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Abstract—The computation of tomographic reconstructors
(ToR) is at the core of a simulation framework to design the
next generation of adaptive optics (AO) systems to be installed
on future Extremely Large Telescopes (ELT). In fact, it is also
a critical component for their operation on sky. The goals of
these instruments range from the detection of the light from
the most distant galaxies to the analysis of the composition
of exoplanets terrestrial atmospheres. Based on advanced AO
techniques, the instrument MOSAIC relies on a computational
framework to filter out the Earth atmospheric turbulence and
eventually enhance the images quality out of ground-based tele-
scopes. The ToR calculation is a compute-bound operation based
on the Cholesky factorization. Due to its cubical algorithmic
complexity, the ToOR may represent a major bottleneck for the
E-ELT when scaling up the large number of wavefront sensors
used in the baseline MOSAIC design. To mitigate this increasing
dimensionality overhead, this paper presents the implementation
of a novel mixed-precision Cholesky-based dense matrix solver on
hardware accelerators. The new algorithm takes into account the
data-sparse structure of the covariance matrix operator and uses
the tensor cores of NVIDIA V100 GPUs to leverage performance
at an unprecedented scale. To our knowledge, this is the first
computational astronomy application that exploits V100’s tensor
cores outside of the traditional arena of artificial intelligence.
Experimental results demonstrate the accuracy robustness and
the high performance of the mixed-precision ToR on synthetic
datasets, which paves the way for future instrument deployments
on the E-ELT.

Index Terms—European Extremely Large Telescope, Tomo-
graphic Reconstructor, Mixed-Precision Algorithms, High Per-
formance Computing, GPUs and Tensor Cores;

I. INTRODUCTION

Looking back at four decades of microprocessor trend [1],
the scientific community has come to the following striking
observation: single-thread performance increase is over and
so is perhaps the free lunch. Indeed, the semiconductor tech-
nology has reached physical limits due to power dissipation
challenges, which resulted into the end of Dennard scaling.
This has created a power wall with a plateau in processor clock
frequency expansion during the last decade. To overcome
these challenges, manycore architectures have come to the
rescue, unleashing the computational power brought by high
thread concurrency. This has been achieved at the expense of
redesigning existing high performance software libraries and
applications to take advantage of this unprecedented degree

of parallelism [2]. Nevertheless, the quest toward exascale
computing has still been slowed down and this has urged the
community to further explore disruptive hardware and software
solutions. This paper highlights both aforementioned possible
solutions and their impacts in the context of a computational
astronomy application.

Our application framework simulates and helps design the
future Adaptive Optics (AO) instrumentation for Extremely
Large Telescopes (ELT), such as the MOSAIC [3] instrument
to be deployed on the European Extremely Large Telescope
(E-ELT) [4], a.k.a., the biggest eye on Earth with a 39 meter
mirror diameter. In particular, it is in charge of filtering
out the atmospheric turbulence, captured by the wavefront
sensors (WFS), on small islands of interest in a large Field
of View (FoV). Using a multi-object adaptive optics (MOAO)
approach [5], the core simulation of MOSAIC consists in
computing a tomographic reconstructor (ToR) using covari-
ance matrices generated from WFS measurements. Once the
data is denoised after applying the ToR, the star light may be
sent to MOSAIC with a significant improvement in resolution,
from which the composition of their respective atmospheres
may be identified. While initially developed in the context of
MOAO, we have recently shown [6] that this framework can
be generalized to other AO concepts such as Ground Layer AO
(GLAO) or Multi-Conjugate (AO). MOSAIC actually provides
a unique tool to enable tomographic wavefront reconstruction
for a wide range of instruments for ELTs, including the E-ELT
as well as the giant Magellanic Telescope [7] and the Thirty
Meter Telescope [8].

The ToR executes on a symmetric dense covariance matrix,
which contains the correlations between all the measurements
of all the WFS. The ToR calculation then involves solving
a large system of linear equations using the Cholesky fac-
torization followed by a backward and forward substitution.
The algorithmic complexity grows cubically as the number
of measurements increases, making the ToR a computational
challenge. Moreover, the time variation of the atmospheric
turbulence imposes real-time constraints in order to precisely
track the atmosphere natural evolution. These constraints ne-
cessitate integrating algorithmic innovations along with ex-
ploiting underlying hardware features to rise to the aforemen-



tioned challenge. We present herein a new high performance
implementation of the ToR workflow to effectively decrease
the time to solution.

The software solution comes from the discovery of the
data-sparse structure of the covariance matrix, which may be
typical for general covariance matrices. In other words, the
matrix carries information which may not be relevant toward
the final accuracy assessment, for instance, when considering
the weak correlations between remote WES. Therefore, one
of the possible software solutions is to operate on these data-
sparse off-diagonal data tiles with a lower precision arithmetic
compared to other off-diagonal data tiles, which may carry
more critical information. The resulting mixed-precision ToR
algorithm (i.e., 32-bit and 16-bit floating-point arithmetic)
should still ensure numerical accuracy and robustness above
a certain application threshold to eventually meet the high
quality of the image obtained with the optical instrument. The
hardware solution consists in mapping this mixed-precision
ToR algorithm into NVIDIA GPU V100 tensor cores, which
are capable of performing half precision arithmetic up to eight
times faster than single precision arithmetic. This interesting
convergence of hardware and software solutions ultimately
raises the achieved performance to an unprecedented scale.
It further enables the MOAO application framework to ren-
der real-time computations possible, as the number of WFS
increases for next generations of ground-based telescopes.
Fine-grained computations, based on task-based programming
model, are at the core of the framework workload. It provides
the flexibility to orchestrate the mixed-precision algorithm at a
tile level, while potentially exposing asynchronous executions
to a dynamic runtime system of choice, e.g., StarPU [9].

Experimental results demonstrate the accuracy robustness
of the ToR simulation framework on synthetic datasets, repre-
sentative of E-ELT dimensions. We also report performance
scalability using various hardware accelerator generations,
including the latest NVIDIA V100 GPUs optimized for half-
precision arithmetics. To our knowledge, this is perhaps the
first astronomy application and one of the few scientific ap-
plications, which exploits NVIDIA V100 tensor cores outside
of the traditional arena of artificial intelligence.

The remainder of the paper is as follows. Section II de-
scribes related work. Section III presents the main contribu-
tions of the paper. Section IV provides detailed information on
the tomographic AO instruments to be deployed on the E-ELT.
The ToR computational phase of the MOSAIC simulation is
explained in Section V. Section VI introduces the novel fine-
grained mixed-precision ToR algorithm, while implementation
details are highlighted in Section VII. Numerical assess-
ment and performance results are reported in Section VIII
on synthetic datasets for the E-ELT using various hardware
accelerator generations. Finally, Section IX summarizes the
paper and presents future work.

II. RELATED WORK

Half precision floating-point arithmetic has been widely
used for Artificial Intelligence (AI) applications (e.g.,

image processing/segmentation, pattern recognition, etc.)
within Deep Learning (DL) frameworks, including NVIDIA
cuDNN [10], TensorFlow [11], Caffe [12], Theano [13], and
PyTorch [14]. These frameworks translate most of the DL
computational workloads to half precision general matrix-
matrix (GEMM) multiplication function calls, which may be
leveraged by tensor cores from NVIDIA V100 GPUs (.e.,
16-bit) or Tensor Processing Units (TPUs) from Google’s
custom-developed hardware accelerators (i.e., bfloatl6). Al
may typically be considered as the domain of predilection
for half precision computations. However the convergence
between Big Data and HPC [15] has pressured scientists to
look for opportunities to leverage the performance of their
applications by using half precision arithmetic. This paradigm
shift may challenge default convention of computing at higher
precisions.

Indeed, there are recent works toward democratizing half
precision arithmetics for scientific computing, which allows
the crossing for the first time of the symbolic exaflop barrier.
For instance, the use of 16-bit has been studied for genome-
wide association study in genetics [16], where the majority
of the computations has been casted to 16-bit GEMM on
NVIDIA V100 tensor cores. The same NVIDIA tensor cores
have also been applied to climate applications for acceler-
ating DL workloads [17] achieving significant performance
speedups.

In fact, mixed-precision algorithms are not new and have
been explored in the past. For instance, mixed-precision it-
erative refinement approaches have been studied for solving
dense linear system of equations [18] using single and double
precision arithmetics and recently in three precisions, adding
half precision to the mix [19]. The theoretical speedup factor
is up to two only, since floating-point units (FPUs) operate
for the traditional two-precision iterative refinement on 32-
bit operands. These algorithms represent possible software
solutions at exascale, thanks to the additional hardware support
for lower precision arithmetics. Indeed, a new mixed precision
iterative refinement approach [20] has demonstrated significant
performance improvement (speedup factor up to four) when
using for each computational stage (a typical coarse granu-
larity approach) different precision arithmetics , i.e., 16-bit,
32-bit, and 64-bit on NVIDIA V100 GPUs.

In this paper, we dive deeply into the design of a mixed-
precision algorithm for solving a dense linear system of
equations using task-based programming model, without the
need of iterative refinement. Based on tile algorithms [21],
we employ fine-grained computations to exploit the inherent
covariance matrices’ sparse structure at a tile level. This results
in the development of a new Cholesky-based dense linear
solver, customized herein for the computational astronomy
application. This may actually create new opportunities for
a wide range of scientific applications. For instance, a similar
customized approach has already been successfully applied
in the context of a climate and weather prediction applica-
tion [22], though no hardware support for lower precision has
been demonstrated.



III. RESEARCH CONTRIBUTIONS

The main objective of the paper consists in trading-off
arithmetic precision for performance by leveraging hardware
and software features in the context of the simulation for
advanced AO concepts such as multi-object of multi-conjugate
AO to equip the future generation of giant ground-based
astronomical telescopes. The crux of the paper consists of
three contributions. We take advantage of the task-based
programming model and employ a novel mixed-precision fine-
grained Cholesky-based factorization and solve. The dynamic
runtime system StarPU orchestrates the scheduling and the
asynchronous executions of various computational tasks onto
the underlying heterogeneous hardware resources, while mon-
itor their data dependencies. We assess the numerical robust-
ness and the performance impact of the new mixed-precision
algorithm using synthetic datasets, which are proxies for the
future deployment of the E-ELT’s MOSAIC instrument. To our
knowledge, this is perhaps the first astronomy application and
one of the few scientific applications, which leverages both
software and hardware solutions for mixed-precision support
outside of traditional AI workloads.

IV. UNDERSTANDING THE ORIGIN OF THE UNIVERSE
WITH MOSAIC

For ground-based telescopes, the atmospheric turbulence is
a limiting factor since it distorts the remote star light wavefront
when it reaches the Earth. The concept of Adaptive Optics
(AO) approach appeared in 1953 [23] to address this limita-
tion, even though the enabling technologies were not mature
enough. It was eventually further developed with the advent of
large telescopes in the early 1990 [24]. This technique relies
on a Deformable Mirror (DM) to effectively compensate for
the distortions introduced by atmospheric turbulence.

As illustrated in Fig. 1, a typical AO loop incorporates one
(or more) wavefront sensors (WFES) to measure the wavefront
deformations, a Real-Time Controller (RTC) that computes the
necessary compensation conveyed through a command vector,
and a deformable mirror (DM) the surface of which distorts
as a result of applying the command vector. This loop permits
then to flatten the incoming wavefront accordingly. The DM’s
shape must constantly follow the evolution of the atmospheric
turbulence, which requires the RTC module to provide the DM
with commands at a high pace (i.e., the frequency of the AO
loop is of the order of 1kH 2).

The new generation of instruments needs to support the
capability of the future ELTs, which have unprecedented sizes,
allowing to collect more photons and thus, observe the most
distant galaxies or faintest exoplanets, unreachable up to now.
For instance, the diameter of the European ELT (39m) is
almost five times as large as the largest currently deployed
ground-based telescopes. The complexity of the new AO
instruments increases as the square of the diameter growth, i.e.,
around 25 times. MOSAIC [3], one of these new instruments,
aims at studying the structure of the early universe (around
10 billion years ago) in order to understand its formation. To
collect detailed information sample large enough to provide
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Fig. 1. The adaptive optic loop is composed by the deformable mirror (DM),
the wavefront sensor (WFS), and the real-time controller (RTC).

astrophysicists with sufficient statistics for this study in reason-
able time, multiple objects must be observed simultaneously.
The AO loop described in Fig. 1 is modified for this purpose
into a Multi-Object AO (MOAO) loop with more WFS probing
a wide field of view and multiple DM to compensate for
the turbulence on small patches in the different directions
of interest. The RTC relies on a Tomographic Reconstructor
(ToR), a change of basis matrix, to convert the (off axis) WFS
measurements into theoretical on axis measurements used to
determine the DM’s shape. In the case of MOAO, one ToR is
computed for each observation channel. Furthermore, the ToR
has to follow the evolution of the atmosphere structure that
varies over night and needs to be recomputed regularly (at the
minute scale).

The ToR is obtained by solving a dense linear system,
involving covariance matrices generated from the WFS mea-
surements that can reach dimensions up to 100k in the case
of the E-ELT. Beyond MOAO and the MOSAIC instrument,
the same approach can be generalized to support other AO
concepts relying on multiple wavefront sensing directions
and turbulence tomography [6]. For instance, one can cite
the MAORY MCAO instrument on the E-ELT [25] but also
the GMTIFS and associated Laser Tomography AO (LTAO)
module on the GMT [26] or the future MCAO module for the
TMT [27]. Hence, this work is meant to have a critical impact
on both the design phases of most ELTs AO instrumentation
programs as well as their future operations on-sky. MOSAIC
being one of the most challenging tomographic AO concept
contemplated so far, we use it to benchmark our framework
and prove its ability to deliver both the required accuracy and
performance in terms of time-to-solution.

V. STATE-OF-THE-ART TOR COMPUTATIONS

The computation of the Tomographic Reconstructor (ToR)
is at the core of the operations of all the tomographic AO
instruments concepts contemplated on ELTs. And even though
it is not part of the hard real-time controller (RTC), which is in
charge of pushing/pulling the DMs’ actuators to compensate
for the atmospheric turbulence, the ToR computation is still



subject to a soft real-time constraint and must be updated
regularly to take into account the evolution of the atmosphere’s
structure. Previous works have demonstrated high performance
implementations of the ToR, which consists in computing
the Cholesky factorization of the dense symmetric covariance
matrix followed by a backward and forward substitution.
The most time-consuming kernel during the factorization
and the solve phase is the general matrix-matrix multipli-
cation (GEMM), which makes the compute-bound algorithm
run close to system’s sustained peak performance. Perfor-
mance results have been reported on shared-memory systems
equipped with hardware accelerators [5], [28], [29] as well
as distributed-memory systems [30] using single precision
floating-point arithmetic. In particular, tile algorithms [21]
have been instrumental to get high performance on GPU-
based systems [29]. The main idea is to divide these dense
matrix operations into fine-grained computations using task-
based programming model. The overall algorithm can then be
expressed as a directed acyclic graph, where nodes correspond
to tasks and edges represent data dependencies. The StarPU
dynamic runtime system [9] coordinates the scheduling of
these various computational tasks, both on CPUs and GPUs,
by ensuring data dependencies are not violated. Not only this
fine-grained computation enables asynchronous task execution,
but also it permits to overlap data movement across the
slow PCle bus between the host and the device with useful
computations. All in all, tile algorithms associated with a
dynamic runtime system mitigate the overhead of bulk syn-
chronous programming model, by weakening the artifactual
synchronization points, while maximizing the occupancy on
the underlying hardware resources (CPUs or GPUs).

However, all these approaches do not consider exploiting
the numerical property of the matrix operator nor introducing
mixed-precisions techniques. It turns out that the dense co-
variance matrix, which may be of size as large as 100k, has a
data-sparse structure, due to weak interactions between some
of the measurements taken by the WFS, as detailed in the next
section.

VI. LEVERAGING MIXED-PRECISION TECHNIQUES FOR
THE TOR COMPUTATIONS

With the advent of hardware support for low precision
floating-point arithmetics (e.g., Google TPU chip and NVIDIA
GPU with tensor cores), the covariance matrix structure
has been placed under scrutiny to identify opportunities for
mixed precision computations. The measurements used to
generate the matrix operator comes from the analog WFS
cameras, which have to be converted to 32-bit in order to
perform floating-point computations on the covariance matrix.
Fig. 2(left) pictures an X-ray of a covariance matrix by per-
forming an eigenvalue decomposition using 13248 measure-
ments and eight WES devices, which reveals an exponential
decay. We divide the matrix into tiles of size 138 and run an
eigenvalue decomposition on each individual tile. Fig. 2(right)
reports the eigenvalue distribution on various matrix tiles by
locations, starting from the main diagonal all the way up the

top right corner of the symmetric matrix. This figure shows
that tiles located around the diagonal carry useful information
with eigenvalues reaching highest magnitude. This is expected,
since measurements taken by WFS cameras physically located
next to each other exhibit highest correlations. By contrast,
as we move away from the main matrix diagonal tile, the
magnitudes of the off-diagonal tiles’ eigenvalues decrease.
This corresponds to weak interactions between measurements
taken by remote WFS cameras. These experiments provide
insight into the matrix tile structure and exposes the overall
data sparsity of the covariance matrix. Therefore, they pave the
way for support of low precision computations. Furthermore,
the task-based programming model gives the flexibility to
decide at a fine-grained level, i.e., at the tile level, which
precision arithmetic should be used before operating on it. This
fine-grained precision control may provide a better impact in
terms of performance, while maintaining the required instru-
ment accuracy. The traditional coarse-grained approach with
iterative refinement, as proposed in [20], not be numerically
stable for the herein application, given the high condition
number of the covariance matrix. Such matrix tile structure is
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Fig. 2. Eigenvalue distribution of the global covariance matrix (left) and
Eigenvalue distribution of individual tiles with coordinates (%, 7), with 4 the
row index and j the column index (right)

representative of the covariance matrices studied in adaptive
optics for astronomy applications on a given ground-based
telescope. Therefore, the eigenvalue decomposition may not
need to be calculated every time a covariance matrix is gener-
ated to determine its structure, since the correlations between
measurements of fixed WFS cameras may not drastically
change. Instead, a priori knowledge on the covariance matrix
structure may be sufficient to cherry-pick tiles candidate for
low precision computations.

For enabling half-precision arithmetics in our application,
the idea is to replace our original 32-bit tile GEMM CUDA
function (i.e., 4/ variant) by one of the three 32/16-bit mixed-
precision GEMM CUDA function, namely cublasGemmEx,
as detailed in Table I. These three GEMM variants operate
directly on NVIDIA V100 tensor cores. They provide incre-
mental levels of support for mixed precision arithmetics. The
1%¢ variant supports solely 16-bit muladd operations. The
274 variant performs the add operation in 32-bit with 16-
bit input/output operands. Besides doing the add operation in
32-bit, the 3"¢ variant returns the output operand C in 32-bit
precision arithmetic. The four variants are ranked from fastest



to slowest in terms of performance.

TABLE I
32/16-BIT MIXED PRECISION CUBLASGEMMEX SUPPORTED FUNCTION.

GEMM variants | A/B type | C type | Compute type | Alpha / Beta

HP3 16-bit 16-bit 16-bit 16-bit
HP2 16-bit 16-bit 32-bit 32-bit
HPI 16-bit 32-bit 32-bit 32-bit
SP 32-bit 32-bit 32-bit 32-bit
The first column will be used to specify the function’s precision in the
following.

These variants allow to precisely study the numerical re-
silience of the MOSAIC simulation framework, by trading
off precision arithmetics for performance and identifying the
point of no return. In our particular application, this point of
no return is when the symmetric covariance matrix looses its
positive definiteness, from which the Cholesky factorization
fails and the solver cannot proceed anymore.

VII. IMPLEMENTATION DETAILS

To compute the ToR, we rely on the Chameleon library [31]
with StarPU [9] as building blocks to implement the novel
mixed-precision tile Cholesky factorization and its solver on
accelerator-based systems.

a) StarPU Dynamic Runtime System: StarPU asyn-
chronously schedules the various tasks in parallel, according
to their data dependencies, onto available CPU and GPU hard-
ware resources. In case the GPU runs out of memory, StarPU
employs an out-of-core strategy and uses the CPU memory to
compensate for the lack of GPU memory at runtime. StarPU
maintains the data coherency between the CPU and GPU by
using a heuristic similar to the cache coherency protocol, while
aggressively prefetching data to ensure high occupancy on the
device.

b) Mixed-Precision Cholesky-based Solver:  Since
Chameleon does not provide a spotrf GPU-resident
task implementation, we integrate the MAGMA [32] GPU
kernel implementation. For the remaining Level-3 BLAS
kernels, i.e., strsm-ssyrk-sgemm, we rely on the cuBLAS
library. We run on the NVIDIA V100’s tensor cores for the
half-precision operation, therefore only the matrix-matrix
multiplication (GEMM) can be performed in half precision
(hgemm). The cuBLAS hgemm implementation for the Tensor
Cores (i.e., cublasGemmEx) allows various combination
of the precision of the input/output data tile and tensor
core operation (see Table I). The direct approach is to
create hgemm tasks for half precision GEMM and replace
the corresponding operation in the ToR computation. This
approach thus requires an additional GPU-resident task to
convert the 32-bit tiles to 16-bit, as soon as the tile is available
for the hgemm operation. Then, depending on the precision
variant used, we convert the tile back to 32-bit. We cannot
replace all sgemm by hgemm calls since the covariance
matrix may loose its positive definiteness. The Cholesky
factorization will then fail and the overall ToR computation

cannot further proceed. To prevent such situations from
happening, we add a mechanism to choose the precision of
each GEMM with the help of a functor. It is a structure for
which the user defines the operator () as an heuristic, taking
as input argument the position of the tile in the matrix and
returning the precision variant of the GEMM operation to be
used for this tile.

c) Heuristic for Mixed-Precision Computations: The de-
cision of swapping with a lower precision computational
kernel can be made at runtime via a heuristic formulae.
The actual mechanism is non-intrusive: users can define its
own heuristic through the functor to feed the mixed-precision
Cholesky factorization and the corresponding solver functions
with information to operate on the proper tile coordinates. The
implementation of the ToR itself does not need to be modified.
As a result, users can instanti-
ate functors and define a suitable
heuristic to choose the precision
of the GEMM operation on a
given tile, without being intrusive
5 into the underlying linear algebra
60 routine. This implementation can,
70 therefore, be used by other appli-
80 cations [22] and still exploit the
matrix specific structure at hand,
simply by customizing the heuris-
tic. A similar mechanism can be
enforced on the solve stage, i.e.,
the backward and forward substi-
tution, but in our case, all GEMMs
of the substitutions can be com-
puted with HP1, without hindering
the solution accuracy. In this paper, the heuristic we used is
fairly simple: we choose the precision of the GEMM based
on the distance of the output tile to the diagonal, using
different thresholds to address the different variants of the half
precision. Basically, the closer a tile is to the diagonal, the
more accurate the operation is. Typically, in our application,
the first tiles around the diagonal must be treated in 32-bit,
while the precision arithmetic for the far off-diagonal tiles
can be relaxed. Fig. 3 illustrates this heuristic. The current
heuristic is general enough, and thus, amenable to capture
more complex matrix structures with parametrized regions’
shape.

d) Pseudo-code: The ToR is obtained by solving X-A =
B, where X is the m x n unknown ToR matrix, A is an
n X n symmetric definite positive matrix and B is the (m x n)
the right hand side, with n and m are the number of WFS
measurements and the number of measurements of the true
sensors, respectively. The matrices are split into MT and NT
number of tiles, using the tile size nb. Algorithm 1 introduces
the mixed-precision cholesky factorization, which decomposes
A= L-LT. Algorithm 2 shows the mixed-precision backward
substitution y- LT = B. The forward substitution can be easily
derived from Algorithm 2. We implement a GPU-resident
kernel SP2H P to perform the precision conversion from 32-
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Fig. 3. Heuristic based on
the studied data-sparse matrix
structure. The color depends on
the GEMM’s accuracy, the tiles
operated in SP, HP1 and HP2
(see Table I) are respectively in
black, grey and white.



bit to 16-bit.

Algorithm 1 Mixed-Precision Cholesky factorization.
1: for k=0..NT-1 do

2:  Alk][k] < spotr f(Alk][k])

3: for m=k+1..NT-1 do

4: A[ml][k] < strsm(A[k][k], A[m][k])

5: H[m][k] < SP2HP(A[m][k])

6: end for

7 for n=k+1..NT-1 do

8: Aln][n] « ssyrk(A[n][k], A[n][n])

9: for m=n+1..NT-1 do

10: precision < heuristic(m,n)

11: if precision == float then

12: Alm][n] < sgemm(Afmi[k], Aln][k], Afm]n])
13: else if precision == half then

14: if variant == 1 or 2 then

15: H[m][n] < SP2HP(A[m][n])

16: H(m][n] < hgemm(H [m][k], H[n][k], H[m][n])
17: A[m][n] - SP2HP(H|[m]|[n])

18: else

19: A[m][n] - hgemm(H[m][k], H[n][k], A[m][n])
20: end if
21: end if
22: end for
23: end for
24: end for

Algorithm 2 Mixed-precision backward substitution.

1: for k=0..NT-1 do
2: for m=0..MT-1 do

3 Blm][k] < trsm(A[k][k], B[m][k]

4 Hbm|[k] + SP2HP(B[m][k])

5 for n=k.NT-1 do

6: Haln][k] + SP2HP(A[n|[k])

7: B[ml][n] < hgemm(Hb[m|[k], Ha[n][k], Blm][n])
8: end for

9 end for

10: end for

VIII. EXPERIMENTAL RESULTS

a) Environment Settings: We test two shared-memory
systems, each with two sockets 20-core Intel(R) Xeon(R)
Broadwell CPU E5-2698 v4 @ 2.20GHz, that are connected
to four GPU through PCle (10GB/s). They differ on the GPU
they host. The first one has four Nvidia P100 interconnected to
each other with a 20GB/s NVLink, as depicted in Fig. 4. The
second one has four Nvidia V100, 3 GPU pairs are connected
with a double NVLink of 25GB/s (for a total of 50GB/s), and
the remaining pairs are connected with a single NVLink, as
seen in Fig. 4. A single P100 GPU has a theoretical peak

Fig. 4. Peer-to-Peer bandwidth for the P100 (left) and V100 (right) GPU-
based systems.

performance of 10.8 TFlop/s in single precision, whereas a
V100 GPU performance goes as high as 15 TFlop/s. We
refer to these systems as P100 and V100. The half precision’s

theoretical peak performance of the V100-based system (since
the P100 is not equipped with Tensor Cores) is 500 TFlop/s
(125 TFlop/s per GPU). In the case of our mixed-precision
ToR algorithm, the sustained peak performance depends on
the ratio of GEMM performed in 32-bit versus 16-bit, as well
as the volume of data motion among the GPU pairs.

b) Numerical Accuracy: We test the numerical robust-
ness of the mixed-precision ToR. We compare the AO perfor-
mance using the Strehl Ratio (SR) obtained with the end-to-
end simulation tool COMPASS [33] on long exposure images.
The SR corresponds to the ratio of the maximum value of the
image of a point source over its theoretical maximum (1 being
the best achievable image). In other words, the SR provides
the quality of the image obtained with the optical instrument.
We use the SR of the SP as a reference to compare against
the mixed precision approaches. In Fig. 5(left) and 5(right),
we test two different AO systems: an eight and a forty meter
diameter telescopes with a total of 17k and 50k measurements,
respectively. In addition to the SR, we specify for each bar the
proportion of each GEMM variant used (i.e., SP, HP1, HP2,
and HP3) among all the tiles involved in a GEMM operation,
there is a total of 153 and 1326 of these tiles for each case
respectively. Due to excessive low precision computations,
the covariance matrix may loose its positive-definiteness and
the Cholesky factorization may fail. Then, the ToR cannot
be computed and the SR cannot be provided. Fig. 5 shows

w 12 12 12
£c 8m 40m
= 1 m 1 1
guv

fui 0.8 08 0.8
LE e
% © @os 06 0.6 —IHP2
SE5 [=T3
w2 o
D5 Oos 0.4 0.4 pmmsP
36° == SR Long
° %S 02 02 0.2 Exposure
L - m
Faoo, 0 0
Fig. 5. Proportion of the different GEMM precision and associated ToR

accuracy on a eight meter telescope with 17k measurements (left) and an
forty meter telescope with 50k measurements (right).

that if the Cholesky factorization succeeds, the ToR has an
AO performance equivalent to a single precision approach.
Moreover, only a small amount of SP tiles are required when
mixed with HP1 or HP2 to achieve a reasonable SR. However,
the configurations using HP3 constantly fails getting a proper
AO performance.

c) Performance Results: We report in Fig. 6 the per-
formance results in Tflop/s obtained on the two systems
described in VIII-0a in SP and mixed precision for the V100.
In the case of the mixed
precision, the chosen heuris-
tic uses SP GEMM for the

80 peak SPCV100)

70 . peak SP(P100)
60

950 4 SP(V100) _

%;10 SP(P100
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matrix size

Fig. 6. ToR performance with four
GPUs.

tiles that are near the diag-
onal and only HP1 cublas-
GemmEx for the others.
The threshold that deter-
mines the operation accu-
racy is set to maximize the



number of tasks performed
with the tensor cores while producing a valid ToR, as high-
lighted in Section VIII-Ob.

This heuristic achieves in
fact the best performance
among the tested heuristics,
as shown in Fig. 7.

On both systems, the
ToR computation achieves
around 60% of the the-
oretical peak performance
in single precision. How-
ever, the mixed-precision
approach only attains a third
of the theoretical peak performance. The sustained perfor-
mance of the Cholesky factorization only was observed to
be almost identical to the one of the ToR computation The
performance obtained when executing only the factorization
reflects this behavior, suggesting the performance issue comes
from the factorization itself and more precisely, the GEMM
operation. This assumption is confirmed as we remove from
the Cholesky factorization workflow all operation that is not
a GEMM.

The performance obtained for the GEMM execution of
the factorization, as presented in Fig. 8, shows that the
SP approach achieves respectively 70% and 80% of the
peak performance for the P100 and V100, respectively.

The ratio gets down to 42%

10, b1 (vioo) for the mixed-precision and

120 -m-mixed SP & HP1 (V100)

100 -5 (100 25% for the full half pre-

cision approach. However,

the performance loss from

the Cholesky’s GEMM to

the full ToR computation

is better for the mixed-

precision case, showing that

the StarPU runtime system
schedules the additional tasks efficiently.

The scalability graph in Fig. 9(left) shows that the perfor-
mance almost doubles while moving from two to four GPUs,
but the performance obtained for a single GPU stays low.
This low performance can be explain by the fact that a single
GPU does not have enough memory to store the full matrix,
forcing the out-of-core feature of StarPU to be activated in
order to use the host memory additionally. This is visible
when one observes the data transfers from Fig. 9(right): as
GPUs are added, the portion of transfer between the host
and the GPU decreases significantly. For this mixed preci-
sion implementation, tiles must be store both in SP and HP
increasing the memory usage, therefore increasing the host to
device communication. Last but not least, the communication
volume between host to device in single precision is higher
with P100-based than V100-based system. This is related to
a StarPU runtime decision which may favor time-to-time the
offloading to P100 host memory system given the higher peer-
to-peer bandwidth achieved on the V100 system, as shown in
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Fig. 7. ToR performance for various
mixed precision cases with four GPUs
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Fig. 8. GEMMs-only of the Cholesky
factorization with four GPUs
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Fig. 9. Scalability for 1 to 4 GPUs for a 100k matrix (left), Memory transfer
ratio: out-of-core (right)
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IX. CONCLUSIONS AND FUTURE WORK

This paper explores the use of NVIDIA V100 tensor cores
for mixed-precision GEMM to speed up the ToR computation
achieving almost 70 TFlop/s. This brings the overall ToR
computation time of the mixed-precision ToR at the E-ELT
scale below 8s as opposed to 14s for 32-bit ToR. This comes
though at the price of additional data movement compared
to the naive 32-bit ToR, which prevents reaching even higher
performance. We plan to improve the runtime decisions within
StarPU to better overlap data traffic with useful computations.
This work represents a major milestone in assessing such
challenging instruments and has a critical impact on both the
design phases of most ELTs AO instrumentation programs as
well as their future on-sky operations, beyond the MOSAIC
instrument studied herein.
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