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ABSTRACT Vehicle trajectory data under mixed traffic conditions provides critical information for urban

traffic flow modeling and analysis. Recently, the application of unmanned aerial vehicles (UAV) creates a

potential of reducing traffic video collection cost and enhances flexibility at the spatial-temporal coverage,

supporting trajectory extraction in diverse environments. However, accurate vehicle detection is a challenge

due to facts such as small vehicle size and inconspicuous object features in UAV videos. In addition, camera

motion in UAV videos hardens the trajectory construction procedure. This research aims at proposing a novel

framework for accurate vehicle trajectory construction from UAV videos under mixed traffic conditions.

Firstly, a Convolution Neural Network (CNN)-based detection algorithm, named You Only Look Once

(YOLO) v3, is applied to detect vehicles globally. Then an image registration method based on Shi-

Tomasi corner detection is applied for camera motion compensation. Trajectory construction methods are

proposed to obtain accurate vehicle trajectories based on data correlation and trajectory compensation.

At last, the ensemble empirical mode decomposition (EEMD) is applied for trajectory data denoising. Our

framework is tested on three aerial videos taken by an UAV on urban roads with one including intersection.

The extracted vehicle trajectories are compared with manual counts. The results show that the proposed

framework achieves an average Recall of 91.91% for motor vehicles, 81.98% for non-motorized vehicles

and 78.13% for pedestrians in three videos.

INDEX TERMS Mixed traffic, trajectory construction, unmanned aerial vehicles, vehicle detection, vehicle

trajectory, YOLOv3.

I. INTRODUCTION

Mixed traffic flow refers to traffic flow including motor

vehicles, non-motorized vehicles (bicycles, motorcycles, etc.,

simplified as NMV) and pedestrians (simplified as Pts in

tables). The research on mixed traffic flow offers theoretical

foundations for urban road planning [1], [2], road design opti-

mization [3], [4], traffic organization design [5], [6], traffic

safety diagnosis [7], [8], traffic flow prediction [9], [10], and

traffic environment improvement [11]. The mixed vehicle

trajectories can provide crucial data support on mixed traffic
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flow research and traffic safety evaluation in the microscopic

scope [12], [13]. Despite well-used traffic parameters such as

average speed, density and volume, micro traffic parameters

such as speed, acceleration, space headway, time headway

and gap of individual road users are also available from

the trajectory data. These microscopic traffic parameters are

essential in data-driven research such as conflict point deter-

mination in urban intersections and driving strategy design

for unmanned vehicles. Therefore, the importance of mixed

road user trajectory data is obvious for traffic-flow-related

studies.

The most famous trajectory dataset is the Next Genera-

tion Simulation (NGSIM) dataset launched by the Federal
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Highway Administration, United States [14]. The project

installs multiple fixed cameras on the top of a nearby building

to collect traffic videos. It publishes motor vehicle trajectory

data on four road segments, containing information such as

instantaneous vehicle velocity, acceleration, position coordi-

nates, vehicle length, and vehicle type. This dataset has been

widely used since its release. However, the NGSIM dataset

does not include trajectories of NMV and pedestrians, which

limits its use on mixed traffic situation. Besides, the dataset

has some technical limitations such as fixed road segment,

insufficient coverage range, limited traffic flow condition,

limited vehicle component, as well as erroneous speed and

acceleration information. Such limitations are associatedwith

the fixed locations of cameras at inclined shooting angle as

well as the trajectory extraction methods applied on those

videos [15]–[17].

Recently, unmanned aerial vehicles (UAV) technology

brings a new trend of traffic data collection [18], [19].

A researcher can fly an UAV carrying a high-definition cam-

era for traffic flow video capture in different road segments

at flexible timetable under permitted conditions. Compared

with cameras installed at fixed locations used by NGSIM,

the UAV for video collection has the advantage of high

acquisition flexibility, excellent continuity of traffic flow

and prolonged length of road segment acquisition. However,

in the meantime, due to the high shooting altitude and the

camera drifting, vehicle targets in aerial videos often have

some unique characteristics such as small vehicle size, large

target quantity and inconspicuous object features. Moreover,

in moving aerial videos, camera motion and object motion

are mixed in the view. Thus, they bring significant chal-

lenges in vehicle detection and trajectory extraction from

UAV videos.

II. RELATED WORKS

In existing studies, the trajectory extraction on mixed road

users is mainly divided into trajectory extraction with only

motor vehicles and trajectory extraction with pedestrians.

The two types of trajectory extraction methods are reviewed

below. Xiang, X.et.al uses AdaBoosting classifier and optical

flow for detection and tracks vehicles [20]. But optical flow

is not stable with the environment change. It lowers the preci-

sion of the trajectory extraction. J. Apeltauer.et.al proposed a

method via Boosted classifier and sequential particle filter to

detect and track [21]. And background subtraction in aerial

videos is adopted in vehicle detection by Azevedo et al.

They correlate these position result by k-shortest disjoints

paths algorithm [22]. However, the position accuracy of their

result is not high enough to track a smaller object when

their algorithm is applied in trajectory extraction of mixed

traffic.

As for pedestrian trajectory extraction, Yang.et al. extracts

the trajectory of motor vehicles and pedestrians in the aerial

video using the k-nearest-neighbor algorithm to match the

scale-invariant feature and generate trajectories [23]. Bian,

C.et al. tracks pedestrians in low altitude UAV videos via

Histogram of Oriented Gradients and the Support Vector

Machine [24]. But these methods are not suitable for mas-

sive and multi-classes trajectory extraction because they have

strong dependence on color feature and can only work on

single-class objects.

The emerging deep learning algorithms, especially those

applying Convolution Neural Networks (CNN), such as

You Only Look Once (YOLO) v3, and Region-based CNN

(R-CNN), have shown great potentials in high accurate tar-

get detection tasks. Compared with traditional algorithms,

deep learning does not rely solely on single image infor-

mation such as gray scale or color. It is less affected

by light change and image scaling as well as processing

strong adaptability and excellent portability to the scene.

At present, some researches have used deep learning algo-

rithms in ship recognition [25], [26]. However, only a few

studies have tested the performances of those algorithms

for vehicle detection on UAV videos. Besides, the corre-

lation algorithms for compensating lost detection need to

be further enhanced for more accurate vehicle trajectory

construction.

In our study, a trajectory extraction framework on mixed

road users is proposed to acquire trajectories in certain road

segments fast and accurately. Our framework is able to extract

trajectories of majority road users (motor vehicles, non-

motorized vehicles like motorcycle and bicycle, and pedestri-

ans) at urban intersections. Also, it is able to deal with aerial

videos with moving backgrounds and larger sampling area.

The summary of related work is shown in Table 1.

The proposed framework is tested on three aerial videos,

and it proposes an effective solution for the high-precision

trajectory extraction ofmixed traffic in aerial videowithmov-

ing background. The three videos above are under different

traffic conditions at urban intersections, including free-flow

and congested conditions.

III. METHODS

A. OVERALL FRAMEWORK

The primary objective of the study is to propose a method-

ological framework for trajectory extraction in aerial video

with moving background on mixed road users. The frame-

work consists of four modules, as shown in Figure 1, namely

vehicle detection, background registration, trajectory com-

pensation, and trajectory denoising. In the first module,

the YOLOv3 algorithm based on the convolutional neural

network is applied for accurate vehicle detection. Bounding

boxes of targets are obtained in this step. Then the Shi-Tomasi

corner feature is applied on background registration to obtain

rule of image motion. Vehicle detection and background reg-

istration work at the same time. After knowing the motion of

background image, existing coordinates are transformed into

a uniform fixed coordinate system. The data correlation algo-

rithm and compensation method based on the judgment of

speed limit is proposed to form rough vehicle trajectories. The

position points in the fixed coordinate system are associated
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TABLE 1. Summary of related work.

FIGURE 1. Framework of our algorithm.

to form a trajectory, and then the trajectories are classified and

composed. In the end, the EEMD-based denoising algorithm

is applied to eliminate errors to improve trajectory accuracy.

The details are presented in the following sections.

B. CNN-BASED VEHICLE DETECTION

The YOLO series [27], [28] and R-CNN [29] series are two

main architectures in the field of CNN [30]. After careful

literature review, the YOLOv3 proposed initially by Joseph

Redmon et al. [28] is considered for vehicle detections in

UAV videos. It is reported that YOLOv3 (the best version

in YOLO series) is more suitable for vehicle detection in

aerial videos than Faster R-CNN (the best version in R-CNN

series), and YOLOv3 achieves higher detection accuracy

and faster processing speed than R-CNN [30]. In our study,

we also test the Faster R-CNNon our videos. The results show

that the Recall by the YOLOv3 is 94.26% while by the Faster

R-CNN is 89.53% for motor vehicles. As a result, YOLOv3 is

chosen for the vehicle detection.

The YOLOv3 algorithm requires large training samples to

achieve excellent performance in vehicle detection. In our

study, the proposed procedure, which implements the mixed

Gaussian background-modeling algorithm [31] is applied

for rough vehicle detection and creates the training vehicle

samples. The algorithm models each pixel as a mixture of

Gaussians and uses an online approximation to update the

model. Pixel values that do not fit the background distribu-

tions are considered as foreground until there is a Gaussian

that includes them with sufficient and consistent supporting

evidence. Then the foreground is processed with the opening

operation and closing operation to complete holes caused

by background noise. At last, a Kalman filter is used to

recognize vehicles in the foreground. We used a higher level

of constraint to ensure a low false detection rate. A few non-

vehicle samples were manually excluded from the training

dataset.

During the training process, the training pictures are first

scaled to a uniform size and then sent to the CNN in batches

(a group of images each time) for logistic regression pre-

diction. The CNN used in YOLOv3 mainly implements the

darknet-53 neural network [28], which combines the design
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of YOLO-v2, darknet-19 and residual network. The input

image first goes to convolutional layers to get samples of fea-

tures. The size of the layer is set to 1×1 or 3×3 to reduce the

floating-point operations and increase the producing speed.

The shortcut layers are arranged among convolutional lay-

ers at specific intervals to divide the CNN into dozens of

pieces. The dividing operation is necessary for controlling the

propagation of gradients as well as avoiding the problems of

gradient diffusion and gradient exploding. At last, the yolo

layers perform classification and position prediction of the

targets. Three different scales are provided in the yolo layers

for the detection of small, medium-sized, and large targets.

The prediction result will be saved and updated in the weights

file. The training effect of each batch is represented by the

intersection-over-union (IoU).

Area of overlap indicates the overlap range of the predic-

tion box and the true value box. Area of union indicates the

range of the prediction box plus the truth-value box. It can

be seen that the IoU indicates how accurate the model detects

the target.

The training performance after iteration is expressed in

terms of loss as:

loss = lossxy + losswh + lossconfidence

+lossclass + loss0 (1)

where lossxy is the error of the center point of the detection

box, losswh is the error of the detection boxes’ length and

width, lossconfidence is the error of confidence of the detection

box, and lossclass is the error of the classification of the detec-

tion box. loss0 indicates the loss value of the last iteration, and

the final image detection performance is a superposition of

the loss values after all iterations. The training model usually

has a better performance with a smaller loss, while loss keeps

changing when the training procedure is conducting. As a

result, the training process is terminated when the minimum

loss is found.

The training result is then sent back to the YOLOv3 net-

work for detection and classification to form the raw detection

pool. The raw data may contain duplicated detection boxes

of the same vehicle, which need to be reduced. We propose

the duplication reduction method, in which the duplicated

detection boxes are identified by the following Equations 2,3:

|x1 − x2| <

l1
2

+
l2
2

2
(2)

|y1 − y2| <

w1
2

+
w2
2

2
(3)

where (x1, y1, l1,w1) and (x2, y2, l2,w2) refer to the position

of the duplicate boxes respectively, x is the X-axis coordinate

of the image top left corner, y is the Y-axis coordinate of the

image top left corner, l is the side length of a detection box in

X-axis, and w is the side length of a detection box in Y-axis.

In the reduction of the duplicate boxes, the one with a higher

confidence score is kept to be the correct vehicle detection

while the other is dropped.

The generated boundaries of detection boxes by

YOLOv3 may not fully comply with the real vehicle bound-

aries [32]. It may result in the erroneous estimations of vehi-

cle size. Such issue will be eliminated during the trajectory

construction.

C. BACKGROUND REGISTRATION

Since the mixed users traffic flow is collected in urban situ-

ation, the background will contain plenty of ‘corner points’

such as facades of buildings and edge of the greenbelt. The

corner points are stable in the video when the background

moves. So, we choose the corner point as the matching point

for registration. The registration is used to obtain a conversion

relationship between the video coordinate system and the

ground coordinate system for compensating the deviation

caused by video motion. This part is implemented in the

following steps.

1) CORNER DETECTION AND CORRELATION

BASED ON SHI-TOMASI ALGORITHM

Shi-Tomasi Corner Detection [33] is proposed by J. Shi and

C. Tomasi. It is an improvement of Harris Corner Detection.

Shi and Tomasi derive an image motion model for affine

motion and pure translation, which they use for tracking and

monitoring target features. In this model, the matrix involved

is equivalent toM. (Equation 4, 5) Given an image I , the algo-

rithm first computes the following matrix for every pixel

(x, y), which is an approximation to the local auto-correlation

function of image I :

M (x, y)

=









∑

u,v

wu,v·
[

Ix (xr, yr)
]2

∑

u,v

wu,v·Ix (xr, yr)Iy (xr, yr)

∑

u,v

wu,v·Ix (xr, yr)Iy (xr, yr)
∑

u,v

wu,v·
[

Iy (xr, yr)
]2









(4)

where Ix and Iy denote the derivatives of image I , (xr , yr ) =

(x + u, y+ v), and w(u, v) is a window and weighting func-

tion. The eigenvalues λ1, λ2 ofM are computed and a candi-

date point is accepted if:

c (x, y) = min (λ1, λ2) > θ · max
x, y

{c (x, y)} (5)

where c(x, y) is the scoring function of the corner points.

Shi-Tomasi is a very popular corner detector and has

been used extensively for various real-time video process-

ing applications because of its fast speed and high accu-

racy [34], [35]. The affine transformation mentioned in

the detector is a description of the criterion function used

in the Shi-Tomasi algorithm for registration; it does not

directly works on images. It can be found that this function

works better than the prior one without affine transformation

[33]. We embed the Shi-Tomasi operator in the code of

YOLOv3 and detect the corners of buildings globally while

detecting the vehicle in every video frame. These corner

points obtained are matched among adjacent frames by the
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k-shortest-path algorithm. If there is not a candidate corner

point in two adjacent frames, it will be ignored.

2) OPTIMIZATION FOR BACKGROUND TRANSFORMATION

PARAMETER

Asmentioned above, with backgroundmovement, the motion

of the feature points in the picture can be decomposed into

pure longitudinal translation ai, pure lateral translation bi, and

pure rotation of θi in the i frame to i+1 frame. The affine

transformation is used to find the corner points in the image

for screen matching. In the case of high altitude, the image

distortion of the road surface can be ignored and regarded as

a rigid translation. Therefore, we use rigid transformation for

the motion transformation of the road surface to obtain the

following rules. The matching corner combination of adja-

cent frames satisfies the following formulas. (Equation 6-8)

Among them, ai, bi, and θi are the generalized displacements

of the drone’s pure transverse, longitudinal and rotational.

R =

√

(

x2i + y2i
)

(6)

x ′
i+1 = R · cos (θ0 + θi) + ai (7)

y′i+1 = R · sin (θ0 + θi) + bi (8)

where x′, y′, is the calculated position via parameters found

by Genetic algorithms(GAs) [36], and x, y is true corner

position in the i frame.

In order to obtain the movement of UAV, it is necessary to

acquire the relationship between adjacent frames in the video.

That is, to quantify three parameters ai, bi and θi. Facing

the problem of the insufficient number of equations for one

couple of matching points and the problem of many couples

of matching points’ error allocation, we choose to use genetic

algorithms for parameter optimization.

Genetic algorithms (GAs) [36] are randomized searching

and optimization techniques guided by the principles of evo-

lution and natural genetics, which processes large amounts

of implicit parallelism. In GAs, the parameters of the search

space are encoded in the form of an array (called chromo-

somes). A collection of these arrays is named a population.

Initially, if a random population is created, it represents dif-

ferent points in the searching space. The searching space is

constrained by the maximum theoretical moving distance.

The Threshold Ra, the count number N and MSD value

are associated with each array that represents the matching

degree of the array.

MSD indicates the deviation between the parameter match-

ing position and the true corner position in all frames. (The

matching point combination that has been obtained in step1 is

considered as true matching positions.) We use the following

(Equation 9, 10) for evaluate the parameters.

δi =

√

(

xi − x ′
i

)2
+

(

yi − y′i
)2

(9)

MSD =

∑n
i=1 δ2i

n
(10)

Inwhich δi indicates the distance between the calculated point

and the real match point. When δi is smaller than Ra, the point

i can be considered as a correct match. A few of the arrays are

selected by N and each is assigned a number of copies that go

into the mating pool. The chromosome who equipped larger

N and smaller MSD is the optimized matching result. After

enough iteration, we pick the best chromosome as matching

parameters. Thus, the background movement is acquired.

D. TRAJECTORY CONSTRUCTION AND COMPENSATION

The trajectory construction and compensation aim at corre-

lating detection boxes in consecutive image frames to form

complete and accurate vehicle trajectories. The background

movement is known in this step because the detection and

background registration functions at the same time. This step

contains the following three steps which are data correlation,

trajectory classification, and trajectory compensation.

1) DATA CORRELATION

This part deals with the association of the target vehicles

in corresponding frames and forms rough trajectories of the

vehicles. Because the targets have little overlap in the vertical

view, the search range is limited to the range where other

vehicle may not break in, by referring bounding box and

motion characteristics of the vehicle. The data correlation

procedure is described as following. For any detection box

that first appears, its position is represented as (x0, y0, l0,

w0). The box may be a true one which means it contains a

valid vehicle (also the start of a valid trajectory track), or a

ghost one which does not contain a vehicle. The trajectory is

constructed by searching the detection box in the following

frames that meet the following conditions (Equation 11, 12):

|xi−1 + vi−1 − xi| < vxmax (0 < i ≤ TH) (11)

|yi−1 − yi| < v
y
max (0 < i ≤ TH) (12)

where vxmax and v
y
max are the most pixels a vehicle can move

in a frame in X-axis and Y-axis respectively, which should

be estimated in different test videos;i represents the number

of frames being searched; and TH is the threshold to i, indi-

cating the maximum searching area.TH significantly affects

the trajectory Precision and needs to be carefully determined.

A largerTH will increase the possibility of finding the fol-

lowing detection boxes and produce trajectories. However,

some false trajectories may be included. On the other hand,

a smaller TH will reduce the false trajectories but may lose

correct trajectories. The raw trajectory data is then produced.

We carefully check the raw trajectory data and find the

detection box size in a trajectory may fluctuate around the

true vehicle size. Thus, the mean size of all detection boxes

was used in the trajectory as the vehicle size. We also find

some false trajectories as well as missing trajectories and

summarize the possible causes as follows.

Some invalid trajectories are caused by the intrusion of

the ghost detection boxes.

Some ghost detection boxes are close to each other in

consecutive frames, which may be wrongly correlated.
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Some broken trajectories are caused by the missing

detection boxes.

2) TRAJECTORY CLASSIFICATION

The current trajectories are carefully examined and these tra-

jectories are summarized into different categories according

to the difference in validity and completeness:

(1) A complete track can represent vehicle location in every

frame where the vehicle appears. We identify the complete

trajectories which start when vehicles completely enter the

study segment and end when it reaches the downstream

boundary.

(2) A ghost track is not a real trajectory of the vehicle.

We apply a speed judgment to find the ghost track, which

can be identified by the following conditions (Equation 13):

√

(xend − x1)
2 + (yend − y1)

2

p
≤ 1 (13)

where (x1, y1) and (xend, yend) refers to the beginning and

end central point coordinate of a trajectory, p is the number

of frames the trajectory lasts. The judgment works because

a true trajectory moves along the road lanes while a ghost

trajectory usually does not have a fixed moving direction.

Therefore, its estimated speed will be much lower than that

of surrounding trajectories.

(3) A repeated track has the same position information in

some part with another track. The repetition of trajectory is

identified if the end positions of two candidate trajectories are

the same in the same frame. This judgment works because in

the correlation algorithm, a detection box may be correlated

with different detection boxes from upstream, but the detec-

tion boxwill be correlatedwith one and the only one detection

box each time from downstream.

After identifying the repeated trajectories, the repeated part

is extracted by the following conditions (Equation 14-16):

ma
i 6= mb

i (14)

ma
i+1 = mb

i+1 (15)

Rre = max
{

|yi − yi+1| ,
∣

∣yj − yj+1

∣

∣

}

(16)

where m represents position information (x, y, l, w) of candi-

date vehicles. If ma = mb, it means x, y, l, and w are all equal,

respectively. If the Equation 14, 15 are true, i is considered as

the start frame of the repetition. Rre is used to judge which

trajectory candidate possesses the repeated part.

(4) The rests are broken tracks that show vehicle position

in partial frames. The other part of the vehicle position is lost

due to missing detection boxes.

Separate operations are taken to deal with the four kinds

of trajectories separately. The complete trajectories are kept

within the trajectory pool. The repeated part in repeated tra-

jectories is invalid and directly deleted. The ghost trajectories

are detected and deleted. The left ones are considered as

broken trajectories, which will be further processed in the

compensation step.

3) TRAJECTORY COMPENSATION

To correlate the broken trajectories and form complete ones,

in this step, we propose a compensation algorithm to match

broken trajectories and apply the fitting functions to com-

pensate for the missing part. Firstly, the following condi-

tions (Equation 17-19) are used to find broken pieces, which

belong to the trajectory of the same vehicle:

0 < f < fu (17)

0 < 1x < Vmax ∗ f (18)

1y < wh (19)

where f is the number of lost frames between broken pieces, f

is restricted by the upper bound fu. (1x, 1y) are the distance

between the closer endpoints of broken pieces in X-axis and

Y-axis respectively, and wh refers to the threshold of 1y. fu
should be selected by the demands of the processing speed

of the extraction method because it indicates the searching

area. A higher fu will cost more time in finding pieces and

lower the processing speed, but will increase the possibility

of finding pieces. A lower fu will cause opposite affections.

wh indicates the limitation of searching area in the Y-axis,

it is usually set to half the distance between two close lanes

to avoid interference of trajectories from other lanes.

Once we have identified the broken pieces of a vehicle

trajectory, we use the cubic polynomial fitting (assuming the

acceleration changing rate is constant during missing part) to

reconstruct the trajectory using the consecutive points from

both pieces in their closer end. The position of the compen-

sation part can be calculated as follows (Equation 20-23):

xi =
i ∗ (x1 − xend )

f
+ xend (20)

yi = f3 (xi) (21)

l =
l1 + lend

2
(22)

w =
w1 + wend

2
(23)

where i is the current compensating frame, and f3(x) is the

cubic polynomial fitting function.

E. TRAJECTORY DENOISING

The trajectories possess some small position deviation due to

the camera shaking or background interference. The devia-

tion may result in the erroneous estimation of vehicle speed,

acceleration, and other traffic parameters so that a denoising

procedure is necessary. The denoising algorithm should be

able to eliminate the errors and outliers while remaining

the correct trajectory points. After a careful examination,

we selected the ensemble empirical mode decomposition

(EEMD) method for our research. EEMD is an improvement

of Empirical mode decomposition (EMD) which aims at

eliminating noise from non-linear and non-stable signals [37].

The main idea of EMD is to decompose the original signal

into multiple intrinsic mode functions (IMF) with various

frequencies, while the IMFs with low frequencies indicates
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the contour of the original signal and the ones with high

frequencies contains the noise details of the original signal.

The EMD is suffered from mode fixing, which is defined

as an IMF either consisting of signals of widely disparate

scales, or a signal of a similar scale residing in different

IMF components. To overcome the problem, Wu et al. [38]

proposed the EEMD that defines the true IMF components as

themean of an ensemble of trials, each consisting of the signal

plus a white noise of finite amplitude. Specifically, after

adding white noise, the current observation can be described

as follows:

Xi (t) = x (t) + wi (t) (24)

where i is the iteration number, x(t) is the raw trajectory

data, wi(t) is the added white noise, Xi (t) is the noise-aided

trajectory data.

In the next step, we seek the extrema points ofXi(t) and line

maxima points and minima points with cubic spline to form

the upper and lower envelope. Then we take local means of

the upper and lower envelope as the next observation xi (t).

Define the extrema of xi (t) as Nz, the zero-crossing point

as Ne, the upper and lower envelope as fmax(t) and fmin(t),

the IMF is found if xi (t) meets the following conditions:

Nz − 1 ≤ Ne ≤ Nz + 1 (25)

fmax (t) + fmin (t)

2
= 0 (26)

After enough iteration when IMF can no longer be found,

original Xi (t) can be expressed as:

Xi (t) =

n
∑

j=1

imf j (t) + rn (t) (27)

where imf j(t) is the IMFs separated from Xi (t), and rn(t) is

the residual.

The denoised trajectory is the sum of appropriate IMFs,

which is determined with an energy-based IMF selection

method [39]. In the signal-processing field, energy indicates

the amount of stored information in the signal. Therefore,

energy of noise signal only accounts for a small proportion

while themajority of energy is concentrated in themeaningful

signals. Therefore, the energy of noise signal, in the form of

log function, should be negative. An IMF is selected and sums

to form the smoothed trajectory if the following conditions

are met:

Ej =
1

num

num
∑

k=1

[

cj (k)
]2

(28)

log2Ej > 0 (29)

where Ej is the energy of the jth IMF, cj(k) is the point collec-

tion of jth IMF, num is the total number of collection points.

The sum of the selected IMFs is the denoised trajectory of the

vehicle. After the above steps, accurate vehicle trajectories

are extracted from our framework.

IV. EXPERIMENT DESIGN

The performance of our proposed framework is evaluated

on three aerial videos captured by high definition camera

mounted on an UAV (model: DJI Mavic professional) on

a city expressway in Nanjing, China. All videos are cap-

tured at 24 frame-per-second (fps) and with the resolution

of 4096 pixel ∗2160 pixel. Respectively, test video #1 was

taken at a 150m altitude at an urban intersection under a free

flow traffic condition. Test video #2 was taken at a 170m

altitude at an urban main road under a congested condition.

Test video #3 was taken at a 150m altitude at an urban

intersection under a congested condition. In the course of data

acquisition, the UAV was set to be stabilized in the air. The

video information is shown in Table 2.

TABLE 2. Test video information.

The trajectory extraction algorithm was developed on the

platform of Visual Studio 2015 andMatlab 2016a. The exper-

iment was launched on a workstation with a 2.5 GHz E5-

2678v3 dual processor and an 11G memory 2080 Ti graphics

card.

We calculated the count of detected vehicles and extracted

trajectories for validating the performance of our models. The

accuracy is evaluated by two goodness of fit measures, which

are:

Recall =
TP

GT
(30)

Precision =
TP

TP+ FP
(31)

where TP is true positive which refers to the count of valid

outputs (vehicle count or trajectory count), trajectories and

bounding boxeswithout serious deviations is counted intoTP,

GT is ground truth which refers to the count of truly- existing

trajectories (The targets appearing in videos are counted).

It’s worth mentioning that overlap is not considered between

the extracted trajectories and real tracks here because the

ground truth position information requires unrealistic labor

work. Even if the overlap information is not estimated here,

the ‘correct’ trajectories have been ensured by eye observa-

tion. AndFP is false positive which refers to the count of

fake outputs. Recall is the fraction of relevant instances that

have been retrieved over total relevant instances, indicating

the model performance of obtaining true count of vehicles or
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trajectories in the test video. Precision is the fraction of rele-

vant instances among the retrieved instances, indicating how

badly the algorithm mistook the false vehicle or trajectory as

the true one.

V. RESULT

A. MODEL TRAINING AND PARAMETER CALIBRATION

The YOLOv3 model is trained to detect vehicles in the UAV

videos. The model performance is profoundly affected by the

configuration of training settings, including the number of

training samples and training parameter adjustments. Similar

to Benjdira et al. [30], in our study, we use 12000 vehi-

cle samples produced by the mixed Gaussian background

modeling for the basic training. Besides, 4000 non-motor

vehicle samples and 1000 pedestrian samples are applied for

enhanced training.

The critical parameters that have significant impacts on

results are listed below. Especially, Batch is the number of

samples participated in training in each iteration. With a

higher Batch, the detection performance is more accurate.

Subdivision, which varies according to the capability of

the hardware, is set to relieve the usage of GPU by send-

ing samples into training dataset in separate groups. Width

and height are the scaled image size of training samples.

A larger width and height provides a higher resolution of the

scaled image; thus, less information is lost from the samples.

Max-batches is the total number of iteration in the training

progress. It should be appropriately set to obtain theminimum

loss, which indicates the overall performance of the training

procedure. Learning rate is the extent of changes in detection

model according to the results after iteration. It should be set

higher at the beginning of training to get a quick decay in

loss and lower when approaching the end of training to avoid

missing the optimal solution.

The parameters in the training procedure are carefully

determined by conducting multiple preliminary tests with

the trial-and-error method. Considering the balance between

training performance and capability of the hardware, Batch

and Subdivision are set to 64 and 32, while Length andWidth

are set to 672 and 672. Max-batches is set to 40000 in the

training procedure. The minimum loss is found near 35000

batches. The learning rate is set to 0.001 at the beginning of

training, and a step decay policy is applied to decrease the

learning rate from 0.001 to 0.0001 after 30000 batches.

B. RESULTS OF VEHICLE DETECTIONS AND

BACKGROUND REGISTRATION

Vehicles are detected on the test videos using the calibrated

model. The detection performances are seen in Figure 2.

To validate the model performance, the ground truth data

of vehicle counts are manually counted by the research team

members from the UAV videos. The vehicle detection perfor-

mances are shown in Table 2.

The results show that the calibrated YOLOv3 model per-

forms reasonably well in detecting the motor vehicles in

FIGURE 2. Detection Result of three types of vehicles.

the UAV videos. Notably, the Recall of motor vehicles in

test video #1 is 94.26%, which is similar with that in test

video #2 (96.23%) and in test video #3 (95.03%). However,

the Recall of NMV and pedestrians in three videos are both

less than 90% (83.85% and 80.00% in test video #1, 84.33%,

81.07% in test video #2 and 82.57% and 81.28% in test video

#3). The main reason of the difference is that NMV and

pedestrians possess much smaller target size and spacing than

that of motor vehicles which lowers the confidence score in

detection section. Besides, Precision of NMV and pedestrians

is about ten percent lower than that of motor vehicles. It’s

because the features of NMV and pedestrians are alike, and

they may be recognized wrongly as the other ones.

Two types of wrong detections identified that are false neg-

ative and false positive. False negative indicates the missed

detections of true targets. It usually occurs when a lost target

has a different shape or color or is covered by road markings,

resulting in distinct features from the training samples. The

detector may not treat them as targets. Such an issue may be

reduced when more diverse training samples are available.

False positive indicates fake detections, which occurs when

the detector mixes up road surface or road markings with

targets because they have similar features.

The background registration successfully links the

background-moving videos by a ten-frame-update frequency.

The found corner points (the colorful round points) are shown

in Figure 3.

As seen in the Figure 3, the upper part of the image is

the searching process for global corners, and the bottom is

enlarged corner points. The corner points are used to link

adjacent images. It is easy to find that most of the corner

points are linked to nearby buildings or the stationary vehicles

parking on the side of the road. If a stationary vehicle starts

moving, it can hardly be judged as corner points, which

proves the precision of our method.

C. RESULTS OF TRAJECTORY CONSTRUCTION

AND DENOISING

After trajectory construction, the vehicle trajectories are

extracted from the three UAV videos. The results are shown

in Table 3. The research team manually counts the true count

of trajectories, which is 102 (motor vehicles), 55 (NMV),
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FIGURE 3. Corner detection and background registration.

and 78 (pedestrians) in test video #1, 112 (motor vehicles),

61 (NMV), and 81 (pedestrians) in test video #2 and 131

(motor vehicles), 77 (NMV), and 92 (pedestrians) in test

video #3. The trajectory construction result on trajectory

count is evaluated in Table 3. Results show that Recall of

motor vehicles is nearly equivalent in three videos (92.16%,

91.96% and 91.60%). The Recall of NMV and pedestrians

(81.82% and 78.21% in test video #1, 83.61% and 79.01%

in test video #2 and 80.52% and 77.17% in test video #3) is

lower than that of motor vehicles. This is because the Recall

of motor vehicles in detection step is already higher than that

of NMV and pedestrians. If comparing the Recall of detection

and trajectory construction step in test video #1 for example

(94.26%, 92.16% of motor vehicles, 83.85% versus 81.82%

of NMV and 80.00% versus 78.21% of pedestrians), all types

of vehicles have approximately two percent decrease. It indi-

cates that the performance of the correlation algorithm is less

influenced by the target size or spacing in the task of aerial

video trajectory extraction.

There are 118 trajectories lost or not correctly correlated in

three videos of all vehicle types. We found that most of the

missing trajectories are caused by detection failure. The con-

tinuum of detection boxes in the trajectories is insufficient,

so our methods are not able to form the complete trajectories.

Only a few missing trajectories are caused by a detection

box in one trajectory correlating wrongly to the trajectory

of another vehicle. The mismatch occurs when the to-be-

correlated detection box has too much position derivation so

that the true vehicle position is not in the searching area.

In the denoising section, the examples of trajectory results

for motor vehicles, NMVs and pedestrians using EEMD are

shown in Figure 4(a)-(c). The red lines show the smoothed

object trajectory in real scenes. The blue lines and orange

lines in the rectangular coordinates show the original and

smoothed trajectory separately. As can be seen in the figures,

the original trajectory data has large fluctuation, while the

denoised data is much smoother.

FIGURE 4. Examples of trajectories before and after denoising.

VI. DISCUSSIONS

Our study provides a new way for mixed road users trajectory

extraction which reduces the amount of labor work. Thus,

it can help enrich the trajectory data for traffic flow studies.

Based on our video data, more detailed mixed traffic flow

research can be launched.

But, there are still some deficiencies in this study waiting

for further research by further researchers, including but not

limited to the following.

First, our test videos are limited in number and contain a

narrow range for traffic volume. Researchers will add differ-

ent traffic conditions videos to test the algorithm framework

in further research.
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TABLE 3. YOLOv3 detection and trajectory construction performances.

Our trajectory results are affected by weather. As a

result, the performance results will fluctuate greatly in lower

weather conditions. The proposed framework has not been

tested in different weather scenarios. Researcher will further

expand the trajectory extraction under wind and fog condi-

tions. In subsequent research, it is necessary to add strength-

ening algorithms such as defogging to the framework.

Our framework is only suitable for trajectory extraction of

fixed-angle video, that is, only when the drone is orthographic

to the ground.We do not have an effectivemethod to deal with

the angle change and road surface distortion.

When large object overlap occurs in video, the searching

range of data correlation model is difficult to avoid mis-

matching. It results in a large possibility for trajectory being

misled. This problem also limits the ability of our framework

to handle overlapping in inclined shooting angles.

In the background registration, we use genetic algorithm

to find the optimal result. The result will be affected by

the number of children of the genetic algorithm. There

will be some deviations. These deviations are eliminated

in the demoising part. Depending on the demoising algo-

rithm, it has a certain impact on the fidelity of the trajec-

tory. Regarding registration, it is very worth trying some

state-of-art deep-learning based approach in subsequent

research.

Our framework needs to obtain each entire trajectory

before it can be reconstructed and smoothed, so even if the

operations are performed at the same time, the frameworkwill

have operational lags and cannot meet the real-time require-

ments. The average extraction time of each trajectory of this

algorithm is about 0.06s / vehicle / fps. In the subsequent

improvement of the algorithm, we will try to improve the

content of the framework and conduct attempts on real-time

trajectory processing.

Moreover, though the UAV provides the tool for obtaining

high-resolution trajectories of mixed traffic users, it does

contain several challenge issues. For example, flying a UAV

above may draw road users’ attentions out of the traffic con-

ditions which may cause traffic safety problems. In addition,

since a typical UAV can only operate for 20 to 30 min-

utes, there is risks of dead batteries and aircraft may drop

down causing damages to vehicles and persons. Furthermore,

security of UAV should be enhanced to avoid any cyber-

attack or threat. Those issues need particular attentions of the

researchers.

VII. CONCLUSION

This research proposed a novel trajectory extraction frame-

work aiming at trajectory extraction of mixed traffic flow.

The framework integrated high-precision vehicle detection by

YOLOv3, the Shi-Tomasi corner feature applying for back-

ground registration, trajectory construction with correlation

and compensation and trajectory denoising by EEMD. Our

framework is tested on three aerial videos taken by an UAV

on urban roads including intersections. The extracted vehicle

trajectories are compared with manual counts.

The experimental results show that the framework achieves

a fine accuracy on detection and trajectory extraction. The

trajectory results of three road users are affected signifi-

cantly by respective detection results. The recall and precision

of motor vehicles is about ten percent higher than that of

NMVs and pedestrians due to the influence of target size.

The accuracy of NMVs is slight higher than the accuracy

of pedestrians. The precisions of NMVs and pedestrians are

lowered due to the similar image features in detection section.

The lost trajectories in the experiments are mainly caused

by detection failure. The denoising algorithm performed

effectively in eliminating outliners and keeping the traffic

VOLUME 8, 2020 43517



R. Feng et al.: Mixed Road User Trajectory Extraction From Moving Aerial Videos Based on CNN Detection

parameters within a reasonable range. The average recall of

trajectory construction is 91.91% for motor vehicles, 81.98%

for non-motorized vehicles and 78.13% for pedestrians in

three videos. The framework is proved successful in reducing

the amount of labor work on trajectory extraction.
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