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Mixed-Scaling-Rotation CORDIC (MSR-CORDIC)
Algorithm and Architecture for High-Performance

Vector Rotational DSP Applications
Chih-Hsiu Lin and An-Yeu Wu

Abstract—The coordinate rotational digital computer
(CORDIC) algorithm is a well-known iterative arithmetic for
performing vector rotations in many digital signal processing
(DSP) applications. However, the large number of iteration is a
major disadvantage of this algorithm for its speed performance.
Many researchers have proposed schemes to reduce the number
of iterations. Nevertheless, in performing the existing CORDIC
algorithms, the norm of the vector is usually enlarged so that extra
scaling operations are required to deliver the normalized output.
In this paper, we merge the two operation phases (microrotations
and scaling phases) and propose a new vector rotational scheme
called mixed-scaling-rotation coordinate rotational digital computer
(MSR-CORDIC) algorithm. It can eliminate the overhead of
the scaling operations that are inevitable in existing CORDIC
algorithms; hence, it can significantly reduce the total iteration
number so as to improve the speed performance. The proposed
MSR-CORDIC can be applied to DSP applications, in which the
rotational angles are known in advance [e.g., twiddle factor in
fast Fourier transform (FFT) processor designs]. Moreover, most
CORDIC algorithms generally suffer from the roundoff noise
in the fixed-wordlength implementations. We also propose two
schemes to control and reduce the impairment. Our simulation
results show that the MSR-CORDIC algorithm can enhance
the signal-to-quantization-noise ratio (SQNR) performance by
controlling the internal dynamic range. We also investigate the
first- and second-order statistical properties, including the mean
and variance of the SQNR. Simulation results show that the
MSR-CORDIC can enhance SQNR performance of both first-
and second-order statistical properties. At the VLSI architecture
level, we proposed a generalized MSR-CORDIC engine for the
tradeoff between hardware complexity and quantization error
performance. It can further reduce the hardware complexity when
compared with the newly proposed extend elementary angle set
CORDIC algorithm [5]. The MSR-CORDIC scheme has been
applied to a variable-length FFT processor design [29], and results
in significant hardware reduction in implementing the twiddle
factor operations.

Index Terms—Coordinate rotational digital computer
(CORDIC), extend elementary angle set (EEAS)-CORDIC,
twiddle factor, fast Fourier transform (FFT).

I. INTRODUCTION

T
HE coordinate rotational digital computer (CORDIC)
algorithm is a well-known hardware-efficient iterative

algorithm for the computation of elementary arithmetic func-
tions, such as trigonometric, hyperbolic, exponential, and

Manuscript received February 24, 2004; revised June 23, 2004. This paper
was recommended by Associate Editor T. Arslan.

The authors are with the Graduate Institute of Electronics Engineering, De-
partment of Electrical Engineering, National Taiwan University, Taipei 106,
Taiwan, R.O.C. (e-mail: fil@access.ee.ntu.edu.tw).

Digital Object Identifier 10.1109/TCSI.2005.853908

logarithmic operations [1]. The CORDIC algorithm can also
be applied to the rotation-based arithmetic functions, such as
fast Fourier transformation (FFT) [7], QRD-RLS filtering [10],
[11], eigenvalue decomposition (EVD) [9], and singular value
decomposition (SVD) [8].

The basic CORDIC algorithm is carried out only by a sequence
of shift-and-add operations. Despite its simplicity, it encounters
the disadvantage of large number of iterations, which impedes
the speed performance in practical implementations. The major
computational time is to reduce the carry-propagate delay in each
iteration. A Radix-2 redundant signed-digit adders (SDAs) are
employed to alleviate the inherent carry-delay [8]. Another so-
lution to solve such a problem is to reduce the iteration number.
Some approaches are based on this concept. For example, a table-
lookup-based scheme was proposed in [2]. It makes use of the
elementary-angle-recoding to accelerate the convergence rate of
the rotation angle. The higher radix number representation, e.g.,
a Radix-4 and very-high radix algorithms, is also dedicated to
reduce the iteration numbers [19], [20], [26], [27]. In [5], the
authors proposed the design concept of the extend elementary
angle set (EEAS)-based CORDIC algorithm. It defines and ex-
tends the elementary angle set to reduce the number of iteration
significantly. They also proposed the schemes to determine the
optimal iteration numbers of rotation and scaling operation under
a fixed-number iteration. Compared with existing CORDIC ap-
proaches, theEEAS-CORDICcanachieve thesameperformance
but with much smaller iteration number. The fixed-point property
of the EEAS-CORDIC is also analyzed in [30].

Aiming at reducing the iteration number, in this paper, we re-
formulate the iteration function to enhance the CORDIC algo-
rithm. The advantages of our proposed mixed-scaling-rotation
CORDIC (MSR-CORDIC) algorithm are as follows.

• Enhanced Extend Elementary Angle Set (Enhanced

EEAS): We enhance the EEAS of [5] to an even larger
angle set, which can be used to compose of the target
angle. That is, the targeted rotational angles can be
achieved with a very small number of iteration due to the
more feasible elementary angle set in our algorithm.

• Mixed Scaling and Rotation Operations: In the conven-
tional CORDIC algorithm, the norm is usually larger than
1. However, the norm of the rotated vector in the MSR-
CORDIC can be smaller than 1 in each iteration. There-
fore, we can merge the Scaling and Rotation Operations to
eliminate the scaling operations. Without the overhead of
the scaling operation, we can not only reduce the number
of iterations but also speed up the computation of the
CORDIC operations.
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• Universal Vector Rotational CORDIC Engine: The

MSR-CORDIC can be seen as a universal vector rotational

CORDIC engine. The AR CORDIC [18], fast CORDIC

[25], MVR-CORDIC [3], and EEAS-CORDIC [5] can

be considered as subsets of the proposed MSR-CORDIC.

At the architecture level, we propose generalized

MSR-CORIDC to achieve better signal-to-quantiza-

tion-noise ratio (SQNR) performance at only small

hardware overhead. That is, we can tradeoff between the

SQNR performance and hardware complexity.

• Reduction of Roundoff Noise: In the conventional

CORDIC algorithms, rotation operations are performed

to approximate the target rotation angle. Then, scaling

operations are executed to minimize the norm error be-

tween the initial and final vectors. From the viewpoint

of the dynamic range and fixed-point properties, it is

disadvantageous to enlarge the norm repeatedly. In the

MSR-CORDIC, the norm of the input vector can be either

scaled down or enlarged. Due to this interesting feature,

the variation of the norm can be adjusted and guaranteed

to have a very small dynamic range throughout all the

rotation procedure. Two schemes are proposed in this

paper to control and alleviate the impairment of dynamic

range. Furthermore, minimizing the SQNR values in the

two separate phases (rotation and scaling) are usually

processed independently in conventional CORDIC algo-

rithms. Hence, the solution will be local, but not global.

In the proposed MSR-CORDIC, we aim at searching for

a global solution so that merge both the angle and norm

error can be minimized together.

• Smaller Variation of SQNR: The mean of SQNR is a good

index to compare the error performance of the vector ro-

tational operations. The SQNR value indicates the first-

order statistical property of the error distribution. On the

order hand, the variance of SQNR, the second order statis-

tics, can help to see the variation of SQNR in achieving the

target rotational angles. Intuitively, it is better that the vari-

ation of quantization error is smaller. Simulation results

show that our design can enhance SQNR performance in

terms of both first- and second-order statistical properties.

The proposed MSR-CORDIC is very suitable for a variety

of DSP applications such as digital lattice filter [12]–[14], and

discrete trigonometer transforms [15]–[17]. The major feature

of these applications is that all the rotation angles are fixed and

known in advance, so that we can calculate the set of control pa-

rameters corresponding to each angle in advance and store them

in the ROM. By using the proposed MSR-CORDIC algorithm,

the vector rotation can be accomplished with only 20 adders/sub-

tractors of 16 bit wordlength, whereas the SQNR performance

in an average sense is as high as 90.0 dB. Compared with the AR

technique in [18] and EEAS approach in [5], we only need 44.6%

and 72.4% of hardware complexities, respectively, to achieve

the similar SQNR performance. The proposed MSR-CORDIC

is very suitable for performing the twiddle Factor function of the

FFF processor, and it has been demonstrated in [29].

The rest of the paper is organized as follows. We have a

brief review of the CORDIC algorithm in Section II. We pro-

pose the MSR-CORDIC algorithm in Section III and discuss the

issue of the error performance and roundoff noise in Section IV.

We also propose two schemes to reduce the impairment. The

RDP strategy is applied to the tradeoff between hardware con-

sumption and SQNR performance. In SectionV, we make some

system performance comparisons and establish the relationship

between the signal dynamic range and error performance. Sec-

tion VI shows the iterative and parallel system architectures. Fi-

nally, Section VII concludes our work.

II. REVIEW OF RELATED CORDIC ALGORITHMS

A. Conventional CORDIC Algorithm

Given a rotation angle and input vector , the target

vector can be computed as

(1)

Using the concept of microrotation in [1]–[3], we can decom-

pose the target rotation angle into predefined elementary angles.

Hence, (1) can be rewritten as

(2)

(3)

where is the expected rotation angle; is the number of rota-

tions; denotes the ele-

mentaryangle(ormicroangle); indicates thedirec-

tion of rotation for ; and is the residual angle.

We summarize the iterative equations of the conventional

CORDIC algorithm in Table I, where is the

vector to be rotated; is the accumulation of rotation angle;

the vector is the final vector; and is the scaling

factor, which is equal to . In the rotational phase,

the rotated vector is moved toward the target rotation angle

iteratively according to (4). As we can see, the norm of the

rotated vector will be changed in this procedure; therefore, we

have to perform the scaling operations in the scaling phase to

obtain the corrected norm value. Given the number of itera-

tions, the scaling factor can be computed in advance. Several

CORDIC-like schemes are proposed to perform the scaling

operation in an efficient way [21]–[23].

B. MVR-CORDIC and EEAS-CORDIC Algorithms

In the modified vector rotation (MVR)-CORDIC algorithm

[3], the authors made modifications on the rotation procedure

to reduce the iteration as well as to accelerate the computa-

tional speed. Meanwhile, in [5] the authors extended the MVR-

CORDIC work, and proposed a new idea to extend the Elemen-

tary Angle Set as shown

(8)
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TABLE I
SUMMARY OF THE CONVENTIONAL CORDIC ALGORITHM

where is defined as the Extending Factor and denotes the

number of Singed Power-of-Two (SPT) terms; denotes the

number of maximum shift. In [5], the extending factor is set to

2. Based on (8), the EEAS has larger elementary angle set than

the conventional CORDIC algorithm. We illustrate the effec-

tiveness of the EEAS-CORDIC algorithm in Fig. 1. Fig. 1(a) de-

picts the elementary angles that can be achieved in the conven-

tional CORDIC algorithm. For a fair comparison, we show the

elementary angles of the EEAS-CORDIC algorithm, which has

the same adder count as the conventional CORDIC algorithm,

in Fig. 1(b). Fig. 1(b) shows that there are the more reachable

elementary angles in the EEAS-CORDIC algorithm. This spe-

cial feature can achieve better performance, including smaller

quantization errors, hardware cost reduction, and lower compu-

tational complexity. As discussed in [5], the scaling function can

be written as

(9)

where is the -th iteration scaling factor. Equation (9) shows

that all scaling factors are different and depend on their own ro-

tation angle. We depict the constellations (all reachable points

of rotational angles) of the EEAS-CORDIC in Fig. 2(b). Note

that the EEAS-CORDIC is suitable for vector rotation of fixed

angles (e.g., twiddle factor of FFT). That is, in order to perform

the forward rotation, we have to calculate the scaling factors of

all rotation angles off-line, and store the pre-computed parame-

ters in ROM in practical applications.

III. THE PROPOSED MSR-CORDIC ALGORITHM

Since the scaling factor is always greater than 1 in the ex-

isting CORDIC algorithms, it is necessary to scale down the

norm of the input vector to its initial value in the scaling phase.

Furthermore, the SQNR performance will be degraded due to

the growth of the scaling factor. To alleviate the degradation of

the SQNR performance, it is better to keep the norm of the input

vector as close as to unity during each iteration. We will analyze

this dynamic range issue in Section IV-B. Additionally, if the

norm of the rotated vector is moved to the same as the original

vector in the final microrotation operation, we can reduce the

overhead of the scaling operation. Based on the idea, we refor-

mulate the iterative arithmetic as follows:

Mixed Scaling Rotation

For

(10)

— Calculate elementary angle

(11)

— Update accumulation angle

(12)
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Fig. 1. Constellation of Elementary angle Set. (a) Conventional CORDIC with
N = 4. (b) EEAS-CORDIC with S = 4 after applying the scaling operations.

— Amplifying factor in the th rotation

(13)

— Product of the amplifying factor in the th rotation

(14)

End

— Scaling factor

(15)

where denotes the th iteration and denotes the total

number of iterations; . In the

MSR-CORDIC algorithm, or is valid,

but it is invalid in the conventional CODDIC algorithm;

, and denotes the number of

maximum shift; and denote the number of SPT terms of

and , respectively, and they are referred to as the

Extending Factor; is the th elementary angle; is the

accumulative angle, and is 0; denotes the product of the

amplifying factors in th iteration. The initial value of is

1, and denotes the Scaling Factor. In the MSR-CORDIC

algorithm, is always designed as close as possible to unity.

is denoted as the number of SPT terms used in performing

(6), which is the sum of and .

The proposed MSR-CORDIC algorithm is called MSR-

CORDIC. The reason is that we can perform the microrotation

operation and scaling operations at the same time. Equations

(10)–(15) show that the and are rotated and scaled

simultaneously in one iteration. In the conventional CORDIC

and EEAS-CORDIC algorithms, the norm of both the schemes

is enlarged after the microrotation operations, as illustrated

in Fig. 2(a) and (b). On the contrary, (13) shows that the

factor can be either greater or less than 1 in the proposed

MSR-CORIDC algorithm. In Fig. 2(c), we depict all reachable

points in the two–dimensional (2-D) plane to emphasize the

feature of . Some other interesting features of the proposed

scheme are discussed.

1) According to (11), the angles in the MSR-CORDIC is

much denser than the conventional CORDIC and the

EEAS-CORDIC. When we perform the MSR-CORDIC

with more iterations, the combinational points are very

dense around the unit circle. We illustrate this in Fig. 2(d)

with two iterations. Furthermore, if we design the param-

eters, , and , appropriately such

that the angle error and norm error

are minimized at the same time, where is the target

angle. Then, we can avoid the scaling operations. The

MSR-CORDIC is faster in computational speed and the

total hardware cost can be reduced.

2) In some applications, the rotation angles are larger than

, such as the twiddle factors in FFT. It is difficult

for the conventional CORDIC to rotate to such an angle.

In the MVR-CORDIC [3], the authors employ the pre-

rotation scheme to overcome the problem and have the

improved error performance. However, one extra multi-

plexer is needed to exchange the two input vectors. Be-

sides the extra hardware cost, the computing speed will

be degraded due to the extra multiplexer. On the contrary,

in the MSR-CORDIC algorithm, the reachable angles are

distributed from 0 to , as illustrated in Fig. 2(d). Hence,

it is easier to perform the rotation operation for all angles

in the range of without performing the prerotation

scheme.

IV. ANALYSIS OF ERROR PERFORMANCE AND DYNAMIC

RANGE OF MSR-CORDIC

In this section, we discuss two issues on the finite-wordlength

performance of the proposed MSR-CORDIC, including the

error performance and roundoff noise.
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Fig. 2. Constellation of reachable points under the rotation process. (a) Conventional CORDIC with N = R = 4. (b) EEAS-CORDIC with maximum shift
range S = 4 and R = 2. (c) MSR-CORDIC with I = 2; J = 1, and N = 1. (d) MSR-CORDIC with I = 2; J = 1, and N = 2 for 1=3 � P � 3 with
maximum shift range S = 4.

A. Error Performance Analysis

To analyze the error performance, we define the error as the

error distance between the ideal rotated point and the feasible

rotated point. As shown in Fig. 3(a), we intend to rotate the point

to the target position, point . Sometimes, it is impossible

to reach the target point with the innate constraint of the

CORDIC algorithms. In practical VLSI implementations, we

will also encounter the fixed-point impairment, which makes

point more unreachable. In such conditions, we must replace

point by another feasible point . Assume that point is

closest to point , then the error is equal to . Without

loss of generality, we assume the length to be unity for

the simplicity of analysis. When the angle is very small,

we have

(16)

where . Equation (16) shows the interesting fact that

the error in angle and the norm error have the same order

on the degradation of the error performance. Hence, we must

make the same effort to minimize both errors.

Lemma 1: To reduce the error, the angle and norm errors

should be minimized at the same time.
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Fig. 3. The error performance analysis and the cause of its degradation. (a) Angle errors and norm errors that cause the error performance. (b) Degradation of
error performance caused by the greedy search.

In Fig. 3(b), let both point and point be feasible points.

In general, both points are very close to point . So we can have

three assumptions.

A1) Both angles and are very small.

B1) Both the lengths and are very short.

A3) Without lose of generality, let .

Based on these assumptions, we have

(17)

However, in the CORDIC algorithms [3], [5], the greedy algo-

rithms are used to minimize the angle error . Therefore, point

will be always chosen as a result of the assumption (A3), even

though point has smaller error than point . That is

(18)

Q.E.D.

B. Roundoff Noise Analysis

In DSP systems, signals must be quantized and represented

in fixed wordlength. A limited wordlength will result in the

roundoff noise and degradation of the SQNR performance.

There is no doubt that the larger dynamic range of signals will

cause more severe roundoff noise. One trivial solution to the

problem is to make use of larger wordlength; however, this

will reduce the computational speed. On the other hand, if we

implement with shorter wordlength, we will suffer from the

danger of overflow. Therefore, in the rotation operation, it is

better to make the norm variations as small as possible in each

iteration.

1) Theoretical Analysis: To analyze the effect of the scaling

factor on roundoff noise, we define the amplitude of the input

signal . It satisfies

for

(19)

where and denote the lower bound and upper bound

of the input signals, respectively. represents the upper

bound of the absolute amplitude of the input signal. If the

quantization level is,

is the minimum wordlength required to express the signal.

In the quantization process, both the overflow and quanti-

zation noise need to be considered; the quantization noise

reduces the error performance, whereas the overflow prob-

ably causes an incorrect result. Hence, we have to minimize

the quantization error under the overflow-free constraint.

When the signal is expressed in signed-digital representa-

tion with a fixed wordlength , the quantization levels are

,

where is the number of fractional digits. To avoid overflow,

the following constraint must be satisfied:

(20)

Assume that the roundoff noise is uniformly distributed,

wide-sense stationary, and uncorrelated with other signals.

Based on the quantization levels, the range of is in the range

of . Then, the variance of roundoff noise can

be written as

(21)

where denotes the weight of the least significant

bit. From (21), the variance of roundoff noise is proportional to

. Hence, to minimize the quantization noise is to minimize

. It can be easily shown that the optimal quantization levels

are

(22)

Next, we discuss the scaling effect for two different cases (

and ).

A) Case 1 [ (denoted as )]:

Assume that , for , and the quan-

tization levels are the same as (22). When the rotation

or scaling operations are performed, we need extra bits

to avoid the overflow. The practical method is to change

the scale of quantization levels by times. Based

on (21), the roundoff noise will be amplified by ;

equivalently, the SQNR is reduced to times of

the old value.

B) Case 2 [ (denoted as )]:

In this case, let , for , and the input
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Fig. 4. The SQNR performance comparison among the MSR-CORDIC family. (a) Normal MSR-CORDIC with I = 1; J = 3. (b) Normal MSR-CORDIC with
I = 2; J = 2. (c) Generalized MSR-CORDIC with I + J = 4.

signal is quantized as in Case 1. The norm of the input

vector must be moved to its original value in the last iter-

ation. We cannot adopt a smaller quantization levels to re-

duce the roundoff noise nor reduce the wordlength to save

the hardware cost. Otherwise, overflow may occur. Hence,

the signal level is degraded as times as the old one,

when the quantization levels are kept unchanged. In this

case, the SQNR is also reduced by a factor of .

The above analyses show that the scaling factor will cause more

severe roundoff noise in both cases and . That

is, and amplify the same roundoff noise. We will

use the result to adjust the scaling factors so as to control the

roundoff noise.

2) Searching Schemes of Roundoff Noise Reduction: As

aforementioned, the scaling factor plays an important role in

affecting the roundoff noise. We will propose two schemes,

Boundary Constraint and Best Candidate, to reduce the roundoff

noise.

1) Boundary Constraint: In the MSR-CORDIC algorithm,

one special feature is that the amplifying scaling factor

can be larger or less than 1. By utilizing the fea-

ture, the first proposed scheme is to limit the value of .

Then, the maximum value (dynamic range) of signal can

be predicted and controlled, and we can determine the

minimum wordlength, and avoid the overflow. Further-

more, according to the analysis of Section IV–B-1, the

best choice is to let lower bound and upper bound

of the scaling factor, , equal to each derivatives;

equivalently, .

2) Best Candidate: When multiplying all the parameters

and by one constant , the norm of the rota-

tional vector is scaled by times. However, the rotation

angle remains unchanged. This is due to some different

sets of CORDIC parameters can generate the same angle

but with different norms. To alleviate the impairment of

roundoff noise, we can select one particular parameter

set, which genetates the amplifying scaling factor

under the boundary constraint and with the least roundoff

noise.

V. SIMULATION COMPARISONS AND RESULTS

In this section, we will conduct computer simulations to show

the effectiveness of the proposed schemes. The measurement

of error performance is the averaged SNQR, which is obtained

based on the ensemble average of 512 angles from to

with equal space. The optimal design parameters are ob-

tained by employing exhaustive searching method for all design

cases.

A. SQNR Performance Analysis Among the MSR-CORDIC

Family With

In this simulation, we compare different types of

MSR-CORDIC with . The parameters can

be and (2, 2). We remove sets (0, 4) and (4, 0),

because they can only be used for the scaling operation. The

MSR-CORDIC with the parameters ,

or denotes the normal MSR-CORDIC. The generalized

MSR-CORDIC means that just satisfies as

shown in Fig. 4. As expected, the generalized MSR-CORDIC

has the best error performance at the cost of 4 extra switches

(to be discussed in Section VI-A).

It is interesting to note that the SQNR in Case (b) is better

than Case (a), even though they have the same hardware com-

plexity. To explain this, we use a fixed wordlength as an

example. In case (b), the number is the sum of

and multiplied by a constant. Both two multipliers are ex-

pressed by two SPT terms. On the other hand, in Case (a) the

multipliers of and are expressed by one and three SPT

terms . It may cause more errors when we try

to express one number in wordlength by using insufficient

SPT terms. Especially, the error is more severe in the presen-

tation of less SPT terms. Hence, Case (b) enhances the SQNR

performance than Case (a). From this viewpoint, we should im-

plement the MSR-CORDIC of Case (b) rather than Case (a).

Below is a guideline to determine and in MSR-CORDIC

implementations.

a) Both and are equal to , when is even.

b) , and , when is odd.
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Fig. 5. SQNR comparison between MSR-CORDIC and the EEAS-CORDIC.

Fig. 6. Analysis of SQNR variance among EEAS-CORDIC and the
MSR-CORDIC.

B. Comparison of SQNR Variance

The mean of SQNR is a good index to compare the error

performance, and it indicates the first-order statistical property

of the error distribution. Furthermore, we also investigate the

second-order statistical property, the variance of SQNR, in our

analysis. Fig. 5 shows their SQNR performance, and the vari-

ance is normalized as

(23)

We perform two sets of experiments for EEAS-CORDIC and

MSR-CORDIC, respectively. For the fair comparison, both

sets have the similar SQNR mean values. The simulation result

shows that the error distribution becomes smaller as the mean

of SQNR becomes higher.

Fig. 6 shows that the MSR-CORDIC has better second-order

statistical property than the EEAS-CORDIC in cases (a-b) and

(c-e). Another interesting fast is that a different kind of MSR-

CORDIC has nearly the same variance, as shown in Cases (d)

and (e). That implies that the MSR-CORDIC algorithm is less

sensitive to the kinds of MSR-CORDIC architecture with sim-

ilar SQNR performance.

C. Roundoff Noise Impairment of the Scaling Factor

In the VLSI design flow, one important step is the fixed-point

simulation, which assists the designer to determine the required

wordlength. If the wordlength is overdetermined, we will suffer

from higher cost and slower computational speed. However, we

will degrade the SQNR performance or encounter the overflow

if the wordlength is too short. To avoid both cases, we will check

the scaling factor, and see it relationship between SQNR perfor-

mance and the dynamic range.

In the conventional CORDIC algorithm with eight iterations

of microrotation, the norm is amplified by 1.6468. In both MVR-

CORDIC and EEAS-CORDIC algorithms, the scaling factors

are not fixed, and the norm is changed larger in each iteration.

With the amplification, both the aforementioned CORDIC algo-

rithms will cause roundoff noise more seriously. However, the

scaling factor in the proposed MSR-CORIDC algorithm can

be designed to be either greater or less than 1. According to the

theoretical analysis in Section IV-B-1, is set to .

In Fig. 7, the parameters in Case (a) and (b) are

, and , respectively. As shown in Fig. 7(a)

and (b), the SQNR performance saturates as is close to

1.5. Hence, our proposed algorithm can design to suffer from

the least impairment of roundoff noise.

VI. VLSI ARCHITECTURE OF MSR-CORDIC

In this section, we illustrate the generalized VLSI structure

of the MSR-CORDIC algorithm, and employ the configurable-

data-path scheme to enhance the SQNR performance.

A. Normal MSR-CORDIC Structure

First, we reformulate (10) as

(24)

(25)

In (24) and (25), both and are linear combinations of

their prior and values. All the coefficients

of and are the sum of power of two and can be im-

plemented by shift operations. Therefore, two Barrel Shifter Ar-

rays (BSAs) can be used to perform these shift operations. The
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TABLE II
FOUR TYPES IN MSR-CORDIC WITH N = I + J = 3

Fig. 7. Relationship between SQNR performance and scaling factors of the
upper bound, p , in the generalized MSR-CORDIC. (a) N = 3 and
N = 3. (b) N = 4 and N = 2.

number of output signals from each BSA is . To sum the

output signals, add/subtract operations must be per-

formed. That is, adders/subtractors are necessary

and sufficient to finish the process in one clock cycle.

To show the normal structure of the MSR-CORDIC, we take

. In this example, the sum of and consists

of four different types, as listed in Table II.

A) Scaling Type (Type I): and are the sum of the

shifted version of their each preceding value, and

. The operation is the same as the scaling operation

in the EEAS-CORDIC.

B) Exchange-Scaling Type (Type IV): In this type, and

are the sum of the shifted version of their each pre-

ceding value, and . That is, this type

operation induces a rotation of angle . The operation

in this type is similar to the prerotation scheme in the

EEAS-CORDIC.

C) Normal Type (Other Types): Note that it is impossible to

use only the Scaling Type and/or Exchange-Scaling Type

to implement the rotation circuits. The reason is that they

perform only the scaling operation at fixed rotation angles

and . Hence, we can use only Types II and III

to construct the rotation circuits.

All normal types of the MSR-CORDIC can be used to im-

plement the rotation circuits, and the hardware cost and com-

putational speed are the same. However, they have different

SQNR performances. We have shown how to determine and

with a given number by using the simulations in Sec-

tion V-A. Fig. 8 illustrates the structure of Type II for the normal

MSR-CORDIC. The Control Unit is in charge of controlling

BSAs and adders/subtractors.

B. Universal Architecture of the MSR-CORDIC

The MSR-CORDIC can be seen as a universal vector rota-

tional CORDIC Engine. Take the MVR-CORDIC and EEAS-

CORDIC for example. When and in Type

II of Table II, the MSR-CORDIC is equivalent to the EEAS-

CORDIC. Furthermore, when and , the

MSR-CORDIC is reduced to MVR-CORDIC. Therefore, the

proposed MSR-CORDIC can be considered as a more gener-

alized CORDIC engine.

C. Generalized MSR-CORDIC Structure

In all normal types of MSR-CORDIC structure, the number

of the output signals from two BSAs is the same. Therefore,

the architecture is the same among them, except the data-path

of BSA output signals. If we employ the switches to control

the output signals, can be the sum of -shifted versions of

and -shifted versions of can be the

sum of -shifted versions of and -shifted versions

of ; and satisfies . We call it the

generalized MSR-CORDIC structures [illustrated in Fig. 9(a)].

The Control Unit is in charge of controlling BSAs, switches,

and adders/subtractors. Three extra switches are used to control

the output signal of two BSAs based on the signal from the con-

troller. Fig. 9(b) shows the complete data-paths, which operates

in Type II and Fig. 9(c) shows the operation of switches.
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TABLE III
ROM SIZE FOR EACH ANGLE IN THE MSR-CORDIC STRUCTURE WITH N = 3 AND S = 6. (UNIT = BITS)

Fig. 8. Normal type (Type II, III) MSR-CORDIC iterative structure with I =
2; J = 1.

D. ROM Size of the MSR-CORDIC

When hardware cost is concerned, we may employ the iter-

ative VLSI structure to perform the rotation operation in our

proposed algorithm. From (10), the MSR-CORDIC requires

adders/subtrators and 2 BSAs in each iteration (or

in one MSR-CORDIC module). The control signals, including

, and the switch control signals, need

to be calculated in advance and stored in the ROM. In the normal

MSR-CORDIC structure, the data-path is fixed, so the switch

control signal is not required, which leads to a smaller ROM

size. Taking the aforementioned MSR-CORDIC with

and for example; the bits to store each parameter,

are 2 and 3, respectively. One bit is needed for the switch control

signal in the generalized type, but it is not necessary in any

normal type. For each iteration, the ROM size for the generalized

and normal type are and

bits, respectively. We summarize the ROM size in Table III.

E. Unfolded Architecture of the MSR-CORDIC for High-Speed

Applications

For high-speed rotational operations, we can unfold the iter-

ative implementation of Fig. 9 to obtain the unfolded parallel

structure as depicted in Fig. 10. It is composed of an -cas-

caded basic MSR-CORDIC rotator. Each rotator performs one

microrotation-scaling as defined in (10). The MSR-CORDIC ar-

chitecture is very regular and modular. It is very VLSI-friendly,

and can be easily implemented in pipeline and parallel. For the

requirement of a very high computational speed, each rotation

operation can employ one copy of the MSR-CORDIC rotation

circuit to accelerate the computing speed. For example, in a

Fig. 9. (a) Generalized MSR-CORDIC iterative structure with N = 3. (b)
Data-Path of BSA output signals in case II. (c) Operation of the 2� 2 switching
box.

CORDIC-based orthogonal IIR digital lattice filters design [24],

the rotational angles can be designed by the method of filter de-

sign to satisfy the required specification. Then, we can appro-

priately apply each MSR-CORDIC rotator to perform an angle

in the designed lattice filter. Moreover, due to the fixed rota-

tion angles, the BASs, switches, Control Unit, and ROM can be

eliminated. Therefore, we only need few adders/subtractors to

implement this filter.

F. Application of the MSR-CORDIC to 16-Point

FFT Twiddle Factor Design

In [29], we have demonstrated the use of MSR-CORDIC in

performing twiddle factor operations of FFT processors. To see

thedetailsof theMSR-CORDIC,welist theparametersof twiddle

factor angles of a 16-point FFT in Table IV. The parameters of the

generalized MSR-CORDIC is , and .
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TABLE IV
PARAMETERS OF TWIDDLE FACTOR ANGLES OF THE GENERALIZED MSR-CORDIC WITH I + J = 3; N = 3, AND S = 16 FOR THE TWIDDLE

FACTOR OPERATIONS OF A 16 POINT-FFT

TABLE V
COMPARISON OF EXISTING ALGORITHMS PERFORMING VECTOR ROTATION IN 2-D PLANE, WHERE WORDLENGTH (W ) IS 16

Fig. 10. Unfolded parallel VLSI structure of the MSR-CORDIC algorithm.

Note that Table IV only lists the part of . We can easily obtain

from (10). Table IV shows that the iteration number of the

MSR-CORDIC algorithm can be reduced to 3. As a result, we

can significantly reduce the long latency as compared with the

conventional CORDIC algorithms.

G. Hardware Comparison With Existing CORDIC Algorithms

In this section, we compare the MSR-CORDIC with existing

rotational algorithms [5], [18], [26], [27], which perform the

vector rotations in 2-D Plan. In Table V, we provide a commonly

used comparison index , which is a product of estimated

area and operation time . In this table, FA denotes the

Full Adder, denotes the delay introduced by a single full

adder, and denotes the delay of Carry Select Adder (CSA).

To give a fair comparison, we employ the Carry-Save Adder

(CSA) scheme in all CORDIC architectures, and perform vector

merge with carry select adder at the last stage. As can be seen

in Table V, the proposed MSR-CORDIC algorithm requires the

smallest among all the rotational algorithms.

In summary, Direct Implementation, Booth-Encoded Mul-

tiplier, EEAS-CORDIC, Angle Recoding [18], CORDIC algo-

rithm [25], and MSR-CORDIC are employed to applications

such as FFT, DCT, and lattice filters, where the rotational angles

are known in advance. All these rotational circuits except Angle

Recoding [18] use the same hardware module to process all

rotational angles. In Angle Recoding [18], the required iteration

number of each angle is different. This makes it is necessary to

implement in the worse case for parallel implementations. On

the contrary, the conventional CORDIC and radix-4 CORDIC

algorithm [26], [27] can be applied to applications, which re-

quire vector rotational mode or angle accumulation mode. In

addition, radix-4 requires extra hardware to process in the angle

accumulation mode. Another advantage of the MSR-CORDIC

is the very low hardware complexity. The vector rotation can

be accomplished with only 20 adders/subtractors of 16-bit
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wordlength. Meanwhile, the SQNR performance in an average

sense is 90.0 dB. Compared with the AR technique [18] and

EEAS approach [5], only 44.6% and 72.4%, respectively, of

the hardware complexity are required. The saving in hardware

complexity is significant.

VII. CONCLUSION

In this paper, we proposed the novel MSR-CORDIC algo-

rithm, which enhance SQNR performance of both first- and

second-order statistical properties. In practical implemen-

tations, the proposed MSR-CORDIC can be appropriately

applied to various DSP systems, which require high compu-

tational speed and the angles are known in advance. We also

propose a generalized MSR-CORDIC structure to tradeoff

hardware cost and SQNR performance.
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