
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 80, Number 4. December 1980

MIXED NORM «WIDTHS

C. DE BOOR1, R. DEVORE2 AND K. HÖLLIG3

Abstract. Recently, the Soviet mathematicians R. Ismagilov [4], E. Gluskin [3]

and B. Kashin [5] have obtained some deep and surprising results on n-widths for

Sobolev spaces in the mixed norm case. In this note, we will give a new and simpler

proof of Gluskin's result and show its connection with a certain classical combina-

torial problem.

0. Introduction. Let Xp = L^O, 1], 1 < p < oo, and Xx = C[0, 1]. We denote by

Wp the Sobolev space of all / with Z**-1* absolutely continuous and /*fc) G Xp

equipped with the norm ||/||M := \\f\\p + \\fk\. The unit ball U(Wk) is a

compact subset of Xq in case k > l/p — l/q and so the «-width

dn{u{Wk))q  :=        inf sup       inf\\f-g\\q
àaa(Y)-n   feU(wk\   g^Y

tends to zero as « -* oo. We are interested in characterizing the asymptotic

behavior of dn and finding asymptotically optimal subspaces Yn.

When q = p, this is quite straightforward as dni U( Wk))p — «~* and either of the

two spaces, polynomials of degree < n or smooth splines of order A: with n — k

equally spaced knots, is asymptotically optimal. When q ¥=p, the so-called mixed

norm case, the problem becomes more substantial for certain values of p and q,

and a solution for the complete range 1 < p, q < oo was only recently given by

Kashin [5]. One of the early breakthroughs was due to Gluskin [3] who showed that

d„iUiWx2))x< const n-3'2. (0.1)

This result is quite surprising in view of the fact that the best possible embedding is

Wx G W^ from which one suspects dn(U(Wx2)) ~ n~x. The lower estimate

d„(U(Wx))x > const «~3/2 is an immediate consequence of the estimate

dn(U(Wx))2~ «~3/2 which is an old result of Stechkin [7] based on a clever

argument of W. Rudin, so (0.1) actually determines the «-width of U(WX), i.e.

dn(U(W2))x~n-V2.

Gluskin's proof of (0.1) follows the ideas of Ismagilov [4] who had given an

earlier estimate dn(U(Wx))aa < const n*,s. Their technique is to reduce the prob-

lem to the study of «-widths of the unit ball of /¡" in the space /". This approach

Received by the editors March 7, 1979.

AMS (MOS) subject classifications (1970). Primary 41A45; Secondary 41A15, 41A25.
Key words and phrases. Mixed norm n-widths, Sobolev spaces, combinatorics.

'Supported by the U. S. Army under Contract No. DAAG 29-75-C-0024.
Supported by NSF Grant MCS 77-22982.
3This research was initiated at the Universität Bonn under the support of Sonderforschungsbereich

72.

© 1980 American Mathematical Society

0002-9939/80/0000-0 609/$02.75

577

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



578 C. DE BOOR, R. DEVORE AND K. HÖLLIG

offers Utile insight into the nature of asymptotically optimal subspaces.

In §2, we will give a new proof of (0.1) by explicit construction of an asymptoti-

cally optimal subspace. This construction is based on the solution of a combina-

torial problem which, as we realized later, has many equivalent formulations such

as the existence of orthogonal Latin squares or more general block designs or of

finite projective planes. Its solution, in §3, uses the existence of finite fields of

prime power order. Our construction also has the advantage of being linear and so

we not only determine d„ asymptotically but the linear «-width as well.

1. Proof outline. The idea of our proof is (i) to replace / G U( Wf) by its broken

line interpolant S on a uniform mesh of width «_3/2 (as is already done in Gluskin

[3]), at an error of no more than ||/"||,«"V2, (ii) to observe that S =/(O) +

2,a,(- — x,)+ with 2,|a,| < 2||/"||,, and (iii) to construct 2« + 1 broken lines (or,

linear splines) on the same mesh whose span is within n-3/2 of each of the functions

(•-x()+,/ = 0,...,«3/2.

The first two steps are covered by the following well-known proposition.

Proposition 1. If f E Wx and S is the piecewise linear spline with knots

x, = i/N, i = 0, . . . , N, »v«/c« interpolates f at each x„ then

||/-5||00<7V-,||/"||„ (1.1)

and

S(x) =/(0) + 2 «i(x - *,)+   H"'" 2 hi < 211/1,. (1.2)
i-O Í-1

Proof. This is well known but we give the simple proof. Since S'(x) =

Nfäyf'(s) ds for x, < x < x,+,, we have

\f(x) - S(x)\ = \f\fV) - S'(t)) <ft| = tf|/7*+V'(') - A*)] * dt

f      f      \f"(r)\drdsdt<N-x\\f"\\x
x¡ x¡ x¡

which is (1.1).

If now S = /(0) + 2f_"o'«,(- - */)+. wen a, - S¡ - S¡_x with S¡ := Nf**f(s) ds

for i > 0 and S'_x := 0. Thus, for 0 < i < n,

H= N\f'+i[f'(t) - f'(t - N-X)]dt\
I     X¡

<Nf     j     \f"(s)ds\dt=f     \f"(r)\dr
X¡ JC(_! X,_,

from which (1.2) follows.

2. Construction of an asymptotically optimal subspace. We consider « of the form

n = m2 with m > 1, and let N = «i3. Proposition 1 shows that the space ©^ of

linear splines with the N equally spaced knots x, = i/N, i = 0, . . ., N, gives the

correct order of approximation N~x — «_3/2 to U(W2) in C. However, this space

has too high a dimension, namely N + 1. We now construct within <BN a space Y„
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MIXED NORM «-WIDTHS 579

of dimension 2« + 1 which is within 0(N~X) of U(W2).

Because of Proposition 1, it will be enough to construct Y„ so that, for each

0 < i < N, there is a function i>, G Y„ with

l,('-*i)+-*ilL< const N-1 (2.1)

or, what is the same thing,

| (X(t - xf+ -<b,(t) dt < const AT1 (2.2)
\Jo

where <f>, = 4>-, and where const is independent of N (and x). For this, we let

Y'n := {<!>': $ G Yn) and work to construct Y'n of dimension < 2« and containing,

for each i, some <f>, for which (2.2) holds. The space Yn will then be recovered from

Y'n by integration and the adjoining of the constant functions.

We choose Y'n as the linear span of 2« step functions, each of the form

K ■=   2 *, (2.3a)
rSA,

with A¡ a subset of {1, 2, . . . , N) of cardinality m, and

1,     *„_, <* < x„

«,(') := v - 1,..., N. (2.3b)
0,    otherwise,

Specifically, we choose

An+¡ '■= {(» - l)w + 1,..., im),       i = 1, . . ., n,

thus forming a very simple partition of (1, . . ., N). We also choose Ax, . . ., An as

a partition of {1, . . ., A/}, but in a more complicated way to be made precise in

the following.

Consider now one of the functions (• — x¡)0+ which we would like to approximate

with the accuracy of (2.2). If (J — l)m < i < jm, then
N jm n

r—1+1 k — i + l *—j+\

leaving us with the problem of approximating the step function 2f+ x8r. Now, we

could approximate this function by iijm — i)/m)8A^ . Then, with e the error in

this approximation, we would have

f e(f) dt - 0   for x G [x(,_ 1)m, x,m].
^o

But, sup^l/oeiO dt\ = ((/m - i)/m)ii' ~U ~ l)m)/N), aûd this can be as large as

m/AN. So we must find a different approach and this is where the functions 8A,

j'=l,...,«, enter the picture.

Since Ax,... ,A„ is a partition for {1,..., N), there exists, for each v G

{1, . . ., N), exactly one set Br G {Ax,. . ., An) for which v G Bf. With this, the

function 2Í1Í+15B in Y'n provides a first approximation to ~2j"x8y whose error is of

the form
jm

e, := -   2 2      V
r—i+I |i6J,\{r}
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Again we can prevent this error from building up by subtracting off the mean value

of this error on each interval [x(t_1)m, xkm] = supp 6^ . That is, for each A: =

1, . . . , «, let

m,k := -NJSA^te,.

Then

r=i+\ k=j+\ k-l

is an approximation to ( • — x,)+ from Y'n for which

[*"•   [(t - x,)\ - <b,(t)] dt = fsAi<Jt)(e,(t) + mjm) dt
X{k- I)m

= -mik/N + (m,k/m)(m/N) = 0,

Consequently, for x(/t_,)m < x < xkm, we have

I [X[(t - x,)\ - <b,(t)] dt\ =   C      [e,(t) + m,k/m] dt
\J0 I        Jx{k_l)m

(2.4)

jfc-l,.

<mjN.     (2.5)

Thus, to obtain (2.2) with this construction, the second partition Ax, . . . ,An for

{1, . . . , N} must be chosen so that

max m,k < const independent of «.
i, k

Now we can, in fact, achieve m,k < 1 for all /' and k if we manage to choose

Ax, . . . , An so that

(2.6) card(j4, n An+k) < 1 for all v, k and if both Ar and A^ intersect An+j, v ^ p,

then, for all k ¥=j,An+k contains an integer from at most one of Ar and A^.

Indeed if (2.6) holds then the error function e, involves at most one 5M with

p E An+k for any k and therefore m,k < 1.

We do not know how to choose such a partition, in general. But, if m is a prime

power, then there is an easy such choice, and we give it in §3. With this, we have

Theorem 1. Let « = m2 be any integer for which a partition Ax,. . ., An of

{1, . . ., m3} into m-sets can be chosen which satisfies (2.6), e.g., n = p2r for some

prime p. Let Yn := spanfi//,}2" U {1}, where i//,(x) := f%8A(t)dt, 1 < /' < 2«, and

l(i) = 1, with An+k := {(k - l)m + 1,.. ., km} for k = I, . .., n, and 8A given by

(2.3). Then there exists a linear map Pn: C[0, 1] -» Yn so that

11/- PJ\L < 3||/"||,«-3/2   for all f E W2[0, 1].

Proof. Set N := m3 and let S = /(0) + ~2S~xa,(- -x,)+ be the broken line of

Proposition 1 which agrees with / at its breakpoints x, = i/N, i = 0,. .., N. We

define PJ by

PJ-=f(0)+   ¿  «,*,
i-O
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with

*,(*) := /%,(') dt,
Jo

and <i>, given by (2.4). Then Pn is a linear map, and maps into Yn since 4», G Yn.

Also, by (2.5),

IK- -*,)+ -^IL = maxI fX[it - xf+ -<*,,.(<)] dt < mik/N < N~x
\Jo

because of (2.6). Thus,

JV-l

ii/- pj\l < ii/- sn» + us - /vu«, < iiriii/^ + s Ki/Af < siini,^-1
1-0

using (1.1) and (1.2), which finishes the proof.

3. The combinatorial problem. A partition A,,..., An for [l, .. ., N = m3}

consisting of w-sets and satisfying (2.6) can be obtained if we can show the

following:

(3.1) There exist subsets C„ . . ., C„ of {1, .. . , « = m2}, each having m elements,

and such that

(i) no integer is contained in more than m of them and

iii) for all i +j, card(C(. n Cf) < 1.
Indeed, if (3.1) is true, then we construct Ax, . . . ,An in that order as follows.

With Ax, . . . ,A¡_X already constructed, A, is to contain, for each k G C„ the

lowest integer in A„+k not already contained in some Aj with/ < i, (such an integer

exists because of (ii)) and no others. Then A¡ n Aj = 0 for i ¥^j and (i) insures

that each A¡ has exactly m entries. Hence Ax,...,An is a partition for

{1, . . . , m3}. Also our construction assures that card(/l„ n An+k) < 1 for v, k.

Further, (ii) insures that, if both Av and Ap forp^p. have an entry from A„+J, i.e.,

if both CM and C„ contain/, then, for all k ¥^j, An+k cannot contain an entry from

both Ap and A^.

We now attempt to construct a solution for (3.1) in the form

{C„ . . ., C„) = [C,/. i - -1,.... m - Xj - 1.m),

with the additional property that, for each i, CIX, . . ., Cim is a partition for

(1, . . . , «i2 = «}. This insures (i) and insures (ii) for Cik and Cih with h ¥= k. In

addition, (ii) then requires that

card(q, n Qj = 1    for i ¥= h and all/, k. (3.2)

There is, therefore, no loss in generality in choosing

C_XJ = {(/ - \)m + 1,... Jm),      j = 1,.. ., «j,

coj = {JJ + m,. ..,j + im - l)m],      j - 1.m.

If we write the numbers (1, . . . , m2 = «} into a square array Q as follows

ß:=

1 2 • • • m
m + 1 m + 2      •••      m + w

m(«t — 1) + 1 • • •        m ■ m

= ■■{%,)
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then our first partition C_,,, . . ., C_Xm consists of the rows of Q and the second

partition, C0,,. . . , C0m, consists of the columns of Q. Consequently, by (3.2), any

C,j with / > 0 must pick exactly one element from each row and from each column of

Q. This means that we can represent each such C,j as a permutation ytj of degree m

with

cu= {ar,yu(ry r = 1, ...,m).

Further, (ii) is insured if YyV« has at most one fixed point whenever (/,/) ^ (h, k).

With this, we are ready to prove (3.1) in case m is a prime power. In that case,

the numbers I, . . . , m can be identified with the elements of a field (with 1 the

multiplicative identity and m the additive identity, say) [6]. Now, for / = I,. . ., m

— 1 and/ = 1, . . . , m, define

tij{r) ■= i*r ©/,       r = 1, . . ., m,

with * and © the field operations. Then yt, is invertible (since i ^ m), hence a

permutation of degree m. Further, if y¡jXyik(r) = r, then/ = k. Hence, C,,, . . ., C,m

is a partition of (1, ..., m2}, for all i, thus insuring (i). Finally, if yjfy^r) = r for

r = s and r = t, then (i Q h) * s = (i Q h) * t, hence either s = t, or else i = «,

but then, as seen just now, also/ = k. This proves (3.1) for the case that m is aprime

power.

We note that we have actually found m more subsets C, than we needed. Also,

for i > 0, the sets C,x, . . . , C,m form a Latin square L,, and (ii) states that L, and L}

are "orthogonal" for i t^j (see, e.g. [6]). Thus it is known that our problem (3.1) has

no solution if m = 6 (Euler's problem of the 36 officers) and it is unknown already

for m — 10 whether or not (3.1) has a solution.

4. «-widths. In this last section, we record various statements about «-widths,

which follow readily from Theorem 1 by integration and the use of standard

arguments from the interpolation of linear operators. Let dn be the «-width as given

in the introduction and let 8n he the linear «-width as defined by

8n{u{Wk))q := inf      sup     \\f - Ln(f)\\q
L"  feu(«/pk)

where the inf is taken over all linear operators L„ whose range has dimension < n.

Theorem 2. For any n = p2k,p aprime, we have

«2n+.(tW))oo  < ¿2„+,(£W))oo  < 3«-V2. (4.1)

For any integer r > 2 and n > I,

S„( U( W[))x < dn( U( W^ < const «"'+x'2. (4.2)

For any a > 2, 1 < q < oo, and any n > 1,

8n( U(B?-«)) < dn( U(Br))x < const «-+x>2, (4.3)

where Bx,q is the Besov space.
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