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Mixed Noise Removal by Weighted Encoding with

Sparse Nonlocal Regularization
Jielin Jiang, Lei Zhang, and Jian Yang

Abstract—Mixed noise removal from natural images is a
challenging task since the noise distribution usually does not
have a parametric model and has a heavy tail. One typical kind
of mixed noise is additive white Gaussian noise (AWGN) coupled
with impulse noise (IN). Many mixed noise removal methods are
detection based methods. They first detect the locations of impulse
noise pixels and then remove the mixed noise. However, such
methods tend to generate many artifacts when the mixed noise is
strong. In this paper, we propose a simple yet effective method,
namely weighted encoding with sparse nonlocal regularization
(WESNR), for mixed noise removal. In WESNR, there is not
an explicit step of impulse pixel detection; instead, soft impulse
pixel detection via weighted encoding is used to deal with IN and
AWGN simultaneously. Meanwhile, the image sparsity prior and
nonlocal self-similarity prior are integrated into a regularization
term and introduced into the variational encoding framework.
Experimental results show that the proposed WESNR method
achieves leading mixed noise removal performance in terms of
both quantitative measures and visual quality.

Index Terms—Mixed noise removal, weighted encoding, non-
local, sparse representation.

I. Introduction

DURING image acquisition and/or transmission, noise

will be more or less introduced. Denoising (or noise

removal) is a fundamental problem in image processing,

aiming to estimate the original image from its noise-corrupted

observation while preserving as much as possible the image

edges, textures and fine scale details. The prior knowledge of

noise distribution plays an important role in noise removal.

Two types of commonly encountered noise are additive white

Gaussian noise (AWGN) and impulse noise (IN). AWGN

is often introduced due to the thermal motion of electron

in camera sensors and circuits [22]. IN is often introduced

by malfunctioning pixels in camera sensors, faulty memory

locations in hardware, or bit errors in transmission [23]. Many

papers have been published on removing either AWGN [12]-

[20] or IN [2]-[11]. The mixture of AWGN and IN, however,

is also commonly encountered in practice due to the multiple

sources of noise. A variety of mixed noise removal methods

have been proposed in past decades [22]-[36].

An image corrupted by IN will have a portion of its pixels

replaced by random noise values with the remaining pixels

unchanged. Two types of widely encountered IN are salt-and-

pepper impulse noise (SPIN) and random-valued impulse noise
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(RVIN). An image corrupted by SPIN shows dark pixels in

bright regions and bright pixels in dark regions. Nonlinear

filters such as median filters [1] have been dominantly used

to remove IN. However, one shortcoming of median filters

is that the image local structures can be destroyed, making

the denoised images look unnatural. This problem becomes

serious when the IN density is high. Various improvements

of median filters have been proposed to better preserve the

image local structures [2]-[10]. Among them, the weighted

median filter [2], the center-weighted median filter [3] and

the multistate median filter [4] do not distinguish whether

the current pixel is a noise pixel or not, and they tend to

over-smooth the fine scale image details. An alternative way

is to detect and process the corrupted IN pixels, and leave

the uncorrupted pixels unchanged. The representative methods

along this line include switching median filter [5], adaptive

median filter (AMF) [6], tristate median filter [7], adaptive

center-weighted median filter [8], conditional signal-adaptive

median filter [9], and directional weighted median filter [10],

etc. The genetic programming filter [11] by switching between

two IN detectors and their associated estimators was also

developed for IN removal.

AWGN is the most widely studied noise model in image

denoising literature [12]-[20]. At each pixel of an image

corrupted by AWGN, a value independently sampled from a

zero-mean Gaussian distribution is added to the pixel gray

level. Traditional linear filtering methods such as Gaussian

filtering can smooth noise efficiently but they will over-smooth

the image edges at the same time. To solve this problem,

nonlinear filtering methods have been developed. The well-

known bilateral filter (BF) [12] is good at edge preservation.

It estimates each pixel as the weighted average of the neighbor-

ing pixels but the weights are determined by both the intensity

similarity and spatial similarity. The nonlocal means (NLM)

filtering method [15] can be viewed as a significant extension

of BF based on the fact that similar pixels in an image can be

spatially far from each other. In NLM, each pixel is estimated

as the weighted average of all its similar pixels in the image,

and the weights are determined by the similarity between

them. By grouping the nonlocal similar patches into a 3D cube

and applying transform based shrinkage, the BM3D method

[14] has become a benchmark for AWGN removal. Zhang et

al. [16] grouped the similar patches into a matrix and applied

principal component analysis (PCA) to remove AWGN. The

so-called LPG-PCA algorithm achieves very good edge preser-

vation performance. In recent years, the sparse representation

and dictionary learning based methods have been attracting

significant attention in image restoration. The seminal work of
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K-SVD [13] initiates the study of learning a dictionary from

natural images for AWGN removal. The joint use of sparse

representation and nonlocal self-similarity regularization has

lead to state-of-the-art AWGN removal performance [17]. Very

recently, deep convolutional neural networks [18] have also

shown powerful capability to remove AWGN.

The mixture of IN and AWGN, however, makes the denois-

ing problem much more difficult because of the very different

properties of the two types of noises. A few methods have

been developed to remove the mixed IN and AWGN noise

[22]-[36]. The median-based signal-dependent rank ordered

mean (SDROM) filter [24] can be used for IN removal as

well as mixed noise removal. However, when applied to

image with mixed noise, it often produces visually unpleasant

artifacts. The trilateral filter (TF) [27] incorporates the rank-

order absolute difference (ROAD) statistics into the BF [12]

framework for IN detection. Switching bilateral filter (SBF)

[28] is also a modification of BF based on the method of

detection and replacement. The reference median is computed

to decide whether a current pixel is a noise pixel or not. If the

absolute value between the reference median and a target pixel

is large, then the target pixel is considered as a noise pixel,

and consequently the mixed noise is removed by switching

between the AWGN removal and IN removal. The FIRDM

filter [29] contains two separate steps: an IN detection step

and a noise reduction step that preserves edge sharpness. It

can effectively remove SPIN, but its performance in removing

RVIN is not satisfactory because RVIN may not produce large

gradient values. The HDIR filter [26] removes mixed noise

by kernel regression with Bayesian classification of the input

pixels. In [30], a new IN detection mechanism based on robust

outlyingness ratio (ROR) and NLM is proposed, where the

image pixels are divided into four clusters according to the

ROR value and by using an iterative coarse-to-fine strategy.

Cai et al. [31] proposed a modified two-phase method to

reconstruct images corrupted by IN and AWGN mixed noise,

and the efficiency of this method is improved in [32]. Xiao et

al. [33] proposed an l1 − l0 minimization approach to mixed

noise removal. This method achieves state-of-the-art denoising

results but its computational complexity is somewhat high.

Rodrίguez et al. [34] proposed a cost functional consisting

of a TV regularization term and l2 and l1 data fidelity terms,

which aim to reduce AWGN and IN, respectively. This method

achieves competitive mixed noise removal results but with

much better computational performance. Dong et al. [35]

presented two sparsity-based regularization models for blind

inpainting problems. A new variable is introduced in the

data fidelity term to represent the outliers. Meanwhile, this

new variable is used as a regularizer by assuming that the

percentage of pixels damaged by IN is small. Recently, Liu

et al. [36] proposed a weighted dictionary learning model for

mixed noise removal. This method integrates sparse coding

and dictionary learning, image reconstruction, noise clustering

and parameters estimation into a four-step framework, and

each step solves a minimization problem.

Many existing mixed noise removal methods are detection

based methods and they involve two sequential steps, i.e., first

detect the IN pixels and then remove the noise. Such a two-

phase strategy will become less effective when the AWGN or

IN is strong. In this paper, we propose a simple yet effective

encoding based method for mixed noise removal, namely

weighted encoding with sparse nonlocal regularization (WES-

NR). There is no explicit impulse pixel detection in WESNR,

and we encode each noise-corrupted patch over a pre-learned

dictionary to remove the IN and AWGN simultaneously in

a soft impulse pixel detection manner. The major difficulty

of IN and AWGN mixed noise removal lies in the complex

distribution of mixed noise, which has a heavy tail and

cannot be readily characterized by a parametric model. The

conventional l2-norm data fidelity term, which is well suited

to characterize the Gaussian distributed data fitting residual,

is not suitable to suppress the mixed noise with complex

non-Gaussian distribution. In WESNR, the mixed noise is

suppressed by weighting the encoding residual so that the final

encoding residual will tend to follow Gaussian distribution.

The weighted encoding and sparse nonlocal regularization

are unified into a variational framework, which is easy to

minimize. Extensive experiments are conducted to validate the

proposed WESNR in comparison with state-of-the-art mixed

noise removal methods.

The rest of the paper is organized as follows. Section II

presents in detail the proposed WESNR scheme. Section III

presents the experimental results and discussions. Section IV

concludes the paper.

II. Weighted Encoding with Sparse Nonlocal Regularization

A. The mixed noise

Denote by x an image and by xi, j its pixel at location

(i, j). Let y be the noisy observation of x. For additive white

Gaussian noise (AWGN), each noisy pixel yi, j in y is modeled

as yi, j = xi, j + vi, j, where vi, j is i.i.d. noise and follows zero-

mean Gaussian distribution. For impulse noise (IN), the two

most common types of it are salt-and-pepper impulse noise

(SPIN) and random-valued impulse noise (RVIN). Denote by

[dmin, dmax] the dynamic range of y. The SPIN noise model

can be described as follows: yi, j = dmin with probability s/2,

yi, j = dmax with probability s/2, and yi, j = xi, j with probability

1− s, where 0 ≤ s ≤ 1. The RVIN noise model can be defined

as: yi, j = di, j with probability r, and yi, j = xi, j with probability

1− r, where 0 ≤ r ≤ 1 and di, j is uniformly distributed within

[dmin, dmax].

In this paper, we consider two types of mixed noise: 1)

AWGN mixed with SPIN, and 2) AWGN mixed with RVIN

and SPIN. For the first case, the signal observation model can

be described as

yi, j =



















dmin, with probability s/2

dmax, with probability s/2

xi, j + vi, j, with probability 1 − s

. (1)

For the second case, the observation model is

yi, j =































dmin, with probability s/2

dmax, with probability s/2

di, j, with probability r(1 − s)

xi, j + vi, j, with probability (1 − r)(1 − s)

. (2)
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Examples of the images corrupted by the above two types of

mixed noise can be found in Figs. 7 and 8.

B. The denoising model

Many mixed noise removal methods [28]-[34] follow a

two-phase framework. First, the IN pixels are detected and

replaced, and then some AWGN removal methods are applied

to estimate the image. The trilateral filter (TF) [27] integrates

rank-order absolute difference (ROAD) statistics into BF [12]

to form a simple model that does not need impulse pixel

detection, and it achieves very good results for mixed AWGN

and RVIN removal. However, it does not work well for

either SPIN removal or mixed AWGN and SPIN removal.

Furthermore, ROAD could produce false values when half of

the pixels in the processing window are corrupted.

One natural question is that can we develop a mixed

noise removal method which does not perform impulse pixel

detection and AWGN removal separately but conducts the two

tasks in a unified framework? Inspired by the robust estimation

theory [41,44] and the sparse coding based image restoration

techniques [17], in this paper we propose a novel weighted

encoding model to remove mixed noise, which does not

have an explicit impulse pixel detection step and can process

AWGN and IN simultaneously. The sparsity and nonlocal self-

similarity priors of natural images are also integrated into the

proposed model to make it powerful for mixed noise removal.

Denote by x ∈ RN an image. Following the notation in [13],

we let xi = Rix ∈ Rn be the stretched vector of an image patch

of size
√

n ×
√

n, where Ri is the matrix operator extracting

patch xi from x at location i. Based on the sparse representation

theory [37], we can find an over-complete dictionary Φ =

[φ1;φ2; ...;φn] ∈ Rn×m to sparsely code xi, where φ j ∈ Rn is

the jth atom of Φ. The representation of xi over dictionary Φ

can be written as xi = Φαi, where αi is a sparse coding vector

with only a few non-zero entries. The least square solution of

x can be obtained as

x =
(
∑

i
RT

i R
)−1 (∑

i
RT

i Φαi

)

. (3)

For the convenience of expression, we re-write the above

equation as

x = Φα, (4)

where α is the set of all coding vectors αi.

In image denoising, the observation of x is noise-corrupted,

and we can only encode the noisy observation y over the

dictionary Φ to obtain the desired α. In the case of AWGN,

the encoding model can be generally written as

α̂ = arg minα ‖y −Φα‖22 + λR(α), (5)

where R(α) is some regularization term imposed on α and

λ is the regularization parameter. With certain regularization

(e.g., sparsity) term [17, 39], the resolved coding vector is

the maximum a posteriori (MAP) solution for AWGN noise

model. For images corrupted by mixed noise, however, the

distribution of noise is generally far from Gaussian and thus

the l2-norm data fidelity term ‖y−Φα‖2
2

in Eq. (5) will not lead
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Fig. 1: The distribution of AWGN and mixed noise in (a) linear

and (b) log domains, respectively.

to a MAP solution for noise removal. Let’s use an example

to investigate the distributions of mixed noise. We simulated

AWGN (standard deviation σ = 10), RVIN (r = 20%)

and SPIN (s = 40%), and imposed them on image Lena,

respectively. Fig. 1(a) shows the distributions of data fitting

residual y−Φα (i.e., y−x in the case of denoising) for AWGN,

mixture of AWGN and RVIN, mixture of AWGN and SPIN,

and mixture of AWGN, RVIN and SPIN, respectively. Fig.

1(b) shows these distributions in log domain to better observe

the heavy tails. Compared with the Gaussian distribution, we

can clearly see that the distribution of mixed noise has a heavy

tail, which is caused by IN. Therefore, using the l2-norm to

characterize the data fitting residual y − Φα in Eq. (5) is not

optimal in the sense of MAP estimation.

From Fig. 1, one can see that the distribution of data

fitting residual is much more irregular than Gaussian, and

it has a heavy tail. Intuitively, if we can modify the data

fidelity term so that the residual can be more Gaussian-like,

then the l2-norm can still be used to characterize the coding

residual, making the mixed noise removal easier to handle.

This motivates us to adopt the robust estimation technique [38,

41, 44] to weight the data fitting residual so that its distribution

can be more regular.

Let

e = [e1; e2; ...; eN] = y −Φα, (6)

where ei = (y − Φα)(i). Assume that e1, e2, ..., eN are i.i.d.

samples. Instead of minimizing ‖e‖2
2
=
∑N

i=1 e2
i
, which actually

assumes that ei follows Gaussian distribution, we use the

robust estimation technique [41, 44] to minimize the following

loss:
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Fig. 2: The distribution of residuals ei, weighted residuals

w
1/2

i
ei and the fitting Gaussian in log domain, respectively.

min
∑N

i=1
f (ei). (7)

The function f controls the contribution of each residual to the

whole loss. In general, f should have the following properties:

nonnegative, monotonic, and symmetric. That is: 1) f (e) ≥ 0

and f (0) = 0; 2) f (ei) ≥ f (e j) if |ei| ≥ |e j|; 3) f (e) = f (−e).

Obviously, when f (e j) = e2
j
, the model in Eq. (7) reduces

to Eq. (5). In order to weaken the effect of the heavy tail in

mixed noise distribution, we can assign each residual a proper

weight, resulting in a weighted residual:

ew
i = w

1/2

i
ei. (8)

In the problem of mixed AWGN and IN removal, the residuals

can be classified into two categories. Those residuals obtained

at the pixels corrupted by AWGN will basically follow Gaus-

sian distribution and they can remain unchanged; that is, they

should be assigned with weights close to 1. The residuals

obtained at other pixels are mainly caused by IN, and they

should be assigned with smaller weights to reduce the heavy

tail of the distribution.

Let’s use an example to illustrate the effect of weighting.

Suppose that an image is corrupted by AWGN (σ = 10) and

SPIN (s = 40%). Fig. 2(a) shows the distribution of residuals

ei and the fitting Gaussian function based on the variance of ei,

Fig. 2(b) shows the distribution of weighted residuals w
1/2

i
ei

and the fitting Gaussian function based on the variance of

w
1/2

i
ei (how to set the weights will be discussed in the later

development). Clearly, the distribution of weighted residuals

is much closer to Gaussian distribution, implying that l2-norm

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−30

−25

−20

−15

−10

−5
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Fig. 3: The histogram of γ and the fitting Gaussian and

Laplacian distributions in log domain.

can be used to model the weighted residuals for a MAP-like

solution of coding vector α .

According to the above analysis, we adopt a new loss

function f (ei) = (w
1/2

i
ei)

2, and consequently we have a new

model for mixed noise removal:

α̂ = arg minα ‖W1/2(y −Φα)‖22 + λR(α), (9)

where W is a diagonal weight matrix with diagonal element

Wii = wi. To make the above weighted encoding model more

effective for mixed noise removal, some regularization terms

R(α) can be used based on the priors of natural images. Two

priors are widely used in image denoising: local sparsity and

nonlocal self-similarity (NSS). The local sparsity of encoding

coefficients α can be characterized by the l1-norm of α, while

the NSS can be characterized by the prediction error of a

patch by its similar patches. Inspired by the work in [17], we

integrated the two priors into a sparse nonlocal regularization

term and adopt it to Eq. (9).

For each patch xi, we search the similar patches to it within

a large enough window centered at location i. A patch x
q

i
is

collected as a similar patch to xi if the Euclidean distance

between them is not greater than a preset threshold. Then we

can select the first L closest patches to xi and use the weighted

average of them, x̂i =
∑L

q=1 b
q

i
x

q

i
, to predict xi. The weight b

q

i

is inversely proportional to the distance between patches xi

and x
q

i
: b

q

i
= exp(−‖xi − x

q

i
‖2

2
/h)/ω, where h is a preset scalar

and ω is a normalization factor. If a patch and its nonlocal

prediction are encoded by a given dictionary Φi, i. e., xi =

Φiαi and x̂i = Φiµi, then the coding coefficients αi and µi

should also be similar. Therefore, we can use
∑

i ‖αi−µi‖lp
as

the regularization term to regularize the solution of Eq. (9):

α̂ = arg minα ‖W1/2(y −Φα)‖22 + λ
∑

i
‖αi − µi‖lp

, (10)

where lp (p = 1 or 2) refers to the lp-norm.

In order to determine the value of p, we need to check the

distribution of αi − µi. Let

γi = αi − µi. (11)

We assume that the elements in γi are i.i.d. and follow

generalized Gaussian distribution (GGD), which is defined as:

f (γ) = β exp{−(|γ |/σγ )β}/(2σγΓ(1/β)), (12)

where Γ denotes the gamma function, and σγ is a scale
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(a) (b) (c) (d) (e)

Fig. 4: Five high-quality images.

parameter. The value of β in Eq. (12) determines the shape

of a GGD. In particular, setting β = 1 or β = 2 leads to

Laplacian distribution or Gaussian distribution, respectively.

We use an example to figure out which setting we should

use for the distribution f (γ). We run our algorithm without

the regularization
∑

i ‖αi − µi‖lp
in Eq. (10) on image Lena

(the algorithm is summarized in Algorithm 1). In Fig. 3 we

plot the histogram of γ as well as the fitting Gaussian and

Laplacian distributions of it. Clearly, Laplacian distribution fits

the histogram of γ much better. Therefore, we approximately

assume that γ follows Laplacian distribution, and hence the l1-

norm regularization on γ could lead to a MAP-like estimation.

Finally, the proposed model becomes

α̂ = arg minα{‖W1/2(y −Φα)‖22 + λ‖α − µ‖1}. (13)

In the above model, the data fidelity term weights the encoding

residual, while the regularization term integrates sparsity and

NSS priors. We call the proposed model weighted encoding

with sparse nonlocal regularization (WESNR).

In the WESNR model Eq. (13), W is a diagonal weight

matrix, and its element Wii is to be automatically determined

and assigned to pixel i. Clearly, the pixels corrupted by IN

should have small weights to reduce their effect on the encod-

ing of y over Φ, while the weights assigned to uncorrupted

pixels should be close to 1. In our algorithm, the dictionary Φ

is pre-learned from clean natural images (please refer to next

sub-section for more information), and the pixels corrupted

by IN will have big coding residuals. Therefore, the coding

residual ei can be used to guide the setting of weight Wii,

and Wii should be inversely proportional to the strength of

ei. In order to make the weighted encoding stable and easy to

control, we set Wii ∈ [0, 1]. One simple and appropriate choice

of Wii is

Wii = exp(−ae2
i ), (14)

where a is a positive constant to control the decreasing rate

of Wii w.r.t. ei. With Eq. (14), the pixels corrupted by IN

will be adaptively assigned with lower weights to reduce their

impact in the process of encoding. Note that such a weighting

scheme will make the corresponding loss function f (ei) meet

the requirements 1), 2) and 3).

Once W is given, the WESNR model in Eq. (13) becomes

an l1-norm sparse coding problem and many existing l1-norm

minimization techniques [40, 42 ,43] can be used to solve it. In

this paper, we solve it via the iteratively reweighted scheme

[40] for its simplicity. Let V be a diagonal matrix. We first

initialize it as an identity matrix, and then in the (k + 1)th

iteration, each element of V is updated as

V
(k+1)

ii
= λ/((α

(k)

i
− µi)

2 + ε2)1/2, (15)

where ε is a scalar and α
(k)

i
is the ith element of coding vector

α in the kth iteration. Then we update α as

α̂(k+1) = (ΦT WΦ + V(k+1))−1(ΦT Wy −ΦT WΦµ) + µ. (16)

By iteratively updating V and α, the desired α can be effi-

ciently obtained. The convergence of the iteratively reweighted

scheme has been proved in [40].

C. The dictionary

In sub-section II-B, we assumed that the dictionary Φ is

given. The selection of dictionary is an important issue to

the sparse coding and reconstruction of a signal. In particular,

learning dictionaries from natural image patches has shown

promising results in image restoration [13, 39]. The seminal

work of K-SVD [13] learns an over-complete and universal

dictionary to process any input patch; however, it is not adap-

tive to the content of the given patch and is not efficient due

to the large number of atoms in the over-complete dictionary.

In this paper, we adopt the strategy in [39] to learn a set of

local PCA dictionaries from natural images.

We use the same 5 high-quality images (which are indepen-

dent of the test images used in this paper) as in [39] to train the

PCA dictionaries. The scenes of the five images are shown in

Fig. 4. A number of 876,359 patches (size: 7×7) are extracted

from the five images and they are clustered into 200 clusters

by using the K-means clustering algorithm. For each cluster,

a compact local PCA dictionary is learned. Meanwhile, the

centroid of each cluster is calculated. For a given image patch,

the Euclidian distance between it and the centroid of each

cluster is computed, and the PCA dictionary associated with

its closest cluster is chosen to encode the given patch. Note that

since the selected dictionary, denoted by Φi, is orthogonal, the

µi for patch xi can be simply computed as µi = ΦT
i

x̂i. In our

PC (3.2 GHZ CPU, 8 GB RAM memory) and under the Matlab

R2011b programming environment, the patch clustering and

dictionary learning process takes about 745 seconds in total.

In addition, the final denoising results are not sensitive to the

training images used for PCA dictionary learning. By using

another five high-quality images with sufficient texture/edge

regions, similar denoising results will be obtained. This is

identical to the observation in [39].

D. Algorithm of WESNR

Once the dictionary Φ is adaptively determined for a given

patch, the proposed WESNR model can be solved by itera-

tively updating W and α. The updating of W depends on the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6: The ten test images. From left to right and top to bottom: Lena, F16, Leaves, Boat, Couple, Fingerprint, Hill, Man,

Peppers and Painting.

coding residual e. In the literature of mixed AWGN and SPIN

noise removal [31]-[34], AMF [6] is widely used to detect

SPIN. In order to make a fair comparison with them, in the

case of AWGN+SPIN noise revoval, we apply AMF to y to

obtain an initialized image x(0), and then initialize e as:

e(0) = y − x(0), (17)

In the case of AWGN+RVIN+SPIN noise removal, AMF

cannot be applied to y to initialize x. We initialize e as

e(0) = y − µy · 1, (18)

where µy is the mean value of all pixels in y and 1 is a column

vector whose elements are all 1. In other words, we simply

use the mean value of y to initialize x. Then the initial coding

residual can be roughly computed. This simple initialization

strategy works very well in all our experiments.

With the initialized coding residual e(0), W can be initialized

by Eq. (14). The main procedures of the proposed WESNR

based mixed noise removal algorithm are summarized in

Algorithm 1.

In our algorithm, we set t = ‖Φα(k+1) −Φα(k)‖2/‖Φα(k)‖2 <
τ as the termination condition. Fig. 5 shows the curve of

log(t) versus the number of iterations by applying the WESNR

algorithm to a noisy Lena image. Because of the weighting

matrix W, the IN pixels in the image can be well identified

and their effect is suppressed in the encoding of y. As a

result, both IN and AWGN will be gradually removed in
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Fig. 5: A typical curve of convergence of the proposed

WESNR algorithm.

Algorithm1: Mixed noise removal by WESNR

Input: Dictionary Φ, noisy image y;

Initialize e by Eq. (17) (or Eq. (18)) and then

initialize W by Eq. (14);

Initialize µ to 0.

Output: Denoised image x.

Loop: iterate on k = 1, 2, ...K;

1. Compute α(k) by Eq. (16);

2. Compute x(k) = Φα(k) and update the nonlocal

coding vector µ;

3. Compute the residual e(k) = y − x(k) ;

4. Calculate the weights W by e(k) using Eq. (14);

End

Output the denoised image x = Φα(K).

the iteration. Generally, our algorithm will terminate in six

to twelve iterations.

III. Experimental results

In this section, experiments are carried out to demonstrate

the performance of the proposed WESNR algorithm. We first

discuss the parameter setting in Section III-A; in Section

III-B we conduct experiments on ten commonly used test

images: Lena, F16, Leaves, Boat, Couple, Fingerprint, Hill,

Man, Peppers and Painting, respectively (please refer to Fig.

6 for the scenes of the ten images); finally, we make some

discussions in Section III-C.

A. Parameter setting

There are several parameters to set in the proposed WESNR

algorithm, and they all can be easily fixed by experience.

The parameter τ is to control the termination of iteration.

In order to balance the denoising results and the number of

iterations, we empirically set it to 0.003. The parameter a in

Eq. (14) controls the decreasing rate of weights w.r.t. e and

we empirically set it to 0.0008.

In Eq. (16), there are two parameters to compute the

diagonal matrix V: λ and ε. In our method, the sparse nonlocal

regularization is mainly to remove AWGN. In the first loop of

our algorithm, since the IN is severe, the block-matching based

nonlocal similar patch searching process is not accurate. Thus,

the nonlocal regularization is not very helpful and we assign λ
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TABLE I: PSNR (dB) and FSIM (%) results of mixed noise removal (AWGN + SPIN).

Image
s = 30% s = 40% s = 50%

ROR-NLM Cai et al. l1-l0 WESNR ROR-NLM Cai et al. l1-l0 WESNR ROR-NLM Cai et al. l1-l0 WESNR
L

en
a

σ = 10 29.23±0.05 31.76±0.04 33.52±0.06 33.22±0.05 28.52± 0.09 31.01±0.05 32.59±0.06 32.72±0.07 24.73±0.20 30.14±0.06 31.60±0.04 31.93±0.06

94.94±0.07 96.29±0.04 97.17±0.05 97.06±0.05 93.98± 0.08 95.60±0.05 96.65±0.07 96.70±0.05 89.57±0.28 94.58± 0.07 95.94±0.04 96.18±0.07

σ = 20 26.26±0.03 29.34±0.03 30.76±0.08 30.73±0.05 25.41± 0.05 28.96±0.04 30.09±0.06 30.27±0.06 22.38±0.17 28.42± 0.05 29.27±0.07 29.68±0.08

87.21±0.14 93.15±0.08 94.30±0.10 94.19±0.09 84.69±0.12 92.66±0.10 93.62±0.09 93.75±0.14 78.74±0.26 91.81±0.11 92.88± 0.10 93.06±0.13

σ = 25 25.15±0.09 28.33±0.03 29.78±0.07 29.85±0.08 24.12± 0.10 28.04±0.04 29.25±0.07 29.42±0.06 21.23±0.06 27.56± 0.05 28.45±0.06 28.79±0.08

83.17±0.18 91.32±0.12 92.99±0.10 93.06±0.11 80.12±0.26 90.95± 0.13 92.33±0.08 92.41±0.13 73.49±0.15 90.18±0.13 91.33± 0.09 91.51±0.15

F
1
6

σ = 10 28.10±0.06 30.93±0.07 32.81±0.06 32.17 ±0.05 27.09± 0.14 29.76±0.08 31.59±0.07 31.48±0.06 24.15±0.12 28.50± 0.08 30.05±0.07 30.26±0.07

94.30±0.06 95.77±0.06 96.89±0.04 96.37±0.05 92.77± 0.14 94.69±0.08 96.13±0.05 95.86±0.06 87.88±0.18 93.12± 0.09 94.93±0.07 95.01±0.07

σ = 20 25.38±0.03 28.56±0.05 29.63±0.07 29.67±0.07 24.24± 0.08 27.87±0.06 28.78±0.08 28.91±0.08 21.72±0.09 26.96± 0.06 27.72±0.08 27.99±0.10

86.13±0.15 92.10±0.13 93.13±0.09 93.17±0.10 82.97±0.12 91.04± 0.15 92.29±0.12 92.36±0.12 77.22±0.24 89.34±0.16 90.88±0.15 91.04±0.12

σ = 25 24.25±0.06 27.39±0.04 28.55±0.10 28.59±0.09 22.85± 0.04 26.77±0.05 27.67±0.09 27.86±0.10 20.58±0.11 25.91±0.05 26.71±0.07 26.96±0.11

82.01±0.16 89.70±0.14 91.56±0.13 91.68±0.14 78.40±0.08 88.47± 0.18 90.46±0.14 90.54±0.17 73.17±0.28 86.56±0.18 89.11± 0.15 89.28±0.19

L
ea

v
es

σ = 10 24.81±0.10 28.44±0.06 30.68±0.07 30.80±0.09 23.03± 0.06 26.95±0.06 28.95±0.07 29.33±0.16 20.48±0.12 25.33±0.08 27.08±0.06 27.60±0.17

92.24±0.13 95.67±0.07 96.94±0.05 97.21±0.06 89.86± 0.08 94.25±0.09 95.77±0.08 96.43±0.08 85.22±0.28 92.06±0.13 94.04±0.09 95.23±0.12

σ = 20 23.31±0.06 26.10±0.05 27.81±0.07 27.96±0.09 21.82± 0.08 25.03±0.05 26.49±0.07 26.71±0.12 19.50±0.06 23.69± 0.07 24.92±0.08 25.10±0.14

87.05±0.16 91.43±0.10 94.63±0.09 94.70±0.11 84.68±0.15 90.14± 0.12 93.57±0.09 93.71±0.12 80.34±0.13 88.30±0.15 91.72± 0.12 92.14±0.16

σ = 25 22.60±0.06 25.09±0.04 26.61±0.09 26.66±0.10 21.18±0.11 24.13±0.05 25.32±0.07 25.40±0.13 18.91±0.17 22.88±0.06 23.87±0.10 23.93±0.17

84.66±0.17 89.72±0.11 93.23±0.10 93.35±0.13 82.65±0.21 88.69± 0.14 92.09±0.10 92.20±0.13 78.23±0.32 87.17±0.18 90.47±0.12 90.60±0.18

B
o
at

σ = 10 26.94±0.06 28.79±0.04 31.43±0.06 30.60±0.06 26.07± 0.06 27.91±0.04 30.33±0.07 29.86±0.07 22.81±0.22 26.90± 0.06 29.03±0.05 28.92±0.10

93.81±0.07 94.62±0.06 96.85±0.05 96.18±0.06 92.48± 0.09 93.16±0.07 95.94±0.06 95.54±0.07 87.51±0.36 91.04±0.11 94.63±0.04 94.57±0.08

σ = 20 24.77±0.04 27.09±0.03 28.71±0.04 28.19±0.05 23.96± 0.07 26.50±0.04 27.74±0.04 27.61±0.07 21.18±0.11 25.77± 0.05 26.76±0.05 26.85±0.08

87.67±0.09 91.28±0.11 93.21±0.11 92.50±0.11 85.61±0.15 89.88± 0.11 91.71±0.08 91.57±0.13 80.30±0.24 87.85±0.14 90.28± 0.11 90.38±0.19

σ = 25 23.91±0.03 26.32±0.03 27.29±0.05 27.30±0.06 23.01± 0.10 25.84±0.04 26.68±0.04 26.74±0.07 20.26±0.04 25.16± 0.05 25.96±0.05 26.03±0.12

84.80±0.09 89.56±0.11 90.74±0.12 90.85±0.12 82.28±0.07 88.29±0.14 90.03±0.12 90.11±0.14 76.50±0.37 86.23±0.14 88.57± 0.15 88.66±0.18

C
o
u
p
le

σ = 10 26.82±0.04 28.53±0.03 31.12±0.04 30.55±0.07 25.93± 0.09 27.66±0.04 29.92±0.06 29.84±0.05 22.81±0.22 26.73± 0.04 28.81±0.06 28.95±0.06

94.00±0.08 94.37±0.08 96.71±0.06 96.26±0.04 92.68±0.15 92.84±0.10 95.77±0.06 95.61±0.06 87.51±0.27 90.63±0.12 94.38±0.08 94.60±0.09

σ = 20 24.70±0.03 26.81±0.02 28.36±0.05 28.08±0.04 23.90± 0.05 26.25±0.02 27.51±0.06 27.55±0.05 21.18±0.06 25.57± 0.03 26.64±0.08 26.85±0.05

88.87±0.10 91.28±0.08 93.14±0.09 92.52±0.12 86.99±0.07 89.73±0.08 91.42±0.08 91.56±0.14 81.75±0.24 87.53±0.14 90.12±0.09 90.23±0.13

σ = 25 23.84±0.03 26.07±0.03 27.12±0.07 27.18±0.05 22.94± 0.05 25.60±0.03 26.50±0.07 26.68±0.04 20.41±0.12 25.02± 0.03 25.89±0.07 26.03±0.06

86.28±0.12 89.76±0.09 90.42±0.09 90.53±0.15 83.92±0.10 88.27±0.14 89.24±0.15 89.49±0.23 78.63±0.24 86.15±0.17 88.24± 0.13 88.41±0.15

F
in

g
er

p
ri

n
t

σ = 10 26.21±0.03 27.44±0.03 29.26±0.03 28.91±0.02 24.72± 0.10 26.13±0.03 27.75±0.03 28.07±0.03 21.06±0.15 24.43± 0.04 26.12±0.03 27.04±0.03

97.56±0.05 97.71±0.04 98.36±0.03 98.30±0.03 96.44±0.05 96.52± 0.06 97.47±0.04 97.81±0.04 93.02±0.16 94.18±0.09 96.01± 0.05 97.06±0.04

σ = 20 23.55±0.03 24.66±0.03 26.09±0.05 26.17±0.05 22.44± 0.05 23.82±0.03 25.23±0.02 25.63±0.06 19.52±0.12 22.60± 0.03 24.08±0.03 24.93±0.07

94.98±0.07 95.42±0.06 96.41±0.04 96.47±0.05 93.67± 0.12 93.81±0.08 95.42±0.07 95.80±0.07 90.12±0.17 90.83±0.10 93.87±0.08 95.01±0.12

σ = 25 22.61±0.03 23.67±0.03 25.16±0.05 25.21±0.03 21.48± 0.05 22.92±0.03 24.35±0.03 24.72±0.03 18.63±0.02 21.85± 0.03 23.25±0.04 24.08±0.04

93.60±0.07 94.24±0.07 95.32±0.06 95.37±0.05 92.30± 0.06 92.46±0.10 94.34±0.07 94.74±0.08 88.58±0.02 89.30±0.13 92.58±0.10 93.96±0.09

H
il

l

σ = 10 28.09±0.03 29.78±0.03 31.72±0.03 31.01±0.02 27.46± 0.06 29.14±0.02 30.85±0.05 30.51±0.03 24.30±0.22 28.42± 0.04 29.99±0.03 29.87±0.04

93.85±0.08 94.74±0.06 96.56±0.03 95.95±0.05 92.45± 0.11 93.58±0.05 95.74±0.05 95.39±0.07 88.01±0.32 91.93±0.09 94.63±0.08 94.57±0.06

σ = 20 25.49±0.03 27.89±0.02 28.81±0.07 28.71±0.05 24.78± 0.04 27.50±0.03 28.27±0.06 28.33±0.05 22.17±0.09 26.98± 0.03 27.69±0.05 27.83±0.04

86.70±0.12 91.01±0.09 92.46±0.09 92.26±0.09 84.44±0.16 89.72±0.12 91.33±0.08 91.38±0.10 79.30±0.27 87.92±0.13 90.13± 0.10 90.30±0.11

σ = 25 24.50±0.03 27.08±0.03 27.91±0.06 27.93±0.04 23.57± 0.07 26.73±0.03 27.48±0.05 27.55±0.06 20.98±0.07 26.23± 0.03 26.93±0.07 27.06±0.05

83.33±0.25 89.04±0.13 90.39±0.12 90.44±0.15 80.36±0.04 87.79± 0.13 89.50±0.12 89.60±0.16 75.10±0.33 86.01±0.13 88.19± 0.13 88.34±0.18

M
an

σ = 10 27.85±0.05 29.73±0.03 31.45±0.04 30.81±0.03 27.08± 0.04 29.01±0.04 30.49±0.03 30.22±0.04 23.88±0.19 28.19± 0.04 29.43±0.04 29.48±0.04

94.34±0.07 94.97±0.05 96.47±0.05 96.05±0.04 93.19± 0.07 93.79±0.07 95.59±0.06 95.46±0.06 88.73±0.26 92.13± 0.08 94.35±0.07 94.61±0.09

σ = 20 25.36±0.04 27.83±0.03 28.45±0.06 28.48±0.05 24.50± 0.08 27.38±0.03 27.93±0.04 28.03±0.04 21.79±0.12 26.82± 0.03 27.32±0.06 27.48±0.04

87.47±0.09 91.61±0.08 92.25±0.09 92.33±0.08 85.11± 0.19 90.41±0.08 91.26±0.10 91.36±0.12 79.61±0.27 88.76±0.11 90.27± 0.10 90.35±0.12

σ = 25 24.34±0.03 26.99±0.03 27.59±0.06 27.65±0.07 23.37± 0.09 26.60±0.03 27.05±0.04 27.23±0.06 20.71±0.06 26.09± 0.04 26.45±0.06 26.72±0.05

84.02±0.16 89.73±0.10 90.57±0.10 90.66±0.11 81.37±0.23 88.54± 0.13 89.55±0.12 89.62±0.13 75.59±0.28 86.82±0.16 88.42± 0.17 88.57±0.20

P
ep

p
er

s

σ = 10 28.94±0.08 31.53±0.10 32.71±0.06 32.54±0.11 27.37±0.11 30.73±0.14 31.83±0.08 31.95±0.11 24.92±0.18 29.79±0.11 30.79± 0.11 31.09±0.13

94.97±0.06 96.78±0.04 97.37±0.06 97.17±0.04 93.89± 0.08 96.29±0.06 96.61±0.07 96.82±0.05 90.39±0.21 95.59± 0.06 96.14±0.05 96.32±0.06

σ = 20 26.20±0.05 29.17±0.06 30.35±0.06 30.42±0.09 24.94± 0.06 28.66±0.07 29.78±0.06 29.88±0.12 22.68±0.10 28.06± 0.09 28.88±0.11 29.13±0.13

87.91±0.10 93.68±0.08 94.53±0.09 94.69±0.08 85.68±0.17 93.39±0.10 94.25±0.06 94.36±0.09 80.80±0.18 92.83±0.18 93.47±0.09 93.59±0.10

σ = 25 25.13±0.03 28.17±0.05 29.54±0.08 29.61±0.09 23.80± 0.05 27.77±0.06 28.73±0.06 29.02±0.11 21.22±0.14 27.17±0.06 27.95±0.08 28.21±0.13

84.28±0.14 91.99±0.11 93.44±0.08 93.61±0.08 81.69±0.02 91.74±0.12 92.74±0.07 92.96±0.13 76.19±0.27 91.28±0.12 91.85± 0.09 92.13±0.13

P
ai

n
ti

n
g

σ = 10 29.04±0.02 31.86±0.05 33.41±0.06 32.99±0.05 28.32± 0.08 30.99±0.06 32.45±0.05 32.33±0.05 25.15±0.20 29.92± 0.07 31.39±0.04 31.52±0.05

94.99±0.04 95.99±0.05 96.83±0.04 96.51±0.04 93.96± 0.07 95.08±0.06 96.26±0.04 96.08±0.05 90.42±0.26 93.68±0.10 95.35±0.05 95.41±0.07

σ = 20 26.10±0.03 29.15±0.03 30.06±0.09 30.10±0.07 25.27± 0.09 28.66±0.04 29.46±0.08 29.59±0.07 22.67±0.14 27.95± 0.04 28.73±0.05 28.97±0.07

88.35±0.06 92.56±0.09 93.10±0.08 93.19±0.10 86.25±0.16 91.63±0.09 92.29±0.07 92.41±0.12 81.43±0.25 90.21±0.13 91.61±0.15 91.75±0.17

σ = 25 25.00±0.02 28.06±0.04 29.09±0.10 29.12±0.06 24.03±0.08 27.77±0.05 28.41±0.04 28.53±0.06 21.48±0.02 26.96± 0.05 27.71±0.05 27.91±0.06

84.97±0.15 90.76±0.10 91.22±0.09 91.34±0.17 82.25±0.08 89.85±0.14 90.44±0.11 90.64±0.17 77.03±0.04 88.37±0.15 89.44± 0.14 89.87±0.18

A
v
er

ag
e

σ = 10 27.60±0.05 29.88±0.05 31.81±0.05 31.36±0.05 26.56± 0.08 28.93±0.06 30.68±0.06 30.63±0.07 23.43±0.18 27.84± 0.06 29.43±0.05 29.67±0.08

94.50±0.07 95.69±0.06 97.02±0.05 96.71±0.05 93.17± 0.09 94.58±0.07 96.19±0.06 96.17±0.06 88.83±0.26 92.89±0.09 95.04±0.06 95.36±0.08

σ = 20 25.11±0.04 27.66±0.04 28.90±0.06 28.85±0.06 24.13± 0.07 27.06±0.04 28.13±0.06 28.25±0.07 21.48±0.11 26.28± 0.05 27.20±0.07 27.48±0.08

88.23±0.11 92.35±0.09 93.72±0.08 93.60±0.09 86.01±0.14 91.24±0.10 92.72±0.08 92.83±0.12 80.96±0.23 89.54±0.14 91.52±0.11 91.79±0.14

σ = 25 24.13±0.04 26.72±0.04 27.86±0.07 27.91±0.07 23.04±0.07 26.22±0.04 27.14±0.06 27.32±0.07 20.44±0.08 25.48± 0.05 26.32±0.07 26.57±0.09

85.11±0.15 90.58±0.11 91.99±0.10 92.09±0.12 82.53±0.12 89.51±0.14 91.07±0.11 91.23±0.15 77.25±0.23 87.81±0.15 89.82± 0.13 90.13±0.16
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a small value (0.0001 in our algorithm) to weaken the role of

nonlocal regularization term. From the second loop, the IN is

largely reduced, and thus the nonlocal similar patch searching

becomes more accurate. Then we assign λ a large value to

remove AWGN. When the standard deviation of AWGN is

higher than 10, we set λ = 1; otherwise, we set λ = 0.5 to

suppress AWGN while preserving the image details as much

as possible. The parameter ε is a small scalar to increase the

numerical stability of computing Eq. (16). We set it to

ε(k+1) = min(ε(k), (median(|α(k) − µ|)), (19)

with ε(0) = 0.1. This is to ensure that ε will decrease with the

iteration and it is adaptive to the range of |α(k) − µ|. All the

parameters are fixed in all our following experiments.

B. Results

We then conduct extensive experiments to demonstrate the

performance of the proposed WESNR model. We consid-

er two types of mixed noise: AWGN+SPIN, and AWGN

+RVIN+SPIN. For AWGN+SPIN mixed noise, the standard

deviation of AWGN varies with σ = 10, 20, 25 and the

SPIN ratio varies with s = 30%, 40%, 50%, respectively. For

AWGN+RVIN+SPIN mixed noise, the standard deviation of

AWGN varies with σ = 5, 10, 15, the RVIN ratio varies

with r = 5%, 10%, 15% and the SPIN ratio varies with

s = 30%, 40%, 50%, respectively.

For AWGN+SPIN, we compare our WESNR method

with the following three state-of-the-art mixed noise removal

methods: ROR-NLM [30], Cai et al. [32], and l1-l0 [33].

Both Cai et al. [32] and l1-l0 [33] cannot be applied to

AWGN+RVIN+SPIN mixed noise removal. Therefore, for

AWGN+RVIN+SPIN we compare WESNR with ROR-NLM

[30], TF [27] and BM3D [14] coupled with median filter 1

(denoted by M+BM3D, which first applies median filtering to

remove IN and then applies BM3D to remove AWGN). The

size of median window is set 7 × 7.

The source codes of all the competing methods were ob-

tained from the original authors. We use the default parameter

settings except for Cai et al.’s method [32]. Since Cai et al. ’s

method is originally designed for deblurring with IN, in the

experiment we set the out-of-focus kernel to have radius 0 and

set βm=[0.1, 0.3, 0.3, 0.3, 0.3]. The original setting of βm is

[0.00001, 0.00002, 0.00002, 0.00002, 0.00002], but this is not

suitable for mixed noise removal.

Apart from PSNR, we also compute the recently developed

image perceptual quality index, FSIM [21], to evaluate quan-

titatively the denoising results. For each experiment, we run

the programs 50 times independently, and report the mean and

standard deviation of the 50 outputs. The PSNR and FSIM

results on the ten test images by the competing methods are

1The adaptive median filter (AMF) and adaptive center-weighted median
filter (ACWMF) are commonly used for SPIN and RVIN detection, respec-
tively. However, for mixed noise such as AWGN+RVIN+SPIN, to the best
of our knowledge, there is no adaptive filter which can detect SPIN and
RVIN simultaneously. We tested to use AMF for SPIN detection and then use
ACWMF for RVIN detection, followed by BM3D for AWGN removal, the
experimental results are similar to coupling BM3D with median filter but the
whole algorithm becomes much more complex. Thus we use BM3D coupled
with median filter for comparison.

TABLE III: Running time (second) comparison on image Lena

with different levels of AWGN+SPIN.

Lena ROR-NLM Cai et al. l1-l0 WESNR

σ = 10, s = 40% 275 93 214 89

σ = 20, s = 40% 313 125 165 112

σ = 25, s = 40% 338 142 158 137

listed in Tables I and II for the two types of mixed noise,

respectively. For our WESNR algorithm, the average number

of iterations is about 10.

From Table I, it can be seen that for mixed AWGN+SPIN

noise removal, the proposed WESNR method could consis-

tently achieve much higher PSNR and FSIM indices than

the ROR-NLM and Cai et al.’s methods, and better PSNR

and FSIM performance than the l1-l0 method. With the in-

crease of the strength of either AWGN or IN, the improve-

ment of WESNR over the l1-l0 method is getting higher

and higher. From Table II, one can clearly see that for

mixed AWGN+RVIN+SPIN removal, the proposed WESNR

achieves significantly better PSNR and FSIM indices than all

the competing methods.

Let’s give some visual comparisons of the denoising results

by different methods. Fig. 7 shows the denoising results

on image Lena. Fig. 7(b) and Fig. 7(c) show the Lena

images corrupted by AWGN+SPIN (σ = 10, s = 50%) and

AWGN+RVIN+SPIN (σ = 15, r = 15%, s = 30%). In the

2nd row of Fig. 7, the denoising results by the four mixed

AWGN+SPIN noise removal methods are displayed. One can

see that the proposed WESNR reconstructs much cleaner and

sharper image edges and generates much less artifacts, leading

to visually much more pleasant denoising results than the other

competing methods. The 3rd row of Fig. 7 shows the denoising

results of the four mixed AWGN+RVIN+SPIN noise removal

methods. One can see that M+BM3D over-smoothes much the

image details and destroys the image local structure; TF results

in severe SPIN caused image distortions; ROR-NLM leads to

better results than TF, but it remains many Gaussian like and

impulse like noises. In Fig. 8, we show the denoising results

on image Leaves. Clearly, WESNR reconstructs much better

the edges of leaves than all the other competing methods.

Particularly, in the case of AWGN+RVIN+SPIN, all the other

three methods fail to recover the image structures, while the

proposed WESNR can still faithfully reconstruct the edge and

texture features.

Finally, let’s compare the running time of the competing

methods. All the algorithms are run under the Matlab R2011b

programming environment on a PC equipped with 3.2 GHZ

CPU and 8 GB RAM memory. Table III lists the running

time (second) of the four mixed AWGN+SPIN noise removal

methods in processing the image Lena (size: 512 × 512)

with different noise levels. It can be seen that the proposed

WESNR method is much faster than the other three methods.

In Table IV, we list the running time (second) of the four

mixed AWGN+RVIN+SPIN noise removal methods. WESNR

is much faster than ROR-NLM. It is not a surprise that TF

runs faster than WESNR because it is basically a type of local

nonlinear filtering method. M+BM3D runs the fastest because

the BM3D algorithm is implemented by C but with a Matlab
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 7: Denoising results of different methods on test image Lena. (a) Original image. (b) Image corrupted by mixed noise

AWGN+SPIN (σ = 10, s = 50%). (c) Image corrupted by mixed noise AWGN+RVIN+SPIN (σ = 15, r = 15%, s = 30%).

Second row, from left to right: the denoising results of image (b) by ROR-NLM [30], Cai et al. [32], l1 − l0 [33] and WESNR.

Third row, from left to right: the denoising results of image (c) by ROR-NLM [30], TF [27], M+BM3D [14] and WESNR.

interface.

C. Discussions

As can be seen in sub-section III-B, the proposed WESNR

algorithm shows very powerful mixed noise removal perfor-

mance. It can deal with either mixed AWGN+SPIN noise or

mixed AWGN+RVIN+SPIN noise, and runs faster than the

state-of-the-art methods in [32, 33]. The superior denoising

performance of WESNR to other competing methods comes

from both its weighted encoding based data fidelity term and

sparse nonlocal regularization term. The role of weighted

encoding is to suppress IN and the role of sparse nonlocal

regularization is to suppress AWGN. Since the goal here is to

remove mixed AWGN and IN noise, both of the two terms are

necessary and they should work together to remove the mixed

noise. Without the weighted encoding term, the IN cannot be

effectively removed; without the sparse nonlocal regularization

term, the AWGN noise will largely remain in the output image.

The two terms play the same important role in mixed noise

removal.

In WESNR, the weights W are introduced in the data

fidelity term, and they are adaptively updated in the iteration

process. W are with real values, and the pixels corrupted by

IN will be assigned small weights to reduce their effect on

the encoding of y over the dictionary Φ so that clean images

can be reconstructed. In our algorithm, a set of orthogonal

PCA dictionaries are pre-learned from some high quality

images, and one local PCA dictionary is adaptively selected to

process a given image patch. In a recent work [36], a weight-

ed dictionary learning model is developed for mixed noise

removal. Though both our method and Liu et al.’s method

introduce weights in the data fidelity term, they have clear

differences. First of all, the method in [36] mainly focuses

on weighted dictionary learning, while our method focuses on

weighted encoding. In [36], the dictionary is online learned
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 8: Denoising results of different methods on test image Leaves. (a) Original image. (b) Image corrupted by mixed noise

AWGN+SPIN (σ = 20, s = 40%). (c) Image corrupted by mixed noise AWGN+RVIN+SPIN (σ = 5, r = 5%, s = 50%). Second

row, from left to right: the denoising results of image (b) by ROR-NLM [30], Cai et al. [32], l1 − l0 [33] and WESNR. Third

row, from left to right: the denoising results of image (c) by ROR-NLM [30], TF [27], M+BM3D [14] and WESNR.

and updated in each iteration. In our method, the dictionary

is offline learned and it is fixed in the whole algorithm. That

is, our algorithm is purely a sparse encoding algorithm, while

the algorithm in [36] involves sparse coding and dictionary

learning. The implementations of the two methods are also

very different. The model in [36] is mathematically beautiful

but it is somewhat complex. It needs four steps to optimize,

and in each step there is a minimization problem. Our model

is much simpler and it can be easily solved by iteratively

re-weighted method. In another recent work [23], a 0 or 1

valued parameter is introduced in the data fidelity term and

the penalty term to detect IN and remove AWGN. This is

basically a detection based method, and no dictionary is used

to reconstruct the image.

In the l1-l0 algorithm [33], a dictionary is also used to

reconstruct the image. However, the use of dictionary in [33]

is very different from that in our method. In [33], an over-

complete dictionary is online learned from the patches col-

TABLE IV: Running time (second) comparison on image Lena

with different levels of AWGN+RVIN+SPIN.

TF ROR-NLM M+BM3D WESNR

σ = 5, r = 5%, s = 50% 9 317 4 103

σ = 10, r = 10%, s = 40% 9 303 4 97

σ = 15, r = 15%, s = 30% 9 335 4 87

lected at those outlier-free pixels in each iteration. A modified

K-SVD algorithm is used for dictionary learning. The whole

algorithm needs three phases to optimize. In our method, the

offline learned compact PCA dictionaries are used. This is one

of the reasons why our algorithm runs much faster than [33].

IV. Conclusion

We presented a novel model for mixed noise removal,

namely weighted encoding with sparse nonlocal regularization

(WESNR). The distribution of mixed noise, e.g., additive
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TABLE II: PSNR (dB) and FSIM (%) results of mixed noise removal (AWGN +RVIN+ SPIN).

Image
σ = 5, r = 5%, s = 50% σ = 10, r = 10%, s = 40% σ = 15, r = 15%, s = 30%

TF ROR-NLM M+BM3D WESNR TF ROR-NLM M+BM3D WESNR TF ROR-NLM M+BM3D WESNR

Lena
17.71±0.14 24.93±0.21 26.57±0.11 31.80±0.07 22.51±0.19 27.87± 0.12 26.88±0.09 30.34±0.07 25.05±0.13 27.01±0.04 26.32± 0.07 28.47±0.08

75.51±0.50 92.23±0.27 92.04±0.18 96.67±0.06 85.72±0.27 93.10± 0.09 91.58±0.09 95.32±0.06 88.65±0.17 89.81±0.12 90.77± 0.08 93.11±0.13

F16
18.26±0.12 24.71±0.11 24.41±0.12 29.73±0.12 21.51±0.15 26.39± 0.11 24.48±0.11 28.36±0.10 23.27±0.12 25.98±0.06 24.29± 0.06 26.51±0.07

78.76±0.34 91.50±0.30 88.70±0.13 94.86±0.10 83.05±0.23 91.67± 0.13 88.03±0.11 92.93±0.14 85.83±0.17 88.71±0.14 87.37± 0.13 90.31±0.15

Leaves
16.22±0.09 20.51±0.10 20.56±0.07 26.21±0.09 18.08± 0.07 22.53±0.11 20.92±0.06 24.98±0.09 19.34±0.08 23.30± 0.08 20.64±0.05 23.53±0.07

72.18±0.30 86.71±0.23 84.90±0.12 92.71±0.25 77.22±0.27 88.71± 0.16 84.80±0.12 89.66±0.25 80.81±0.26 87.65±0.16 83.80± 0.13 88.09±0.17

Boat
16.15±0.12 22.79±0.14 23.60±0.07 28.23±0.10 20.39±0.11 25.37± 0.11 23.84±0.05 27.32±0.08 22.57±0.10 25.14±0.05 23.48± 0.06 26.13±0.05

67.46±0.44 89.17±0.30 86.71±0.09 94.53±0.07 78.02±0.25 91.35±0.16 85.96±0.14 92.75±0.10 83.06±0.17 89.27±0.13 84.96±0.13 90.51±0.13

Couple
16.05±0.11 22.74±0.11 23.49±0.08 28.18±0.10 20.31±0.13 25.36± 0.09 23.74±0.06 27.21±0.06 22.54±0.08 25.06±0.03 23.34±0.05 26.05±0.04

66.51±0.40 89.01±0.22 85.66±0.16 94.53±0.13 75.65±0.20 91.66± 0.09 85.05±0.09 92.96±0.07 80.26±0.14 90.05±0.10 83.96± 0.13 90.77±0.14

Fingerprint
13.40±0.07 21.00±0.16 19.73±0.03 26.45±0.06 16.49±0.08 23.64±0.07 19.94±0.04 25.16±0.07 18.41±0.06 22.73± 0.09 19.44±0.06 23.50±0.05

73.65±0.29 93.10±0.24 85.35±0.11 96.57±0.06 79.24±0.28 94.38± 0.08 84.50±0.16 95.04±0.06 86.66±0.21 91.01±0.12 82.63± 0.22 92.43±0.07

Hill
17.25±0.11 24.56±0.18 25.67±0.12 29.66±0.06 22.03±0.16 26.90± 0.06 25.95±0.07 28.66±0.05 24.34±0.10 26.13±0.04 25.41± 0.05 27.31±0.06

72.81±0.30 90.83±0.24 88.90±0.12 94.67±0.12 79.69±0.17 91.50± 0.07 88.33±0.11 92.91±0.09 83.28±0.16 88.91±0.11 87.49± 0.11 90.84±0.14

Man
17.02±0.10 24.02±0.16 24.99±0.13 29.10±0.06 21.44±0.18 26.47± 0.10 25.25±0.10 28.13±0.06 23.75±0.10 25.91±0.05 24.81± 0.06 26.80±0.04

73.01±0.30 91.16±0.24 88.66±0.14 94.84±0.09 80.28±0.20 92.15± 0.13 87.95±0.13 93.16±0.13 83.71±0.13 89.63±0.12 86.98± 0.12 90.93±0.10

Peppers
18.06±0.13 25.36±0.09 26.35±0.12 29.83±0.13 22.58±0.17 27.53±0.14 26.81±0.13 28.84±0.09 24.85±0.13 26.83±0.04 26.11±0.07 27.17±0.06

78.83±0.36 93.05±0.16 93.02±0.12 95.64±0.08 87.52±0.22 93.12±0.10 92.72±0.09 94.23±0.06 89.63±0.14 90.07±0.09 91.74±0.09 92.25±0.11

Painting
18.35±0.15 25.57±0.20 26.27±0.09 31.50±0.12 22.73±0.18 27.71± 0.11 26.59±0.08 29.96±0.07 24.84±0.11 26.88±0.03 25.88± 0.06 27.95±0.05

77.13±0.32 92.77±0.17 90.34±0.07 95.78±0.08 82.88±0.21 93.06±0.10 89.80±0.06 94.27±0.06 89.66±0.12 90.49±0.07 88.69±0.09 92.19±0.07

Average
16.85±0.11 23.62±0.15 24.16±0.09 29.07±0.09 20.81±0.14 25.98± 0.10 24.44±0.08 27.90±0.07 22.90±0.10 25.50±0.05 23.97± 0.06 26.34±0.06

73.59±0.36 90.95±0.24 88.43±0.12 95.08±0.10 80.93±0.23 92.07±0.11 87.87±0.11 93.32±0.10 85.16±0.17 89.56±0.12 86.84±0.12 91.14±0.12

white Gaussian noise mixed with impulse noise, is much more

irregular than Gaussian noise alone, and often has a heavy tail.

To address this difficulty, we adopted the weighted encoding

technique to remove Gaussian noise and impulse noise jointly.

We encoded the image patches over a set of PCA dictionaries

learned offline, and weighted the coding residuals to suppress

the heavy tail of the distribution. The weights were adaptively

updated to decide whether a pixel is heavily corrupted by

impulse noise or not. Meanwhile, image sparsity prior and

nonlocal self-similarity prior were integrated into a single

nonlocal sparse regularization term to enhance the stability

of weighted encoding. The results clearly demonstrated that

WESNR outperforms much other state-of-the-art mixed noise

removal methods.
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