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Amixed noise removal algorithm combining adaptive directional weightedmean 	lter and improved adaptive anisotropic di
usion
model is proposed. Firstly, a noise classi	cation method is introduced to divide all pixels into two types as the pixels corrupted by
impulse noise and the pixels corrupted by Gaussian noise.�en an adaptive directional weightedmean 	lter is developed to remove
impulse noise, which can adaptively select the optimal direction template from twelve direction templates and replace the gray
level of each impulse noise corrupted pixel by the weighted mean gray level of pixels on the optimal direction template. Finally,
an improved adaptive anisotropic di
usion model is developed to remove Gaussian noise in the initial denoised image, which
can 	nely classify image features as smooth regions, edges, corners, and isolated noises by characteristic parameters and variance
parameter and conduct adaptive di
usion for di
erent image features by designing reasonable eigenvalues of di
usion tensor. A
large number of experimental results show that the proposed algorithm outperforms many existing main mixed noise removal
methods in terms of image denoising and detail preservation.

1. Introduction

Noise is more or less introduced into an image in the
process of image acquisition and transmission, which can
signi	cantly deteriorate image quality and increase di�culty
in the subsequent image analysis [1]. �e task of image
denoising is to remove noise from the corrupted image and
meanwhile preserve edges as much as possible. �e nature
of image denoising depends on the types of noise added
to the image. Most commonly noises are additive white
Gaussian noise (AWGN), impulse noise (IN), and themixture
of AWGN and IN.

�eAWGN is usually introduced into an image due to the
thermal motion of electron in camera sensors and circuits,
which is the most widely studied noise model in image
denoising. �e traditional linear 	lter such as mean 	lter can
remove the AWGN but blurs edges. To overcome the disad-
vantage, the bilateral 	lter (BF) [2] uses the geometric and
photometric distances based weights. �e nonlocal means

(NLM) 	lter [3] can be viewed as a signi	cant extension of the
BF based on the fact that similar pixels may not be necessarily
spatial neighbors. �e nonlinear di
usion 	ltering method
such as Perona-Malik (P-M) model [4] is a well-known
method based on a partial di
erential equation. �e P-
M model changes the di
usivity with the gradient during
denoising, which has good capability in edge preservation.
However, the P-M model has a signi	cant shortcoming that
the blocky e
ects exist in smooth regions a�er denoising. A
coherence-enhancing anisotropic di
usion denoising (CAD)
model [5] is developed to solve the problem by designing the
di
usivity as a tensor. However, many undesired false edges
appear in smooth regions a�er denoising. Recently, many
modi	ed models have been developed [6–8].

�e IN is o�en introduced into an image by faulty
memory locations or bit errors [9]. Salt-and-pepper impulse
noise (SPIN) and random valued impulse noise (RVIN) are
the two common types of the IN. �e standard median 	lter
[10] is the most popular nonlinear 	lter for removing the
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IN, which is e
ective at low noise density. When the noise
density is over 50%, some important edges will be blurred.
To overcome the drawback, various modi	ed median 	lters
have been developed [11–16]. �e switching median 	lter
is a popular technique to remove the IN, which 	rstly
identi	es the IN corrupted pixels and then replaces the
gray level of each IN corrupted pixel by the median value
of its neighborhood pixels. �e switching median 	lter
with boundary discriminative noise detection (BDND) [17]
identi	es the IN corrupted pixels by adaptively selecting the
	ltering window of suitable size. �e directional weighted
median (DWM) 	lter [18] detects the IN corrupted pixels
by considering the neighborhood information of each pixel
along four directions. �e modi	ed directional weighted
median (MDWM) 	lter [19] is modi	ed based on DWM
	lter, which considers the neighborhood information of
each pixel on more edge directions than DWM 	lter. �e
modi	ed directional weighted (MDW) 	lter [20] detects the
IN corrupted pixels by combining the directional gray level
di
erence with gray level extreme and replaces the gray level
of each IN corrupted pixel by the weighted mean gray level of
its neighborhood pixels.

In many cases, images may not be corrupted by only one
type of noise, but mixed types of noise such as the mixture
of AWGN and IN. In order to restore the image corrupted
by the mixed noise, many methods have been developed
[21–26]. �e trilateral 	lter (TF) [22] incorporates the rank-
order absolute di
erence statistics into BF framework for IN
detection. Switching bilateral 	lter (SBF) [23] introduces the
sorted quadrantmedian vector into BF to detect IN corrupted
pixels. A nonlocal mixed noise 	lter [24] can skillfully extend
NLM into the mixed noise circumstance by combining
NLM with TF. A universal denoising framework [25] can
remove the mixed noise by combining a complex detection
mechanism with an improved NLM. A modi	ed two-phase
	lter (MTF) [26] can e
ectively remove themixed noise from
the corrupted image, and the computational performance of
this method is further improved in [27]. Recently, the low
rank approximation (LRA) [28] and low rank representation
(LRR) [29] have been used for removing noise. A weighted
low rank approximation (WLRA) model and a weighted low
rank representation (WLRR) model [30] are proposed to
remove the mixed noise, which group image nonlocal similar
patches as amatrix and restore the corrupted image by	nding
theweighted low rank approximation or representation of the
matrix.

In this paper, we propose a mixed noise removal algo-
rithm combining adaptive directional weighted mean 	lter
and improved adaptive anisotropic di
usion model. �e
proposed algorithm can accurately classify IN corrupted
pixels and AWGN corrupted pixels by a noise classi	cation
method. A�er noise classi	cation, an adaptive directional
weighted mean (ADWM) 	lter is developed to remove the
IN based on the multidirectional image information, which
can e
ectively remove the IN and meanwhile preserve edges
and details. �en an improved adaptive anisotropic di
usion
(IAD)model is introduced to remove theAWGN in the initial
denoised image, which can 	nely classify image features as
four types and control the adaptive di
usion for di
erent

image features by designing the reasonable eigenvalues of
di
usion tensor. �e proposed algorithm makes full use of
the advantages of ADWM 	lter and IAD model. �e exper-
imental results show that the proposed algorithm performs
better than some existing main methods in terms of image
denoising and edge preservation.

�e outline of this paper is as follows. Section 2 presents
the mixed noise model. A noise classi	cation framework is
brought out in Section 3. In Section 4, the proposed algorithm
is described in detail. �e experiments and results are shown
in Section 5. Conclusion is given in Section 6.

2. Mixed Noise Model

For a clean gray image �, the gray level of the pixel at location(�, �) is ��,�. �e dynamic gray range of � is between �min and�max. If � is an 8-bit image, �min equals 0 and �max equals
255. Usually, a clean gray image is 	rstly contaminated by
the AWGN during acquisition and then corrupted by the IN
in the process of transmission. A�er that, an image � with
mixed noise is generated. �e mixed noise model is de	ned
as follows:

��,� = {{{��,� + 	�,�, probability (1 − �)
�,�, probability � (1)

where � de	nes the proportion of the IN. 	 is the noise value
which is drawn from aGaussian distributionwithmean 0 and
standard deviation �. 
 is the value of the IN which modi	es
the original gray level. In this paper, we mainly consider the
SPIN mixed with the AWGN.

3. Noise Classification Method

From the mixed noise model, one can observe that the
pixel in an image is corrupted by the AWGN or IN. �e
distribution of mixed noise cannot be described by a 	xed
function. Di
erent pixels should be considered di
erently.
Hence, a noise classi	cation method is introduced to divide
all the noise corrupted pixels into two types. Since the
SPIN corrupted pixel takes the maximum or minimum gray
level, its gray level is much di
erent from the gray levels
of its neighborhood pixels. �en a variance parameter is
introduced to judge the gray level di
erence between the
current pixel and its neighborhood pixels. And, for any one
pixel ��,� in a mixed noise corrupted image, its variance
parameter ��,� in a � × � local window Ω is calculated as
follows:

(1) Calculate the gray level variance�1�,� of all pixels in the
local window by

�1�,� = ∑�2�=1 (��� ,�� −�1)2�2 (2)

where (��, ��) ∈ Ω. ��� ,�� denotes the gray level of pixel��� ,�� .�1 denotes mean gray level of all pixels in the

local window,�1 = (∑�2�=1 ��� ,��)/�2.
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Figure 1: 12 direction templates in the local window, (a) directions 1-4, and (b) directions 5-12.
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Figure 2: �e six test images. From (a) to (f): Lena, Boat, Peppers, Painting, Couple, and Hill.
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Figure 3: Denoising results of di
erent methods for Lena image. (a) Noise-free image. (b) Image corrupted by mixed noise (AWGN+SPIN,�=10, �=20%). From (c) to (f): denoising results of TF, SBF, MNF, and the proposed algorithm.

(2) Calculate the neat gray level variance�2�,� of neighbor-
hood pixels of central pixel by

�2�,� = ∑�2−1�=1 (��� ,�� −�2)2(�2 − 1) (3)

where (��, ��) ∈ Ω and (��, ��) ̸= (�, �). �2 denotes
the mean gray level of neighborhood pixels of central

pixel,�2 = (∑�2−1�=1 ��� ,��)/(�2 − 1).
(3) Calculate the absolute di
erence value between �1�,�

and �2�,�, and denote it as the variance parameter ��,�.��,� = ������1�,� − �2�,������ (4)

Based on the above notion, if �1�,� is much di
erent

from �2�,�, the gray level of central pixel is much di
erent

from the gray levels of its neighborhood pixels. �en the
pixel with a large variance parameter can be identi	ed as a
SPIN corrupted pixel in the high probability. A parameter� is selected as the threshold to judge the value of variance
parameter. Besides, considering that the SPIN corrupted

pixel takes the maximum or minimum gray level, it can be
identi	ed by combining the variance parameter and gray level
extreme.�en the detailed process of noise classi	cation is as
follows:

(1) For any one pixel ��,� in a corrupted image, establish
a local window.

(2) Calculate the variance parameter ��,� according to
formulas (2)-(4).

(3) Identify the characteristic of pixel ��,� in the following
way:

��,� ∈ {{{�1, �� ��,� > � 	 ! ��,� ∈ {0, 255}�2, "#ℎ%�&��% (5)

where �1 and �2 denote the pixels corrupted by the
SPIN and AWGN, respectively. ��,� is the gray level of
pixel ��,� in the corrupted image.

4. Proposed Denoising Algorithm

4.1. Adaptive Directional Weighted Mean Filter. A�er noise
classi	cation, the ADWM 	lter is developed to restore the
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Figure 4: Denoising results of di
erent methods for Boat image. (a) Noise-free image. (b) Image corrupted by mixed noise (AWGN+SPIN,�=10, �=20%). From (c) to (f): denoising results of TF, SBF, MNF, and the proposed algorithm.

SPIN corrupted pixels based on the multidirectional image
information. �e ADWM 	lter 	rstly designs 12 direction
templates in the local window, then adaptively selects the
optimal direction template by calculating the sum of absolute
gray level di
erences between the current noise corrupted
pixel and its neighborhood pixels on each direction template,
and 	nally replaces the gray level of each SPIN corrupted
pixel by the weightedmean gray level of pixels on the optimal
direction template. For any one pixel ��,� corrupted by the
SPIN, the optimal direction template is selected as follows:

(1) Establish a � × � local window Ω centered at the
position (�, �) and design 12 direction templates as
shown in Figure 1.

(2) Calculate the sum of absolute gray level di
erence
between the central pixel and its neighborhood pixels

on each direction template '� by!��,� = ∑
(�� ,��)∈
�

&�� ,�� �������� ,�� − ��,������ (6)

where (��, ��) ̸= (�, �) and - (1 ≤ - ≤ 12) is the
direction index illustrated in Figure 1. �e weight of
each neighborhood pixel ���,�� is assigned by

&�� ,�� = {{{2, (��, ��) ∈ Ω31, "#ℎ%�&��% (7)

whereΩ3 denotes a 3×3 local window centered at the
position (�, �).

(3) Find out the minimum sum of absolute gray level
di
erence among the twelve direction templates, and
denote it as!�∗�,� = arg min

�
{!��,�, 1 ≤ - ≤ 12} (8)

(4) Select the direction template with minimum sum of
absolute gray level di
erence as the optimal direction

template '�∗ .
A�er selecting the optimal direction template, the gray

level of central pixel will be replaced by the weighted mean
gray level of the pixels on the optimal direction template.�e
restoration gray level of the central pixel ��,� can be calculated
as follows:

(1) Calculate the chessboard distance ℎ�� ,�� between the
central pixel and the pixels on the optimal direction
template by
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Figure 5: Denoising results of the proposed algorithm for Lena image corrupted by di
erent mixed noise. (a) Image corrupted by mixed
noise (AWGN+SPIN, �=10, �=10%). (b) Image corrupted by mixed noise (AWGN+SPIN, �=20, �=20%). (c) Image corrupted by mixed
noise (AWGN+SPIN, �=30, �=30%). From (d) to (f): denoising results of the proposed algorithm for (a), (b), and (c).

ℎ�� ,�� = max (������ − ����� , ������ − �����) (9)

where (��, ��) ∈ '�∗ and (��, ��) ̸= (�, �).
(2) Calculate the weight %� of the pixels on the optimal

direction template by

%�� ,�� = ℎ−1�� ,��∑��=1 ℎ−1�� ,�� (10)

where  is the number of the pixels except for the
central pixel on the optimal direction template.

(3) Calculate the restoration gray level �1�,� of the central
pixel by

�1�,� = �∑
�=1

��� ,��%�� ,�k (11)

where ��� ,�� denotes the gray level of pixel ��� ,�� on the
optimal direction template.

An initial denoised image �1 can be obtained by applying
the ADWM 	lter for the mixed noise corrupted image

�. �en an improved adaptive anisotropic di
usion (IAD)
model is introduced to remove the remaining AWGN in the
initial denoised image �1.
4.2. Improved Adaptive Anisotropic Di�usion Model. �e
CAD model uses Gaussian 	lter twice in the di
usion
process. �e standard deviation in the convolution oper-
ation is hard to be determined. It takes multiple exper-
iments to 	nd the optimal value of standard deviation.
Hence, in order to improve the calculation e�ciency, the
IAD model uses Wiener 	lter to replace Gaussian 	ler as
follows: 7�17# = div (8 (9 (∇�1�)) ∇�1�)�1 (;, <, 0) = �1 (;, <) (12)

where (;, <) denotes the position of the pixel in the image
and # denotes the time. !�V denotes the divergence operator.∇ denotes the gradient operator. �1� = &�% %�(�1), and&�% %�( ) denotes Wiener 	lter.

For any one pixel ��,� in the initial denoised image �1, the
gray level obtained by Wiener 	lter is calculated as follows:



Mathematical Problems in Engineering 7

(a) (b) (c)

(d) (e) (f)

Figure 6: Denoising results of the proposed algorithm for Boat image corrupted by di
erent mixed noise. (a) Image corrupted by mixed
noise (AWGN+SPIN, �=10, �=10%). (b) Image corrupted by mixed noise (AWGN+SPIN, �=20, �=20%). (c) Image corrupted by mixed
noise (AWGN+SPIN, �=30, �=30%). From (d) to (f): denoising results of the proposed algorithm for (a), (b), and (c).

&�% %� (�1�,�) = ? + V
2 − �2
V
2 (�1�,� − ?) (13)

where �1�,� denotes the gray level of pixel ��,� in the initial

denoised image. ? denotes themean value of the gray levels of
pixels in a�×� local window which centers at the position(�, �). V denotes the standard deviation of the gray levels of
pixels in the local window. � denotes the standard deviation
of the Gaussian noise.

�e structure tensor 9(∇�1�) is de	ned as follows:

9 (∇�1�) = &�% %� (∇�1� ⊗ ∇�1�) = A ∗ ∇�1�∇�1�
= (911 912921 922)
= ( (7�17; )2 ∗A (7�17; 7�17< )2 ∗A(7�17; 7�17< )2 ∗A (7�17< )2 ∗A )

(14)

where ⊗ denotes the Kronecker product operator.A denotes
the Wiener kernel. ∗ denotes the convolution operator.

�e structure tensor 9(∇�1�) is a symmetric positive
semide	nite matrix, whose eigenvectors are orthonormal.
�e eigenvectors of the structure tensor are as follows:

V1 = (cos I1, sin I1)
V2 = (cos I2, sin I2) (15)

where I1 = (1/2) arctan(2912/(911 − 922)), I2 = I1 + J/2,
V1//∇�1� , and V2 ⊥ ∇�1� . �e corresponding eigenvalues are
given by

L1 = 12 (911 + 922 + √(911 − 922)2 + 49212)
L2 = 12 (911 + 922 − √(911 − 922)2 + 49212) (16)

�e di
usion tensor 8(9(∇�1�)) has the same eigenvec-
tors as the structure tensor, that is, V1, V2. �e corresponding
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Figure 7: �e bar blots of PSNR values of di
erent methods for six test images with �=50%. (a) Lena image. (b) Boat image. (c) Peppers
image. (d) Painting image. (e) Couple image. (f) Hill image.

eigenvalues of the di
usion tensor are Q1 and Q2. �en the
di
usion tensor is de	ned by

8 = (V1 V2) (Q1 Q2)(V�1
V
�
2
) (17)

�e CADmodel only divides image features into smooth
regions and edges, which ignores corners and isolated noises.
In order to enhance image features, the IADmodel introduces
an image feature classi	cation method to classify image fea-
tures as smooth regions, edges, corners, and isolated noises.
Considering that the eigenvaluesL1 andL2 of structure tensor
can describe the changes of image gradation along directions
V1 and V2, two characteristic parameters are de	ned based onL1 and L2 as follows: T1 = L1 + L2,T2 = L1 − L2 (18)

Based on the above notion, T1 describes the compre-
hensive varying property of gray level and T2 expresses the

di
erence of the gray varying along the two directions. �en
for any one pixel ��,� in the initial denoised image, its feature
can be identi	ed by the characteristic parameters as follows:

(1) If L1 ≈ 0 and L2 ≈ 0, it means that the changes of gray
level along V1 and V2 are minimal. �en the pixel is
located in the smooth region and T1 ≈ 0 and T2 ≈ 0.

(2) If L1 ≫ 0 and L2 ≈ 0, it means that the change of gray
level along V1 is very large while the change of gray
level along V2 is minimal. �en the pixel is located in
the edge and T1 ≫ 0 and T2 ≫ 0.

(3) If L1 ≫ 0 and L2 ≫ 0, it means that the changes of
gray level along V1 and V2 are very large.�en the pixel
is an isolated noise pixel or located in the corner andT1 ≫ 0 and T2 ≈ 0.

From the above analysis, it can be seen that the corners
and isolated noises cannot be classi	ed by the characteristic
parameters. Since the variance parameter can re�ect the gray
level di
erence between the current pixel and its neighbor-
hood pixels, it is used to classify corners and isolated noises.
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Figure 8: �e bar blots of PSNR values of di
erent methods for six test images with �=60%. (a) Lena image. (b) Boat image. (c) Peppers
image. (d) Painting image. (e) Couple image. (f) Hill image.

For any one pixel ��,� in a 3×3 local window, if it is an isolated
noise pixel, its gray level is much di
erent from the gray levels
of its neighborhood pixels; if it is located in the corner, its gray
level is similar to the gray levels of the other pixels located in
the corner. Hence, the variance parameter of isolated noise
pixel is much larger than the variance parameter of pixel
located in the corner. �en a parameter �∗ is selected as the
threshold to judge the value of variance parameter � in a3 × 3 local window. �en for any one pixel ��,� in the initial
denoised image, its feature can be identi	ed by combining the
characteristic parameters and variance parameter as follows:

(1) If T1 ≈ 0, T2 ≈ 0, the pixel is located in the smooth
region.

(2) If T1 ≫ 0,T2 ≫ 0, the pixel is located in the edge.

(3) If T1 ≫ 0, T2 ≈ 0, � > �∗, the pixel is an isolated
noise pixel.

(4) If T1 ≫ 0, T2 ≈ 0, � ≤ �∗, the pixel is located in the
corner.

Based on the classi	cation result of image feature, the
eigenvalues of the di
usion tensor are designed to conduct
the adaptive di
usion for di
erent image features as follows:

(1) If the pixel ��,� is an isolated noise pixel or located in
the smooth region, its eigenvalues are designed byQ1 = W,Q2 = W (19)

where W ∈ (0, 1) is a large positive parameter. Both
of the eigenvalues Q1 and Q2 are designed to be large.
�en the di
usivity along the two directions V1 and V2
is large. Hence, the noise can be e
ectively removed.

(2) If the pixel ��,� is located in the edge, its eigenvalues
are designed byQ1 = X,Q2 = 1 − exp (− ����∇�1����) (20)
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Figure 9: �e bar blots of FSIM values of di
erent methods for six test images with �=50%. (a) Lena image. (b) Boat image. (c) Peppers
image. (d) Painting image. (e) Couple image. (f) Hill image.

where X ∈ (0, 1) is a small positive parameter.
�e eigenvalue Q1 is designed to be small while
the eigenvalue Q2 is designed to be large. �en the
di
usivity perpendicular to edge direction is small
while the di
usivity along the edge direction is large.
Hence, the noise at edges can be removed; meanwhile
the edges can be preserved.

(3) If the pixel ��,� is located in the corner, its eigenvalues
are designed by Q1 = Y,Q2 = Y (21)

where Y ∈ (0, 1) is a small positive parameter. Both
of the eigenvalues Q1 and Q2 are designed to be small.
�en the di
usivity along the two directions V1 and V2
is small. Hence, the corner can be preserved.

In conclusion, the IAD model can not only enhance the
image information by 	nely classifying the image features but
also remove the AWGN in the initial denoised image and
meanwhile preserve edges and details. Besides, since the IAD

model can identify the isolated noises in the initial denoised
image, some residual SPIN can be further removed.

�e pseudocodes of the proposed algorithm are provided
as shown in Algorithm 1.

5. Experimental Results

In this section, some experiments are carried out to demon-
strate the performance of the proposed algorithm. Six com-
monly used images are chosen as the test images: Lena, Boat,
Peppers, Painting, Couple, and Hill, respectively (refer to
Figure 2 for the scenes of six test images). All test images
are with the size of 512 × 512. �e denoising results of
di
erent methods are measured by the Peak Signal-to-Noise
Ratio (PSNR) and the Feature Similarity Index Measure
(FSIM). Di
erent levels of the AWGN plus SPIN are tested to
contaminate the noise-free images. �e standard deviation �
of the AWGNvaries from 5 to 15 with the step length of 5.�e
ratio of the SPIN varies from 10% to 60% with the step length
of 10%. �e proposed algorithm is compared with di
erent
methods for mixed noise removal as TF [22], SBF [23], MNF
[24], Cai [27], AMF coupled with LRA [28], AMF coupled
with LRR [29], WLRA [30], and WLRR [30].
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Table 1: �e denoising results (PSNR) of di
erent methods for six test images with �=50%.

Image
�=50%

Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

Lena

�=5 32.65 31.27 31.52 32.40 32.82 33.42�=10 30.95 30.28 30.66 30.83 31.33 31.93�=15 29.24 29.09 29.62 29.46 30.31 30.87

Boat

�=5 29.25 27.75 27.93 28.97 29.35 30.05�=10 28.28 27.33 27.42 27.94 28.40 29.12�=15 27.08 26.71 26.86 27.13 27.58 28.05

Peppers

�=5 31.05 29.39 29.52 30.34 31.14 32.18�=10 29.53 28.84 29.17 29.29 29.75 30.87�=15 28.22 28.24 28.68 28.51 29.45 29.98

Painting

�=5 32.76 31.55 31.44 31.92 32.47 33.56�=10 30.97 30.42 30.49 30.59 31.10 32.08�=15 28.99 29.08 29.49 29.38 29.88 30.71

Couple

�=5 29.05 27.68 27.85 29.09 29.34 29.98�=10 28.02 27.39 27.45 28.12 28.29 28.91�=15 26.85 26.60 26.72 27.10 27.57 28.13

Hill

�=5 30.55 29.45 29.36 30.25 30.62 31.30�=10 29.28 28.66 28.82 29.05 29.40 29.98�=15 27.92 27.67 27.82 28.06 28.40 28.86

Input: noise corrupted image �, variance threshold �.
Output: denoised image �2.
For each pixel ��,� in �:

step I: Noise classi	cation.��,� ←[ variance parameter.

if ��,� > � and ��,� ∈ {0, 255}��,� ∈ �1.
ADWM 	ltering.
Apply ADWM 	lter to restore ��,�.�1�,� ←[ \8A�(��,�).

else��,� ∈ �2.�1�,� ←[ ��,�.
end�1 ←[ {�1�,�}.

stepΠ: IAD 	ltering.
Apply IAD model to restore �1�,�.�2�,� ←[ ^\8(�1�,�).

end�2 ←[ {�2�,�}.
Algorithm 1

We 	rstly compare the proposed algorithm with several
classical methods as TF [22], SBF [23], and MNF [24].
Figure 3 shows the denoising results of di
erent methods for
Lena image, which is corrupted by the AWGN (�=10) plus
SPIN (�=20%). From Figure 3(c), one can observe that the
TF method can remove the mixed noise but blur the edges.
From Figures 3(d) and 3(e), it can be seen that the SBF and
MNF methods can remove the mixed noise and meanwhile
preserve edges. However, some noise corrupted pixels are

residual in the denoising results of SBF and MNF methods.
From Figure 3(f), one can observe that the proposed algo-
rithm can not only e
ectively remove the mixed noise but
also preserve edges and details well.�erefore, Figure 3 shows
that the proposed algorithm can perform better than other
compared methods. Figure 4 shows the denoising results of
di
erent methods for Boat image, which is corrupted by the
AWGN (�=10) plus SPIN (�=20%). Similar conclusions to
Figure 3 can be obtained from Figure 4.

Figure 5 shows the denoising results of the proposed
algorithm for Lena image corrupted by di
erent mixed noise.
From Figures 5(a), 5(b), and 5(c), one can observe that the
image quality is getting worse and worse with the increase of
the noise density of salt-and-pepper noise and the standard
deviation of Gaussian noise. FromFigures 5(d), 5(e), and 5(f),
it can be seen that the noise corrupted pixels are e
ectively
restored and the edges are preserved well. �erefore, Figure 5
shows that the proposed algorithm can e
ectively remove
noise and meanwhile preserve edges in the case of di
erent
mixed noise. Figure 6 shows the denoising results of the
proposed algorithm for Boat image corrupted by di
erent
mixed noise. Similar conclusions to Figure 5 can be obtained
from Figure 6.

In order to further verify the performance of the proposed
algorithm, the proposed algorithm is compared with some
existing main methods as Cai [27], AMF coupled with LRA
[28], AMF coupled with LRR [29], WLRA [30], and WLRR
[30]. Tables 1 and 2 present the denoising results (PSNR)
of di
erent methods for six test images with �=50% and�=60%, respectively. Tables 3 and 4 present the denoising
results (FSIM) of di
erent methods for six test images with�=50% and �=60%, respectively. From Tables 1 and 3, one
can see that the PSNR and FSIM values of the LRA and
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Table 2: �e denoising results (PSNR) of di
erent methods for six test images with �=60%.

Image
�=60%

Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

Lena

�=5 31.33 29.85 29.96 30.98 31.45 32.10�=10 30.15 29.18 29.52 29.66 30.26 30.78�=15 28.89 28.05 28.73 28.35 29.12 29.62

Boat

�=5 27.86 26.73 26.78 27.40 27.60 28.41�=10 27.09 26.33 26.31 26.71 27.25 27.93�=15 26.32 25.51 25.83 25.89 26.41 27.18

Peppers

�=5 29.82 28.15 28.55 28.81 29.47 30.37�=10 28.87 27.63 28.14 28.15 28.95 29.84�=15 27.72 26.91 27.74 27.35 28.34 29.12

Painting

�=5 31.41 29.56 30.11 30.40 30.64 31.49�=10 29.82 28.81 29.41 29.28 29.87 30.73�=15 28.54 28.02 28.57 28.09 28.79 29.62

Couple

�=5 27.67 26.69 26.78 27.53 27.74 28.32�=10 26.93 26.22 26.29 26.75 26.98 27.50�=15 26.06 25.52 25.87 25.95 26.35 26.89

Hill

�=5 29.48 28.38 28.51 29.03 29.10 29.72�=10 28.57 27.77 27.88 28.03 28.16 28.75�=15 27.47 26.70 27.28 27.06 27.52 28.04

Table 3: �e denoising results (FSIM) of di
erent methods for six test images with �=50%.

Image
�=50%

Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

Lena

�=5 0.9711 0.9676 0.9690 0.9758 0.9768 0.9799�=10 0.9548 0.9566 0.9576 0.9598 0.9602 0.9650�=15 0.9254 0.9396 0.9421 0.9426 0.9468 0.9497

Boat

�=5 0.9592 0.9451 0.9482 0.9590 0.9595 0.9630�=10 0.9414 0.9398 0.9383 0.9440 0.9448 0.9483�=15 0.9160 0.9228 0.9237 0.9258 0.9260 0.9287

Peppers

�=5 0.9703 0.9670 0.9684 0.9711 0.9714 0.9782�=10 0.9553 0.9548 0.9555 0.9569 0.9576 0.9631�=15 0.9289 0.9381 0.9429 0.9418 0.9469 0.9516

Painting

�=5 0.9735 0.9570 0.9523 0.9648 0.9669 0.9739�=10 0.9536 0.9520 0.9504 0.9532 0.9552 0.9610�=15 0.9267 0.9326 0.9328 0.9356 0.9382 0.9438

Couple

�=5 0.9573 0.9467 0.9490 0.9607 0.9629 0.9658�=10 0.9417 0.9362 0.9365 0.9459 0.9464 0.9497�=15 0.9214 0.9191 0.9205 0.9269 0.9278 0.9315

Hill

�=5 0.9587 0.9570 0.9548 0.9578 0.9594 0.9631�=10 0.9449 0.9402 0.9385 0.9418 0.9456 0.9485�=15 0.9125 0.9200 0.9212 0.9204 0.9244 0.9276

LRR coupled with AMF methods are much lower than
the Cai, WLRA, WLRR, and the proposed method. �is
means that the denoising performances of the LRA and LRR
coupled with AMF methods are signi	cantly lower than the
Cai, WLRA, WLRR, and the proposed method. �e WLRR
method achieves the higher PSNR and FSIM values than
the Cai and WLRA methods in most cases. �is ensures
that the WLRR method can more e
ectively remove the

mixed noise than the Cai andWLRAmethods.�e proposed
algorithm obtains the highest PSNR and FSIM values among
all compared methods in each case. With the increasing of
the AWGN strength, the proposed algorithm can achieve
higher PSNR and FSIM values than other methods. Hence,
Tables 1 and 3 indicate that the proposed algorithm has
stronger denoising capability than other methods. Simi-
lar conclusions to Table 1 can be obtained from Table 3
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Table 4: �e denoising results (FSIM) of di
erent methods for six test images with �=60%.

Image
�=60%

Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

Lena

�=5 0.9650 0.9606 0.9604 0.9645 0.9657 0.9686�=10 0.9483 0.9440 0.9453 0.9485 0.9497 0.9538�=15 0.9252 0.9241 0.9274 0.9283 0.9309 0.9341

Boat

�=5 0.9417 0.9372 0.9357 0.9404 0.9439 0.9482�=10 0.9249 0.9247 0.9139 0.9287 0.9260 0.9291�=15 0.9027 0.9049 0.9070 0.9074 0.9095 0.9126

Peppers

�=5 0.9667 0.9541 0.9558 0.9649 0.9659 0.9721�=10 0.9496 0.9466 0.9474 0.9514 0.9524 0.9570�=15 0.9267 0.9193 0.9355 0.9346 0.9407 0.9442

Painting

�=5 0.9618 0.9563 0.9525 0.9567 0.9571 0.9626�=10 0.9376 0.9366 0.9387 0.9374 0.9385 0.9570�=15 0.9183 0.9179 0.9186 0.9205 0.9219 0.9271

Couple

�=5 0.9373 0.9309 0.9310 0.9458 0.9474 0.9509�=10 0.9226 0.9209 0.9206 0.9289 0.9302 0.9340�=15 0.9050 0.9047 0.9030 0.9104 0.9118 0.9151

Hill

�=5 0.9484 0.9401 0.9412 0.9438 0.9442 0.9486�=10 0.9298 0.9284 0.9267 0.9252 0.9262 0.9299�=15 0.9011 0.9034 0.9077 0.9085 0.9098 0.9123

Table 5: �e denoising results (Average PSNR) of di
erent methods for six test images.

Methods Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

�=50% �=5 30.88 29.51 29.60 30.49 30.95 31.74�=10 29.50 28.82 29.00 29.30 29.71 30.65�=15 28.05 27.89 28.19 28.27 28.86 29.43

�=60% �=5 29.59 28.22 28.44 29.02 29.33 30.06�=10 28.57 27.65 28.09 28.09 28.57 29.25�=15 27.50 26.78 27.33 27.11 27.75 28.41

and similar conclusions to Table 2 can be obtained from
Table 4.

Figures 7 and 8 show the bar plots of PSNR values
of di
erent methods for six test images with �=50% and�=60%, respectively. Figures 9 and 10 show the bar plots of
FSIM values of di
erent methods for six test images with�=50% and �=60%, respectively. From the above 	gures, one
can observe that the proposed algorithm outperforms some
existing main methods in terms of image denoising and edge
preservation.

Tables 5 and 6 present the denoising results of di
erent
methods in terms of average PSNR and average FSIM for
six test images, respectively. From Tables 5 and 6, one can
observe that the Cai, WLRA, WLRR, and the proposed
methods achieve the higher average PSNR and average FSIM
values than the LRA and LRR coupled with AMF methods.
�is ensures that the Cai, WLRA, WLRR, and the proposed
methods can perform better than the LRA and LRR coupled
with AMF methods. �e WLRR method can achieve the
higher average PSNR and average FSIM values than the Cai
and WLRA methods in most cases. It means that the WLRR
methods are more e
ective in removing the mixed noise
than the Cai and WLRA methods. �e proposed algorithm

obtains the highest average PSNR and average FSIM values in
each case. �erefore, Tables 5 and 6 ensure that the proposed
algorithm can not only e
ectively remove themixed noise but
also preserve edges and details well. Besides, Figures 11 and 12
show the bar plots of average PSNR and average FSIM values
of di
erent methods for six test images, respectively. From
Figures 11 and 12, we can see that the proposed algorithm can
perform better than other methods.

Figure 13 shows the denoising results of di
erentmethods
for Lena image, which is corrupted by the AWGN (�=10)
plus SPIN (�=50%). From Figures 13(d) and 13(e), it can
be seen that the LRA and LRR coupled with AMF methods
can remove the mixed noise, but they blur the edges. From
Figures 13(c), 13(f), and 13(g), one can observe that the Cai,
WLRR, andWLRAmethods can remove themixed noise and
meanwhile preserve the edges. It means that the Cai, WLRR,
and WLRA methods can perform better than the LRA and
LRR coupled with AMF methods in image denoising and
edge preservation. However, the Cai, WLRR, and WLRA
methods cannot preserve the details well. From Figure 13(h),
one can observe that the proposed algorithm obtains the
more visually pleasant denoising result by reconstructing
much cleaner and sharper image edges and details than other
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Table 6: �e denoising results (average FSIM) of di
erent methods for six test images.

Methods Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

�=50% �=5 0.9650 0.9567 0.9570 0.9649 0.9662 0.9704�=10 0.9486 0.9466 0.9461 0.9503 0.9516 0.9559�=15 0.9218 0.9287 0.9305 0.9322 0.9350 0.9388

�=60% �=5 0.9535 0.9465 0.9461 0.9527 0.9540 0.9584�=10 0.9355 0.9335 0.9321 0.9367 0.9372 0.9433�=15 0.9132 0.9124 0.9165 0.9183 0.9208 0.9242
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Figure 10: �e bar blots of FSIM values of di
erent methods for six test images with �=60%. (a) Lena image. (b) Boat image. (c) Peppers
image. (d) Painting image. (e) Couple image. (f) Hill image.

comparedmethods.Hence, Figure 13 shows that the proposed
algorithm outperforms other compared methods in terms of
image denoising and edge preservation. Figure 14 shows the
denoising results of di
erent methods for Boat image, which
is corrupted by the AWGN (�=10) plus SPIN (�=50%). From
Figure 14, similar conclusions to Figure 13 can be obtained.

To further validate the above conclusions, some enlarged
detail images of the denoising results of di
erent methods are
given. Figure 15 presents the comparisons of enlarged Lena
images of di
erent methods. �e Lena image is corrupted by
the AWGN (�=10) plus SPIN (�=50%). From Figures 15(d)

and 15(e), one can see that the LRA and LRR coupled with
AMFmethods cannot e
ectively remove themixed noise and
blur the tassel. Figures 15(c), 15(f), and 15(g) show that theCai,
WLRR, and WLRA methods can remove the mixed noise,
but they cannot preserve the tassel well. From Figure 15(h), it
can be seen that the proposed algorithm can not only remove
the mixed noise but also preserve the tassel well. Hence,
Figure 15 shows that the proposed algorithm can perform
better than other methods in terms of noise suppression and
detail preservation. Figure 16 presents the comparisons of
enlarged Boat images of di
erent methods.�e Boat image is
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Figure 11: �e bar blots of average FSIM values of di
erent methods for six test images. (a) �=50%. (b) �=60%.
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Figure 12: �e bar blots of average FSIM values of di
erent methods for six test images. (a) �=50%. (b) �=60%.

corrupted by the AWGN (�=10) plus SPIN (�=50%). Similar
conclusions to Figure 15 can be obtained from Figure 16.

6. Conclusions

In this paper, we propose an algorithm for restoring images
corrupted by Gaussian noise plus salt-and-pepper noise.
Firstly, a noise classi	cation method is presented to identify
di
erent noisy pixels in the corrupted image. �e noise

classi	cationmethod judges the gray level di
erence between
the current pixel and its neighborhood pixels by introducing
a variance parameter and identi	es the salt-and-pepper
noise corrupted pixels by combining the variance parameter
and gray level extreme. �en, based on the result of noise
classi	cation, an adaptive directional weighted mean 	lter
is proposed to remove the salt-and-pepper noise based on
the multidirectional image information, which can preserve
edges and details by adaptively selecting the optimal direction
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13: Denoising results of di
erent methods for Lena image. (a) Noise-free image. (b) Image corrupted by mixed noise (AWGN+SPIN,�=10, �=50%). From (c) to (h): denoising results of Cai, AMF+LRA, AMF+LRR, WLRA, WLRR, and the proposed algorithm.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: Denoising results of di
erent methods for Boat image. (a) Noise-free image. (b) Image corrupted by mixed noise (AWGN+SPIN,�=10, �=50%). From (c) to (h): denoising results of Cai, AMF+LRA, AMF+LRR, WLRA, WLRR, and the proposed algorithm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15: Enlarged denoising results of di
erent methods for Lena image. (a) Noise-free image. (b) Image corrupted by mixed noise
(AWGN+SPIN,�=10,�=50%). From (c) to (h): denoising results of Cai, AMF+LRA,AMF+LRR,WLRA,WLRR, and the proposed algorithm.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16: Enlarged denoising results of di
erent methods for Boat image. (a) Noise-free image. (b) Image corrupted by mixed noise
(AWGN+SPIN,�=10,�=50%). From (c) to (h): denoising results of Cai, AMF+LRA,AMF+LRR,WLRA,WLRR, and the proposed algorithm.
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Table 7: List of abbreviations.

Abbreviation Full title

AWGN Additive white Gaussian noise

IN Impulse noise

BF Bilateral 	lter

NLM Nonlocal means 	lter

P-M Perona-Malik model

CAD
Coherence-enhancing anisotropic di
usion

denoising model

SPIN Salt-and-pepper noise

RVIN Random valued impulse noise

BDND
Switching median 	lter with boundary

discriminative noise detection

DWM Directional weighted median 	lter

MDWM Modi	ed directional weighted median 	lter

MDW Modi	ed directional weighted 	lter

TF Trilateral 	lter

SBF Switching bilateral 	lter

MTF Modi	ed two-phase 	lter

LRA Low rank approximation

LRR Low rank representation

WLRA Weighted low rank approximation model

WLRR Weighted low rank representation model

ADWM Adaptive directional weighted mean 	lter

IAD Improved adaptive anisotropic di
usion model

template and restore each salt-and-pepper noise corrupted
pixels by theweightedmean gray level of pixels on the optimal
template. Finally, an improved adaptive anisotropic di
usion
model is introduced to remove Gaussian noise in the initial
denoised image, which can enhance the image features by
	nely classifying image feature as four types and preserve
edges and details by conducting the adaptive anisotropic dif-
fusion for di
erent image features. �e experimental results
clearly demonstrate that the proposed algorithmoutperforms
many other existing main mixed noise removal methods in
terms of both quantitative measure and visual perception.
However, the proposed algorithm has a limitation that it
cannot e
ectively restore the salt-and-pepper noise corrupted
image with high salt-and-pepper noise density. Hence, we
will try our best to solve the problem in the subsequent
study.

Appendix

List of Abbreviations

�e abbreviations used in this paper are listed in Table 7.
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