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Abstract

This paper proposes a practical approach to addressing limitations posed by using of single-

channel electroencephalography (EEG) for sleep stage classification. EEG-based characteriza-

tions of sleep stage progression contribute the diagnosis and monitoring of the many pathologies

of sleep. Several prior reports explored ways of automating the analysis of sleep EEG and of

reducing the complexity of the data needed for reliable discrimination of sleep stages at lower

cost in the home. However, these reports have involved recordings from electrodes placed on

the cranial vertex or occiput, which are both uncomfortable and difficult to position. Previous

studies of sleep stage scoring that used only frontal electrodes with a hierarchical

decision tree motivated this paper, in which we have taken advantage of rectifier neural

network for detecting hierarchical features and long short-term memory (LSTM) network for

sequential data learning to optimize classification performance with single-channel recordings.

After exploring alternative electrode placements, we found a comfortable configuration of a

single-channel EEG on the forehead and have shown that it can be integrated with additional

electrodes for simultaneous recording of the electrooculogram (EOG). Evaluation of data from

62 people (with 494 hours sleep) demonstrated better performance of our analytical algorithm

than is available from existing approaches with vertex or occipital electrode placements. Use

of this recording configuration with neural network deconvolution promises to make clinically

indicated home sleep studies practical.

1
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1 Introduction

People spend approximately one-third of their life sleeping and sleep plays an important role in

physiological homeostasis. Sleep related disorders, such as sleep apnea, insomnia, narcolepsy, reduce

the quality of life for the large numbers of people who are affected. As much as 33% of general

population reports suffering from insomnia [1]. For accurate diagnosis of sleep disorders, all-night

polysomnographic (PSG) recording including an electroencephalogram (EEG), electrooculogram

(EOG) and electromyogram (EMG), followed by expert manual scoring of sleep stages and their

progression according to standard guidelines is needed [2, 3]. High costs and limited availability of

specialized facilities limit their use.

As home sleep monitoring and automatic sleep stage scoring could reduce costs and increase

access to diagnostic sleep studies, there has been interest in coupling the development of simple,

wearable EEG recording devices with automated sleep stage classification. Three main challenges

to the automatic sleep stage classification have been identified:

Challenge 1. Heterogeneity. People have different cranial structures and vary demographically

and physiologically in ways that influence EEG patterns in sleep. For example, about 10% people

do not generate alpha rhythm during stage W, and a further 10% generate only a limited alpha

rhythm [3]. For these subjects, American Association of Sleep Medicine (AASM) guidelines suggest

use of alternative criteria for classification of stages W and N1.

Challenge 2. Temporal Pattern Recognition. Scoring sleep stage is a sequential problem [3], as

sleep stage scoring depends not only on temporally local features, but also on prior epochs time.

For example, the onset of stage N2 depends on whether K complex or sleep spindles occurs early

or in the last half of the previous epoch [3]; stage N2 can be classified even without K complexes

or sleep spindles. Rapid eye movement sleep (REM) classification also depends on the features

from prior EEG epochs, e.g., an epoch can be scored as REM, even in the absence of rapid eye

movements, if the chin EMG tone is low and at low amplitude and there is mixed frequency EEG

activity without K complexes or sleep spindles.
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Challenge 3. Comfort. Previous reports [4, 5, 6, 7] described home sleep EEG recording

with montages including central, occipital and parietal electrodes 1, which better detect sleep

spindles, vertex shape waves and alpha rhythm than do frontal electrode (Table 1). However, these

EEG positions demand placement of the electrodes in hairy regions of scalp, demanding careful

placement and adhesive paste to minimize movement related noise, and can lead to limitation of

head movement and discomfort during sleep [8].

A recent study [4] evaluated accuracy of classification with Fpz-Cz channel [9], using a Complex

Morlet wavelets transform for feature extraction and Stacked Sparse Autoencoders for classification.

This showed that including the features from neighboring epochs can improve the classification

performance. It also highlighted a bias towards misclassification of epochs as the overall most

frequently occurring class (stage N2) because of the inherent imbalance in occurrence of the different

sleep stages. To solve the imbalance problem, the author used a down-sampling method to generate

new, balanced dataset in which every sleep stage is equally represented. To use more information

from the original training dataset, the authors generated new ”balanced” datasets and trained

individual networks using data from each of their subjects (ensemble learning). However, to obtain

one prediction, feed-forward propagations on each of the individual networks are required. This is

inefficient, although it improves accuracy. Here, we have chosen an alternative ”ensemble learning”

method that gains in efficiency by using dropout [10].

Other reports describe ways in which classification accuracy can be improved by supplementing

data with EEG recordings from central, occipital or parietal electrode. For example, [5] evaluated a

method using a C3-A1 channel. In [6], alternative approaches using a C3-A2 and the Pz-Oz channels

were described. Here, the author used multi-scale entropy (MSE) and autoregressive (AR) models

as features, and then trained a linear discriminant analysis (LDA) model as a classifier. In [7],

classification was based on the Cz-Pz channel. However, all these three studies evaluated their

methods without any type of cross-validation and one [5] trained the classifier using signals from

all pf the subjects, which meant that training and testing data were not independent.

To address problem of wearer comfort, time-frequency domain features extracted

from Fp1-Fp2 EEG and left-right EOG channels have been investigated in [11, 12,

1The location of scalp electrodes for sleep scoring is shown in Fig. 1, following the international 10/20 system, in
which each site has a letter to identify the lobe and a number to identify the hemisphere location.
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13, 14, 15, 16]. These features were fed into a hierarchical decision tree [11, 12, 13,

14, 16], or a structured hierarchical SVM [15] classifier to determine different their

corresponding sleep stages. However, these approaches still require prior knowledge

to define the structure of the decision trees. This marks the primary distinction with

our method, as we aim to utilize a long short-term memory (LSTM) to automatically

learn the scoring strategy instead of manually defining rules in the decision tree.

In our approach, we propose use of a Mixed Neural Network (MNN) to solve both the population

heterogeneity and temporal pattern recognition problems. Our MNN is composed of a rectifier

neural network which suitable for detecting naturally sparse patterns [17], and a long short-term

memory (LSTM) for detection of temporally sequential patterns [18]. We will describe the details

in Section 2.3. For signal recording, we propose a novel configuration that combines a low frontal

electrode for EEG signal detection with another electrode for electrooculography (EOG). During

periods without eye movement, the latter electrodes act as reference electrodes (analogous to A1

and A2). Through the full course of the study, the EOG provides additional information for sleep

scoring by detecting eye movements [19, 20].

2 Methodology

2.1 Sleep stage standards

There are two standards commonly used to define sleep stages: the Rechtschaffen and Kales (R&K)

[2], and that developed by the American Academy of Sleep Medicine (AASM) [3]. The AASM

standard adopted for this paper, classifies sleep into 5 different stages with one awake stage (W),

three sleep stages (N1, N2, N3) corresponding to different depths of sleep, and one rapid eye

movement stage (REM). Table 1 summarizes the waves and events of EEG during sleep included

in the AASM standards. Each sleep staging decision is based on a 30 (or 20) seconds window of

the physiological signals called an EEG epoch.

2.2 Features selection based on sleep physiology

The physiological features of sleep EEG can be typically characterized either in the time or

frequency-domain (Table 1).
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2.2.1 Spectral power of frequency bands

Our approach uses time-frequency analysis to extract feature from each EEG epoch (Table 3).

We have chosen to use a conventional Fourier transform over other methods (e.g., complex Morlet

wavelets) to allow us to strictly follow the AASM standards and then take advantage of neural

network to further extract feature.

A short-time Fourier transform (STFT) [21] is used to extract temporal features. STFT extracts

the frequency and phase content of a signal as it changes over time to generate a spectrogram. STFT

has three parameters: the sliding window size, the overlap percentage, and the window function.

The sliding window size defines the time interval of an EEG segment and controls the trade-off

between frequency and temporal precision. e.g., increasing the window size will increase frequency

precision, but decrease temporal precision. We allow segments to overlap to reduce artifacts at the

boundaries of adjacent windows. Increasing the degree of overlap will decrease artifacts, but will

also lead to higher computation costs. Window function is used to reduce the spectral leakage at

the boundary of a sliding window.

In our experiment, the STFT was used to divide the 30 seconds EEG epochs into shorter

segments of 5 seconds with serial overlaps of 70%. Each of the short EEG segments was windowed

by hamming window function. The window length, window overlap, and window function

are selected based on the performance in our experiment. For the window length,

we tried from 1 to 8 seconds, and we found that the window length of 5 gave us the

best performance. For the window overlap, we tried with 50%, 60%, 70%, 80% and

90%. We found that 70% gave us the best performance. We explored the use of both

Hamming and Hanning windows and did not observe any performance distinction

between the two.

After generating a spectrogram by using STFT, the spectral power of different sub-bands were

calculated by summing up the amplitude values in each segment to define the power spectrum

density (PSD) [21]. The PSD is described below as (1), where x is the windowed raw EEG segment,

F (x) is the amplitude values after Fourier transform from the EEG segments and fmin and fmax

are the minimum and maximum frequencies of given in Table 3.
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PSD =

fmax∑

i=fmin

F (x)i (1)

A 5-second sliding window can not always cover the whole period of the low-frequency slow

eye movements [20], so they can be difficult to detect it using STFT even with zeropadding. To

address this issue, the PSD of slow eye movement was captured by applying Fourier transform over

the entire EEG epoch.

2.2.2 Statistics of spectral power

Additional information can be extracted from the spectral power. Some features such as alpha

rhythm and sleep spindle usually appear regularly. The duration of each sub-band was estimated

by averaging PSDs over an EEG epoch. Larger averaged PSD is equivalent to better continuation.

Low averaged and median PSD values with a high maximum PSD value appears as an occasional

feature, such as K complexes and vertex shape waves. Moreover, the standard derivation of each

sub-band evaluated the frequency fluctuation.

2.2.3 Time domain

The EEG amplitude is usually lower than 100uV , while the EMG, EOG and movement artifact

amplitudes are often higher. The maximum and minimum amplitudes of the raw EEG signal reflect

artifact information. As the Shannon entropy of raw EEG signal [22] is sensitive to the amplitude

distribution, it can additionally be used to derive related features from signal synchronization or

amplitude.

2.3 Mixed neural network

The temporal physiological features as introduced in the previous section can serve as the input

data which can feed into different classes of classification algorithms, e.g., logistic regression, sup-

porting vector machine, etc. Unfortunately, the classification performance of these has been poor

because they do not address the temporal pattern recognition challenge [23, 24, 25] . Some of the

physiological features are strongly correlated, although they may be incomplete relative to currently

accepted sleep physiological descriptions. Further exploration in the feature space is needed. As
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emphasized earlier, any given sleep stage depends not only on the features at the moment, but also

on those that are highly correlated in the past. Such temporal dependency needs to be considered.

Motivated by these considerations, two classes of deep neural networks are introduced: multi-

layer perception (MLP) and a recurrent neural network (RNN) to address completeness and tem-

poral correlations, respectively. As illustrated in Fig. 2, after independent applications, MLP and

RNN are concatenated in our model.

In the end, a softmax function is introduced for classification. In summary, the key idea is to

use a mixture of neural networks to ”learn” new features for classification. This type of mixture is

termed as mixed neural network (MNN).

In Fig. 2, MNN specifies a modular structure for MLP, RNN and softmax respectively. For

the MLP module, there are many latent parameters needed to be selected and tuned, such as the

number of layers, number of units in each layer and the selection of nonlinear activation functions.

A similar problem arises with the RNN module, as well; the structure of RNN needs to be specified

a prior.

In our study, we choose a rectifier neural network as the candidate for MLP module and long-

short term memory architecture for RNN module. These selections are mainly based on an ad-hoc

tests across various combinations of these parameters, especially the number of layers and number

of units across layers. Nevertheless, we provide an analysis on the selection of rectifier function as

the candidate nonlinear activation function in MLP module.

2.3.1 Rectifier Neural Network

A rectifier neural network was used in the MLP module, where the function is described as follows:

f(x) = max(0, x). (2)

The rectifier network has proved to be able to optimize performance without any unsupervised

pre-training on unlabelled data. It is well known that rectifying neurons performed better when

the data is sparse compared to sigmoid and hyperbolic tangent neurons [17]. In our case, the EEG

spectrum is a typical type of sparse data. First of all, only a few frequency bands will exist in

any particular sleep stage. Secondly, the frequency activities are discontinuous, e.g., the alpha
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activity may only appear for about 50% of the epoch in stage W. Thirdly, different people may

show different frequency amplitudes in same sleep stage.

In addition, the output is a linear function of the inputs, so the gradients from next RNN module

are able to back-propagate well to all layers. This alleviate the ”vanishing gradient” problem. As

the spectrogram is used as input, the output of a rectifier neuron in the first hidden layer is the

combination of PSDs features. Combinations of absent frequency bands output as zero with a

rectifier, so their values will not effect the inputs of next layer. For discontinuous features and

variation problem, the rectifier can represent whether these features exist by active or not.

Dropout is a popular technique for addressing overfitting in deep neural networks [10, 27]. The

dropout method is able to train a large number of different networks while allowing all of the

networks to share the same weights for the hidden neuron. It can be considered as another form of

ensemble learning [10], and has similarities to autoencoders that we have described previously [4].

In our work here, we set the dropout probability from input layer to first rectifier layer, from

first rectifier layer to second rectifier layer, and from second rectifier layer to RNN module as 20%,

50% and 50%, respectively. We found empirically that this combination of dropout probabilities

achieved the best performance, which is similar to the dropout experimental study on MNIST

dataset [10].

Without the rectifier neural network, the accuracy dropped by 3%. Moreover, in our experiment,

we found the rectify activation function work better than sigmoid and hyperbolic tangent functions.

It is also possible that this is caused by the non-linearities, e.g., when using sigmoid or hyperbolic

tangent functions, even the input values are very high, the output will not change too much, because

the output is close to 1.

2.3.2 Long short-term memory

Long short-term memory (LSTM) architecture is selected as the candidate in the RNN module.

LSTM is well known to be capable of learning long-term dependencies problem [28, 18]. The

advantage of LSTM is that it not only applied the current information to perform the present

task, but also explicitly takes account to long-term information in the past which is a limitation of

classic RNN architecture (the long-term dependency problem). Overall, the long term information

memory is a key property of the LSTM architecture.
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An illustrative example of long-term dependency problem in sleep stages classification arises

when a long period of N2 sleep shifts to stage N1 for several EEG epochs. If sleep spindles appear,

the probability of reverting to stage N2 is higher than the probability of progressing to stage N3.

In this study, LSTM is implemented by the following formulas, which is the vanilla architecture.

It should be noted that the vanilla LSTM outperformed than any other variations as shown in [30].

The function σh and σc are the hyperbolic tangent activation function applied to the block output

and cell gate, the other σ functions are logistic sigmoid function. The element-wise multiplication

(Hadamard product) of two vectors is denoted by ⊙.

it = σi(xtWxi + ht−1Whi + wci ⊙ ct−1 + bi) input gate

ft = σf (xtWxf + ht−1Whf + wcf ⊙ ct−1 + bf ) forget gate

ct = ft ⊙ ct−1 + it ⊙ σc(xtWxc + ht−1Whc + bc) cell state

ot = σo(xtWxo + ht−1Who + wco ⊙ ct + bo) output gate

ht = ot ⊙ σh(ct) block output

2.3.3 Output module

After LSTM, multinomial classification (softmax regression) which is widely used in various proba-

bilistic multi-class classification problems, was applied as the output layer. The softmax regression

is the generalization of logistic regression to multiple categories, which is to predict the probability

of inputs (x) belonging to each class (y). The number of outputs of the softmax layer is equal to

the number of classes; as there are 5 stages in our classification, the number of outputs is 5.

2.4 Training the network

The MNN was trained by using stochastic gradient descent (SGD) [31] with a batch size of 500

examples and learning rate of 0.01 with momentum of 0.9. According to the softmax output and

dropout of rectifier neural network, cross-entropy was used as the loss function without any kinds

of weight decay.
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3 Experiment and Result

3.1 Experimental Data

An open access dataset [32] was used to evaluate the proposed method. It includes data from 62

healthy subjects, aged from 23 to 73 years (29 men, 33 women). All recordings are from different

subjects. Each EEG recording had an epoch duration of 30 seconds and recordings were scored

by a single sleep expert following the AASM standard. Sleep stages are labeled as stage W, N1,

N2, N3, REM or unknown. The unknown stage only exists at the start and the end of recordings,

when the subjects are preparing to sleep or when the subjects are completing the recording. To

evaluate the proposed method, only the “in-bed” part of the recording was taken, so the unknown

stage was ignored.

The recording contains 20 EEG, 2 EOG, 1 ECG and 3 EMG channels, and all EEG channels are

referential. This means that we are testing whether our method, which uses limited physiological

data, approaches performance similar to that of the expert reader with a full set of bio-signal data.

We used the derivation between F4 and EOG Left Horizon. They are placed near the hairline and

outer-down canthus of left eye; none are placed on the skin with hair. The motivation for which

being demonstration of a proof of principle for a convenient and comfortable to home-based EEG

recording electrode configuration.

3.2 Experimental Design

To evaluate the Mixed Neural Network, we tried several models for the rectifier neural network

by varying the number of hidden layers (2 to 5), the number of hidden units in rectifying layer

(200 to 800) and the number of hidden units of LSTM (200 to 1000). We also compared it with

three representative classifiers, including the Support Vector Machine (SVM), Random Forest (RF)

and Multilayer Perceptron (MLP). All classifiers used the same features best interpret comparisons

across methods.

The SVM used radial basis function (RBF) kernel, with the kernel coefficient gamma equals

to 0.025. We set C equal to 0.5 to regularize the estimation in order to avoid noisy features.

Shrinking heuristic was also applied. The RF used 100 estimators, and the performance of a split

was estimated as the mean square error. The number of features to consider when looking for the
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best split was equal to the square root of number of features. The nodes of RF where expanded

until the “leaves” were pure or until the “leaves” contained less than 2 samples. Both SVM and

RF avoid class imbalances by setting class weight. The MLP in this comparison used 2 layers

rectifying neuron followed by softmax output layer, and the random dropout was applied during

supervised training. The same approach was used with the feature processing layer of the Mixed

Neural Network. All hyper-parameters were fine-tuned to achieve best performance. Oversampling

was used to avoid the class imbalance problem when training the MLP.

We defined a rule for the SVM, RF and MLP. If the sequence length (SL) is 1, we used only

the features of current EEG epoch to train the classifier. If sequence length is 2, we trained the

classifier by using the features from current EEG epoch and previous 1 EEG epoch, and so on. In

LSTM, sequence length is the number of examples considered for each output.

The classification performance was evaluated using widely-used indexes: macro F1-score (MF1)

and overall accuracy (ACC). We generated the confusion matrix using the predictions

from all of the cross-validation folds and we used this confusion matrix to calculate

the overall accuracy and the macro F1-scores. The accuracy was computed from the

sum of the diagonal elements divided by the total number of samples. The macro F1-

score (MF1) was the mean of the per-class F1-scores of each sleep stage. In addition,

the performances of each individual stage were evaluated by using the recall (RE), precision (PR)

and F1-score (F1).

In this experiment, the training and testing data were from different subjects in order to limit

overfitting and data dependence. K-fold cross-validation was adopted, K was set to 31 for the 62

recordings, which means 2 recordings were used as a validation set and the other 60 recordings were

used as a training set for each validation.

The reason of using a cross-validation is that, if we split our dataset into the

training, validation and testing sets (e.g., 60%-20%-20%), we would have only 37, 12

and 13 patients for training, validation and testing respectively. Such small sets of

subjects might not generalize to a larger population. We therefore used a 31-fold cross

validation technique, in which we split the dataset into 31 subsets (each consists of

2 subjects). 30 subsets were used for training and the withheld subset was used for

testing. This process was repeated 31 times, such that each of the 31 subsets was
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evaluated once.

To speed up the evaluation, Graphical Processing Units (GPU) acceleration was used to training

the network. Training the networks for sequence length equal to 5 over cross validation takes about

2 days by using NVIDIA 630 GPU on a single machine. The code was implemented by Theano

[33, 34].

3.3 Result and Discussion

Table 4 shows the macro F1-score (MF1) and overall accuracy (ACC) of different classifiers from

cross-validation under different sequence length, while the boldface numbers indicated the best

performance of a classifier.

We found that the performance of control group (SVM, RF and MLP) shows slight improvement

when using the features from previous EEG epoch(s) compared with using only the features from

current EEG epoch (sequence length=1). However, no continual improvement found; results even

became worse as the sequence length increased. For example, the performance of SVM became

worse when the sequence length increased from 2 to 5. We believe that this occurs because control

group transfers the classification problem as a complex formula and not as a sequential model. In

this experiment, SVM reached its best performance when using the features from the current and

previous EEG epoch. RF and MLP gave their best performance by using features from 3 and 4

nearest EEG epochs, respectively. Moreover, RF has better accuracy compare with SVM and MLP,

but its macro F1-score is the worst.

By contrast, both the macro F1-score and overall accuracy of the Mixed Neural Network showed

continual improvements as the sequence length increased from 1 to 5. The result demonstrated

that our network has ability to remember the stage information epoch-by-epoch. Even setting

the sequence length to 1, its accuracy is still better than the control group. When its sequence

length is set to 5, both overall accuracy and macro F1-score become significantly higher than

other classifiers. However, we found that the performance decreased when the sequence

length was greater than 5. This may be due to the fact that the sleep experts would

not consider the PSGs more than 5 epochs when labelling the data according to AASM

manual. Thus, an overlong sequence length may not improve the performance but may

introduce noise during training. Table 5 shows its confusion matrix from cross-validation, the
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left column is the actual class labeled by sleep expert, and the top row is the predicted class

calculated by the classifier.

In addition, the standard deviations of the accuracies in each fold of MNN are

0.0604, 0.06648, 0.06020, 0.05865, 0.0284, 0.0343 with a sequence length from 1 to 6.

We found that the standard deviation became stable when the sequence length was

greater than 5.

For more details, Table 6 compared MNN with the control group across different sleep stages.

This table lists the best performance of different classifiers.

The boldface numbers indicated the best situation across classifiers in control group, and then

the bottom line list the improvement of MNN compare with the control group. It is clear not only

that MNN has better overall accuracy and macro F1-score, but also that all F1-scores for individual

sleep stages are better than those for the control group overall.

In our experiment, we tried to add fully connected layers between LSTM and

softmax, and vary their hidden sizes, but no improvement was found. Specifically,

more fully connected layers after LSTM gave poorer performance than the one without

any extra layers. We also tried to use dropout to avoid the overfitting, but the

performance was similar to the one without any extra layers. Actually, many LSTM-

based applications, such as image captioning [35] and visual question answering [36]

outputting the probabilities of every word in a vocabulary (i.e., very large number

of output dimensions), also fed the activations from LSTM output to a softmax layer

directly. We therefore decided not to add any extra layers before the LSTM.

We did not found better performance if we used more fully connected layers in the

MLP module before LSTM. The reason is we already extracted the features from EEG

signals. Adding unnecessary layers will complicate the network and lead to the over-

fitting problem. For instance, when we used 3 layers of MLP with the same dropout

probabilities, the accuracy slightly decreased. When we set the dropout probabilities

to a higher value, our model outputted a similar accuracy with our current archi-

tecture. We tried different numbers of hidden units from (200 to 800), and different

activation functions such as rectifier, sigmoid, hyperbolic tangent and ramp. We found

that the 2 layers of MLP with 300 hidden units and the rectifier activation function
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gave us the best sleep stage scoring performance.

We also explored different types of RNNs, such as vanilla RNN, long short-term

memory (LSTM) and gated recurrent unit (GRU). We found that vanilla RNN gave

a poorer performance compared to LSTM and GRU. Both LSTM and GRU were

better in distinguishing sleep stages N1 and N2. We found that they gave similar

performance, which is the same phenomenon observed in [30].

To explore whether MLP can learn a combination of features, we tried a model

without MLP, and we found that the performance in distinguishing between “N2 and

N3”, and “W and REM” decreased (e.g., the overall accuracy decreased to 85.10%).

This implied that the MLP was able to learn useful combination of the preprocessed

features. For instance, the MLP might learn a common representation of sleep spindles

appearing in sleep stage N2 and N3, and rapid eye movement in stage W and REM.

Compared with existing studies, Table 7 shows their macro F1-scores, overall accuracy and the

F1-scores of different sleep stages. It shows that our macro F1-score, and F1-score of stage N1

and N2 are significantly higher than the existing studies. That is because LSTM performs better

when dealing with the continuation of N1 and N2. However, the F1-score of stage W is lower than

most of existing studies. It is caused by poor detection of alpha rhythm from frontal lobe, but it

outperformed two studies using EEG from central lobe or frontal lobe.

4 Conclusion and Discussion

In this paper, the proposed Mixed Neural Network and the corresponding training method work well

for sleep stages classification problem compared with SVM, RF and MLP. Moreover, the proposed

method only uses EEG signal from a single pair of electrodes positioned comfortably over hairless

skin.

However, in terms of convenience, wearing the F4 channel near the hair line is imperfect.

Other frontal EEG channels such as Fp2 and Fpz are easier to wear, but these channels have lesser

information about stage W, N1, N2 and N3 compared with the F4 channel due to the longer distance

to central lobe, as Table 1 describes. To evaluate these channels, Fp2-EOG left was evaluated by

using the Mixed Neural Network and the same feature extraction algorithm with F4-EOG left. The
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result on Table 8 shows lower accuracy and macro F1-score compare with F4-EOG left. However,

the result still better than other classifies in control group when they used EEG from F4-EOG left.

Fig. 4 illustrates the idea of home-care sleep monitoring system using Fp2-EOG left and

dry electrode. The main board contains amplifiers, an analog to digital converter and wireless

transmission module. The driven-right leg (DRL) can be placed on anywhere such as the back side

of main board. With this structure, the device can be designed as a sleep mask, then movement

during sleep would not lead to uncomforted feeling and noisy signal. This is a potential hardware

approach for the proposed method in this paper.

5 Appendices

5.1 Confusion matrices from cross-validation of different classifiers using same

features

In order to make a fair comparison, these algorithms used same features as well as the proposed

method on Table 5, and same feature extraction algorithm as well as Table 8. Moreover, as SVM,

RF and MLP have their best performance when sequence lengths are 2, 3 and 4 respectively as

Table 4 shows, only the confusion matrices with best performance are shown.

5.2 Confusion matrices of existing studies

We need to point out these existing single-channel based studies used different dataset for eval-

uation, so it is not suitable to compare them directly by using accuracy. However, the recall,

precision and F1-score can illustrate the reliability of algorithms, especially for stage N1. The

confusion matrices are borrowed from their papers.
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6 Tables

Table 1: EEG waves and events during sleep

Event Frequency/Duration Best Location Related Stage

Alpha rhythm [3] 8-13 Hz Occipital lobe W

Eye blinks 0.5-2 Hz EOG channel W

Reading eye movement uncertain EOG channel W

Rapid eye movement [19] 0.5-2 Hz < 0.5 s EOG channel W, REM

Slow eye movement [20] 0.1-1 Hz > 0.5 s EOG channel N1

Low amplitude, mixed fre-
quency activity [37]

4-7 Hz Frontal and Cen-
tral lobe

N1

Vertex shape waves < 0.5 s Central lobe N1

K complex 1.6-4 Hz >= 0.5 s Frontal lobe N2

Sleep spindle 11-16 Hz >= 0.5 s Central lobe N2, N3

Major body movement > 15 s All channels All stages

Slow wave activity 0.5-2 Hz > 75 uV Frontal lobe N3

Low chin EMG tone 15-30 Hz —- REM

Sawtooth waves 2-6 Hz Central lobe REM

Transient muscle activity < 0.25 s —- REM

Arousal 15-30 Hz —- N1

Table 2: Performance of literature. Overall accuracy (ACC), macro F1-score (MF1), F1-score
(F1). The letters F, T, C, P and O refer to frontal, temporal, central, parietal and occipital lobes
placements, respectively.

Method F1 MF1 ACC

W N1 N2 N3 REM

Fpz-Cz [4] 71.58 47.04 84.60 84.03 81.40 73.73 78.94

Cz-Pz [5] 91.45 47.62 82.59 74.21 77.81 74.74 82.57

C3-A2/Pz-Oz
[6]

93.62 15.29 78.25 71.45 81.96 68.11 83.60

Cz-Pz [7] 85.95 20.86 84.78 84.28 85.95 72.36 82.93

Fp1-Fp2 [13] 74.82 47.04 86.94 87.89 86.31 76.59 81.65
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Table 3: EEG features extraction

Feature Purpose Related Stage

Maximum and minimum signal am-
plitude over the entire epoch

Capture the major body movement
and peaks

All stages

Shannon entropy over the entire
epoch

Capture the amplitude of vibration All stages

Maximum and minimum signal am-
plitude using a sliding window

Capture the major body movement
and peaks

All stages

0.06-0.1 Hz using a sliding window Capture the slow eye movement N1

0.1-0.3 Hz using a sliding window Capture the slow eye movement N1

0.3-0.5 Hz using a sliding window Capture the slow eye movement N1

0.5-1 Hz using a sliding window Capture the slow eye movement N1

0.5-2 Hz using a sliding window Capture the eye blink, rapid eye
movement and slow wave activity

W, REM, N3

1.6-4 Hz using a sliding window Capture the K complex N2

3-4.5 Hz using a sliding window Capture the hypersynchrony for
children

N1

4-7 Hz using a sliding window Capture the low amplitute, mixed
frequency activity and rhythmic an-
terior theta activity (5-7 Hz, for chil-
dren)

N1

8-13 Hz using a sliding window Capture the alpha rhythm W

11-16 Hz using a sliding window Capture the sleep spindle N2, N3

15-30 Hz using a sliding window Capture the low chin EMG tone REM

For the frequency-band power cap-
ture using a sliding window, calcu-
late it’s maximum, minimum, mean,
median and standard derivation

Capture the occasionally and con-
tinuous features

All stages

0.06-0.1 Hz over the entire epoch Capture the slow eye movement N1

0.1-0.3 Hz over the entire epoch Capture the slow eye movement N1

0.3-0.5 Hz over the entire epoch Capture the slow eye movement N1

0.5-1 Hz over the entire epoch Capture the slow eye movement N1
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Table 4: Comparisons of different algorithms using F4-EOG (Left). SVM represents Support Vector
Machine, RF represents Random Forest, MLP represents Multi-layer Perceptron, MNN represents
Mixed Neural Network and SL represents Sequent Length

SL 1 2 3 4 5 6

SVM

MF1 73.43 75.01 74.71 74.34 73.92 73.50

ACC 78.01 79.70 79.53 79.20 78.87 78.53

RF

MF1 69.95 72.07 72.44 71.70 71.32 70.92

ACC 80.68 81.53 81.67 81.30 81.18 80.94

MLP

MF1 74.11 76.71 76.80 77.23 76.71 76.23

ACC 78.17 80.47 80.81 81.43 81.41 81.37

MNN

MF1 73.71 78.49 79.76 80.35 80.50 80.44

ACC 82.67 84.60 85.28 85.67 85.92 85.82

Table 5: Confusion matrix from cross-validation using MNN and F4-EOG (Left) when sequence
length is 5. The left column is the actual class labeled by sleep expert, and the top row is the
predicted class calculated by the classifier.

ACC = 85.92% MF1 = 80.50%

SL=5 W N1 N2 N3 REM RE PR F1

W 5022 577 188 19 395 80.95 88.49 84.55

N1 407 2468 989 4 965 51.07 62.75 56.31

N2 130 630 27254 1021 763 91.46 90.02 90.73

N3 13 0 1236 6399 5 83.61 85.94 84.76

REM 103 258 609 0 9611 90.83 81.87 86.12

Table 6: Comparison between our method and other classifiers across the five scoring performance
metrics (precision, recall, F1-score, macro F1-score, and overall accuracy) using F4-EOG (Left)
MethodSL MF1 ACC W N1 N2 N3 REM

RE PR F1 RE PR F1 RE PR F1 RE PR F1 RE PR F1

SVM 2 75.01 79.70 84.14 73.79 78.63 59.76 41.14 48.73 78.78 94.81 86.06 91.52 75.03 82.46 80.20 78.20 79.19

RF 3 72.44 81.67 77.73 78.70 78.21 23.60 68.69 35.13 93.03 83.49 88.00 76.05 87.78 81.50 82.65 76.35 79.38

MLP 4 77.2381.43 83.30 82.62 82.95 58.47 49.11 53.38 78.89 94.77 86.10 95.09 69.70 80.44 88.11 78.91 83.26

MNN 5 80.50 85.92 80.95 88.49 84.55 51.07 62.75 56.31 91.46 90.02 90.73 83.61 85.94 84.76 90.83 81.87 86.12

+3.27 +4.49 +1.59 +2.93 +2.73 +2.30 +2.86
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Table 7: Comparison between our method and the literature across the three scoring performance
metrics (F1-score, macro-F1 score, and overall accuracy)

Study Channel MF1 ACC F1

W N1 N2 N3 REM

[4] Fpz-Cz 73.73 78.94 71.58 47.04 84.60 84.03 81.40

[5] Cz-Pz 74.74 82.57 91.45 47.62 82.59 74.21 77.81

[6] C3-A2/Pz-Oz 68.11 83.60 93.62 15.29 78.25 71.45 81.96

[7] Cz-Pz 72.36 82.94 85.95 20.86 84.78 84.28 85.95

[13] Fp1-Fp2 76.59 81.65 74.82 47.04 86.94 87.89 86.31

MNN F4-EOG Left 80.50 85.92 84.55 56.31 90.73 84.76 86.12

+3.91 +2.32 -6.90 +8.69 +3.79 -3.13 -0.19

Table 8: Confusion matrix from cross-validation using MNN and Fp2-EOG (Left) when sequence
length is 5

ACC = 83.35% MF1 = 76.97%

SL=5 W N1 N2 N3 REM RE PR F1

W 4604 795 294 32 479 74.21 86.04 79.69

N1 405 2208 1292 9 919 45.69 57.08 50.75

N2 208 605 27199 897 889 91.28 86.65 88.91

N3 24 1 1689 5936 3 77.56 86.22 81.66

REM 110 259 914 11 9287 87.77 80.22 83.83

Table 9: SVM using F4-EOG (Left) when sequence length is 2
ACC = 79.70% MF1 = 75.01%

SL=2 W N1 N2 N3 REM RE PR F1

W 5369 574 73 17 348 84.14 73.79 78.63

N1 713 2891 430 8 796 59.76 41.14 48.73

N2 536 2266 23479 2302 1219 78.78 94.81 86.06

N3 132 2 512 7004 3 91.52 75.03 82.46

REM 526 1295 270 4 8486 80.20 78.20 79.19
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Table 10: RF using F4-EOG (Left) when sequence length is 3
ACC = 81.67% MF1 = 72.44%

SL=3 W N1 N2 N3 REM RE PR F1

W 4914 202 606 19 581 77.73 78.70 78.21

N1 743 1141 1709 1 1241 23.60 68.69 35.13

N2 250 160 27724 790 878 93.03 83.49 88.00

N3 17 0 1808 5820 8 76.05 87.78 81.50

REM 320 158 1358 0 8745 82.65 76.35 79.38

Table 11: MLP using F4-EOG (Left) when sequence length is 4
ACC = 81.43% MF1 = 77.23%

SL=4 W N1 N2 N3 REM RE PR F1

W 5218 550 88 30 378 83.30 82.62 82.95

N1 609 2826 533 12 853 58.47 49.11 53.38

N2 258 1658 23508 3117 1258 78.89 94.77 86.10

N3 12 4 357 7277 3 95.09 69.70 80.44

REM 218 717 319 4 9323 88.11 78.91 83.26

Table 12: Complex Morlet wavelets from Fpz-Cz using stacked sparse autoencoders [4]
ACC = 78.94% MF1 = 73.73%

W N1 N2 N3 REM RE PR F1

W 2744 441 34 23 138 81.18 64.01 71.58

N1 471 1654 262 8 366 59.91 38.73 47.04

N2 621 1270 13696 1231 760 77.92 92.53 84.60

N3 143 7 469 4966 6 88.82 79.74 84.03

REM 308 899 340 0 6164 79.94 82.92 81.40

Table 13: CWT and Renyi’s entropy from Cz-Pz using random forest classifier [5]
ACC = 82.57% MF1 = 74.74%

W N1 N2 N3 REM RE PR F1

W 2407 89 111 38 40 89.65 93.33 91.45

N1 56 185 52 8 48 53.01 43.22 47.62

N2 69 85 1897 174 131 80.52 84.76 82.59

N3 14 9 86 482 3 81.14 68.37 74.21

REM 33 60 92 3 719 79.27 76.41 77.81
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Table 14: Multiscale Entropy and Autoregressive Models from C3-A2 or Pz-Oz using linear dis-
criminant analysis [6]

ACC = 83.60% MF1 = 68.11%

W N1 N2 N3 REM RE PR F1

W 1849 87 59 4 11 91.99 95.31 93.62

N1 69 24 12 3 20 18.75 12.90 15.29

N2 15 45 669 165 59 70.20 88.38 78.25

N3 0 1 1 224 0 99.12 55.86 71.45

REM 7 29 16 5 334 85.42 78.77 81.96

Table 15: Spectral / temporal feature extraction from Cz-Pz using fuzzy classification [7]
ACC = 82.94% MF1 = 72.36%

W N1 N2 N3 REM RE PR F1

W 1609 136 134 20 52 82.47 89.74 85.95

N1 88 85 41 1 24 35.56 14.76 20.86

N2 37 250 4534 467 139 83.55 86.05 84.78

N3 0 0 369 2303 0 86.19 82.46 84.28

REM 59 105 191 2 1749 83.05 89.05 85.95

Table 16: Fp1-Fp2 using hierarchical decision tree [13] on well-rested subjects.
ACC = 81.65% MF1 = 76.59%

W N1 N2 N3 REM RE PR F1

W 1046 147 26 3 102 79.00 71.06 74.82

N1 252 795 172 7 305 51.93 42.99 47.04

N2 35 599 5390 292 106 83.93 90.16 86.94

N3 21 92 346 2806 0 85.94 89.94 87.89

REM 118 216 44 12 2846 87.95 84.72 86.31
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7 Figures

1. The international 10/20 EEG system [38]. The letters F, T, C, P and O refer to frontal,

temporal, central, parietal and occipital lobes placements, respectively. The even numbers

refer to electrode positions on the right hemisphere, the odd numbers refer to electrode

positions on the left hemisphere and the ’z’ refers to electrode placement on the mid line of

the head. Additionally, A1 and A2 define position on the left and right earlobes, respectively.

2. Structure of mixed neural network. The spectrum features were input from the left, then

we take advantage of rectifier neural network for detecting hierarchical feature and long

short-term memory (LSTM) network for sequential data learning to optimize classification

performance with single-channel recordings.

3. Active ultra-high impedance electrode design (Left: circle side; Right: skin contact side)

4. Proposed home-care sleep monitoring configuration. Only the EEG signal from forehead is

required.
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