
144

*Assistant Professor; †Graduate Assistant.

Proc. Okla. Acad. Sci. 57: 144-148 (1977)
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The paper describes three different rectangular plate bending elements based on Reissner's type stationary variational
principles. They differ in the number of dependent variables approximated independently and also in the number of nodes per
element. The first element types treats the transverse deflection and the three moments as unknowns at each of the corner
nodes; the second element type treats the transverse deflection and two normal moments as unknowns at the corner nodes; the
third one treats the transverse deflection as unknown at the corner node, and the moments mx and my at the midnodes of
opposite sides of the rectangle. These three types of elements are used to solve square plate problems with various boundary
conditions and loadings.

INTRODUCTION

Owing to the severe continuity requirements placed on the trial functions employed in the conventional
(conforming) finite element models of plate bending (derived with the total potential energy principle), the
resulting element matrices are algebraically complex and consequently their solutions require large amounts of
computing time. Further, the moments (or stresses) computed using the conventional plate bending elements are
not accurate. To avoid these problems Herrmann (1) suggested a new triangular plate bending element which
treats the transverse deflection and normal and tangential moments as unknown dependent variables. This
element was derived using Reissner's variational principle for a thin plate bending element. Reissner's
variational principle yields, as Euler equations, the moment-equilibrium equations and the kinematic relations
connecting the transverse displacement (and its derivatives) to the moments. These equations are lower order
(2nd order) compared to the fourth-order (biharmonic) equation governing the transverse displacement of the
plate. This attractive feature relaxes the continuity requirements on the trial functions. Several mixed finite
element models have been derived based on variants of Reissner's functional and/or using various order
polynomial approximations (see, for example, (2-6) ). The present paper describes construction and applications
of three mixed rectangular finite elements.

FORMULATION
Let the middle plane of the plate to be analyzed be denoted Ω⊂ R2 with

piecewise smooth boundary ∂Ω. This region is decomposed into finite elements
{Ω e}

N
e = 1. Let w denote the transverse deflection, mx, my, and mxy the moments,

and P the lateral load in the plate. The kinematic relations are given by

where S = 12/Et3, E being the Young's modulus, t the thickness, and µ is
the Poisson's ratio of the plate. The equilibrium equation is given by

These equations must be adjoined by appropriate conditions on the
boundary of the plate. We introduce the notation

where nx = cos(n,x) and ny = cos(n,y) are the direction cosines of the
outward normal n = (nx,ny ) on ∂Ω . We specify the following set of
boundary conditions.



145

(a) essential boundary conditions:

(b) natural boundary conditions:

Here variables with "^" denote specified values, and ∂Ωw and ∂Ωm are disjoint sets whose union is ∂Ω.
A variational formulation of Equations 1-5 has been

derived (7) and is given by

Here R e
1 is the restriction of the functional R1 to element e, and

wherein for the sake of brevity the element label ‘e’ is omitted. This functional can be used to construct
independent approximations of w,mx,my and mxy . If we assume that the third equation in Equation 1 is
identically satisfied (i.e., eliminating mxy ), we obtain from R e

1 ,

wherein the boundary terms are omitted temporarily. Functional in Equation 7 can be used to construct independent
approximations of w, mx and my.
Mixed Model I.

Functional R1 is employed to construct the rectangular finite element. Bilinear approximations are used for each
variable. Thus the element has four nodes and four degrees of freedom at each node (see Figure 1a), resulting in a 16
by 16 element stiffness matrix. The output contains w,mx,my, and mxy at each nodal point.
Mixed Model II.

Here functional R2 is used to develop the element. Again bilinear approximations are employed for each of the
three variables. At each of the four corner nodes there exist three (w,mx, and my) degrees of freedom (see Figure 1b)
resulting in a 12 by 12 element stiffness matrix. The quadratic element contains eight nodes with three degrees of
freedom per node.
Mixed Model III.

This element is based on functional R2. Here bilinear approximations are used for the transverse displacement
w, and linear approximations for mx and my. The four corner nodes each have one displacement degree of freedom.
Midnodes on the sides perpendicular to the y-axis each have one degree of freedom my, and midnodes on the sides
perpendicular to the x-axis each have one degree of freedom mx per node (see Figure 1c). This element results in a 8
by 8 element stiffness matrix. Note that mx is linear along x but constant along y and my is linear along y and
constant along x.

The trial functions (or approximating functions) are shown in Figure 1. For lack of space the element stiffness
matrices for each type are not given here. The element matrices are assembled in the usual manner (see Zienkiewicz
(8) and Oden and Reddy (9), and the resulting global set of equations are solved for the unknown nodal values.

NUMERICAL RESULTS
The above three types of mixed rectangular elements are now used to solve simple problems. Square plates (of

length L) with three types of edge conditions, simply-supported, clamped, and two opposite edges simply-supported
and the other two clamped, are solved for uniformly distributed load and concentrated load at the center of the plate.
The results are compared with each other and also with those from a hybrid model of Allman (10) and a compatible
displacement model of Clough and Tocher (11). Table 1 shows a comparison of center displacements and bending
moments for a simply-supported plate with uniform loading. In Table 2 central deflection and bending moments for
a clamped square plate under uniform load-
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ing are compared with those for the mixed model IV of Herrmann (1), hybrid model of Allman (10), and
conventional cubic displacement model of Clough and Tocher (11). Table 3 contains results for the same plate
under concentrated load at the middle. In Table 4 results are presented for a simply-supported plate under
concentrated load. Finally Table 5 contains values of central deflection and bending moment, and bending
moment at the center of side, for a square plate with two opposite sides clamped and the other two
simply-supported. Results are given for uniform loading as well as for concentrated load.

An examination of the results presented indicate that the mixed models I, II, and III described herein are
giving better ac-
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curacies for the displacement and moments than the mixed model of Herrmann (1), the hybrid model of Allman
(10), and the compatible cubic displacement models of Clough and Tocher (11) and Fraeijs de Veubeke and Sander
(12). Among the three mixed models described here, mixed model II gives the best accuracies. Although mixed
model I gives better accuracies than mixed model III, it requires more storage and computational times. Thus there
is a compromise between accuracy and the computational time involved.

SUMMARY AND CONCLUSIONS
Three types of rectangular plate bending finite elements are described and compared with each other and also

with other mixed, hybrid and compatible finite element models in terms of accuracy and the number of unknowns
used in each mesh (which is proportional to the computational time). Square plates with various edge conditions and
loadings are analyzed numerically using all three models. It is concluded from the present numerical analysis that
the models described herein are economical and give more accurate results. Another advantage which cannot be
judged from the numerical results is the very little amount of time needed to compute the element matrices exactly.

Application of these elements to vibration and stability of plates is under way and results will appear elsewhere.
Extensions to orthotropic or more general anisotropic plates can be done with very little effort. Use of similar
formulation for large deflection analysis of plates is straightforward.
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