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ABSTRACT

The present article is devoted to a proof of the existence and uniqueness of a
solution of a mixed problem with boundary integral conditions for a certain para-
bolic equation. The proof is based on an energy inequality and on the fact that
the range of the operator generated by the problem is dense.

Key words: Parabolic Equation, Boundary Integral Conditions, Energy In-
equality.

AMS (MOS) subject classifications: 34B99, 34B15.

1. Introduction

In the rectangle Q = (0,b) x (0,T), we consider the equation

2m
b=y (- 1)ma(t)gng = f(x,1), (1.1)

where a(t) is bounded, 0 < a < a(t) < a;, and a(t) has the bounded derivative such that 0 < ¢y <
a'(t) < e for t €[0,T).

We adhere to equation (1.1) the initial condition
lu = u(z,0) = p(z) (1.2)

and the boundary conditions
b
/ e® w(z,t)de =0, k=10,2m—1. (1.3)
0
The importance of problems with integral conditions has been pointed out by Samarskii [9].
Problems which combine local and integral condition for second order parabolic equations are

investigated by the potential method [2, 7], by Fourier’s method [4-6], and by the energy
inequalities method [1, 8, 10].

In this paper, the existence and uniqueness of a solution of problem (1.1)-(1.3) is proved. The

proof is based on the method of energy inequalities, presented in [1]. Such problems have not
been studied previously.
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2. Preliminaries

First, we introduce the appropriate function spaces which will be used in the paper. We de-
note B5*(0,b) by:

0.5 L%(0,b) for m = 0, @.1)
S {u/T™u € L*(0,b)} for m > 1, .

where T™u: = [ @(_Tﬁz———,— u(&,t)dé, m > 1. For m > 1, the scalar product in B3'(0,b) is de-
fined by: 0 '

(U’U)B’Zn(o,b) = / T"uT ™vdz.
0
The associated norm is:
m
= > 1.
”u”Bg‘(O,b) 1K uHLZ(O,b) form>1
Lemma 1: For m € N, we have

o0y < S 10121y (2.2)

Proof: The Cauchy-Schwarz inequality gives

2

/xqm_lu(&t)df < ( /zdﬁ)‘( /x|qm—1“(f,t)|2d€)
0 0 0

: b
J'/ |qm“1“(5’t)|2desw'/}‘irm—lu(é,t)fdf.

| 9| <

0 0
Therefore, we have
b b
lulpon < [ 177 e ae [ s
0 0
=Sl 10 .
Corollary: For m € N, we have
2
el < (%) - HuliZa . 3)
Remark: Inequalities (2.2) and (2.3) remain valid, if we replace the interval (0,5) by a bound-
ed region Q of R™. It suffices to replace b by meas(f2) (measure of §2) in (2.2) and (2.3). |

The space Bg“*k(Q) is the space with the finite norm

T b

e t>ano,,dt+/ e, 2 gyt

0
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The space Bg’O(Q) coincides with L(Q).

We associate with problem (1.1)-(1.3), the operator L =(&,f) with domain denoted by
D(L) =:E. The operator L is from E to F; E is Banach space of the functions u € L%(0,b) satis-
fying (1.3), with the finite norm

EAlk

ullf=| BI0(Q +1162mIIBmoQ)+SUP |l u(z,7) |2 (2.4)

L?(0,b)

where F' is the Hilbert space obtained by completing the space Bj“ %(@) x L?(0,b) equipped with
the norm

HF 15 = 1 1 20,

Here, we assumed that the function ¢ satisfies the conditions in the form (1.3), i.e.,

ot 19022 5= (F10) (25)

b

/mk-wdz:(], k=0,2m—1. (2.7)
0

3. Two-Sided A Prion Estimates

Theorem 1: The following a priori estimate

| Lull p<cllullg (3.1)

holds for any function u € E, where constant ¢ is independent of u.

Proof: Equation (1.1) implies that

el

2

3.2
2oy <2151 2oy + 4t 1 S5 o) (:2)

and initial condition (1.2) yields
12ul2a y Ssup lulen) 2, (53)
Combining inequality (3.2) with (3.3), we obtaln (3.1) for u € E, with ¢: = max(21/2,21/2a1). O

Theorem 2: For any function u € E, we have the inequality

Nellg<cllLull F (3.4)

where constant ¢ > 0 does not depend on u.

Proof: We consider the scalar product in L%(QT), where QT: = (0,b) x (0,7) and 0 < 7 < T
Observe that

b
2
2/“3’"‘%—;‘ dxdt + / a(7) | u(z, ) | 2dz
o 0
b
= 2R L, (~ 1y g?mOL) g / a(0) | o | 2z + / a(2) | u| da dt (3.5)

0 Q"‘
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We estimate the first term on the right-hand side of (3.5). By applying an elementary inequa-
lity we have

2Re (Lu (=" TG or < 8l 0 gry + 1 G 1 0 0r (3.6)

From equation (1.1}, we obtain

12 1
Z%”a 2mlle 0T _§H IIBm 0 QIILuIIBm 0@y (3.7)
Therefore, by formulas (3.5)-(3.7),
U2
F1 24120 r) H1o 1 S 1 o gy o @) 1 2y
<3 2u)? taglleu)?y, Ao llull®y .
=2 B O T 120,51 L4@Q")

Applying Lemma 7.1 from [3] to the above inequality we get

2

(nLuHBmo( +l|“HL20w)

max(3/2,a,)
= €
min(1/2,1/4 a3, a,)

where

xp(c,T').

Since the right-hand side of the above inequality does not depend on 7, we can take the least

upper l;ound of the left side with respect to 7 from 0 to T. Thus, inequality (3.4) holds, where
1/2

e =cyl a

4. Solvability of the Problem

From inequality (3.1), it follows that operator L: E—F is continuous, while from inequality
(3.4) it follows that the range of operator L is closed in F and, therefore, there is the continuous
inverse operator L ™! yielding the solution. In other words, this means that operator L is a linear
homeomorphism from the space E on the closed set R(L) C F. To prove that problem (1.1)-(1.3)
has a unique solution, it remains to show that R(L) = F.

Theorem 3: Let the conditions of Theorem 2 hold, and let the coefficient a(t) have bounded
derivatives up to the second order. Then, for any functions f € By" O(Q) and p € L2(0 b), there
is a unique solution u = L™ 1F of problem (1.1)-(1.3), where F = (f,cp) and

Bull e (171 g+ 191 13,4
where constant ¢ is independent of u.
Proof: To prove Theorem 3, we need the following proposition.

Proposition: Let Dy(L) = {u/u € D(L),lu =0} and let the conditions of Theorem 3 hold. If
for v € B»9(Q) and for all u € Dy(L),
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(Lu,v) =0, (4.1)

By %(Q)
then v vanishes almost everywhere on Q).

Proof of the Proposition: Assume that relation (4.1) holds for any function u € Dy(L). Using
this fact we can express (4.1) in a special form. First define A by the formula

T
- / %(a(r)%)dr
a(t)yF =h (4.2)

Let % be a solution of

and let

D (L): = {u/u€ D(L):u=0 for t < s}. (4.3)

v=—an)de) (4.4)

Relations (4.2) and (4.3) imply that u is in Dy(L). It possesses, in fact, a higher order of
smoothness, and we have the following result:

We, now, have

Lemma 2: If the conditions of the proposition are met, then the function u defined by (4.2)
and (4.3) has derivatives with respect to t up to the second order belonging to the space

BT 9(Q,), where Q, = (0,b) x (s,T).

Proof of Lemma 2: To prove Lemma 2, we will use the following t-averaging operators: Let
w € C*®(R), w>0; w=0 in a neighborhood of t =0 and t =T, and outside the interval (0,T),
and let [w(t)dt =1. We consider the operators p, defined by the formula
R

T
(pow)(z,t) = %/ w((§;—t>) w(z,s)ds for w € BFO(Q).

0

The above operators have the following properties:

P1: The function p.w € C*(Q) and it vanishes in a neighborhood of ¢t =T if w € By %(Q),
and p.u € D(L)if ue D,(L).

P2 If we ByOQ), then | pw-—w]|
P3: kpﬁu—pe fork—121quD(L)
Pa: If w € By O(Q) then,

—0 when e—0, and

<

H % (a(t)pew - PEa(t)w) H B?YO(Q)_)O’ when e—0.

Proofs of properties P1-P4 are similar to the proofs of the corresponding properties obtained
in [3] (see Lemma 9.1). 0

Applying the operators p, and ; to equation (4.2), we obtain

a(tyZp O = a@( (0p B = pa()3) = a'(t)p Je+ Lp b



328 ABDELFATAH BOUZIANI

It follows that

i G 2oy < s (10581 2o

1 G 20y + 117 (a0 Gt~ a0 )||BmoQ))

where ¢; = max(3cy,3).

By virtue of properties P1-P4 of the t-averaging operators and by inequality (2.3), we have

2
(112 00 <t 1G22y + 10 1 oy )

where ¢: = max(c3b2m/(a(2)2m), 1/a(2)). This yields the proof of Lemma 2.

Now, we will prove the proposition. Replace v in (4.1) by its representation (4.4). We have

-9 Re(%%,%(a(t)%—lf))Bgnvo(Qs)

—2Re<(—1)ma(t)a 2ma () )) ~0.

By-%Q,)

We write the remaining two terms of (4.5) in the form:

o (B B

— H 1/2( )gj‘m (iL‘ S)

”L20b

—2Re<( 1)™a (t)a 2m’5{ (t) ))B?O

Q)

=201 a1 22y |

= la(t)ul?

120, Re(a”(t)u,a(t)u)

L3Q,)

a2 TG 1 e

+ Re(a'(T)u(z, T), a(T)u (z, T))L2

O

(4.5)

o (4.6)
(0,)

(4.7)

Elementary calculations, starting from (4.6) and (4.7), yield the inequalities

Ou(z, s)

aO” at HBmO b)<c1l|

2a, ?)” H +aoco | u(z, T2 £2(0,b)

m ™y 0 ou
< —2Re (-2t ’5{“060)35”,0(@) (17208 + 3+ 1/263) | u |2

where ¢zt =sup | a”(t)].
0<t<T

Consequently,

o) 2RO,

L2@Q,y
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Ou(z, s
PYLGLIE N

15502, + D)1 ot

L%(0,b)

sc6(||un Pay ™ 15 Bpo, ) (48)
where ¢g: = max(cy,1/2a3 + ¢ + 1/2c§)/mln(a0,2a0, anCo)-

Inequality (4.8) is the basic of our proof. To use (4.8), we note that constant cg is indepen-
dent of s. However, function u in (4.8) depends on s. To avoid this difficulty we introduce a new

function # by the formula
T

6(z,t): :/ g%dT.

t
Then, u(z,t) = 6(z,s) — 8(z,t), u(x,T) = 0(z,s), and we have

lull52q < (||e<x,t)||§2( +(T—s)|w<xs)uL20,,))

S

Hence, if sy > 0 satisfies 0 < 2¢4(T — 5) < 1/2, then (4.8) implies that

6u($ Ou(z, s)

1580 220 )+ 125G N 0 109 1 22,

<teo 1551500, * 1001132 ) (19)
for all s € [T — 54, T1).
We denote the sum of the two terms on the right of (4.9) by 8(s). Hence, we obtain

_dB(s
158022 g~ 225 < deoB(o),
and, consequently, d
~ () exp (teg5)) < 0. (410

Integrating (4.10) over (s,T') and taking into account that 3(T) = 0, we obtain

B(s)exp (4egs) < 0. (4.11)

It follows from (4.11), that v = 0 almost everywhere on Qp _, . Proceeding this way step by
step along the rectangle with side s;, we prove that v =0 almost everywhere on Q. This com-
pletes the proof of the proposition. O

Now, we will prove Theorem 3. For this purpose it is sufficient to prove that the range R(L)
of L is dense in F.

Suppose that, for some V = (v,v) € L R(L),

(Lu,v) (4.12)

+ (bu,v =
apo@) )20,
We must prove that V = 0. Putting u € Dy(L) into (4.12) we obtain

(Lu,v) =0, uweD(L).

B 9(Q)
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Hence, the proposition implies that v = 0. Thus, (4.12) takes the form

(eu’vO)Lz(O,b) =0, u€D(L).
Since the range of operator ¢ is everywhere dense in L2(0,b), the above relation implies that
vy =0. Hence, V =0. This proves Theorem 3. O
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