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ABSTRACT In this paper, the iterative learning control (ILC) problem is investigated for a class of
time-invariant parabolic singular distributed parameter systems. Initially, the singular distributed param-
eter systems is decomposed into infinite number of singular systems based on the separation principle.
Meanwhile, the slow-fast subsystems are introduced via singular value decomposition method. Then, a novel
mixed PD-type ILC algorithm with finite dimension is designed for the low dimensional slow part and the
corresponding convergence conditions are manifested. With the proposed controller, the output error of high
dimensional fast complement can satisfy the given value instead of neglecting the effect of high dimensional
modes. Furthermore, under the aforesaid ILC law and the appropriate number of the low dimensional slow
part, the resulting tracking error of parabolic singular distributed parameter systems can converge to any
small tracking accuracy. Finally, simulation results on the distributed building automatic temperature system
verify the convergence and effectiveness of the mixed PD-type ILC algorithm.

INDEX TERMS Iterative learning control, singular distributed parameter systems, separation principle, low
dimensional slow part, convergence analysis.

I. INTRODUCTION
Many complex systems can be modeled by singular dis-
tributed parameter systems (SDPSs, see Refs. [1]–[4]).
On one hand, the singular distributed parameter systems
has the characteristics of singular systems, such as the sys-
tems includes the dynamic part described by differential
equations and the static part governed by algebra equations.
On the other hand, the SDPSs, inherently distributed in
space, which has the characteristics of distributed parame-
ter systems with infinite-dimensional. Although there exists
plenty of research results about singular systems [5], [6]
and distributed parameter systems [7], [8]. There are only
some theoretical results on SDPSs have been investigated
over the past decades. For example, the solution of singular
distributed parameter systems is studied by using the Fourier
approach and separation principle in [9]. In [10], the effec-
tive research on a boundary-value problem for linear partial

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

differential-algebraic equations was solved based on the
Kronecker-Weierstrass form of thematrix pencil.Meanwhile,
there are still also other research attentions on SDPSs, such as
decoupling [11], controllability and observability [12], pas-
sivity criteria [13], exponential stability [14], solvability [15],
and so forth.

Iterative learning control (ILC) is an important branch of
the intelligence control field. The ILC scheme, originating
from the industrial robotic [16], has considerable practical
systems and broader engineering applications which include
transport systems [17], rehabilitation robots [18], multia-
gent systems [19]–[22], digital networks [23] and so on.
Compared with the existing intelligence control methods,
the learning capability of the algorithm is the most prominent
characteristic of ILC. In addition, for a given desired output,
ILC can find the desired input by the repetitive learning
process in a finite time interval. Over the past four decades,
the ILC has been successfully developed to many kinds
of systems, for example, singular systems [24], distributed
parameter systems (see, e.g., [25]–[29], [33]), stochastic
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systems [34], [35], switched systems [36], impulsive sys-
tems [37], [38], fractional-order systems [39], etc..

The following facts motivate the study of this paper.
Firstly, up to now, to the best authors’ knowledge, there
are few results reported on the ILC of singular distributed
parameter systems. Due to the variables of the DPSs are
related to infinite dimensional space, the research in this
area should be theoretically interesting and more challeng-
ing [29]–[31]. Secondly, many industrial and engineering
processes can be established on the SDPSs model which
governed by partial differential equations (PDE) with a
singular matrix coefficient ([1]–[4], [9]–[13]). Since the
SDPSs is an infinite-dimensional system and even for the
known distributed parameter systems (DPSs), in this process,
the reduction to ordinary differential equations (ODE) with
finite-dimensional is needed because only a finite number
of actuators/sensors can be used in practice. In [40], an ILC
controller is designed via the model reduction methods for a
class of quasi-linear parabolic DPSs, which is simplified into
lumped parameter systems via the eigenspectrum of DPSs.
The work in [41] utilized the Karhunen-Loeve decomposition
and singular perturbation theory to reduce the nonlinear DPSs
and implement the data-driven control technique. In view
of Galerkin′s theory, the DPSs is simplified into the finite-
dimensional slow system and an infinite-dimensional fast
system in reference [42], and the guaranteed cost sampled-
data fuzzy controller is designed. An incremental spatiotem-
poral learning scheme is applied to the online modeling of
DPSs for time-space separation in [43]. Thirdly, owing to the
singular form is useful to represent and handle the systems
problem in considerable control fields, the iterative learning
control of singular systems have been extensively studied
in recent years (see, [5], [6], [44], [45]). The convergence
analysis methods are mainly divided into two classes: (i) the
constrained equivalent system method, which means that the
dynamic equivalent system is obtained based on the regular-
ity hypothesis of matrix parameters and the singular value
decomposition theory [24], (ii) direct analysis, i.e., through
the new matrix which contains a singular matrix is invertible
by the learning gain matrix to be determined and then the
learning convergence of output error is guaranteed [38], [46].

In association with the aforesaid observations, the iterative
learning tracking control for singular distributed parameter
systems is studied. The contributions of this paper are sum-
marized as three folds:

(1) The iterative learning control problem is firstly inves-
tigated for multi-input and multi-output (MIMO) parabolic
singular distributed parameter systems, which can be applied
to track the desired trajectory both in space and time.

(2) A novel mixed PD-type ILC law based on the low
dimensional slow part is proposed. Since the reduced SDPSs
includes dynamic part described by differential equations and
static part described by algebra equations, the differential of
state error from dynamic part and the proportion of state error
from static part are integrated into the mixed PD-type ILC

law. Moreover, the inherent mechanism of finite dimension
ILC law guarantees the convergence property of the output
error.

(3) The convergence of the closed-loop learning system is
rigorously proved via the separation principle, model reduced
technology, and contraction mapping approach. With the
aforementioned analysis, not only the overall performance of
the output tracking which takes into account the fast modes
of the system can be enhanced, but also the uniformity of the
state tracking can be improved on the basis of the dynamics
of whole modes.

This paper has the following structure. In Section II, prob-
lem formulation and system description are firstly given
under some assumptions. We present the ILC algorithm and
details to analyze the convergence conditions of output track-
ing error for the repetitive MIMO SDPSs in Section III.
In consequence, based on the derivation in Section III,
we focus on numerical simulations about the 2-storey office
building temperature system in Section IV. At last, Section V
concludes the paper and further discussions are shown.
Notations: Throughout the paper, let C denotes complex

plane, C+ is the right half plane of C. R denotes the set of
real numbers. Rm and Rj×l describe the set of m-dimensional
real vectors and the set of j× l real matrices, respectively.
The superscript ′T ′ denotes the matrix transposition; A > 0
(respectively,A < 0) represents a symmetric positive (respec-
tively, negative) definite matrix. Define V = (v1, v2, · · · , vj)

as a vector, and its Euclidean norm is ‖V ‖=
√∑j

i=1 v
2
i .

For V is a matrix equipped with the matrix norm ‖ V ‖=√
λmax(V TV ), where λmax(·) is the maximum eigenvalue. Let

zi(ξ ) : � → R is a Lebesgue square integrable function
on the bounded open set �, that is zi(ξ ) ∈ L2(�) (i =

1, 2, · · · , j), and define ‖zi‖L2= {
∫
�
z2i (ξ )dξ}

1
2 . If z(ξ ) =

(z1(ξ ), z2(ξ ), · · · , zj(ξ ))T ∈ Rj
∩ L2(�), then ‖ z ‖L2=

{
∫
�
zT (ξ )z(ξ )dξ}

1
2 . Let f (t) : [0,T ] → Rj, its λ-norm is

defined as ‖f ‖λ= sup
06t6T

{‖ f (t) ‖ e−λt } with a given positive

constant λ. Besides, 4 denotes the Laplace operator.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION
A. PROBLEM FORMULATION
Consider the following time-invariant singular distributed
parameter systems with parabolic typeE

∂z(ξ, t)
∂t

= D
∂2z(ξ, t)
∂ξ2

+ Az(ξ, t)+ Bu(ξ, t),

y(ξ, t) = Cz(ξ, t),
(1)

where (ξ, t) ∈ [0, 1] × [0,T ] describes time and space
coordinates, respectively. z(ξ, t) ∈ Rj,u(ξ, t) ∈ Rm, y(ξ, t) ∈
Rl denote the system state, control input and the output of
system, respectively. E ∈ Rj×j is singular constant matrix
with rank(E) = r < j, D ∈ Rj×j is diagonal positive definite
constant matrix, A ∈ Rj×j, B ∈ Rj×m, C ∈ Rl×j, are time-
invariant bounded matrices.
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The initial and boundary conditions of (1) are given as,

z(0, t) = z(1, t) = 0, t ∈ [0,T ], (2)

z(ξ, 0) = φ(ξ ), ξ ∈ [0, 1]. (3)

Remark 1: The singular distributed parameter systems
(1) is a parabolic DPSs with singular matrix E , which can
be applied to describe a wide family of problems in prac-
tical applications including the temperature description of
an acetylene reactor, the transdermal application of drugs,
etc., has been extensively studied (see e.g., [47], [48]).
For example, as a model for molten carbonate fuel cells,
the dynamics consist of second-order temperature equations
and transportation equations were studied in [48].

For the singular distributed parameter systems (1) repeat-
edly operates on a finite time interval [0,T ], that isE

∂zk (ξ, t)
∂t

= D
∂2zk (ξ, t)
∂ξ2

+ Azk (ξ, t)+ Buk (ξ, t),

yk (ξ, t) = Czk (ξ, t),
(4)

where k denotes the iteration number, k = 1, 2, · · · .
The iterative learning control goal is to find the desired

control input ud (ξ, t) such that when k → ∞, the output
of learning systems yk (ξ, t) can track the reference trajectory
yd (ξ, t) as followsE

∂zd (ξ, t)
∂t

= D
∂2zd (ξ, t)
∂ξ2

+ Azd (ξ, t)+ Bud (ξ, t),

yd (ξ, t) = Czd (ξ, t),
(5)

Remark 2: With the generalized operator semigroup the-
ory and differential inequalities, Ge et. and his work team
make several insight results on well-posedness of SDPSs
[14], [15], [51]. The existence, uniqueness and constructive
expression for the strong solution zd (ξ, t) in (5) can be found
in ([51], Thm. 9).

Before considering the ILC issue of SDPSs (1), the follow-
ing basic assumptions that would be useful in the derivation
of our main result.
Assumption 1. For a desired output yd (ξ, t), there exists an

unique ud (ξ, t) to meet the equations in the learning systems
described by (5).
Assumption 2. The SDPSs (1) is regular, that is, there

exists a complex number s0 ∈ C such that matrix pencil
σ (E,D) 6= 0, i.e. det(s0E − D) 6= 0.
Assumption 3. Assume that, for all k = 1, 2, · · · , the

boundary and initial conditions are given as follows:

zk (0, t) = zk (1, t) = 0, t ∈ [0,T ], (6)

zk (ξ, 0) = ϕ(ξ ) = zd (ξ, 0), ξ ∈ [0, 1]. (7)

Remark 3: For Assumption 1, it is a necessary condition
for the iterative learning algorithm (see, e.g., [16], [24], [26],
[36], [40]).Meanwhile, the constructive expression, existence
and uniqueness for the solution of parabolic SDPSs are con-
firmed in the light of the separation principle [9], [10]. The
requirement of Assumption 2 is also the general assump-
tion in the control theory of singular system and SDPSs

(e.g., [5], [6], [9], [12]). In standard ILC, the identical ini-
tial condition zk (ξ, 0) = zd (ξ, 0) is a common assumption
[25], [26], [29]. Moreover, most industrial processes often
start from the same position and the process is repeatable
from a practical point of view. Therefore, those proposed
assumptions are rational.

B. SYSTEMS SIMPLIFICATION VIA THE
SEPARATION PRINCIPLE
According to the time-space separation principle, the spa-
tiotemporal state z(ξ, t) can be represented as z(ξ, t) =
X (t)4(ξ ). Then, the eigenvalue problem of parabolic SDPS
(1) is concerned as follows:{

−14(ξ ) = λ4(ξ ), ξ ∈ (0, 1),
4(0) = 4(1) = 0,

and the aforesaid eigenfunctions 4(ξ ) are {sin(nπξ )}, n =
1, 2, · · · and λn = {n2π2

}, n = 1, 2, · · · .
Furthermore, the following decoupled forms for systems

(4) can be implemented

zk (ξ, t) =
∞∑
n=1

X kn (t) sin(nπξ ),Xn(t) ∈ Rj, (8)

uk (ξ, t) =
∞∑
n=1

U k
n (t) sin(nπξ ),U

k
n (t) ∈ Rm, (9)

yk (ξ, t) =
∞∑
n=1

Y kn (t) sin(nπξ ),Y
k
n (t) ∈ Rl, (10)

ϕk (ξ ) =
∞∑
n=1

ϕn sin(nπξ ), ϕn ∈ Rj. (11)

Remark 4: In views of the separation principle and PDE
spectrum theory, then {sin(nπξ )}∞n=1 develops an orthonor-
mal eigenfunction family, which makes efforts for the follow-
ing infinite decomposition of SDPSs. For more discussions
on the aforementioned theories, please see [2], [3], [7].

Then making the infinite decomposition of (4) via
Eqs.(8)∼ (11) yields the following singular system family.

∞∑
n=1

EẊ kn (t) sin(nπξ ) =
∞∑
n=1

−(nπ)2DX kn (t) sin(nπξ )

+

∞∑
n=1

AX kn (t) sin(nπξ )

+

∞∑
n=1

BU k
n (t) sin(nπξ ), (12)

∞∑
n=1

Y kn (t) sin(nπξ ) =
∞∑
n=1

CX kn (t) sin(nπξ ), (13)

∞∑
n=1

X kn (0) sin(nπξ ) =
∞∑
n=1

ϕn sin(nπξ ). (14)
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The above expressions can be arranged in a compact form
as follow:

EẊ kn (t) = −(nπ)
2DX kn (t)+ AX

k
n (t)+ BU

k
n (t),

Y kn (t)=CX
k
n (t),

X kn (0)=ϕn,

(15)

where X kn (t)∈Rj,U k
n (t)∈Rm,ϕn∈Rj, n = 1, 2, · · · .

On the basis of the singular value matrix theory [5]
and Assumption 2, there exists two nonsingular matrices
P ∈ Rj×j, Q ∈ Rj×j such that

PEQ =
[
Ir 0
0 0

]
,PDQ =

[
D1 0
0 In−r

]
,

PAQ =
[
A1 A2
A3 A4

]
,PB =

[
B1
B2

]
,CQ =

[
C1 C2

]
,

where Ir is an unit matrix with r = rank(E) order.
By introducing the following state transformation,

Q−1X kn (t)=
[
X kn1 (t)
X kn2 (t)

]
,

with X kn1(t) ∈ Rr , X kn2(t) ∈ Rj−r .
Then, the system (15) can be rewritten as

[
Ir 0
0 0

][
Ẋ kn1 (t)
Ẋ kn2 (t)

]
=−(nπ )2

[
D1 0
0 In−r

][
X kn1 (t)
X kn2 (t)

]

+

[
A1 A2
A3 A4

][
X kn1 (t)
X kn2 (t)

]
+

[
B1
B2

]
U k
n (t),

Y kn (t) = C1X kn1 (t)+ C2X kn2 (t),
X kn (0) = ϕn.

(16)

It follows from (16) that
Ẋ kn1=−(nπ )

2D1X kn1(t)+A1X
k
n1(t)+A2X

k
n2(t)+B1U

k
n(t),

0=−(nπ )2X kn2 (t)+A3X
k
n1(t)+A4X

k
n2(t)+B2U

k
n(t),

Y kn (t) = C1X kn1 (t)+ C2X kn2 (t),
X kn (0) = ϕn,

(17)

where U k
n (t) ∈ Rm, Y kn (t) ∈ Rl , n = 1, 2, · · · .

Likewise, in view of the reduced steps of learning systems
(4), the desired systems (5) can be simplified as

Ẋdn1=−(nπ)
2D1Xdn1(t)+A1X

d
n1(t)+A2X

d
n2(t)+B1U

d
n(t),

0=−(nπ )2Xdn2 (t)+A3X
d
n1(t)+A4X

d
n2(t)+B2U

d
n(t),

Y dn (t) = C1Xdn1 (t)+ C2Xdn2 (t),
Xdn (0) = ϕn,

(18)

with Xdn1(t) ∈ Rr , Xdn2(t) ∈ Rj−r , Ud
n (t) ∈ Rm, Y dn (t) ∈ Rl ,

n = 1, 2, · · · .
Remark 3: The learning systems (15) has infinite number

of singular systems. The transformed systems (17) is the
limited equivalence to singular systems (15), which consists
of fast subsystems (the systems state is X kn1(t)) and slow
subsystems (the systems state is X kn2(t)).

III. ITERATIVE LEARNING CONTROL ALGORITHM AND
CONVERGENCE ANALYSIS
In practice, it is difficult to design the controller for infinite
number of singular systems. Thus, the singular systems (17)
is taken into account divides into two parts as follows: low
dimensional mode (19) and high dimensional mode (20).
Low dimensional mode:
Ẋ kn1=−(nπ )

2D1X kn1(t)+A1X
k
n1(t)+A2X

k
n2(t)+B1U

k
n(t),

0=−(nπ)2X kn2 (t)+A3X
k
n1(t)+A4X

k
n2(t)+B2U

k
n(t),

Y kn (t) = C1X kn1 (t)+ C2X kn2 (t),
X kn (0) = ϕn, (n = 1, 2, · · · ,N ),

(19)

which contanis N number finite dimensional singular
systems.
High dimensional mode:
Ẋ kn1=−(nπ )

2D1X kn1(t)+A1X
k
n1(t)+A2X

k
n2(t)+B1U

k
n(t),

0=−(nπ )2X kn2 (t)+A3X
k
n1(t)+A4X

k
n2(t)+B2U

k
n(t),

Y kn (t) = C1X kn1 (t)+ C2X kn2 (t),
X kn (0) = ϕn, (n = N + 1,N + 2, · · · ),

(20)

where consists of infinite number of finite-dimensional sin-
gular systems.

A. LOW DIMENSIONAL MODE ALGORITHM DESIGN
AND CONVERGENCE ANALYSIS
For low dimensional mode part (19), n = 1, 2, · · · ,N , the
mixed PD-type ILC algorithm is proposed as follow:

U k+1
n (t) = U k

n (t)+ 01ė
k
n1 (t)+ 02e

k
n2 (t), (21)

with 0i, i = 1, 2 are the learning gain matrices and

ekn1 (t) = Y dn1 (t)− Y
k
n1 (t) = C1(Xdn1 (t)− X

k
n1 (t))

ekn2 (t) = Y dn2 (t)− Y
k
n2 (t) = C2(Xdn2 (t)− X

k
n2 (t)).

Remark 4: Based on the singular value decomposition
and state transformation for singular parameter distributed
systems, a new structure of the ILC algorithm for SDPSs
is obtained, that is the mixed PD-type ILC law which is
incorporated with D-type and P-type algorithms. In view of
the different characteristics of differential description and
algebraic description in the restricted equivalent transforma-
tion form of SDPSs, D-type learning gain matrix 01 and
P-type learning gain matrix 02 are adopted, respectively.
With the aforesaid development, the following theorem

results about the low dimensional mode is proposed:
Theorem 1: Consider repetitive parabolic SDPSs (19),

the mixed PD-type ILC algorithm (21) and Assumptions 1-3
hold. If the following requirements satisfy
(1) ((nπ )2I − A4) ∈ R(j−r)×(j−r) is invertible,
(2) ρ = ||I − 01C1B̄1 − 02C2B̄2|| < 1, where B̄1 = B1 +

A2B̄2, B̄2 = ((nπ)2I − A4)−1B2, for n = 1, 2, · · · ,N .
Then the output of systems (19) converges to the desired
output as k goes to infinity, that is

lim
k→∞

Y kn (t) = Y dn (t),∀t ∈ [0,T ], n = 1, 2, · · · ,N .
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Proof: The proof of this Theorem is divided into three
major steps. First step, the state error ‖ X̄ kn1(t) ‖ is estimated
under the mixed PD-type ILC law (21), and Second step,
the convergence of input error ‖ Ū k+1

n (t) ‖ is demonstrated.
The convergence of output error is proven in the last step.
Step 1: The estimation of the state error ‖ X̄ kn1(t) ‖.
For the simplicity of presentation,the following notations

are introduced:

X̄ kni , Xdni − X
k
ni, i = 1, 2

Ū k
n (t) , Ud

n (t)− U
k
n (t),

ekn(t) , Y dn (t)− Y
k
n (t).

According to the desired systems (18) and learning
systems (19), one has
˙̄X kn1=−(nπ )

2D1X̄ kn1(t)+A1X̄
k
n1(t)+A2X̄

k
n2(t)+B1Ū

k
n(t),

0=−(nπ)2X̄ kn2(t)+A3X̄
k
n1 (t)+A4X̄

k
n2 (t)+B2Ū

k
n (t),

ekn(t) = C1X̄ kn1 (t)+C2X̄ kn2 (t),
X kn (0) = ϕn,

(22)

where n = 1, 2, · · · ,N .
Combing the second equation of (22) with the first condi-

tion of Theorem 1, i.e., ((nπ)2I−A4) is invertible, one induces

X̄ kn2(t) = ((nπ )2I − A4)−1[A3X̄ kn1(t)+ B2Ū
k
n (t)]. (23)

Let Ā3 = ((nπ )2I − A4)−1A3, then Eq.(23) is rewritten as

X̄ kn2(t) = Ā3X̄ kn1(t)+ B̄2Ū
k
n (t)]. (24)

where B̄2 = ((nπ )2I − A4)−1B2.
Substituting (24) into the first equation of (22), one has

˙̄X kn1(t) = [A2Ā3 − (nπ )2D1 + A1]X̄ kn1(t)

+[B1 + A2B̄2]Ū k
n (t)

= Ā1X̄ kn1(t)+ B̄1Ū
k
n (t), (25)

where Ā1 = A2Ā3 − (nπ )2D1 + A1, B̄1 = B1 + A2B̄2.
Integrating both sides of (25) with respect to t and by

Assumption 3 yields

X̄ kn1(t) =
∫ t

0
Ā1X̄ kn1(τ )+ B̄1Ū

k
n (τ )dτ. (26)

Taking Euclidean norms on both sides of the Equation (27),
one implies

‖ X̄ kn1(t) ‖ 6
∫ t

0

(
‖Ā1 ‖‖ X̄ kn1(τ ) ‖+‖ B̄1 ‖‖ Ū

k
n(τ )‖

)
dτ

6
∫ t

0
(a1 ‖ X̄ kn1(τ ) ‖ +b1 ‖ Ū

k
n (τ ) ‖ dτ, (27)

where a1 =‖ Ā1 ‖, b1 =‖ B̄1 ‖ .
By applying the Bellman-Gronwall inequality in [49], one

can obtain

‖ X̄ kn1(t) ‖6 b1

∫ t

0
ea1(t−τ ) ‖ Ū k

n (τ ) ‖ dτ. (28)

Multiplying by e−λt on both sides of (28), one gets

‖ X̄ kn1(t) ‖ e
−λt 6 b1

∫ t

0
e−(λ−a1)(t−τ ) ‖ Ū k

n (τ ) ‖ e
−λτdτ,

which implies that

‖ X̄ kn1 ‖λ6
b1

λ− a1
‖ Ū k

n ‖λ . (29)

Step 2: The convergence of input error ‖ Ū k+1
n (t) ‖

By adopting the mixed ILC algorithm (21), one has

Ū k+1
n (t) = Ū k

n (t)− 01ė
k
n1(t)− 02e

k
n2(t)

= Ū k
n (t)− 01C1

˙̄X kn1(t)− 02C2X̄ kn2(t) (30)

Substituting (25) and (24) into (30), one gets

Ū k+1
n (t) = (I − 01C1B̄1 − 02C2B̄2)Ū k

n (t)

− (01C1Ā1 + 02C2Ā3)X̄ kn1(t), (31)

which indicates that

‖ Ū k+1
n (t) ‖6 ρ ‖ Ū k

n (t) ‖ +h ‖ X̄
k
n1(t) ‖, (32)

with h =‖ 01C1Ā1 + 02C2Ā3 ‖.
Taking λ-norm on both sides of (32), and using (29), we can

conclude that

‖ Ū k+1
n ‖λ 6 ρ ‖ Ū k

n ‖λ +
hb1
λ− a1

‖ Ū k
n ‖λ

6 (ρ +
hb1
λ− a1

) ‖ Ū k
n ‖λ (33)

Since ρ < 1, there chooses λ sufficiently large which also
make

ρ +
hb1
λ− a1

< 1.

It follows from (33) that

lim
k→∞

‖ Ū k
n ‖λ= 0. (34)

Step 3: The convergence analysis of output error.
Clearly, from (24), (29) and (34), it follows that

lim
k→∞

‖ X̄ kn1 ‖λ= 0, lim
k→∞

‖ X̄ kn2 ‖λ= 0. (35)

By noting (22), it implies that

ekn(t) = Y dn (t)− Y
k
n (t) = C1X̄ kn1(t)+ C2X̄ kn2(t), (36)

combining with (35), one derives that

lim
k→∞
‖ekn ‖λ = ‖C1‖ lim

k→∞
‖ X̄ kn1 ‖λ + ‖ C2 ‖ lim

k→∞
‖ X̄ kn2 ‖λ

= 0. (37)

By nothing that

‖ ekn(t) ‖=‖ e
k
n(t) ‖ e

−λteλt 6‖ ekn ‖λ e
λt 6‖ ekn ‖λ e

λT ,

(38)

then, the following result can be obtained from (37) and (38)

lim
k→∞

‖ ekn(t) ‖= lim
k→∞

‖ Y dn (t)− Y
k
n (t) ‖= 0. (39)

Thus,

lim
k→∞

Y kn (t) = Y dn (t),∀t ∈ [0,T ], n = 1, 2, · · · ,N . (40)

This completes the proof of Theorem 1.
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B. THE CONVERGENCE OF HIGH MODE
Since the high-dimensional mode (20) has infinitemodes, it is
possible to choose N large enough and let U k

n (t) = 0. Then,
similar to the Low dimensional case (22), one gets
˙̄X kn1=−(nπ )

2D1X̄ kn1(t)+A1X̄
k
n1(t)+A2X̄

k
n2(t)+BU

d
n(t),

0=−(nπ)2X̄ kn2(t)+A3X̄
k
n1 (t)+A4X̄

k
n2 (t)+B2U

d
n (t),

ekn(t) = C1X̄ kn1 (t)+C2X̄ kn2 (t),
X kn (0) = ϕn,

(41)

where n = N + 1,N + 2, · · · .
Based on error systems of high mode (41), we have follow-

ing result.
Theorem 2: For the high-dimensional modes (20), if

Assumptions (1)-(3) and the conditions of Theorem 1 hold.
In addition, σ (E,D) ∈ C+. Then, for any ε > 0, there exists
large enough N , when n > N , we have

‖ ydn (t)− y
k
n(t) ‖< ε,∀t ∈ [0,T ].

Proof: From the second equation of (41), one has

X̄ kn2(t) = ((nπ )2I − A4)−1[A3X̄ kn1(t)+ B2U
d
n (t)]. (42)

Thus,

‖ X̄ kn2(t) ‖≤‖ ((nπ )
2I − A4)−1 ‖

· (‖ A3 ‖‖ X̄ kn1(t) ‖ + ‖ B2 ‖ U
d
n (t) ‖),

=
1

(nπ )2
‖ (I − (nπ )−2A4)−1 ‖

· (a3 ‖ X̄ kn1(t) ‖ +b2 ‖ U
d
n (t) ‖), (43)

where a3 =‖ A3 ‖, b2 =‖ B2 ‖.
Substituting (42) into the first equation of (41), we can

induce that
˙̄X kn1(t) =

(
A2((nπ )2I − A4)−1A3 − (nπ )2D1 + A1

)
X̄ kn1(t)

+
(
B1 + ((nπ )2I − A4)−1B2

)
Ud
n (t). (44)

Introducing the following new notations

Ã1(n) ,
(
A2((nπ )2I − A4)−1A3 − (nπ)2D1 + A1

)
,

B̃1(n) ,
(
B1 + ((nπ )2I − A4)−1B2

)
,

the Eq.(44) can be rewritten as

˙̄X kn1(t) = Ã1(n)X̄ kn1(t)+ B̃1(n)U
d
n (t). (45)

Integrating both sides of (45) from 0 to t ,

X̄ kn1(t) =
∫ t

0
eÃ1(n)(t−τ )B̃1(n)Ud

n (t)dτ, (46)

and taking Euclidean norm on both sides of (46), one has

‖ X̄ kn1(t) ‖6
∫ t

0
e‖Ã1(n)(t−τ )‖ ‖ B̃1(n) ‖‖ Ud

n (τ ) ‖ dτ. (47)

Since

exp{‖ Ã1(n)t ‖}
= exp{‖ [−(nπ )2D1 + A2((nπ )2I−A4)−1A3+A1]t ‖}
6 exp

(
‖(−nπ )2D1‖t

)
exp

(
‖A2((nπ )2I−A4)−1A3+A1 ‖t

)
,

(48)

and by σ (E,D) = σ (D1) ∈ C+, which means that exists
λ(λ = λmin(D1)) > 0, such that

exp
(
‖ Ã1(n)t ‖

)
6 exp

(
−λ(nπ)2t

)
exp

(
a2 ‖ ((nπ)2I−A4)−1‖a3+a1

)
t.

(49)

On the other hand, note that

‖ (I − (nπ)−2A4)−1 ‖6
‖ I ‖

‖ I ‖ − ‖ (nπ )−2A4 ‖

6
1

1− a4(nπ)−2
, (50)

When n > N1 in the High mode, it is possible to choose
N1 sufficiently large so that 1 − a4

(nπ)2
> 1

2 . Subsequently,
in views of (49) and (50), we can derive that

exp
(
‖ Ã1(n)t ‖

)
6 exp{−λn2[π2

−
1
λn2

(a1 +
2a2a3
(nπ)2

)]t}, (51)

on the other hand, there exists N2, for n > N2,

π2
−

1
λn2

(
a1 +

2a2a3
(nπ )2

)
> 1. (52)

Clearly, the inequality (51) indicates

e‖Ã1(n)(t−τ )‖ 6 e−λn
2(t−τ ), (n > max{N1,N2}). (53)

Then, together with (47), (50) and (53) becomes

‖ X̄ kn1(t) ‖

6
∫ t

0
e−λn

2(t−τ )
‖B1 + ((nπ)2I−A4)−1B2‖‖Ud

n (τ )‖dτ,

6
1
λn2
‖B1 + ((nπ )2I − A4)−1B2‖‖ Ud

n (t)‖,

6
1
λn2

(b1 + 2b2) ‖ Ud
n (t) ‖ . (54)

Due to the boundedness of the desired input Ud
n (t), then it

can find a positive constant δ > 0 so that

‖ Ud
n (t) ‖6 δ, (n = N + 1, · · · ). (55)

As a result

‖ X̄ kn1(t) ‖6
1
λn2

(b1 + 2b2)δ. (56)

Let us return to the inequality (43), for n > N2, one can
conclude that

‖ X̄ kn2(t) ‖6
2

(nπ )2
(a3 ‖ X̄ kn1(t) ‖+b2 ‖ U

d
n (t) ‖). (57)

Substituting (56) into (57), one gives

‖ X̄ kn2(t) ‖6
2

(nπ )2
[
a3
λn2

[b1 + 2b2]δ + b2δ]

6
2

(n)2
[
a3(b1 + 2b2)

λπ2 +
b2
π2 ]δ

=
1
n2
α1δ, (58)

where α1 = 2[ a3(b1+2b2)
λn2

+
b2
π2 ].
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Finally, selecting N large enough such that N > max
{N1,N2}, one obtains
∞∑

n=N+1

‖ekn(t)‖ 6
∞∑

n=N+1

{‖C1‖‖X̄ kn1(t)‖+‖C2 ‖‖X̄ kn2(t)‖},

6 c1
∞∑

n=N+1

‖ X̄ kn1(t) ‖ +c2
∞∑

n=N+1

‖ X̄ kn2(t) ‖},

6 c1δ
b1 + 2b2

λ

∞∑
n=N+1

1
n2
+ c2α1δ

∞∑
n=N+1

1
n2
,

6 M
∞∑

n=N+1

1
n2
, (59)

where M =

[
b1+2b2
λ

(
c1 +

2a3c2
π2

)
+

2b2c2
π2

]
δ and ci =

||Ci||, i = 1, 2.
Based on the convergence analysis of series

∑
∞

n=1
1
n2
, it is

possible for any small ε > 0 to choose N sufficiently enough
so that when n > N , ‖ ekn(t) ‖< ε holds. Therefore, in con-
sideration of the aforementioned analysis and inequality (59),
∀ε > 0, ∃N ,∀n > N , one yields

‖ ekn(t) ‖=‖ Y
d
n (t)− Y

k
n (t) ‖< ε, t ∈ [0,T ]. (60)

The proof of Theorem 2 is completed.
Now it comes to the convergence of output tracking

errors for all modes. The following theorem provides the
convergence conditions of the tracking errors in learning
systems (4).
Theorem 3: For learning systems (4) and the mixed

PD-type ILC algorithm (21), assume that Assumptions 1-3
hold and the parameter matrices σ (E,D) ∈ C+ meets. If the
learning gain matrices01, 02 in (21) satisfies ‖ I−01C1B̄1−
02C2B̄2 ‖< 1, then for an arbitrarily small tracking accuracy
ε, there exits the number of mode N large enough such that
when n > N ,

lim
k→∞

‖ ek (·, t) ‖2L2< ε. (61)

Proof: By noting that

‖ ek (·, t) ‖2L2

=

∫ 1

0
(ek (ξ, t))T ek (ξ, t)dξ,

=

∫ 1

0
(yd (ξ, t)− yk (ξ, t))T (yd (ξ, t)− yk (ξ, t))dξ,

=

∞∑
n=1

∫ 1

0
([Y dn (t)− Y

k
n (t)]sin(nπξ ))

T ([Y dn (t)

−Y kn (t)] sin(nπξ ))dξ,

6
1
2

∞∑
n=1

‖ Y dn (t)− Y
k
n (t) ‖

2,

6
1
2

N∑
n=1

‖ ekn(t) ‖
2
+
1
2

∞∑
n=N+1

‖ ekn(t) ‖
2, (62)

Furthermore, from the conclusions of Theorem 1 and
Theorem 2 ( or from inequalities (39) and (50)), it can be seen
that

lim
k→∞
‖ek (·, t)‖2L26 lim

k→∞

1
2

{ N∑
n=1

‖ekn(t)‖
2
+

∞∑
n=N+1

‖ekn(t)‖
2 }

6 lim
k→∞

∞∑
n=N+1

1
2
‖ ekn(t) ‖

2

6 M2
∞∑

n=N+1

n−4, (63)

Therefore, for any small tracking accuracy ε, there exits
the number of N large enough such that

lim
k→∞

‖ ek (·, t) ‖2L2< ε. (64)

This completes the proof of Theorem 3.

IV. NUMERICAL SIMULATION
In this section, in order to verify the effectiveness of the
mixed PD-type ILC scheme, the building temperature control
system equipped with air conditioning is employed.

FIGURE 1. Multi-functional office building with sensor window glass
equipment.

As shown in Figure 1, concern a n-storey corporate office
building is equipped by multiple officers who have different
temperature preferences. According to different temperature
settings, the air conditioning is applied to optimal thermal
management for obtaining collaborative energy [3], [50].
Moreover, the air conditioning system is composed of two
operating subsystems, one is the cooling system driven by
deep wells pumps, and another is the heating system which
is installed in the window glass by collecting the solar radia-
tion. Assume that the coupling is only affected between two
adjacent floors, and the horizontal dimension of the solar
collector is much great than the vertical size. For simplicity,
the developed ILC strategy is utilized to control the tempera-
ture profile of a two storey building bymeans of air condition-
ing. With above standard assumptions and considerations [3],
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the following temperature control of 2-storey office building
is presented.

E
∂z(ξ, t)
∂t

= D
∂2 z(ξ, t)
∂ξ2

+ Az(ξ, t)+ Bu(ξ, t),

where (ξ, t) ∈ [0, 1] × [0, 0.8], z(ξ, t) ∈ R2 represents
the temperature spatiotemporal distribution of the system.
u(ξ, t) ∈ R2 describes the control input-temperature of air
conditioning.

The controlled output of the system is created as:

y(ξ, t) = Cz(ξ, t),

The process parameters are selected as [3]:

E =
[
1 0
0 0

]
,D =

[
8.65 0
0 8.65

]
,A =

[
28.74 −28.74
−28.74 36.44

]
,

B =
[
50 0
40 −60

]
,C =

[
1 0
0 1

]
,

subject to the initial and boundary conditions

zk (0, t) = zk (1, t) = 0, t ∈ [0, 1],

z(ξ, 0) = 0, ξ ∈ [0, 1].

The desired temperature evolution both in space and time
is given as[

y1d (ξ, t)
y2d (ξ, t)

]
=

[
8(1− e−0.03t )(sin 2πξ )
5 sin(0.6t) sin(4πξ )

]
,

with (ξ, t) ∈ [0, 1]× [0, 0.8].
By using the same decomposed way in (15), the following

simplified systems can be derived[
1 0
0 0

]
Ẋn(t) = −(nπ)2

[
8.65 0
0 8.65

]
Xn(t)

+

[
28.74 −28.74
−28.74 36.44

]
Xn(t)+

[
50 0
40 −60

]
Un(t),

Yn(t) =
[
1 0
0 1

]
Xn(t).

with n = 1, 2, · · · .
The number of the eigenvalues is selected as 4 and the

eigenfunction sin nπξ is utilized to obtain the desired states
of the SDPSs as follows:

Xdn1(t) = 2
∫ 1

0
z1d (ξ, t) sin(nπξ )dξ, n = 1, 2, · · ·

Xdn2(t) = 2
∫ 1

0
z2d (ξ, t) sin(nπξ )dξ, n = 1, 2, · · · .

The tracking accuracy is defined as 1 × 10−3 and two
desired states of the finite modes are listed as below

Xd11(t)

Xd21(t)

Xd31(t)

Xd41(t)

 =

2
∫ 1
0 8(1− e−0.03t )sin(2πξ ) sin(πξ )dξ

2
∫ 1
0 8(1− e−0.03t )sin(2πξ ) sin(2πξ )dξ

2
∫ 1
0 8(1− e−0.03t )sin(2πξ ) sin(3πξ )dξ

2
∫ 1
0 8(1− e−0.03t )sin(2πξ ) sin(4πξ )dξ


=
[
0, 8(1− e−0.03t ), 0, 0

]T
,

FIGURE 2. Desired surface y1d (ξ, t).

FIGURE 3. Desired surface y2d (ξ, t).

FIGURE 4. Actual output surface y1k (ξ, t) (k=50).

and the second desired state of the finite modes
Xd12(t)

Xd22(t)

Xd32(t)

Xd42(t)

 =

2
∫ 1
0 5 sin(0.6t) sin(4πξ ) sin(πξ )dξ

2
∫ 1
0 5 sin(0.6t) sin(4πξ ) sin(2πξ )dξ

2
∫ 1
0 5 sin(0.6t) sin(4πξ ) sin(3πξ )dξ

2
∫ 1
0 5 sin(0.6t) sin(4πξ ) sin(4πξ )dξ


=
[
0, 0, 0, 5 sin(0.6t)

]T
.

The specific mixed PD-type ILC steps for SDPSs can be
summarized as follows:
Step 1: By virtue of the variable separation principle in

Eqs. (8)-(11), the infinite number of singular systems (15)
can be obtained.
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FIGURE 5. Actual output surface y2k (ξ, t) (k=50).

FIGURE 6. Error surface e1k (ξ, t) (k=50).

Step 2:For the generalized matrix E , utilizing the nonsin-
gular matrix P = I and Q = I to transform the singular
systems (15) into the restricted equivalent form (17).
Step 3: Setting the tracking accuracy as ε = 1 × 10−3,

in order to meet the tracking accuracy requirements, the num-
ber of finite-dimensional modes is chosen as four.
Step 4: Selecting the following learning gain matrices so

that the convergence condition (14) for the finite dimensional
mode can be satisfied in Theorem 3,

01 =

[
0.6 0
0 −0.3

]
, 02 =

[
−0.8 0
0 −0.9

]
.

Step 5: The initial state value Xn(0) and the input value
Un(0) for control at the beginning of learning are set to be
0, then start iteration by applying the mixed PD-type learn-
ing law (21). Subsequently, calculating state error eik (ξ, t),
i = 1, 2.
Step 6: Checking the termination conditions such that until

the specified error precision |eik (ξ, t)| < 1 × 10−3, i = 1, 2
meets. Otherwise, the iteration number will be incremented
by one, which is k = k + 1 and the systems (17) will operate
repetitively.

Through the aforementioned steps, the following simula-
tion results can be obtained, that is, Fig. 2 to Fig. 9.

The two desired output surfaces y1d (ξ, t) and y2d (ξ, t)
are presented in Fig. 2 and Fig. 3. The actual output sur-
faces y1k (ξ, t) and y2k (ξ, t) are given in Figs. 4-5, respec-
tively.Combining Figs. 2–3 with Figs. 4–5, it discovers that

FIGURE 7. Error surface e2k (ξ, t) (k=50).

FIGURE 8. Maximum error e1k (ξ, t)-iteration number curve.

FIGURE 9. Maximum error e2k (ξ, t)-iteration number curve.

the desired profile approach consistently to corresponding
actual output in the 50th iteration. Besides, in view of
Fig. 6 and Fig. 7 which depict the tracking error both in
space and time, it can observe that, the max tracking error
of surfaces are 2.242× 10−5 and 6.995× 10−4, respectively,
in 50th iteration.

As the number of iteration increases, the mixed PD-type
ILC law becomes more and more effective that demonstrated
in the last two figures. In the 40th iteration, the control
performance of system is good enough. More specifically,
the maximum of the absolute values e1k (ξ, t) and e2k (ξ, t)
converge to the specified precision (<1 × 10−3) after the
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40th iteration, which confirms the effectiveness of the pro-
posed control laws.

V. CONCLUSION
This paper has adopted the model reduction method and
designed a mixed PD-type learning law. In contrast to the
design finite-dimensional controllers for distributed param-
eter systems in other literature, the eigenvalues of systems
after a given mode were not assumed to be less than zero.
Instead, the parabolic SDPSs with infinite-dimensional has
transformed into the infinite number of singular systems
based on the separation principle, and then the dynamic
equivalent form has been obtained by the nonsingular trans-
formation. A mixed PD type learning control law has been
designed for the low-dimensional modes. The convergence
condition of tracking error has been presented in the light of
the contraction mapping principle. Through the selection
of the number of low-dimensional modes, the convergence
of the output errors in high-dimensional modes has been
guaranteed, and the accuracy of the overall output errors can
also been adjusted. In the simulation study, by the appropriate
control parameters, the tracking process for the desired tem-
perature evolution with the predetermined error accuracy in
the temperature control of 2-storey office building has been
achieved.
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