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Abstract

Using the mixed precision strategy to optimize quantum chemistry codes has been

proved promising in saving computational cost and maintaining chemical accuracy.

Here, an efficient mixed-precision density matrix renormalization group (DMRG) scheme,

containing a two-level mixed-precision hierarchy, is developed and demonstrated. At

the coarse-grained level, based on the discovery that the single-precision orthogonaliza-

tion may cause the DMRG generate a totally wrong answer, a feasible single-precision-

sweep DMRG method with double-precision orthogonalization process is implemented.

At the fine-grained level, a mixed-precision diagonalization algorithm is developed.

This algorithm runs specific operations in the single-precision while preserving double-

precision accuracy. Combining these two method, a hybrid mixed-precision scheme is

presented. By applying this scheme, the DMRG single-point energy calculations are

accelerated up to 131%. Mixed-precision DMRG yielded energies are accurate and

deviate less than 0.01 kcal/mol compared with standard DMRG calculations.
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1 Introduction

The density matrix renormalization group (DMRG) method was firstly developed by White

to solve the strongly correlated quantum lattice models.1,2 Later, this method was introduced

into the quantum chemistry3–9 to deal with the strongly correlated states in molecular elec-

tron structures, which helped DMRG method to stand out of other multi-reference methods

by its attractive potential of handling large active space. A relatively large active space

containing up to 108 orbitals10 can be processed by the DMRG method, whereas the full

configuration interaction (full-CI) method can only handle around 20 orbitals. This is be-

cause the computational cost of the full-CI method grows exponentially with the increase of

the system size, resulting an unaffordable cost with this moderate size. On the other hand,

the DMRG method holds a polynomial complexity of O(N4m2) + O(N3m3), where the N

indicating the number of the correlated orbitals and the m (usually in a few hundreds or

thousands) representing the bond dimension of the wavefunction tensors, making DMRG

a more conspicuous method than other methods. However, the computational cost of the

DMRG method is still very expensive for practical chemistry applications.

Using single or mixed precision is a potential approach to increase the computational

efficiency and reduce the computational cost. Because the single-precision (SP) floating

point data form only takes 32 bits, as defined by the IEEE 754 standard,11 to represent

a certain number. However, 64 bits are needed for double-precision (DP) data form. This

difference means that the memory usage of same data is saved by 50% when single precision is

applied comparing with the double precision. Additionally, the memory access speed will be

doubled. On the CPU platform, when the vectorization instruction set, such as streaming

SIMD extensions (SSE) or advanced vector extensions (AVX) is used, the computational

speed is also be doubled, resulting in a theoretical speed-up of 2. In modern architecture of

clusters and supercomputers, the accelerators, including the graphic processing unit (GPU)

and the field-programmable gate array (FPGA), play a more and more important role for

obtaining high computing performance. And these special devices have been widely applied
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in quantum chemistry methods, including the Hartree-Fock (HF) method12–16 the integral

evaluation,17–20 and many post-HF methods.21–24 Because the different design of the GPU

hardware architecture, the speed-up for single precision is even larger on some GPUs.

Because of the potential advantages, using a relatively lower precision is a common ap-

proach for performance optimization in machine learning25 and high-performance comput-

ing26 and has also been applied in various scientific areas such as numerical linear alge-

bra,27–31 molecular dynamics,32 and lattice quantum chromodynamics.33 In quantum chem-

istry, some mixed-precision (MP) electron repulsion integral evaluation methods34,35 have

been implemented. The main idea is that the upper bound of the integrals can be previously

identified. Thus, integrals with a rather small upper bound can be evaluated in single preci-

sion, while others in double precision. To make better use of this dynamic precision scheme,

Parrish et al.36 developed a “difference self-consistent field (dSCF)” approach, in which a

difference density matrix instead of the actual density matrix is used. The difference density

matrix is a numerically smaller matrix, resulting in a smaller integral upper bound. With the

support of these mixed-precision integral methods, some mixed-precision Hartree-Fock and

density functional theorey (DFT)37 methods have been developed, as well as some single- or

mixed-precision post-Hartree-Fock methods, including the MP2 method within resolution-of-

the-identity (RI)38 and Cholesky decomposition (CD)39 schemes, coupled cluster with single

and double excitation (CCSD)40 and perturbative triples correction (CCSD(T)).41 In 2018,

Pokhilko et al.42 presented an implementation of coupled cluster and equation-of-motion

coupled-cluster with single and double excitations (EOM-CCSD) in single precision. They

claim that the chemical accuracy can be maintained merely using single precision, while

the full double precision accuracy can be recovered with a few cleanup iterations. Wang et

al.43 followed this idea and implemented the CCSD and CCSD(T) method with pure single

precision on consumer GPUs and achieved 4–14 speed-up for CCSD calculation and 12–20

speed-up for (T) correction.

Since using single precision has several potential advantages, an intrinsic question arise,
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can single precision be implemented for the DMRG numerical calculations? Actually, simply

porting the double precision code into single precision is a wrong answer. The single-precision

transformation should be carefully designed and examined. In this study, we investigated the

DMRG procedure, and developed two types of mixed-precision transformation for DMRG

method at two different levels. At a relatively coarse-grained level, we identified the Gram-

Schmidt orthogonalization process as a fundamental step, that causes a tremendous loss

in significant number and made the full single-precision DMRG strategy to fail. At the

fine-grained level, we mainly focus on the mixed-precision transformation of the Davidson

diagonalization method and developed an accuracy-preserved method. By combining these

two methods, we developed a hybrid mixed-precision implementation for DMRG. In this

article, we will first introduce the fundamental procedure of the DMRG method and these

two mixed-precision methods in Section II. The benchmark result and some discussions are

presented in Section III. In Section IV, some conclusions of this article are summarized.

2 Methods

2.1 DMRG method

To demonstrate the mixed-precision scheme, we first introduce the basis procedure of the

DMRG calculation. Here we mainly focus on the algorithm and workflow, therefore, for

detailed principles, we refer the interested readers to these nice review articles.44–49

The DMRG method is based on a wave function ansatz that the full-CI wave function

can be represented by a production of a series of tensors, which is called the matrix product

state (MPS) ansatz
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|Ψ⟩ =
∑
{n}

Ψn1n2···nk |n1n2 · · ·nk⟩

=
∑
{n}

ψn1ψn2 · · ·ψnk |n1n2 · · ·nk⟩ .
(1)

In quantum chemistry, the local state on a MO could be one of the four possible occupa-

tion states: the doubly-occupied configuration |↑↓⟩, the spin-up singly-occupied configuration

|↑⟩, the spin-down singly-occupied configuration |↓⟩ and the unoccupied configuration |−⟩,

i.e.

{n} = {|↑↓⟩ , |↑⟩ , |↓⟩ , |−⟩} . (2)

The singular value decomposition (SVD) method can be applied to generate these MPSs from

the full-CI wavefunction. Then, these MPSs are truncated according to the significance of

corresponding singular value. The truncated MPSs will have a dimension of 4×m×m, where

the m is the truncation bond dimension of the wavefunction tensors. With this ansatz, the

Hamiltonian operators are also represented by tensors

Ĥ =
∑
{n,n′}

Ĥ1Ĥ2 · · · Ĥk |n1n2 · · ·nk⟩ ⟨n′
1n

′
2 · · ·n′

k| . (3)

And these operators are called the matrix product operators (MPOs). The MPOs and MPSs

are combined together in a lattice tensor network form. Each site contains a MPO, a bra

MPS and the corresponding ket MPS. The main purpose of the DMRG method in ab-initio

quantum chemistry is to find the ground state energy E0, which is the lowest energy of the

system

E0 = min
|Ψ⟩

〈
Ψ|Ĥ|Ψ

〉
⟨Ψ|Ψ⟩

. (4)

It is difficult to optimize all ψn tensors simultaneously, and accordingly an iterative
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optimization scheme is adopted in DMRG through a few sweeps from left to right and from

right to left. In each step of a forward or backward sweep, one MPS tensor is variationally

optimized while others remain unchanged. This method is the single-site DMRG method.

We can expand the variational space by optimize two site at a time to enhance the ability of

escape the local minima. In this article, the mixed-precision scheme of this two-site DMRG

method is discussed. The tensor lattice of the two-site DMRG method is presented in Fig. 1.

ENV_L ENV_Rsite1 site2

Figure 1: The tensor lattice of the two-site DMRG method. The dots represent the MPSs
and the blocks represent the MPOs.

Conventionally, ab-initio quantum chemistry software apply the double precision as de-

fault standard. This double precision sweep can be represented with a simplified lattice form

in Fig. 2. The detailed work flow of the double precision two-site DMRG algorithm is pre-

sented as Algorithm 1. The operations within each sweep step is presented in Algorithm 2.

In Algorithm 2, the Lanczos algorithm is presented as an example of the diagonalization

method, but other diagonalization methods (such as the Davidson algorithm or the Jacobi-

Davidson algorithm) could also be used. The algorithm we presented can be transformed

into other diagonalization methods by applying different form of the transformation function

T (x) specifically. Similarly, the following mixed-precision optimization is introduced with

the Lanczos algorithm, but also can be applied for other diagonalization methods.

Figure 2: The simplified DMRG lattice for double precision sweep.

6



Algorithm 1 DMRG algorithm.

1: read in structure
2: generate MPO
3: generate initial guess MPS
4: pre-compute ENV
5: while DMRG unconverged do
6: sweep left to right
7: sweep right to left
8: end while
9: finish calculate and output energy

Algorithm 2 Sweep algorithm.

1: for each site do
2: generate two-site MPS and two-site MPO
3: procedure Diagonalization:
4: set v0 =

∣∣ψk,k+1
〉

5: contract tensor network to generate w0 = Ĥv0
6: v1 = orthogonalize(v0, w0)
7: construct list W = {w0}
8: construct list V = {v0, v1}
9: while diagonalization unconverged do
10: wi = Ĥvi
11: Hk = V ·W
12: λ = first eigen value of Hk

13: y = first eigen vector of Hk

14: x = V · y
15: r = Ĥx− λx
16: t = T (r)
17: vi+1 = orthogonalize(V, t)
18: return x as new two-site MPS if converged
19: end while
20: end procedure
21: decompose two-site MPS with SVD method
22: update ENV
23: end for

2.2 Coarse-grained level method

The DMRG apply this sweep iterative method to approximate the ground state energy. We

think that the first several steps can be evaluated in low precision while maintaining the

double-precision convergent tendency. This leads to our coarse-grained level mixed-precision

7



DMRG method, which is introduced in Table 3.

Algorithm 3 Mixed-precision sweep algorithm.

1: read in structure
2: generate MPO
3: generate initial guess MPS
4: convert MPS and MPO to single precision
5: pre-compute ENV
6: while single-precision DMRG unconverged do
7: sweep left to right
8: sweep right to left
9: end while
10: convert MPS and MPO to double precision
11: while double-precision DMRG unconverged do
12: sweep left to right
13: sweep right to left
14: end while
15: finish calculate and output energy

This idea is simple and straightforward, however, it is infeasible to simply transform the

double-precision codes into single-precision. Because the orthogonalization procedure fails in

single-precision form. The numerical reason is: consider the Gram-Schmidt orthogonalization

of two vector v1 and v2:

v′2 = v2 −
(v2 · v1)
(v1 · v1)

v1 (5)

The most important step is the subtraction of two numbers that are extremely close to

each other, hence resulting in a great loss of significant digits. Consequently, the Gram-

Schmidt orthogonalization should be conducted under double-precision. In fact, using a

higher precision in the orthogonalization process to improve convergence has already been

applied by Alvermann, et al.29 to achieve a robust orthogonalization in Jacobi-Davidson

method. Even though they were applying a two-double projection in a double-precision

diagonalization. This method was also been applied by Carson, et al.31 in the mixed-precision

s-step Lanczos method for the same reason and in a similar way to Alvermann. It was also

found that if the evaluation of Hk remain in double-precision, the accuracy of the result will
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be improved. In fact, in the diagonalization procedure, the Ĥv calculation consumes more

than 90% of the computational cost. Thus, other operations whether in double-precision or

in single-precision, have little influence on the overall performance. Moreover, the additional

conversion operations will have little effect of the entire computational cost.

Algorithm 4 Single-precision sweep algorithm. In the algorithm table, the upper mark
”s” and ”d”are used to identify the single- and double-precision data. At the right end of
each line, we marked the single-precision operation as ”S”, double-precision as ”D” and the
conversion operation as ”C”.

1: for each site do
2: generate two-site MPS and two-site MPO ▷ S
3: procedure SP Diagonalization:
4: set vs0 =

∣∣ψk,k+1
〉

▷ S

5: ws
0 = Ĥsvs0 ▷ S

6: convert vs0 to vd0 ▷ C
7: convert ws

0 to wd
0 ▷ C

8: construct list W d = {wd
0} ▷ D

9: vd1 = orthogonalize(vd0 , w
d
0) ▷ D

10: construct list V d = {vd0 , vd1} ▷ D
11: convert vd1 to vs1 ▷ C
12: while diagonalization unconverged do
13: ws

i = Ĥsvsi ▷ S
14: convert ws

i to wd
i ▷ C

15: Hk = V d ·W d ▷ D
16: λ = first eigen value of Hk ▷ D
17: y = first eigen vector of Hk ▷ D
18: x = V d · y ▷ D
19: r = W d · y − λx ▷ D
20: t = T (r) ▷ D
21: vdi+1 = orthogonalize(V d, t) ▷ D
22: convert vdi+1 to vsi+1 ▷ C
23: return x as new two-site MPS if converged ▷ S
24: end while
25: end procedure
26: decompose two-site MPS with SVD method ▷ S
27: update ENV ▷ S
28: end for

After the single-precision sweep converged, the single-precision data (MPO, MPS and

ENVs) are transformed into double precision. Subsequently, the double-precision sweep

starts as in a standard DMRG calculation. The only remaining question is to determine
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the switching point of these mixed-precision scheme, i.e. how to determine the convergence

of the single-precision sweep. According to the IEEE 754 standard, the 32-bit floating

point data form has a relative error of around 10−7. Thus the convergence threshold of

the single-precision sweep is around 10−4–10−5, based on the different systems. However a

manually-appointed threshold number is unascertainable. Consequently, we choose another

way to determine the convergence. In the first several single-precision sweep, the energy

sustains to decrease sweep by sweep. But when the convergence point is reached, the energy

starts to fluctuate. Therefore, if the energy of the current sweep is larger than the last sweep,

one can determine that the convergence point has been reached.

2.3 Fine-grained level method

As mentioned in the last subsection, the convergence threshold of the single-precision sweep

is around 10−4–10−5 Hartree, which means that the overall accuracy of the single-precision

DMRGmethod is around 10−4–10−5 Hartree. Therefore, if higher accuracy is required (which

is common in DMRG calculations), the following clean-up sweeps, i.e. the double-precision

sweep, must be conducted, undermining the overall acceleration.

Fortunately, the clean-up sweeps can be optimized with the mixed-precision approach,

which lead to our fine-grained level method. To maintain the double-precision accuracy, the

MPS data, the MPO data, the ENV data and the related operations, including the SVD

decomposition and the update of the ENV, should stay in double precision. But the di-

agonalization procedure can be transformed into the mixed-precision while still remain the

double-precision accuracy. In fact, in the DMRG sweep, the diagonalization procedure con-

sumed around 60%-90% of the total computational time, making it the most time-consuming

step in the DMRG sweep. Therefore, this mixed-precision transformation of the diagonal-

ization procedure can obtain a satisfying performance speed-up in double-precision sweeps,

and maintain the double-precision accuracy.

At the fine-grained level, we developed a mixed-precision diagonalization method, which
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can make use of the advantages of the single precision and achieve double-precision accuracy.

First, let us reexamine the diagonalization procedure. The result x = V · y, can be seen as

the weighted summation of vi, and should be not much different from the initial v0 and v1.

Thus, the other vi can be seen as the correction of these initial guesses, and should be not

large. Then, if we make this initial guess (i.e. v0 and v1) evaluated in double-precision,

and other corrections (i.e. v2, v3, . . . ) evaluated in single precision, we can accelerate the

overall calculation speed and maintain the double-precision accuracy. This mixed-precision

diagonalization method is shown in Table 5. In this method, the orthogonalization procedure

should also be calculated in double precision, as the coarse-grained level method, to guarantee

the correctness.

Algorithm 5 Mixed-precision diagonalization algorithm.

1: procedure MP Diagonalization:
2: set vd0 =

∣∣ψk,k+1
〉

▷ D

3: wd
0 = Ĥdvd0 ▷ D

4: contract list W d = {wd
0} ▷ D

5: vd1 = orthogonalize(vd0 , w
d
0) ▷ D

6: construct list V d = {vd0 , vd1} ▷ D
7: convert Ĥd to Ĥs ▷ C
8: while diagonalization unconverged do
9: convert vdi to vs ▷ C
10: ws = Ĥsvs ▷ S
11: convert ws to wd

i ▷ C
12: Hk = V d ·W d ▷ D
13: λ = first eigen value of Hk ▷ D
14: y = first eigen vector of Hk ▷ D
15: x = V d · y ▷ D
16: r = W d · y − λx ▷ D
17: t = T (r) ▷ D
18: vdi+1 = orthogonalize(V, t) ▷ D
19: return x as new two-site MPS if converged ▷ D
20: end while
21: end procedure

With the combination of both the coarse-grained level method and the fine-grained level

method, we can construct a hybrid mixed-precision scheme. For this hybrid scheme, the

DMRG calculation starts with the single-precision sweep. After several sweeps, it reaches
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the single-precision convergence point. Consequently, the data is transformed into double-

precision. Subsequenly, the mixed-precision diagonalization method is applied until the

required accuracy is reached. A simplified flow chart of this hybrid scheme is illustrated in

Fig 3.

Start with 
SP

Convert 
to DP

Single Mixed Double

Figure 3: The hybrid mixed-precision DMRG scheme.

3 Result and discussion

3.1 Basic benchmark result

Several molecules are selected based on their intra- inter-molecular interaction representa-

tivity and atomic configuration complexity to benchmark the accuracy and performance of

the mixed-precision DMRG scheme. Those are benzene molecule, two stretched water(H2O)

molecules (O-H bond at 1.2Å and 1.5Å), a carbon dimer(C2) and a chromium dimer(Cr2).

The computing node is constructed with two Intel Xeon Gold 6126 12-core CPUs. The

operation system is CentOS Linux under release 7.4.1708. The mixed-precision scheme is

implemented in the Kylin quantum chemistry software50 and the compiler is GCC (version

10.2.0). All of the tensor operations include the contraction, SVD decomposition and eigen

solver is supported by Intel MKL library (version 2019.0.117). In the benchmark test, the

6-31G basis set was used for the benzene molecule and the Cr2 molecule, the cc-pVTZ basis
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set was applied for the water molecule and the cc-pVDZ basis set for the carbon dimer. The

convergence threshold of these tests is 10−6.

Table 1: System information and benchmark results for energy accuracy. The energy results
in this table are in atomic units, and the differences of energy are in 10−3kcal/mol. Edp is
the energy evaluated by double-precision DMRG. Esp is evaluated by full single-precision
DMRG. And Emp is evaluated by the mixed-precision DMRG. ∆sp is the difference between
Edp and Esp (i.e. |Edp − Esp|). Similarly, ∆mp = |Edp − Emp|.

system space m Edp Esp ∆sp Emp ∆mp

benzene (24e,24o) 5k -230.7487820 -230.7487725 6.0 -230.7487813 0.5
benzene (28e,28o) 3k -230.7842899 -230.7842534 22.9 -230.7842875 1.5

H2O(1.2Å) (10e,40o) 2k -76.1914944 -76.1917189 140.9 -76.1914951 0.5
H2O(1.5Å) (10e,58o) 1k -76.1519778 -76.1521174 87.6 -76.1519929 9.5

C2 (12e,28o) 2k -75.7316808 -75.7318000 74.8 -75.7316818 0.6
C2 (12e,28o) 3k -75.7318504 -75.7319113 38.2 -75.7318505 0.0
Cr2 (24e,24o) 2k -2085.9825336 -2085.9828607 205.3 -2085.9825356 1.2
Cr2 (24e,24o) 3k -2085.9827180 -2085.9833185 377.0 -2085.9827184 0.6

The detailed information of the testing systems and the energy accuracy benchmark

results of these systems are presented in Table 1. In this test, we benchmarked the mixed-

precision scheme we presented in this article and compared with the original double-precision

DMRG method which is implemented in the Kylin software. We also checked the energy

result of the full single-precision DMRG method (i.e. all sweeps were calculated with the

single-precision sweep method). The mixed-precision DMRG scheme shows good agreement

with the double-precision result, thus the mixed-precision calculated energy deviates from

double-precision for less than 0.01 kcal/mol. However, for most cases, the full single-precision

DMRG may not deliver good result, especially for systems with complex orbital configuration

like for the Cr2 molecule. In fact, when transition metal elements are involved, the diago-

nalization and the DMRG sweep are harder to converge, which may affect the effectiveness

and the performance of the mixed-precision scheme. This issue will be further investigated

and discussed later. Generally speaking, the accuracy of the mixed-precision scheme will

increase with the growth of m, which is the bond dimension of the MPS. As shown in the

Fig. 4, when the bond dimension is larger than 1500, the error of the mixed-precision scheme
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is under 0.001 kcal/mol.
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Figure 4: Energy error (×10−3kcal/mol) of mixed-precision DMRG to double-precision
DMRG for different bond dimensions. Benzene as benchmark system using the 6-31G basis
set with a space of (24e,24o).

In Fig. 5, the benchmark result of the computational performance of the double-precision

DMRG method and the mixed-precision DMRG scheme is presented, as well as the corre-

sponding speed-up between these two approach. The testing systems are the same to those

in Table 1. The performance of the mixed-precision scheme is, as expected, better than the

double-precision method. Even a 2.31 speed-up is achieved for the benzene system with the

active space of (24e,24o) and a bond dimension of 5000. This speed-up is larger than the

theoretical upper bond of the speed-up for mixed-precision optimization. This is because

the total number of sweeps is decreased for the mixed-precision scheme. Generally, the num-

ber of sweeps for the mixed-precision scheme is slightly different from the double-precision

method, but will not be far from it.

3.2 Benchmarking different mixed-precision methods

In the performance test of the previous subsection, the mixed-precision approach for the

chromium dimer system is different from other systems. This is because, for this special
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Figure 5: Benchmark result of the computational time of the double-precision method and
the mixed-precision scheme. This is the time for the entire DMRG calculation, instead of the
time for one sweep. The corresponding speed-up for each test is attached on top of the bar of
the mixed-precision scheme. (*): Note that only mixed-diagonalization method was applied
for chromium dimer system. This is because when transition metal elements are involved,
the performance of the single-precision sweep will be slower than the mixed-diagonalization
optimized double-precision sweep.

case, the fine-grained level method (mixed-precision diagonalization) surprisingly performed

better than the coarse-grained level method (single-precision sweep). The deeper reason is

that when dealing with the Cr2 system, the diagonalization process is difficult to converge

for the single-precision sweep method. To further investigate this phenomenon, we tested

three different settings of the mixed-precision scheme, which are: (1) only the coarse-grained

level method is applied; (2) only the fine-grained level method is applied; (3) both of these

methods are applied. We also conducted a full double-precision test as a baseline and a full

single-precision test as a contrast. Two different types of the system were chosen for this

test. Besides the Cr2 system, we also choose the benzene molecule as an example for those

systems with no transition metal element. Both of these systems are using 6-31G basis set

with the active space of (24e,24o). The bond dimension of Cr2 is 2000 and benzene is 3000.

The result of these tests are presented in Table 2 and 3.

From these two tables, we can infer that the mixed-precision diagonalization method

performed better than other two methods for the Cr2 system, while the hybrid mixed-
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Table 2: Benchmark test for Cr2, 6-31G, (24e,24o), m = 2000. Energy in atomic unit, energy
difference in 10−3 kcal/mol, time in hour.

Method E ∆ Tsweep speed-upsweep Ttotal speed-uptotal

Full double -2085.9825336 0.0 2.06 1.00 15.94 1.00
Full single -2085.9828607 205.3 1.77 1.17 3.87 4.12
Single sweep -2085.9825371 2.2 1.77 1.17 18.51 0.86
Mixed diag. -2085.9825356 1.2 1.18 1.74 10.43 1.53

Mixed -2085.9825373 2.3 1.78/1.21 1.16/1.70 12.39 1.29

Table 3: Benchmark test for benzene, 6-31G, (24e,24o), m = 3000. Energy in atomic unit,
absolute error in 10−3 kcal/mol, time in hour.

Method E ∆ Tsweep speed-upsweep Ttotal speed-uptotal

Full double -230.7484449 0.0 0.99 1.00 10.57 1.00
Full single -230.7484264 11.6 0.45 2.21 2.58 4.11
Single sweep -230.7484456 0.5 0.45 2.21 7.05 1.50
Mixed diag. -230.7484474 1.6 0.55 1.80 8.53 1.24

Mixed -230.7484456 0.5 0.45/0.55 2.22/1.81 5.85 1.81

precision scheme, combining both single-precision sweep and mixed-precision diagonalization,

performed better than other two methods for the benzene system. For the Cr2 system,

the full single-precision DMRG may yield inaccurate energy, and have a poor performance

improvement. The reason is, as said in the previous paragraph, that the single-precision

diagonalization process has a big convergence issue. In each sweep, the total iteration number

for diagonalization in single-precision is much larger than in double-precision. For example,

on site 16, double-precision diagonalization took 15 iterations with 295.7 seconds, comparing

to 31 iterations for the single-precision diagonalization, consuming 314.8 seconds. Hence, the

speed-up for single-precision sweep method in one sweep is much lower. On the contrary, a

2.21 speed-up for the same method in one sweep is achieved when there is no convergence

issue in the benzene system test. This convergence issue also effected the total number

of sweeps. The double-precision DMRG method converged in 10 sweeps, while the hybrid

mixed-precision scheme, and the single-precision sweep approach converged in 12 sweeps.

On the other hand, the mixed-precision diagonalization method also converged in 10 sweeps,

showing a good consistency with the double-precision method. In summary, the single-
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precision diagnolization convergence issue become significant when a transition metal element

is involved. While the mixed-precision diagonalization method does not have this issue.

As results, the performance of single-precision sweep is slower than the mixed-precision

diagonalization method for the Cr2 system. The mixed-precision diagonalization method

preserved the result in double-precision accuracy.

On the contrary, this convergence issue in diagonalization did not appear in the test

of the benzene system, and other systems with no transition metal element. Thence, the

performance of the single-precision sweep method for one sweep is much better than the

double precision method. The speed-up of the single-precision sweep method is slightly larger

than 2, the theoretical upper bond of the single-precision optimization. This is reasonable

and can be regarded as common for single-precision optimization, when it is applied on a

compute-intensive task. The reason is that in the single-precision sweep method, almost

all of the data and operations are transformed into single-precision. Consequently, it is

highly possible to reach the theoretical upper bond. As the single-precision data form saved

memory space, more data can be stored in the CPU cache and the CPU cache hit rate is

increased. Therefore, the overall computational performance can be slightly higher than the

theoretical upper bond. However, we have to point out that although the performance of the

single-precision sweep is very high for one sweep, the speed-up of total DMRG calculation

is not as good as expected. This is because of the clean-up sweeps that are required to

reach the double-precision accuracy. Therefore, the clean-up sweeps must run in double-

precision mode, whether using full double-precision or using mixed-precision diagonalization

method. Consequently, these clean-up sweeps will delay the overall DMRG calculations. On

the other hand, if only the mixed-precision diagonalization method is applied, all the sweeps

will run with fine-grained mixed-precision method, and there will be no clean-up sweeps.

But the first several sweeps are set to run with a relatively small bond dimension, and will

increase sweep by sweep. At this circumstance, the conversion process in the mixed-precision

diagonalization method will consume much more time than other operations. resulting in a
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deceleration of overall performance. This is why the overall speed-up of the mixed-precision

method is not as good as the speed-up of a single sweep. Hence, the mixed-precision scheme,

combining both of these two level mixed-precision methods, can achieve the best performance

of these three mixed-precision settings, and also maintain the double-precision accuracy.

3.3 Performance for different space size and bond dimension
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Figure 6: speed-ups of the mixed-precision scheme with different active space sizes and bond
dimensions for the benzene molecule with 6-31G basis set. (a) The speed-up of total DMRG
calculations. (b) The speed-up of one DMRG sweep. In this case, both the single-precision
sweep method and the mixed-precision diagonalization method are presented in different
type of the lines and the markers.

The performance of the mixed-precision scheme varies for different size of the active space

and the bond dimension. Hence, further investigations on the performance and speed-up of

the mixed-precision scheme is conducted on the benzene molecule and the water molecule

with a bond length of 1.5 Å. In Fig. 6 and 7 the speed-ups of the mixed-precision scheme

with different active space sizes and bond dimensions are presented. From these figures, it

can be concluded that, the mixed-precision method performs well when the bond dimension

is relatively large, especially when m is equal to and larger than 2000. For most cased in

these two benchmark tests, the speed-up grows as the bond dimension grows. This is clearer

on the speed-up of one single sweep, shown as the (b) sub-figure in each figure. Even though
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Figure 7: speed-ups of the mixed-precision scheme with different active space sizes and bond
dimensions for the water molecule (1.5 Å) with cc-pVTZ basis set. (a) The speed-up of
total DMRG calculations. (b) The speed-up of one DMRG sweep. In this case, both the
single-precision sweep method and the mixed-precision diagonalization method are presented
in different type of the lines and the markers.

the speed-up for m = 3000 is slightly smaller than m = 2000 for the water case, both of

them are clearly much larger than m = 1000.

As for the the active space size aspect, the speed-up will firstly increase with the growth

of the active space size, and then decrease. At the beginning, with a relatively small space,

the total computational time is short. Therefore there is no much different of the total

computational time between the double-precision method and the mixed-precision scheme,

even though the performance of one single sweep is increased. Thus, with the growth of the

system, the speed-up, both in total computational time and in a single sweep, will increase

significantly. After reaching the maximum point, around 28–40 active orbitals for different

system, the speed-up will slightly decrease. There are several reasons for this decrease

of performance. The first and foremost reason is the performance of the matrix product

operations, which depends on the implementation of the MKL library, that is slightly reduced

with the growth of the matrix size when the size is large enough. The second reason is when

the system is too big, the total amount of data would be larger than the memory of our

computing node. Therefore, one must store the unused ENVs on the disk, when we doing
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the sweep, and load the corresponding ENV back to memory when it is required. This

memory store and load operations delays the overall performance, as the data is stored in

text form instead of binary form. Another reason is that, with the growth of the system, the

ratio of computational cost for the ENV update operation will grow. But this operation is

not optimized in the fine-grained level method, causing a slight reduction of the performance.

Because of these reasons, the speed-up has a small drop when the active space size is large

enough.

Another interesting phenomenon observed in the figures is that, in general, the speed-

up of single-precision sweep method is higher than the speed-up of the mixed-precision

diagonalization method. This is reasonable, that for the coarse-grained level method, most

operations including the diagonalization, the SVD decomposition and the update of the

ENV are transformed into single-precision mode. However, in the fine-grained level method,

only several iterations of the diagonalization procedure are transformed. Hence, the coarse-

grained level method is naturally and rightfully achieved a higher speed-up than the fine-

grained level method when there is no convergence issue in diagonalization.
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Figure 8: Total number of sweeps to convergence and the corresponding speed-up for benzene
molecule with 6-31G basis set in different active space size and bond dimension.

To finish this section, we would like to investigate the convergence behavior in the DMRG

sweep of the mixed-precision scheme at different circumstances. The benzene molecule was

chosen as an example. The total number of sweeps to convergence for different active space
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size and bond dimension is presented in Fig. 8 along with the corresponding performance

speed-up. From the data in Fig. 8, we can see that the total number of sweeps for the

mixed-precision scheme is tend to be a little bit larger than the double-precision method. In

some special cases, the total number of sweeps is smaller. But most of the differences are

no larger than 2 sweeps. Thus, it has no significant effect on the overall performance. After

all, the computational speed of one sweep is increased considerably.

4 Conclusion

In this study, a feasible two-level mixed-precision DMRG scheme is implemented. At the

coarse-grained level, a full single-precision sweep method, with the help of double-precision

orthogonalization, was developed. The double-precision orthogonalization is the key point to

make the full single-precision sweep successfully conducted and generate the right solution,

however, it consumes little more computational resources. Thus the coarse-grained level

method can achieve a rather high speed-up, even larger than the theoretical upper bond

for some cases. However, it may face some convergence issues in diagonalization when

dealing with systems containing transition metal elements. As for the fine-grained level

method, a mixed-precision diagonalization method, that is free of the convergence issue

in diagonalization, is provided. This method is mainly focus on the most time-consuming

part of the DMRG sweep, which is the diagonalization procedure, specifically speaking, the

Ĥψ calculation operation. With this mixed-precision diagonalization method, the double-

precision accuracy is achieved. Nevertheless, the overall performance improvement is not as

good as the coarse-grained level method. The only defect of the coarse-grained level method is

that if one only apply the coarse-grained level method to run a full single-precision DMRG,

the result may not be able to reach the required accuracy, as the numerical accuracy of

the single-precision data form is only 10−7, resulting a accuracy around 10−4–10−5 Hartree.

Thence, the clean-up sweeps are necessary to generate a higher accuracy, a common approach
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in DMRG calculations. Therefore, the combination of these two methods is essential to

construct a high accuracy and high performance mixed-precision DMRG scheme.

The benchmark results shows that the accuracy and the speed-up are well performed

as expected. For all of these different systems, the accuracy stays within 0.01 kcal/mol.

Specifically, when the bond dimension is larger than 1500, an error less than 0.002 kcal/mol

can be achieved. The speed-up of the mixed-precision scheme is also ideal. Even a 2.31

speed-up was achieved for the benzene case with 6-31G basis set, active space (24e,24o),

m = 5000. The chromium dimer is a special case, where the fine-grained level method

performed better than the coarse-grained level method. This is because the coarse-grained

level method may encounter a convergence issue in diagonalization, increasing the total

number of diagonalization iterations, and delaying the overall performance. We think this

convergence issue in diagonalization may be able to be fixed with other diagonalization

methods such as the Jacobi-Davidson method, so that a better performance can be reached.

We also discovered that the mixed-precision scheme prefers to be conducted on a relatively

higher bond dimension, larger than 1000, and a reasonable active space size, from 24 orbitals

to 40 orbitals.

As for the future work, some implementations and investigations are under consideration.

The first quest is to find a possible way to fix the convergence issue in the diagonalization

process. A potential approach is to implement some other diagonalization methods such as

the Jacobi-Davidson method within single precision. Maybe the Jacobi-Davidson method

has less issues than the Lanczos method. Moreover, maybe one can use the mixed-precision

approach to solve the convergence problem. Although, in this work, the mixed-precision

approach was only applied to achieve a better computational performance, the mix-precision

approach can also be applied to achieve a better convergence. This approach has already

been used by other numerical methods. Thence, we think a higher precision may be able

to help dealing with the convergence issue for those systems with transition metal elements.

Another work we plan to execute is porting this mixed-precision scheme onto the GPU
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platform. We believe this mixed-precision scheme will perform even better on the GPU

platform as the GPU architecture is more suitable for the single-precision calculations.
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