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Mixed Neural-Conventional Processing to
Differentiate Airway Diseases by Means of

Functional Noninvasive Tests
Marco Parvis, Senior Member, IEEE, Carlo Gulotta, and Roberto Torchio

Abstract—This paper describes a processing technique that
can be used to combine information from different medical
analyzes to discriminate between different pathologies that have
similar symptoms. The paper is focused on the differentiation
between asthma, bronchitis, and emphysema, using only func-
tional noninvasive tests, but the proposed technique can be easily
applied to other similar situations where different tests have to
be used to identify a pathology. The technique is based on mixed
neural-and-conventional processing that not only suggests the
pathology, but also estimates the reliability of this suggestion.

Index Terms—Health care, medical, neural networks, pro-
cessing, uncertainties.

I. INTRODUCTION

T
HE frequency of lung pathologies is continuously in-

creasing due to several environmental causes, such as air

pollution, indoor contaminants, and smoking habits. Such an

increase, combined with the increased life expectancy, requires

methods to classify the different pulmonary diseases, but which

limit the use of costly diagnostic methods as much as possible.

Most functional, noninvasive tests are largely aspecific with

respect to pathologies that have similar symptoms at the ini-

tial stage, such as asthma, bronchitis and emphysema. For this

reason, no test alone allows a reliable discrimination to be per-

formed and, unfortunately, as of yet, no assessed model which

is able to meaningfully combine the data exists. This paper de-

scribes a mixed neural and conventional approach based on es-

timation of a “pathology evidence” index on the basis of four

lung functional parameters. The proposed approach takes the

uncertainty of the single tests into account and flags the pro-

cessing result with the probability of being the correctly identi-

fied pathology.

II. PATHOPHYSIOLOGY OF AIRWAY OBSTRUCTION

The identification of the three airway pathologies [1], on the

basis of noninvasive tests, is not an easy task. Airflow tests

are usually employed to highlight the presence of emphysema,

while respiratory tests, before and after bronchodilating sub-

stances, are normally employed to highlight the presence of

Manuscript received May 26, 1999; revised December 19, 2000.
M. Parvis is with the Dipartimento di Elettronica Politecnico di Torino,

Torino, Italy.
C. Gulotta and R. Torchio are with Fisiopatologia Respiratoria Az. Osp. S.

Luigi, Orbassano, Torino, Italy.
Publisher Item Identifier S 0018-9456(01)04378-9.

asthma. Pulmonary emphysema is, in fact, characterized by

alveolar destruction and airflow limitation which does not

change after the use of bronchodilating substances, but, unfor-

tunately, airflow limitation is also often present in bronchitis

patients. Pharmacological reversibility of airway obstruction is

a typical feature of asthmatic patients, but chronic obstructive

pulmonary disease patients also show variable degrees of

response to bronchodilating agents.

A correct diagnosis of asthma, bronchitis, and emphysema

can, of course, be reliably obtained by means of clinical, radi-

ological, and functional assessment involving several tests, but

this would greatly increase the overall cost and time of the pro-

cedure required for the diagnosis.

The aim of this work was, therefore, to verify if a reason-

able and accurate prediction could be obtained by combining

the results of different simple spirometric data, which are col-

lected before and after pharmacological bronchodilation. Sev-

eral different tests have been proposed to discriminate between

the three pathologies [2]–[4]. After some tests, the authors de-

cided to use four of the tests most commonly found in literature.

Two tests concern lung parameters: the residual lung volume

(RV) and the transfer lung factor for carbon monoxide (TLCO).

The other two tests are related to the change of two respira-

tory parameters: forced expired volume in 1s ( ) and

the specific airway conductance ( ), before and after

inhalation of a broncodilator (200 mg of salbutamol). All the

test results were normalized to the standard predicted results ac-

cording to the European Respiratory Society (ERS) recomenda-

tions [5].

III. DATA PROCESSING

A. Population

The available data represented a population composed of 158

patients diagnosed according to the American Thoracic Society

(ATS) criteria. Of these, 37 were classified as asthmatic, 79 as

bronchitic, and 42 as being affected by emphysema. The data

were recorded in three different periods with different intrumen-

tation; 96 patients were monitored in 1997 and early 1998, 15

were monitored in January 1999, and the last 47 were monitored

in late 1999.

The patients were divided into two groups. One group of 55

patients (13 asthmatic, 29 bronchitic, and 13 affected by em-

physema), chosen from among the first 96 patients, was used

to estimate the statistical parameters and to train the networks;
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Fig. 1. Mean and standard deviation of the four measured parameters and of the three categories.

data of the remaining 103 patients (24 asthmatic, 50 bronchitic,

and 29 affected by emphysema) were used to validate the pro-

cedures.

The 55 patients included in the training set were selected by

the physicians in order to be representative of the different as-

pects of the three pathologies. Care was taken to ensure that a

reasonable number of examples of the three pathologies were

present in the training set to avoid polarized network behavior

[6], i.e., to prevent the network from adjusting the weights to

describe only the most common pathologies at the expense of

the others.

B. Linear Discriminant Score Approach

Fig. 1 shows the mean and standard deviation of the four clin-

ical tests of the patients included in the training set. The results

are clustered according to the pathology: a clear correlation be-

tween mean values and pathology is visible in each test even

though the standard deviations are rather large.

A correlation analysis has shown that the correlations are

below 0.5 with the exception of and ,

which reach the value of 0.52.

A patient classification was therefore attempted using a

Bayesian approach based on the linear discriminant scores [7].

Such a classification is often used in the medical field (see [8]),

and it tries to minimize error probability and cost by assigning

a “score” to each pathology

(1)

where

four-row vector, which contains the patient’s test re-

sults;

three-row vector of the three discriminant scores, one

per pathology;

three-row, four-column matrix;

three-row vector.

and are determined by means of the examples contained in

the training set

(2)

where

four-dimensional pooled covariance matrix of the tests

of the patients in the training set;

four-row three-column matrix, which contains the

mean values of each test in the training set, one column

per pathology;

three-row vector of the relative frequency of each

pathology in the training set, i.e., it is the a priori

probability of each pathology.

A patient is eventually assigned to the pathology with highest

score. The score-based classification was able to guess the right

diagnosis in 43 cases (78%) within the training set. Although

such a value is reasonably high for this kind of diagnosis, the

number of errors (12 cases corresponding to about 22%) is too

high for the method being currently used. Statistical procedures

are available to validate each result so that doubtful diagnoses

could be discovered, but a simpler approach would be desirable.

C. Neural Processing

No commonly accepted analytical model exists that can be

used to combine the test results to obtain the diagnosis. How-

ever the available examples can be used to train a multi layer

perceptron (MLP) neural network, thus overcoming the lack of

an analytical model and the problems related to unknown pop-

ulation distributions.

Several network structures can be adopted; all the networks

have to have four inputs (the four clinical values) but one can

decide to have either one single, three-level output (i.e., a single

output which assumes three values that correspond to the three

pathologies), or three outputs that activate each one in the pres-

ence of a specific pathology.

The authors decided to employ the latter solution, which has

two main advantages: a) the three separated outputs allow an

easier result interpretation in the presence of doubtful cases to

be obtained, and b) the network can be designed in the form

of three completely separated sub-networks, which are easier to

train.

Two neurons in the hidden layer were found to be sufficient

for the networks that had to recognize asthma and emphysema,

while three neurons were required for the network which

had to recognize bronchitis. All the networks were trained
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by employing a gradient-descend, back-propagation (Leven-

berg–Marquardt) algorithm [9].

Each network was trained to produce an unary output for pa-

tients who present the pathology the network had to recognize,

and a zero output otherwise. This kind of binary training, where

the examples presented to the network have either zero or one

target, tends to produce a switching network, especially when

the training set is limited [1]. This switching behavior is not cor-

rect in our situation, where there are examples of patients who

have clinical parameters on the borderline. Such an ambiguity

should be reflected also in the values of the MLP output.

This problem can be addressed either by adding noise to the

weight values during the training [11] or by adding noise to the

network inputs [12]. The authors employed a solution similar

to the one described in [13] using an algorithm that takes the

uncertainty presence into account [1]. The algorithm acts by re-

placing each element of the original training set with a sequence

of similar new elements that are composed of values which are

different from the original ones, within the expected uncertainty

of each input parameter.

The three outputs were eventually sent to a competitive layer

(CL), which simply employs a winner-takes-all strategy, i.e.,

it selects the network with the highest output, regardless of its

actual value.

By employing the three MLPs and the CL, the network

gives 47 correct results (85%) within the training set with only

eight errors (15%). The combination of MLP and CL therefore

performs better than the algorithm based on the discriminant

scores, but still suffers from a high number of errors. Such a

high number of wrong diagnoses is due to the nature of the

CL. The CL always produces a winner even though all the

competitors have a very low value, i.e., even though none of the

MLPs have actually recognized their pathology. This behavior

can be avoided by employing a modified CL, or some form of

more complex algorithms, that is capable of highlighting the

presence of doubtful winners.

D. Second-Level Conventional Processing

1) Output Validation Using the Guard Neuron: The CL be-

havior, which always produces a winner regardless of the winner

value, can be modified by adding a guard input (or guard neuron)

to the CL inputs. This guard input is a fixed input, set at a suit-

able level, which wins when all the other inputs are lower than

its guard level. The guard level selection should be performed

by trying to balance between the number of errors which can be

avoided and the number of good results which are missed due

to the activation of the guard.

Fig. 2 shows the guard neuron effect as a function of its value

for the patients within the control set. The three lines represent

the number of erroneous diagnoses, the number of correct di-

agnoses and the number of “unreliable” diagnoses that trigger

the guard neuron. As expected, as the guard level increases, the

number of errors decreases. A reduction of the erroneous diag-

noses to 2% can be obtained by employing guard levels above

0.8, but at the expense of about 60% of unclassified patients.

2) Output Validation Using the “Evidence Indexes”: The

guard neuron allows one to recognize conditions where none

Fig. 2. Erroneous diagnoses (thick line) and unclassified patients (thin line) as
a function of the guard level.

of the networks activate, but does not highlight situations

where more networks activate with similar values. In addition,

the guard neuron approach cannot highlight borderline cases

where the uncertainty, which affects the clinical test values, can

greatly alter the MLP outputs. Such problems can be reduced

by replacing the CL with an algorithm which highlights the

evidence of one pathology with respect to the others and takes

the uncertainty presence into account. A simple possibility is

to compute three evidence indexes by multiplying the output of

each network by the complements of the other two

(3)

where is a pathology index which uses a modulo-three algebra

(i.e, if then ).

Each evidence index can be tagged with its reliability by com-

puting its expected uncertainty as a function of the actual input

uncertainties. The uncertainty of the network inputs, i.e., the un-

certainties of the clinical parameters, can be estimated according

to the ATS criteria. The authors employed an uncertainty of 3%

of the expected range of each parameter. Such a value should

take all the uncertainty contributions into account and is rather

larger than the observed inter and intra-operator variability on a

single patient.

The sensitivities of each output with respect to each input de-

pend on the patient’s parameter combination and can be numer-

ically computed by examining the network outputs in the pres-

ence of small changes of each of the input parameters. A linear

approximation of network behaviors can be used since the input

uncertainties are small and the network functions do not con-

tain discontinuities. Therefore, the output standard uncertainty

can eventually be computed according to the conventional un-

certainty propagation rules [14]

(4)

where

combined standard uncertainty of th evidence index,

i.e., the expected standard deviation of th evidence

index;

standard uncertainty of the th clinical test;
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Fig. 3. Good diagnoses versus errors for different criteria.

sensitivity coefficient of the th evidence index with

respect to the th clinical test.

The covariance is neglected, since the four clinical param-

eters are measured using independent procedures and devices,

and, thus, their uncertainties can be considered statistically in-

dependent.

The three evidence indexes condense the amount of informa-

tion contained in the four original clinical parameters in a struc-

tured form, which is easier to manage with respect to the raw

data and allows the physician to comfortably carry out the diag-

nosis.

In addition, the uncertainty associated with each index allows

one not only to give an on/off response, but also to guess the

reliability of the pathology detection.

The physician can guess the reliability of the diagnosis by

using at least three different criteria

1) the actual value of the highest evidence index (low values

correspond to less reliable diagnoses);

2) the actual difference between the two higher indexes (low

differences correspond to pathologies with similar prob-

abilities of being recognized);

3) the uncertainty associated to each index (that can be used

to discriminate between indexes with similar values, but

which originate from more or less significant combina-

tions).

Each of these criteria can be used to employ a validation by

means of a threshold with an effect which is similar to the guard

neuron. Fig. 3 shows the number of good diagnoses versus the

number of errors for two criteria that combine index values and

uncertainties: the highest evidence index minus its uncertainty,

and the difference between the two higher indexes minus the

sum of their uncertainties. For comparison, the figure also shows

the trace obtained with the guard neuron.

The methods based on the evidence index exhibit similar re-

sults and perform better than the method based on the guard

neuron. This figure allows one to select the desired compro-

mise between the number of accepted errors and the number of

missed diagnoses.

(a)

(b)

Fig. 4. Evidence index performance on control (left) and training (right) sets
with three thresholds and in the absence of thresholds.

The two criteria can of course be mixed to find the combi-

nation that seems to be the most suitable to reduce the errors

while still maintaining the number of missed diagnoses at low

value. After some tests, the authors employed two contempora-

neous criteria, discarding results with either the evidence index

minus uncertainty below a predefined threshold, or the differ-

ence between indexes minus their uncertainties below a second

threshold. Three couples of thresholds were selected which cor-

responded to 4 (7%), 2 (4%), and 1 (2%) erroneous diagnoses

within the training set.

IV. EXPERIMENTAL RESULTS

Fig. 4 shows the performance of the proposed algorithm for

the three threshold choices, plus the results obtained in the ab-

sence of thresholds. In the absence of thresholds, the system

gives 23 (22%) errors and 80 (78%) correct results. Depending

on the threshold selection, it is possible to reduce the number of

erroneous diagnoses within the control set to 4% at the expense

of about 50% unclassified patients, or have 11% errors with 22%

unclassified patients. The figure also shows, on the right, the re-

sults obtained within the training set with the same thresholds.

Within the training set, the results are obviously better than in

the control set, especially on the number of unclassified patients,

thus suggesting that if more examples were available for both

training and testing, an enlargement of the training set could be

useful to improve the overall behavior.

The results obtained by the neural network plus the guard

neuron, and by the algorithm based on the discriminant scores,
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(a)

(b)

Fig. 5. Neural network and discriminant score performance on the control
(left) and training (right) sets.

Fig. 6. Panel of the program which computes the evidence indexes and their
uncertainties.

are shown in Fig. 5 for comparison purposes. The evidence

index method performs better than the other solutions, both in

the training set and the control set. A comparison for an equal

number of erroneous diagnoses shows that the number of not

classified patients is 10-15% higher with the guard neuron than

with the evidence index.

The score-based method, which can only be compared with

the neural network in the absence of the guard neuron, produces

nearly 50% more erroneous diagnoses than the neural network

both in the training set (22%) and in the control set (32%).

A simple program has been designed to allow an easy deter-

mination of the evidence index. The program, whose graphical

interface is shown in Fig. 6, has been coded in VisualBasic™

and is designed to be used in Windows9x/NT™ environments.

The program takes the four values that correspond to the four

clinical parameters and computes the three evidence indexes

with the estimated uncertainties. The network weights and pa-

rameter uncertainties are obtained from a file which can be up-

dated by the program that is used for the network training.

V. CONCLUSION

The discrimination between airway diseases with similar

symptoms at early stages can be reliably obtained using a

complete clinical, radiological, and functional assessment.

However, such a discrimination is much more difficult to obtain

when only functional, noninvasive tests have to be employed to

avoid unnecessary stress for the patients and to reduce the time

required for diagnosis.

This paper has presented a possible procedure to obtain such

a discrimination which is based on four simple respiratory tests.

The four test results are sent to three MLPs trained to recog-

nize the three pathologies. The network outputs are then com-

bined to define the diagnosis. Two different methods have been

presented. The most interesting results are obtained with the

method which estimates the evidence index of each pathology

and its uncertainty. Starting from these values, each patient is

tagged as either not classifiable or affected by one of the three

pathologies. The classification is performed by employing a set

of thresholds that can be chosen either to reduce the number of

erroneous diagnoses, at the expense of a greater number of un-

classified patients, or to reduce the number of unclassified pa-

tients at the expense of a greater number of erroneous diagnoses.

The proposed algorithm has been trained on a population of

55 patients and tested on another population of 103 patients.

Depending on the threshold choice, an error rate in the range

of 4% to 10% has been obtained in the control set with a rate

of unclassified patients in the range of 50% to 22%. A simple

program has been developed which implements the algorithm

and can be used to quickly estimate the patient’s situation and

decide if other tests should be performed.

An analysis of the performance difference within the training

and control sets suggests that even better results could be ob-

tained by enlarging the training set to better represent the dif-

ferent kinds of pathologies. The authors are collecting new data

to verify this possibility and will update the results as soon as a

reasonable number of new examples becomes available.
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