeutic effect from side effects, because the first one refers to the
disappearance of existing symptoms, whereas the second one corresponds to emerging symptoms.
This calls for Model 1 in Table 5, with two correlated random intercepts. This model is based on the
following assumptions for the random effects:

b1i
b2i

 �

,N
0
0

 �

;

d11 d12
d12 d22

 �� �

: (5)
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Similar to the diabetes data, a shared random intercept version of a joint hierarchical model can
be formulated and fitted with scale factor λ in the therapeutic-effect part of modeling. These models
are non-nested. Again, the difference in log-likelihood is very large: 277.39. Based on this, we can
conclude that the best performance is for the model with correlated random effects.

As mentioned before, joint models have the advantage of allowing tests for covariate effects on both
outcomes simultaneously. This is of particular importance in the fluvoxamine study, given the logically
intertwined therapeutic and side-effects outcomes. For example, focus could be placed on the effect of the
importance of the duration of the disease. Under Model 1 from Table 5, a likelihood ratio test for the
effect of duration on both outcomes simultaneously produces a test statistic equal to 52.17, which is
highly significant (two degrees-of-freedom, p < 0.001). To illustrate the importance of accounting for the
association between the outcomes, we also applied the joint test assuming independence of the ther-
apeutic and side effects. The test-statistic then equals 52.29, evidently also with two degrees-of-freedom,
and p < 0.001. In this case, the inference of the joint duration effect is quite similar due to the fact that the
log-likelihood values for the models, assuming dependent and independent outcomes, are very close to
each other: 3462.90 and 3465.12, indicative of the lack of association between the responses.

To explore whether the strength of this association could be explained, and hence reduced, by
covariates, we compared Model 1 with separate models for the two responses, with only time as
covariate. The models differ in covariance, which is a nonboundary problem. The likelihood ratio
test statistic is 2.5 and is referred to a x21 with p = 0.11. The results of this test again confirm the
presence of weak association between the responses.

7. Concluding remarks

In this paper, we have focused on two approaches for the modeling of bivariate longitudinal
sequences: (1) assuming mixed models for both outcomes with separate random effects that are

Table 5. Fluvoxamine trial.

Est. (s.e.) Est. (s.e.)

Outcome Effect Par. Model 1 Model 2

Ther. Eff. int. 0 ξ1;00 −2.1912 (1.1783) −1.2344 (0.4792)
int. 1 ξ1;01 0.9927 (1.1752) 0.6505 (0.4774)
int. 2 ξ1;02 3.3944 (1.1844) 2.0858 (0.4829)
time (week = 4) ξ1;11 2.0725 (0.1998) 1.1952 (0.1607)
time (week = 8) ξ1;12 3.6062 (0.2451) 2.1658 (0.1773)
time (week = 12) ξ1;13 4.4439 (0.2774) 2.7192 (0.1902)
antecedents ξ1;2 −0.3309 (0.3379) −0.1601 (0.1302)
age/30 ξ1;3 −0.1755 (0.3650) −0.0182 (0.1419)
duration/100 ξ1;4 −0.8565 (0.7732) −0.5015 (0.3199)
initial severity ξ1;5 −0.2614 (0.2071) −0.1872 (0.0830)
Scale λ – 0.0634 (0.0284)
RI sd.

ffiffiffiffiffiffi

d11
p

2.3524 (0.1801) –

Side Eff. int. 0 ξ2;00 −1.7769 (1.6748) −1.7481 (1.6627)
int. 1 ξ2;01 3.2179 (1.6825) 3.2264 (1.6697)
int. 2 ξ2;02 5.5565 (1.7079) 5.5660 (1.6953)
time (week = 4) ξ2;11 0.7256 (0.2278) 0.7224 (0.2272)
time (week = 8) ξ2;12 1.5917 (0.2584) 1.5841 (0.2577)
time (week = 12) ξ2;13 1.6562 (0.2671) 1.6444 (0.2665)
antecedents ξ2;2 −0.0970 (0.4872) −0.1158 (0.4845)
age/30 ξ2;3 −1.5512 (0.5362) −1.5451 (0.5325)
duration/100 ξ2;4 −3.9801 (1.0796) −3.9478 (1.0726)
initial severity ξ2;5 0.7529 (0.2958) 0.7463 (0.2936)
RI sd.

ffiffiffiffiffiffi

d22
p

3.3756 (0.2986) 3.3545 (0.2979)
Both Cov. RI’s d12 0.9245 (0.6322) –

−2 log-likelihood 3462.90 3740.29

Parameter estimates (standard errors) from the regression coefficients in two models. Model 1: model with 2 correlated random
intercepts; Model 2: model with 1 random intercept and scale parameter. Estimation was done using maximum likelihood with
numerical integration over the normal random effect, if present.
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correlated; (2) formulating a model with shared random effects, perhaps up to a scale parameter.
Emphasis is placed on an ordinal and a continuous sequence on the one hand, and two ordinal
sequences on the other. The ordinal aspect is a natural extension of similar models for binary
outcomes, such as formulated by Gueorguieva, (2001), Molenberghs and Verbeke, (2005), Fieuws
and Verbeke, (2006), Fieuws (2006, 2008), and Iddi and Molenberghs, (2012). A key difference
isthat ordinal data typically require the introduction of a set of nonredundant dummies, in the
sense R–1 dummies are used for an R-category ordinal variable (Agresti, 1990).

The continuous-ordinal model was applied to a diabetes study, the bivariate ordinal model to the
fluvoxamine study. Qualitatively similar results were obtained: the joint mixed models with corre-
lated random effects yielded a better fit compared to the shared-parameter model. The estimates for
the shared parameter in the two case studies differed in magnitude: for the diabetes study, we
obtained an estimate with a high value. This is due to the difference in scale between continuous log
(BMI) and ordinal CTs. In contrast, in the fluvoxamine study, the same ordinal scale was used for
side and therapeutic effects.

The models formulated here can easily be formulated and developed in various software
packages. Example code of the implementation in the NLMIXED procedure in SAS are offered
in Appendix B. There, we briefly discuss the most important details for reformatting the data and
how to correctly use the syntax. For the diabetes study, 10 quadrature points was sufficient;
switching to 20 and 50 quadrature points did not show the estimates and standard errors, to
four decimals. For the fluvoxamine study, numerical stability was reached from 20 quadrature
points onwards.

Other models for categorical data, whether ordinal or not, such as the partial proportional odds
model or the generalized logistic model, can be fitted in a similar fashion, thanks to the flexibility of
the procedure NLMIXED. This will then require to reformulate the cell probabilities πr;ijin (2).

The models formulated can be extended to more than two outcomes. There are two possibilities.
First, one could go in the direction suggested by Morrell et al. (2012) by trying to combine more
than two responses in one model. Such models are computationally challenging: there is no
analytical solution to integrate out the random effects so that approximate methods are required.
Fieuws and Verbeke (2006) reported that they were not able to fit joint models for more than four
outcomes. They also proposed a solution for this problem as the second possibility for high-
dimensional modeling: the computational complexity of the full joint model can be reduced by
fitting all possible bivariate mixed models. Estimates for the full joint model are obtained by
averaging the estimates from all pairwise models. Evidently, it is also possible to combine an ordinal
sequence with other data types, such as repeated count data or repeated time to events.
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Appendix A. Additional tables

Table A1. Diabetes study.

102·Est. (102·s.e.) 102·Est. (102·s.e.)

Outcome Effect Par. Model 4 Model 5

log(BMI) int. ξ1;0 338.15 (0.5991) 338.15 (0.5991)
time ξ1;1 −1.4268 (0.1496) −1.4270 (0.1496)
second. edu. ξ1;2 −0.6774 (0.8387) −0.6829 (0.8387)
higher edu. ξ1;3 −1.2621 (1.1023) −1.2651 (1.1023)
gender ξ1;4 −0.7563 (0.7766) −0.7569 (0.7767)
res.sd. σ 4.0471 (0.3320) 4.1495 (9.2660)
RI sd.

ffiffiffiffiffiffi

d11
p

17.079 (0.2690) 17.0538 (2.2710)
RS sd.

ffiffiffiffiffiffi

d22
p

3.2638 (0.8072) 2.2957 (25.6681)
Cov. RI & RS d1;2 – 0.9055 (76.9391)

CT int. 0 ξ2;00 −2.2771 (0.1009) −2.2770 (0.1009)
int. 1 ξ2;01 0.3647 (0.0824) 0.3648 (0.0824)
int. 2 ξ2;02 2.7817 (0.1055) 2.7817 (0.1055)
time ξ2;1 −1.0436 (0.0683) −1.0435 (0.0683)
second. edu. ξ2;2 −0.0314 (0.1023) −0.0315 (0.1023)
higher edu. ξ2;3 −0.3073 (0.1352) −0.3075 (0.1352)
gender ξ2;4 −0.2786 (0.0950) −0.2787 (0.0950)
RI sd.

ffiffiffiffiffiffi

d33
p

1.5054 (0.0752) 1.5054 (0.0752)
log(BMI) & CT Cov. RI’s d1;3 4.3010 (0.8210) 4.3023 (0.8211)

−2 log-likelihood 38,266.20 38,266.20

Parameter estimates (standard errors) from the regression coefficients. Model 4: model with uncorrelated random intercept and
random slope for log(BMI) and random intercept for the clinical targets, with the random intercepts taken as correlated. Model 5:
model with correlated random intercept and random slope for log(BMI) and random intercept for the clinical targets, with the
random intercepts taken as correlated. Estimation was done by maximum likelihood using numerical integration over the normal
random effects, if present.

Table A2. Simulation study: MSE for parameter estimates of the regression coefficients.

No. of Subjects = 100 No. of Subjects = 500

Outcome Effect Par. Model 4 Model 5 Model 4 Model 5

Continuous int. ξ1;0 ¼ 34:00 0.3533 0.3533 0.0819 0.0819
time ξ1;1 ¼ �1:50 0.1118 0.1118 0.0207 0.0207
res.sd. σ ¼ 3:00 0.0169 0.0165 0.0036 0.0027
RI sd.

ffiffiffiffiffiffi

d11
p

¼ 5:48 0.2476 0.2254 0.0713 0.0420
RS sd.

ffiffiffiffiffiffi

d22
p

¼ 3:16 0.0631 0.0548 0.0240 0.0124
Cov. RI & RS d1;2 ¼ 6:93 – 3.7129 – 0.7676

Ordinal int. 0 ξ2;00 ¼ �2; 50 0.1017 0.1017 0.0176 0.0176
int. 1 ξ2;01 ¼ 0:50 0.0503 0.0503 0.0103 0.0103
int. 2 ξ2;02 ¼ 3:00 0.0818 0.0818 0.0156 0.0156
time ξ2;1 ¼ �1:05 0.0075 0.0075 0.0017 0.0017
RI sd.

ffiffiffiffiffiffi

d33
p

¼ 1:41 0.0296 0.0487 0.0063 0.0063
Continuous & ordinal Cov. RI’s d1;3 ¼ 3:10 1.1472 1.0035 0.2612 0.2347

Model 4: model with uncorrelated random intercept and random slope for continuous variable and random intercept for ordinal
variable, with the random intercepts taken as correlated. Model 5: model with correlated random intercept and random slope for
continuous variable and random intercept for ordinal variable, with the random intercepts taken as correlated. Estimation was
done by maximum likelihood using numerical integration over the normal random effects, if present.
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Appendix B. SAS Implementation

As an example, we present the routines for the case of a joint model for continuous-ordinal responses with different
random effects, some of which are correlated. This procedure can easily be reformulated for different covariate structures
per response. Also, the user can apply a similar syntax on the data with different numbers of time points per subject.

In line with the description on how to restructure the data and implement the models, given in Molenberghs and
Verbeke, (2005, Chapter 24), the NLMIXED program makes use of the so-called general-likelihood feature, i.e., a user-
defined likelihood that can be invoked with the “general()” option in the model statement. The data should be a priori
restructured in the following way: in the first and the second positions of the new variable “outcome,” we enter the
values of the continuous variable of the original data; in the third and fourth positions, the values of the ordinal
variable. Then, the data will take the following form:

We use the following instance of the NLMIXED procedure in SAS for the joint continuous-ordinal model with normal
random effects:

proc nlmixed data=diabetes Qpoints=10 maxiter=50;
parms beta1_0=338.15 beta1_1=−1.43 beta1_2=−0.68 beta1_3=−1.25 beta1_4=−0.75
sigma=4.05 tau11=17.08 tau22=3.26 beta2_00=−2.28 beta2_01=0.36 beta2_02=2.78
beta2_1=−1.04 beta2_2=−0.03 beta2_3=−0.31 beta2_4=−0.28 tau33=1.50 tau13=1;
title “Model 4: Transformed BMI (RI + RS (uncorr)) + Clinical Targets (RI):

RI’s are correlated”;
if repeat in (1,2) then do;
mean = beta1_0 + beta1_1*time + beta1_2*educ_secund +beta1_3*educ_high +

beta1_4*gender + a + b*time;
dens = −0.5*log(3.14) – log(sigma) – 0.5*(outcome-mean)**2/(sigma**2);
ll=dens;
end;
if repeat in (3,4) then do;
eta = beta2_1*time + beta2_2*educ_secund + beta2_3*educ_high +

beta2_4*gender + c;
if outcome = 0 then do;
lik = exp(beta2_00+eta)/(1+exp(beta2_00+eta));
end;
if outcome = 1 then do;
lik = exp(beta2_01+eta)/(1+exp(beta2_01+eta)) –

exp(beta2_00+eta)/(1+exp(beta2_00+eta));
end;
if outcome = 2 then do;
lik = exp(beta2_02+eta)/(1+exp(beta2_02+eta)) –

exp(beta2_01+eta)/(1+exp(beta2_01+eta));
end;
if outcome = 3 then do;
lik = 1 – exp(beta2_02+eta)/(1+exp(beta2_02+eta));
end;
ll = log(lik);

end;
model outcome ~ general(ll);
random a b c ~ normal([0,0,0], [tau11*tau11,0,tau22*tau22,tau13,0,tau33*tau33]) sub-
ject = patient;
run;

Obs Patient time repeat outcome educ_secund educ_high gender
1 10–1 0 1 326.28 0 0 1
2 10–1 1 2 338.83 0 0 1
3 10–1 0 3 1 0 0 1
4 10–1 1 4 3 0 0 1
5 10–10 0 1 352.78 1 0 .
6 10–10 1 2 356.82 1 0 .
7 10–10 0 3 1 1 0 .
8 10–10 1 4 1 1 0 .
...

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 15

D
o
w

n
lo

ad
ed

 b
y
 [

K
U

 L
eu

v
en

 U
n
iv

er
si

ty
 L

ib
ra

ry
] 

at
 0

1
:3

2
 0

3
 F

eb
ru

ar
y
 2

0
1
6
 



For a given data analysis, it is best to conduct a numerical sensitivity analysis to define the optimal number of
quadrature points (“qpoints=” option). This can easily be done by progressively increasing their number until the
parameter estimates and all related quantities (including standard errors, log-likelihood at maximum, etc.) stabilize.

Another example using the NLMIXED SAS program is for a shared random-intercepts model with a scale parameter λ:

proc nlmixed data = diabetes Qpoints = 10 maxiter = 100;
parms beta1_0=338.15 beta1_1=−1.43 beta1_2=−0.68 beta1_3=−1.25 beta1_4=−0.75
sigma=4.05 beta2_00=−2.28 beta2_01=0.36 beta2_02=2.78 beta2_1=−1.04
beta2_2=−0.03 beta2_3=−0.31 beta2_4=−0.28 tau=1.50 lambda=1;
title “Model 3: Shared RI and Scale Parameter Lambda”;
if repeat in (1,2) then do;
mean = beta1_0 + beta1_1*time + beta1_2*educ_secund + beta1_3*educ_high +

beta1_4*gender + lambda*b;
dens = −0.5*log(3.14) – log(sigma) – 0.5*(outcome-mean)**2/(sigma**2);
ll=dens;
end;
if repeat in (3,4) then do;
eta = beta2_1*time + beta2_2*educ_secund + beta2_3*educ_high +

beta2_4*gender + b;
if outcome = 0 then do;
lik = exp(beta2_00+eta)/(1+exp(beta2_00+eta));
end;
if outcome = 1 then do;
lik = exp(beta2_01+eta)/(1+exp(beta2_01+eta)) –

exp(beta2_00+eta)/(1+exp(beta2_00+eta));
end;
if outcome = 2 then do;
lik = exp(beta2_02+eta)/(1+exp(beta2_02+eta)) –

exp(beta2_01+eta)/(1+exp(beta2_01+eta));
end;
if outcome = 3 then do;
lik = 1 – exp(beta2_02+eta)/(1+exp(beta2_02+eta));
end;
ll = log(lik);

end;
model outcome ~ general(ll);
random b ~ normal(0, tau*tau) subject = patient;
run;

For the ordinal-ordinal case, the data can be prepared in a similar way: four outcomes for therapeutic effect (THEFF)
and four outcomes for side effect (SIDE). Then, the data will take the following form:

Obs Patient week4 week8 week12 repeat outcome anteced severit0 age1 duration1
1 1 0 0 0 1 3 0 4 1.47 0.06
2 1 1 0 0 2 . 0 4 1.47 0.06
3 1 0 1 0 3 . 0 4 1.47 0.06
4 1 0 0 1 4 . 0 4 1.47 0.06
5 1 0 0 0 5 1 0 4 1.47 0.06
6 1 1 0 0 6 . 0 4 1.47 0.06
7 1 0 1 0 7 . 0 4 1.47 0.06
8 1 0 0 1 8 . 0 4 1.47 0.06
9 2 0 0 0 1 2 1 . 0.93 0.01
10 2 1 0 0 2 1 1 . 0.93 0.01
11 2 0 1 0 3 0 1 . 0.93 0.01
12 2 0 0 1 4 0 1 . 0.93 0.01
13 2 0 0 0 5 0 1 . 0.93 0.01
14 2 1 0 0 6 0 1 . 0.93 0.01
15 2 0 1 0 7 0 1 . 0.93 0.01
16 2 0 0 1 8 0 1 . 0.93 0.01
...
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For the joint ordinal-ordinal model, the following SAS syntax can be used:

proc nlmixed data=fluvo QPOINTS=20 maxiter=100;
parms
beta1_00=−2.18 beta1_01=1.00 beta1_02=3.39 beta1_11=2.07 beta1_12=3.61
beta1_13=4.45 beta1_2=−0.32 beta1_3=−0.17 beta1_4=−0.82 beta1_5=−0.27
tau1=2.33 beta2_00=−1.70 beta2_01=3.17 beta2_02=5.45 beta2_11=0.73
beta2_12=1.59 beta2_13=1.66 beta2_2=-0.08 beta2_3=−1.52 beta2_4=−3.86
beta2_5=0.72 tau2=3.21 cov12=1;
title “Model 1: THEFF (RI) + SIDE (RI): RI’s are correlated”;
if repeat in (1,2,3,4) then do;
eta1 = beta1_11*week4 + beta1_12*week8 + beta1_13*week12+ beta1_2*anteced +

beta1_3*age1 + beta1_4*duration1 + beta1_5*severit0 + a;
if outcome = 0 then do;
lik = exp(beta1_00+eta1)/(1+exp(beta1_00+eta1));
end;
if outcome = 1 then do;
lik = exp(beta1_01+eta1)/(1+exp(beta1_01+eta1)) –

exp(beta1_00+eta1)/(1+exp(beta1_00+eta1));
end;
if outcome = 2 then do;
lik = exp(beta1_02+eta1)/(1+exp(beta1_02+eta1)) –

exp(beta1_01+eta1)/(1+exp(beta1_01+eta1));
end;
if outcome = 3 then do;
lik = 1 – exp(beta1_02+eta1)/(1+exp(beta1_02+eta1));
end;
ll = log(lik);

end;
if repeat in (5,6,7,8) then do;
eta2 = beta2_11*week4 + beta2_12*week8 + beta2_13*week12 + beta2_2*anteced +

beta2_3*age1 + beta2_4*duration1 +beta2_5*severit0 + b;
if outcome = 0 then do;
lik = exp(beta2_00+eta2)/(1+exp(beta2_00+eta2));
end;
if outcome = 1 then do;
lik = exp(beta2_01+eta2)/(1+exp(beta2_01+eta2)) –

exp(beta2_00+eta2)/(1+exp(beta2_00+eta2));
end;
if outcome = 2 then do;
lik = exp(beta2_02+eta2)/(1+exp(beta2_02+eta2)) –

exp(beta2_01+eta2)/(1+exp(beta2_01+eta2));
end;
if outcome = 3 then do;
lik = 1 – exp(beta2_02+eta2)/(1+exp(beta2_02+eta2));
end;
ll = log(lik);

end;
model outcome ~ general(ll);
random a b ~ normal([0,0], [tau1*tau1, cov12, tau2*tau2]) subject = patient;
run;

Next, we present the syntax for a model with shared random intercept for ordinal-ordinal responses:

proc nlmixed data=fluvo QPOINTS=20 maxiter=100;
parms beta1_00=−2.18 beta1_01=1.00 beta1_02=3.39 beta1_11=2.07 beta1_12=3.61
beta1_13=4.45 beta1_2=−0.32 beta1_3=−0.17 beta1_4=−0.82 beta1_5=−0.27
beta2_00=−1.70 beta2_01=3.17 beta2_02=5.45 beta2_11=0.73 beta2_12=1.59
beta2_13=1.66 beta2_2=−0.08 beta2_3=−1.52 beta2_4=−3.86 beta2_5=0.72 tau=3.21
lambda=1;
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title “Model 2: Shared RI and Scale Parameter Lambda”;
if repeat in (1,2,3,4) then do;
eta1 = beta1_11*week4 + beta1_12*week8 + beta1_13*week12+ beta1_2*anteced +

beta1_3*age1 + beta1_4*duration1 + beta1_5*severit0 + lambda*b;
if outcome = 0 then do;
lik = exp(beta1_00+eta1)/(1+exp(beta1_00+eta1));
end;
if outcome = 1 then do;
lik = exp(beta1_01+eta1)/(1+exp(beta1_01+eta1)) –

exp(beta1_00+eta1)/(1+exp(beta1_00+eta1));
end;
if outcome = 2 then do;
lik = exp(beta1_02+eta1)/(1+exp(beta1_02+eta1)) –

exp(beta1_01+eta1)/(1+exp(beta1_01+eta1));
end;
if outcome = 3 then do;
lik = 1 – exp(beta1_02+eta1)/(1+exp(beta1_02+eta1));
end;
ll = log(lik);

end;
if repeat in (5,6,7,8) then do;
eta2 = beta2_11*week4 + beta2_12*week8 + beta2_13*week12 + beta2_2*anteced +

beta2_3*age1 + beta2_4*duration1 +beta2_5*severit0 + b;
if outcome = 0 then do;
lik = exp(beta2_00+eta2)/(1+exp(beta2_00+eta2));
end;
if outcome = 1 then do;
lik = exp(beta2_01+eta2)/(1+exp(beta2_01+eta2)) –

exp(beta2_00+eta2)/(1+exp(beta2_00+eta2));
end;
if outcome = 2 then do;
lik = exp(beta2_02+eta2)/(1+exp(beta2_02+eta2)) –

exp(beta2_01+eta2)/(1+exp(beta2_01+eta2));
end;
if outcome = 3 then do;
lik = 1 – exp(beta2_02+eta2)/(1+exp(beta2_02+eta2));
end;
ll = log(lik);

end;
model outcome ~ general(ll);
random b ~ normal(0, tau*tau)
subject = patient;
run;

Given the implementation of the joint mixed model for the ordinal-ordinal case, the number of required Q points and
maximum iterations should be increased to “Q = 20” and “maxiter = 100”, to obtain convergence and an acceptable
level of accuracy. Also, the starting values for the parameters should be very carefully selected to ensure that the global
(and not local) maximum of the likelihood function is reached. This can be done, for example, by starting from
univariate longitudinal models, and assembling the resulting parameter estimates into a starting-value vector for the
joint model.
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