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Abstract

Strand space analysis [13, 12] is a method for stating
and proving correctness properties for cryptographic proto-
cols. In this paper we apply the same method to the related
problem of mixed protocols, and show that a protocol can
remain correct even when used in combination with a range
of other protocols.

We illustrate the method with the familiar Otway-
Rees [10, 1] protocol. We identify a simple and easily ver-
ified characteristic of protocols, and show that the Otway-
Rees protocol remains correct even when used in combina-
tion with other protocols that have this characteristic.

We also illustrate this method on the Neuman-
Stubblebine protocol [9]. This protocol has two parts, an
authentication protocol (I) in which a key distribution cen-
ter creates and distributes a Kerberos-like key, and a re-
authentication protocol (II) in which a client resubmits a
ticket containing that key. The re-authentication protocol II
is known to be flawed [2]. We show that in the presence
of protocol II, there are also attacks against protocol I. We
then define a variant of protocol II, and prove an authenti-
cation property of I that holds even in combination with the
modified II.

1 Introduction

In [13, 12, 14], we proposed a general model for encryp-
tion protocols and used this model to study specific proto-
cols. In those instances, we assumed that the protocols were
being run in a “pure” environment: one in which the proto-
col is used in isolation. In such an environment, all activity
would either be penetrator activity or the activity of a legit-
imate participant of that protocol.

In practice, however, no environment is “pure.” Many
different protocols may be in use at the same time, by the
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same parties, using the same communication channels. As
noted in [5], there are at least three reasons that different
protocols might use the same secret information:

� Certification is costly, so users will want to use as few
certified keys as possible;

� Widespread use of cryptographic APIs will lead to
multiple uses of key formats, and perhaps the keys
themselves; and

� Smart cards have limited capacities, so cards that are
used for multiple protocols might use the same key ma-
terial for more than one protocol.

Re-use of key material is also a consideration in proto-
cols with multiple parts, such as the Kerberos [6] and the
Neuman-Stubblebine [9] protocols. One sub-protocol may
be used to retrieve a ticket from a key distribution center,
while a second sub-protocol is used to re-present that same
ticket to a security-aware server. In such as case, the same
secret key is used in two different ways.

In this paper we study the case of mixed protocols, where
principals use secret material in more than one protocol. In
such cases the two protocols can potentially interact, form-
ing vulerabilities not present in either protocol alone. We
apply the strand space model to such cases, and show that
the same concepts and techniques as used to analyze the
pure environment still apply in that of the mixed.

There have been previous attempts to reason rigorously
about protocol interactions. For instance, Meadows [8]
studies the Internet Key Exchange protocol, emphasizing
the potential interactions among its specific sub-protocols.
Gong and Syverson [3] define a (fairly restrictive) class of
protocols such that any members of this class may be freely
mixed without security failures.

However, our approach is somewhat different. We study
a given protocol, which we refer to as the primary protocol,
and identify some loosely syntactic conditions. We then
show that any secondary protocol that meets these syntactic
conditions may then freely mix with the primary protocol



without undermining its secrecy and authentication proper-
ties. As we shall see, this sort of result is quite natural given
the strand space proof methods. These results fall out from
a careful examination of the proofs that the primary proto-
col meets its security goals in isolation.

In the remainder of this paper, we start (Section 2) by
providing a resumé of the strand space theory. We then ex-
pand the theory to accomodate the case of mixed protocols
(Section 3). We then (Section 4) revisit to a familiar exam-
ple, the Otway-Rees protocol, which we first studied in [12].
We reproduce some results from [12] in the new context of
a mixed environment, and obtain a general contraint which
must be met by the other protocols in the environment for
Otway-Rees to maintain its correctness properties.

In Section 5, we turn to the Neuman-Stubblebine proto-
col [9], intended as an example of a protocol with multiple
parts. The first part of the Neuman-Stubblebine protocol,
called the authentication part, distributes a secret key and
a Keberos-like ticket to a client. In the second part of the
protocol, called the re-authentication part, the client uses
that key and ticket to authenticate itself to a security-aware
server.

We perform the same analysis as in Section 4 on the au-
thentication part of the Neuman-Stubblebine protocol, and
again obtain a general constraint on other protocols in the
environment. We show that the re-authentication does not
meet this constraint, and demonstrate one vulnerability that
results. We then modify the re-authentication part and show
that it meets the general constraint, and so maintains the
security of the authentication part.

We end with a brief discussion (Section 6).

2 Strand Spaces

The following is a brief overview of the strand space
model as developed in [13], [12], and [14]. Although some
theorems and concepts from those two papers are repro-
duced here, the proofs and proof techniques are not. The
reader is referred to those two documents for a more com-
plete and formal exposition. Those already familiar with the
strand space method may safely skip this section.

In brief, we introduce a structure called a strand, which
represents both the abilities of the penetrator and the local
experience of a legitimate principal. We then define a struc-
ture on strands, called a bundle, combines these local views
to form a global view. We then define the penetrator, and
show that the abilities of the penetrator obey strict bounds.
We end with a few words on how these bounds can be used
to prove correctness conditions.

More formally:

Definition 2.1 Let
�

be the set of messages that can be sent
between principals. We will call elements of

�
terms.

A strand is a sequence of message transmissions and re-
ceptions, where transmission of a term � is represented as� � and reception of term � is represented as ��� . We will
often write a strand as �����
	���������������������
� .

A node is any is any particular transmission or reception
on a particular strand. We often write ��������� for the first
node on a strand � , ��������� for the second, and so on.

In the case of a legitimate participant, the strand repre-
sents those messages that the participant would send or re-
ceive as part of one particular run of the protocol. In the case
of the penetrator, the strands represent atomic deductions
from which more complex actions can be formed. Note that
principals are represented only what they say and hear; the
penetrator, however, can “say” anything that it can deduce.

Because strands are ordered sequences of message trans-
missions or receptions, it is meaningful to speak of when
something is first said:

Definition 2.2 Let � be a set of terms. Then a node  is an
entry point to � if

1. the sign of  is positive (i.e. a message transmission),

2. the term of  is in � , and

3. the term of no previous node on the strand is in � .

In other words, entry points are those nodes where the
strand “enters” the set, i.e. transmits something in the set
without having previously transmitted or receiving anything
in the set. Entry points are useful for discussing the origins
of messages.

We use a similar concept to discuss the first time a partic-
ular value is sent out as part of a larger message. To do so,
assume that the subterm relation is defined on

�
: !"	�#$!%� if

! 	 is a subterm of ! � .

Definition 2.3 A term originates on a node  iff  is an
entry point to the set �'&)(�!+*-,.!/#0!%*21 .

We impose upon strands a graph structure with two types
of edges: 3 and 4 . The first arrow represents immediate
precedence on a strand:

Definition 2.4 If  65 and  75986	 are consecutive nodes on an
strand, we write  :5:3; 75986	 .

The other edge represents inter-strand communication by
transmission of terms. When one strands transmits a term,
we allow another strand to receive that same term:

Definition 2.5 If a node  	 & � � and node  � &)��� , then
we write  	 4< � .



� � � ��� ���

����� � �
� �

� ���
� �

��	
� �
� � 	

� �

��

�

��������
� � 

� �

��
�

���������������������
� � �

� �

��
� �

Figure 1. A Bundle

A strand space, which is any collection of strands, can
be thought of as an ordered graph on the nodes of those
strands(� ) formed by the edges 4 and 3 . A bundle is a
meaningful finite subgraph of ��� ����4�� 3�� � . By “mean-
ingful,” we mean that it respects the laws of causality:

� Time flows in only one direction (the arrows of the
bundle contain no loops), and

� Causal precedence is preserved. In other words, if an
event occurs, then all other events necessary for that
occurrence have also occurred. (Bundles are closed
backward along arrows).

Definition 2.6 Let ������4�� 3�� be a set of edges, and let
��� be the set of nodes incident with any edge in � . � is a
bundle if:

1. � is finite.

2. If  ��� � � and term �  � � is negative, then there is a
unique  	�� � such that  	 4; � .

3. If  ��� ��� and  	 3; � then  	 3; ��� � .

4. � is acyclic.

(For simplicy, we will often speak of a node being in �
when it is in �!� .) Figure 1 illustrates an example bundle.

The concept of a bundle is an important one: all possi-
ble runs of a protocol can be represented as bundles, and
almost all correctness properties can be stated as properties
of bundles.

Bundles also have a very useful property:

Lemma 2.7 Let � be a set of edges, and let " � be the tran-
sitive, reflexive closure of � . If � is a bundle then " � is a
partial order, i.e. a reflexive, transitive, antisymmetric re-
lation. Then every non-empty set of the nodes of � have
"#� -minimal elements.

This is also important to our model. Almost all of our
reasoning will use the concept of "� -minimal elements:
both entry points and origination points are " � -minimal el-
ements for sets of certain forms. Before we progress further,
however, we add more structure to

�
and develop our model

of the penetrator.
The set of terms

�
is assumed to be freely generated from

two sets:

�%$'& �
, which contains texts (the atomic messages),

and

�)(*& �
, which contains keys (and is disjoint from $ ),

By two operations:

�,+.-0/01 , (*2 � 4 �
, which represents encryption, and

�4365879- , � 2 � 4 �
, which represents concatenation of

terms.

We also define injective unary operator inv , ( 4 ( , which
maps each member of a public/private key pair to the other,
and a symmetric key to itself. We will follow custom and
write inv �;:<� as :,= 	 , +.-0/01 �>: �@?�� as (A? 1CB , and 365D79- �2� � � �
as � � . If E is a set of keys, EF= 	 denotes the set of inverses
of elements of E .

The freeness assumption is stronger than strictly neces-
sary; we assume it here to simply exposition. In [12] we
develop the model with weaker freeness assumptions, al-
lowing such relations as associativity of 3G5D79- .

We define the subterm relationship # so that for : � ( ,
: # ( � 1 B only if : # �

already. Defining the sub-
term relationship in this way reflects an assumption about
the penetrator’s capabilities: that keys can be obtained from
ciphertext only if they are embedded in the text that was en-
crypted. This might not always be the case—if, for instance,
a dictionary attack is possible—but it is the assumption we
will make here.

The powers that are available to the penetrator are char-
acterized by two ingredients: a set of keys known initially
to the penetrator, and a set of penetrator strands that allow
the penetrator to generate new messages.

A penetrator set consists of a set of keys (IH which con-
tains the keys initially known to the penetrator. Typically
it would contain: all public keys; all private keys held by
the penetrator or his accomplices; and all symmetric keys
:KJML �N:�LOJ initially shared between the penetrator and prin-
cipals playing by the protocol rules. It may also contain
“lost keys” that became known to the penetrator previously.

The atomic actions available to the penetrator are en-
coded in a set of penetrator strands. They summarize his
ability to discard messages, generate well known messages,
piece messages together, and apply cryptographic opera-
tions using keys that become available to him. A protocol



attack typically requires several of these atomic actions to
be used in combination.

Definition 2.8 A penetrator strand is one of the following:

M. Text message: � � ! � where ! � $

F. Flushing: �%� � �
T. Tee: �%� � � �� � �� �
C. Concatenation: �%� � �-� � � �� � �
S. Separation into components: �%� � � � �� � � � �
K. Key: � � : � where : � ( H .
E. Encryption: � ��: �-� � � � ( � 1CB � .
D. Decryption: � ��:,= 	 �7� ( � 1AB � � � � .
Strands that are not penetrator strands are regular strands.

(This set of penetrator strands gives the penetrator powers
similar to those in other approaches, e.g. [7, 11].) By explic-
itly listing the abilities of the penetrator, we gain an impor-
tant ability ourselves. Because the actions available to the
penetrator are independent of any particular protocol, we
can prove bounds on the penetrator that are also protocol-
independent. In particular, we often show that a set of terms
is honest:

Definition 2.9 A set � &�� is honest relative to a bundle �
if and only if whenever a penetrator node � is an entry point
for � , � is an M node or a K node.

In other words, a set is honest if elements of that set can-
not be synthesized by the penetrator. They can be guessed—
by way of a lucky M node or K node—but the penetrator
cannot deduce them via a sequence of decryptions, encryp-
tions, concatenations, or separations.

In applications, honest sets are usually taken to be sets
of a particular form, called ideals:

Definition 2.10 If E & ( , a E -ideal of
�

is any set � � �
such that for all

� � � ,
� � � and : � E

1.
� � � � � � � .

2. ( � 1 B � � .

The smallest E -ideal containing
�

is denoted ����� �	� . If 
 &�
, ����� 
 � is the smallest E -ideal containing 
 .

Our main theorem interrelates the structure of ideals with
the property of honesty:

Theorem 2.11 Suppose � is a bundle over
�

; 
 & $ � ( ;
E &�( ; and (*& 
4��E = 	 . Then ����� 
 � is honest.

Intuitively, the set 
 usually contains some number of
secrets. The set E usually contains keys which should be
considered insecure. Hence, the ideal � � � 
 � would represent
all terms where a secret occurs in a vulnerable position, i.e.
encrypted only with insecure keys. In this case, the theorem
states that under certain weak conditions the penetrator will
be unable to synthesize elements of the ideal. Hence, if le-
gitimate principals never utter an element of the ideal, then
the penetrator is unable to synthesize them:

Corollary 2.12 Suppose � is a bundle, ( &�
��,E = 	 and

� ( H &�� . If no regular node  � � is an entry point for
� � � 
 � , then no node in � is in � � � 
 � .

Contrapositively, if the penetrator can deduce an ele-
ment of the ideal, then some legitimate principal must have
slipped and let an element loose:

Corollary 2.13 Suppose � is a bundle, ( &�
��,E = 	 and

� ( H &�� . If there exists a node ? � � such that ? is in
� � � 
 � , then there exists a regular node  � � such that  is
an entry point for � � � 
 � .

(Note that these are facts about honest sets in general
applied to ideals in particular.)

Suppose a key can be proven secret by the above theo-
rem. Then the penetrator is also unable to create any terms
that are encrypted with that key:

Theorem 2.14 Suppose � is a bundle; ( &�
 � E = 	 ; 
�( H &�� ; and no regular node � � is an entry point for
� � � 
 � . Then any term of the form ( � 10B for : � 
 does not
originate on a penetrator strand.

These bounds are usually used in the following way:
Suppose that one wishes to prove a correctness condition
about a protocol. First, one forms a bundle that reflects the
assumptions of the condition in question. Then the pene-
trator bounds can be used to prove that some other prop-
erty about the bundle—the conclusion of the correctness
condition—must follow.

For example, authentication conditions usually state that
if a principal engages in one side of a protocol, then some
other principal must have engaged in the other side of the
protocol. In our model, local views of a protocol run are
represented by regular strands, and global views of a pro-
tocol run are represented by bundles. The authentication
condition then states that if a bundle contains one particular
regular strand, then it must contain another regular strand of
a certain form.

Secrecy conditions are more subtle. Because the pene-
trator is able to say anything that it can deduce, secrecy of
a term is shown by proving that it is “unsayable.” In partic-
ular, it is shown that no regular strand contains entry points
to an honest set that contains the secret. Because the set is



honest, no penetrator strand can contain an entry point ei-
ther. Hence, no strand in the bundle is an entry point to the
honest set, and therefore no node is in the set at all. Hence,
the set—and in particular, the secret—cannot be said.

3 Multi-Protocol Strand Spaces

We use exactly the same notion of strand space [13, 12,
14]. In the case of mixed protocol environments, however,
the regular strands may be those of more than one proto-
col. We identify one particular protocol for analysis and
distinguish the strands of that protocol from all other regu-
lar strands:

Definition 3.1 A mixed strand space is a strand space in
which a subset of the regular strands is distinguished. We
refer to elements in this set as primary strands. The regular
strands which are not primary strands are called secondary
strands. A node is a primary or a secondary node iff it is on
a primary or a secondary strand.

The intended interpretation of secondary strands is that they
correspond to runs of other protocols.

When a strand space mixes protocols, it is typically cru-
cial to correctness to ensure that no secondary strand origi-
nates values of some particular form.

Definition 3.2 A set � & �
is unserved in a strand space

�
if no entry point for � is on a secondary strand in

�
.

A set � & �
is strongly unserved in a strand space

�
if, for every ! � � , ! does not originate on any secondary
strand in

�
.

In other words, if a set is unserved, then no “original”
instances of a set will occur on secondary strands. They
may hear one element of the unserved set and then speak
another element, but they may not utter any element of the
set without hearing an element first.

The strongly unserved condition is the same in form as
the unserved condition, but is strengthened from the set
level to the term level. Whereas secondary strands can only
speak an element of an unserved set after hearing any other
element, they can speak a value in a strongly unserved set—
even as a subterm of a larger message—only after receiv-
ing that same exact value as a component of some previous
message.

4 Mixing Otway-Rees

In this section, we review the Otway-Rees Protocol de-
scribed and analyzed in [12], of which a normal run is sum-
marized in Figure 2. As in [12], assume the following:

� A set $ name
& $ of names.

� � 
� � 	 � �

��
�� � � � �

��
��
�

��� ��
��

��

����������������
�

��� ��
��

� 	 & � ��� (��
	 � ��� 1 B���
� � & � ��� (�� 	 � ��� 1AB ��� (���� � ��� 1AB�� �
� � & � (�� 	 :���� 1CB ��� (����8:���� 1AB�� �
� � & � (���	 : ��� 1 B���

Figure 2. Message Exchange in Otway-Rees

� A mapping :<, $ name 4 ( . This is intended to denote
the mapping which associates to each principal the key
it shares with the server. In the literature on this pro-
tocol this mapping is usually written using subscripts
:%� � � &):���� .

We assume the mapping ���4 : ��� is injective. We
also assume : ��� & : = 	��� , i.e. that the protocol is
using symmetric cryptography.

Let � be the set of long-term keys, i.e. the range of : .

We will adopt some conventions on variables for the re-
mainder of this section:

� Variables � � � � ���"! range over $ name;

� Variables : �N: * range over ( ;

� Variables � � � (or the same letters decorated with
subscripts) range over $�# $

name, i.e. those texts that
are not names.

Other letters such as $ and % range over all of
�

. We
would emphasize that �&	 is just a variable, having no reli-
able connection to � , whereas :'��� is the result of applying
the function : to the argument � . Thus, the latter reliably
refers to the long-term key shared between � and 
 .

4.1 Otway-Rees Formalized

The primary strands for an Otway-Rees strand space may
be read off Figure 2. There are only two fine points. First,
we assume that the respondent never picks a nonce ��� that
happens to be the same as the initiator’s nonce �(	 . The re-
spondent cannot enforce this directly, because �(	 occurs



encrypted with the initiator’s long term key; instead, we
assume that a probabilistic mechanism enforces it (cf. [12,
Section 5]). Second, we assume that the server always se-
lects a session key with three properties: it is a symmetric
key; it is unknown to the penetrator; and it is different from
any long-term key. The server presumably relies on proba-
bilistic mechanisms to ensure that the last two of these con-
ditions are met.

Definition 4.1 Let
�

be a strand space.

1. Init � � � � � � � � �N: � is the set of strands � � �
whose

trace is

� � � ��� (�� � ��� 1 B��� � � � (�� :�1 B��� �
�

init is the union of the range of Init.

2. Resp � � � � � � � � � : � % � % * � is defined when � �# % ;
its value then is the set of strands in

�
whose trace is

� � � ��� % �
� � ��� % (�� � ��� 1 B � � �
� � % * (�� :�1 B � � �
� � % * �

�
resp is the union of the range of Resp.

3. Serv � � � � � � 	 � �
� � � �N: � is defined if : �� (�� , : ��
(A:���� , � � $ name 1 and : & :,= 	 ; its value then is
the set of strands in

�
whose trace is:

�-� � ��� (�� 	 � ��� 1CB ��� (���� � ��� 1AB� � �
� � (���	 : 1 B�� � (�� � : 1 B � � �

�
serv is the union of the range of Serv.

Note that the sets
�

serv � � init �
�

resp are pairwise disjoint
(cf [12], Lemma 5.2).

For the rest of this example, we will assume that the pri-
mary strands are the elements of

�
serv � �

init � �
resp and

that the secondary strands are strands of other, unspecified
protocols.

Definition 4.2 Let ��� & � .

�%$ 7 / E +�� �"���C� & the set of all terms of the form (���: * 1CB
for � � $�# $

name, : * � ( , and : � ��� .
�	� +�
�A+���� � � � � & the set of all terms of the form
(�� � ��� 1 B for � � � � $ # $

name, � � � � $ name,
and : � � � .

� � �"���A� & � � � ��� � , where E & � ( # ���A� .
An Otway-Rees strand space

�
respects a set � of princi-

pals if, letting � � & :%��� � be the image of � under the “key
of” mapping : :

1. � �  ( � &�� ;
2. � �"���A� is unserved in

�
;

3. $ 7 / E +�� �"���0� and � +�
��C+���� � ���C� are strongly unserved in�
.

Otway-Rees remains correct in a mixed protocol envi-
ronment

�
, for a collection of users � , if

�
respects � . In

this paper we will concentrate on a single aspect of the cor-
rectness of Otway-Rees, namely the authentication guaran-
tee that Otway-Rees provides to its initiator. However, the
secrecy property of Otway-Rees [12, Section 6] and the au-
thentication guarantees it offers to the other participants [12,
Section 7.2] may be modified in an equally straightforward
way using the same assumptions on

�
.

4.2 Mixed Otway-Rees: Authentication

In this subsection we will prove the authentication guar-
antee that Otway-Rees provides to its initiator. The proofs
are minor modifications of the proofs given in [12].

4.2.1 Preliminaries

We first need a pair of small lemmas. The first is specific
to the case of mixed protocols; the second matches a result
given in [12].

Proposition 4.3 Consider a bundle � in
�

. Suppose � � &
� is such that � �  : � & � and � �"� � � is unserved in

�
.

Then no term of the form ( � 1 B for : � � � can originate
on a penetrator node in � .

PROOF. To apply Corollary 2.14, with 
 & ��� and E & (�#
��� , we must check that no regular node  is an entry point
for � � � 
 � & � �"���A� . By hypothesis,  cannot be a secondary
node.  is thus a primary node. However, if  is primary,
no long-term key can occur as a subterm of term �  � , unless
it occurs within the % -term of a responder strand. But in
this case  is not an entry point for � �"� � � . �

We also need a case analysis for the locations at which a
term in $ 7 / E +�� � � � � or � +�
�A+���� � � � � can originate, assuming
that they are originating on a primary strand. The proof
matches that of [12, Proposition 7.2 and Corollary 7.3].

Proposition 4.4 Let � be a primary strand of
�

.

1. Suppose ! & (���: 1 B���� originates on
� . Then ! and : originate on �������� , and
either � � Serv � � �"! � � � � *2� � �N: � or
� � Serv � ! � � � � * � � � � � : � for some � � � � � * � � .

2. Suppose ! & (�� � ��� 1CB � � originates on � , and
with � �& � . Then ! and � originate on ������� � , and
� � Init � � � � � � � � �N: � for some : .



3. Suppose ! & (�� � ��� 1 B � � originates on � , with� �& � . Then ! and � originate on ��������� , and � �
Resp � � � � � � � � � : � % � % * � , for some : , % , and % * .

4.2.2 Initiator’s Guarantee

The following theorem asserts that if a bundle contains a
strand � � �

init, then under the expected assumptions, there
are primary strands � resp � �

resp and � serv � �
serv which

agree on the initiator, responder, and
�

values.

Theorem 4.5 Suppose
�

respects � and � � � � � . Sup-
pose � is a bundle in

�
; � �& � ; and � 	 is uniquely origi-

nating in � .
If � � Init � � � � � � 	 � � �N: � has � -height 2, then for

some � � � $ there are primary strands:

� � serv � Serv � � � � � �
	 � � � � � �N: � of � -height 2;

� � resp � Resp � � � � � � � � � �N: � % � % * � of � -height at
least 2, for some : , % , and % * .

PROOF. The proof of this is similar to the proof of the initia-
tor’s guarantee for the unmixed Otway-Rees protocol. The
novelty in this case is that we need to establish that a certain
term originates on a primary node, whereas in the unmixed
case it was sufficient to prove the term originated on a reg-
ular node. We will prove this by a sequence of steps. For
the remainder of this section, fix

�
, � , � and � such that the

assumptions hold. In particular, by the last assumption of
the theorem,

� � � ��� (���	 � ��� 1 B� � �
� � (��
	 :�1 B��� �

is the � -trace of a strand � .

Step 1 There is an � serv � �
serv with � -height 2; � serv is

either of the form Serv � � �"! � � 	 � ����� � 	��N: � or of the form
Serv � ! � � � � � � �
	�� � 	 �N: � .
PROOF. We will apply Proposition 4.3 with ��� &
:%� ��� , using Definition 4.2, Clauses 1 and 2; it follows
(�� 	 : 1CB ��� does not originate on a penetrator node in � .
Because (��
	 : 1 B�� �%� $ 7 / E +�� � � � � and

�
respects � , by

Definition 4.2, Clause 3, it must originate on a primary
strand; the node at which it originates is in � . By Proposi-
tion 4.4 Clause 1, this node is ��� serv ����� where � serv satisfies
one of the conditions:

1. � serv � Serv � � �"! � � 	 � ����� � 	 �N: � , or

2. � serv � Serv � ! � � � �
� � � 	 � � 	 �N: � . �
Fix � serv � �

serv, ! , and
� 	 satisfying the conditions

given in Step 1.

Step 2 � serv � Serv � � �"! � �
	�� � � � � 	 �N: � .

PROOF. Suppose—in order to derive a contradiction—that
� serv � Serv � ! � � � � � � ��	 � � 	 � : � holds instead. Then
(��
	 � 	 ! � 1 B��� is a subterm of term � ��� serv ��� �N� .

By Proposition 4.3 with � � & :%� ��� again, using Def-
inition 4.2, Clauses 1 and 2, (��&	 � 	 � !�1 B��� originates
on a regular strand � 	 .

Using Clause 3 (��
	 � 	 ! � 1 B��� originates on a pri-
mary strand � 	 , and by Proposition 4.4, �(	 originates on
the same strand � 	 .

But ��	 also originates on the strand we began with, � �
Init � � � � � ��	 � � �N: � . Because �
	 originates uniquely, � &
� 	 . Hence by Proposition 4.4, ! & � & � , contradicting
an assumption. �

Step 3 ! & � and
� 	 & �

.

PROOF. Since � serv � Serv � � �"! � � 	 � �
� � � 	 �N: � ,
(��
	 � 	 � ! 1 B�� � # term � ��� serv �����@� . By Proposition 4.3
with � � & :�� � � again, using Definition 4.2, Clause 1,
(��
	 � 	 � ! 1 B�� � originates on a regular strand � 	 . Us-
ing Definition 4.2, Clause 3, � 	 is a primary strand. By
Proposition 4.4, �&	 originates on the same strand � 	 .

But ��	 also originates on � . Because �&	 originates
uniquely, �)& � 	 . Thus

� 	 & �
and ! & � , and

� serv � Serv � � � � � �
	 � � � � � �N: � . �

Step 4 For some : , % , and % * , there is a strand � resp �
Resp � � � � � � � � � �N: � % � % * � of � -height at least 2.

PROOF. We again use Proposition 4.3 and Definition 4.2,
Clause 3 to infer that (��&� � ��� 1AB� � originates on a pri-
mary node in � . By Proposition 4.4, this node is the second
on a strand � resp � Resp � � � � � � � � � �N: � % � % * � for some
: , % , and % * . Since ��� resp ���� � � , it follows � resp has
� -height at least 2. �

5 Neuman-Stubblebine

An important kind of multiple-protocol environment are
single protocols that contain multiple parts. Examples
of such protocols—such as Kerberos [6], for example—
are currently in widespread use. In this paper, we will
demonstrate the analysis of such protocols on the Neuman-
Stubblebine protocol [9].

The general structural elements needed to describe the
protocol are very similar to those of Otway-Rees. In partic-
ular, we assume given an injective mapping : , $ name 4( which associates to each name a symmetric long term key
shared with a central server, and the set � of all long term
keys defined to be the range of : . For : � � , :%= 	 &): .
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Figure 3. Message Exchange in Neuman-
Stubblebine

5.1 The Neuman-Stubblebine Protocol, Part I

The Neuman-Stubblebine protocol starts with an initial
authentication protocol, summarized in Figure 3.

In this protocol, : is a unique key generated by the Key
Distribution Center 
 , and ! � is an expiration time for the
ticket ( � : ! �"1CB� � . (We do not consider the issues of time
and timestamps in our analysis.)

First, we define the primary strands to correspond to the
three roles of the protocol:

Definition 5.1 Let
�

be a strand space.

1. Init � � � � � �
	 � � � � ! � �N: � % � is the set of strands � � �
of the form:

� � � �
	 �
�0( � ��	 :)! � 1 B��� % � � �
� % (����1CB �

�
init is the union of the range of Init.

2. Resp � � � � � � 	 � ����� !"���N: � is the set of strands in
�

of
the form:

�7� � � 	 �
� � ( � � 	 !"� 1AB� � �����
� ( � : ! � 1 B � � (�� � 1 B �

�
resp is the union of the range of Resp.

3. Serv � � � � � �
	 � � � �+! � � : � is defined if : �� ( � � �
and : &):,= 	 ; its value then is the set of strands in

�
of the form:

�-� � ( � �
	7! � 1 B � � � � �
� ( � ��	 : ! � 1 B��� ( � : ! � 1 B � � � � �

�
serv is the union of the range of Serv.

A NS space is a strand space in which the primary strands
are those in

�
init,

�
resp, or

�
serv.

We will not show that this protocol is correct in all re-
spects. We use the Neuman-Stubblebine protocol as an il-
lustrative example only, and so will instead focus on just
one property: the authentication of initiator to responder.

The security of the Neuman-Stubblebine authentication
protocol depends upon three types of terms:

1. Tickets, which are terms of the form ( � : ! ��1AB� � .
Tickets are how the secret key is distributed to the re-
sponder.

2. Distributions, or terms of the form ( � ��	 : ! � 1 B� � .
The secret key is distributed to the initiator in terms of
this form.

3. Confirmations, or terms of the form (�� � 1 B . The ini-
tiator finishes the protocol by sending a confirmation
to the responder.

We focus on the tickets, distributions, and confirmations
built using actual long term keys and session keys; since we
do not in general know what values these are, they appear
in the definition as the parameters � � and

� � . As we use this
definition, E � & � � � � � .

Definition 5.2 Let E � � ( , � � � � and
� � � ('# � :

1. $ 7 / E +�� �"� � � & the set of all terms of the form
( ! : ! L 1 B�� for ! � $ name, : * � � � , : � ( , and
! L � $�# $

name.

2. � 7 ���O1>7������ + �"����� � �A� & the set of all terms of the form
( ! ��: ! L 1CB�� for ! � $ name, � � ! L � $ #�$

name,
: * � ��� , and : � � � .

3. � 5 -�� 1
	 � � � ��& the set of all terms of the form (�� 1 B
for � � $�# $

name, and : � � � .

4. � � E � � & �����9E � � , where E & � ( # E � �"�
5.

� ( � � � & the set of : such that in
�

� � � � � � � Serv � � � � � � � � � � �N: � �&��



Clauses 1 though 3 formalize the terms of interest. Clause 4
is simply a notational convenience. Clause 5, on the other
hand, allows us to define a particular set of keys. If we wish
to prove a correctness condition about some arbitrary set �
of principals, we not only need to consider their long term
keys but also the secret keys

� ( � ��� distributed to any two
principals in � , as defined in clause 5.

Definition 5.3 An NS strand space
�

respects a set of prin-
cipals � , if, letting � � & :�� � � and

� � & � ( ��� � :
1. � ��� � � �0�  ( � &�� ;
2. � �"��� � � �C� is unserved in

�
;

3. $ 7 / E +�� �"� � �<� � 7 ���O1>7�� ��� + �"� � � � � �<� � 5 - � 1 	 � � � � is
strongly unserved in

�
.

Intuitively, a strand space respects a set of principals if
it does not interfere with the way the Neuman-Stubblebine
protocol uses long term keys, session keys, tickets, distri-
butions and confirmations among members of that set. The
long term keys and session keys for those principals must be
uncompromised (Clause 1). Secondary strands cannot place
any of the above keys in vulnerable positions (Clause 2).
Lastly, the tickets, distributions, and confirmations relevant
to the principals of interest cannot come from secondary
strands (Clause 3). We do not prohibit secondary strands
from making terms of those three forms, only from making
term of those forms with values that might interfere with
those of these principals. For instance, terms of the same
forms could safely be constructed using a disjoint set of
long term keys.

Before we examine the authentication property of inter-
est, we apply Theorems 2.12 and 2.14 to show two prelim-
inary lemmas: secrecy of keys, and non-synthesis of en-
crypted terms.

Fix a set of principals � , a NS space
�

, and a bundle � .
Let � � & :�� � � and

� � & � ( � � � .
Lemma 5.4 Suppose � � � � � ,

�
respects � , and : is

uniquely originating. Let � serv � Serv � � � � � � � � � � �N: � be
in � . For every node ? � � , ? �� � �%(A: �N: ��� �N: � � 10� .
PROOF. Let E � & (C: � : ��� � : � � 1 . By Corollary 2.12
with 
 & E � and E & ( # E � , it is sufficient to show that
no regular node is an entry point to � � E � � . Because � � E � �
is unserved, any regular node which is an entry point to the
ideal must be a primary node.

By inspection, no term containing a key originates on
any strand in

�
init or

�
resp. However, if ��* � �

serv then
a key originates on node ����*������ . So suppose that ����*������ is
an entry point to � � E��C� . Then : # ��� *������ , and since :���� ,
:�� � �# ��� *������ , : originates on ��* .

Since : is uniquely originating, and it originates on � serv
as well as � * , � * & � serv. Moreover, : does not occur in

��������� unencrypted or encrypted with anything but : ��� or
: � � . Hence � * does not contain an entry point into � � E � � ,
and so no primary strand is an entry point to � � E��C� . �
Lemma 5.5 Suppose

�
respects � . Then no term of the

form ( � 1 B for : � � � can originate on a penetrator node
in � .

PROOF. (Similar to that of Proposition 4.3) Apply Corol-
lary 2.14 with 
�& ��� and E�& ( # ��� , and confirm that no
regular node is an entry point for � �"� �A� : Let  be a regular
entry point for � � ���C� . Since � �"���A�#�0� � ��� � � �0� is unserved
in

�
,  is not a secondary node. By observation,  is not a

primary node. �
We can now prove the authentication condition under

consideration:

Theorem 5.6 Suppose
�

respects � ; � � � � � ; and :
is uniquely originating. Suppose � is a bundle in

�
, and

� 	 � Resp � � � � � �
	 � � � � ! � �N: � has � -height 3.
Then some � � � Init � � � � � � � ��� � !"���N: � has � -height 3.

We prove this property by a series of intermediate steps.
For those who are uninterested in the details, the statements
of each step provide a sketch of the proof.

Step 1 There is an � � � Serv � � � � � � � � �+! � � : � with � -
height 2.

PROOF. ( � : ! ��1AB� � # ����	.� � � . By Proposition 5.5,
( � : !"� 1AB�� � originates on a regular node in � . Because
( � : !"� 1AB�� � � $ 7 / E +�� � ���C� , that regular node is a pri-
mary node  . By inspection,  & ���������� where � � �
Serv � � � � � � � � �+!"�"� : � .
Step 2 There is an � � � Init � ! ��� � ��� � � � �+!����N: � with � -
height 3.

PROOF. By Step 1, : � � � . By Proposition 5.4 and
Corollary 2.14, no term of the form ( � 1.B originates on
a penetrator strand. Hence, (��&�1AB , which is a subterm
of ����	�� � � , originates on a regular node  6* � � . Because
(��
�1AB � � 5 - � 1 	 � � �C� ,  :* is a primary node. By inspec-
tion,  7* & ��� � � � � where � � � Init � ! ��� � � � � �
� �+! � �N: � for
some ! ��� � ��� �+!�� .

Step 3 There is an � � � Serv � ! ��� � � � � � � !���� : � with � -
height 2.

PROOF. Letting ! & (	���
� : ! � 1CB ��� , we see that ! #
��� �.���� . If : � � �� ��� , then ! � � � ����� � �C� , contradict-
ing Proposition 5.4. By Proposition 5.5, ! originates on a
regular node  :* * ; because ! � � 7 ���O1>7������ + �"����� � �C� ,  :* * is a
primary node.

Inspecting the primary strands, we see that  * * & ��� � ����
where � � � Serv � ! ��� � � � � � �+!����N: � .



Step 4 � � & � �

PROOF. : is uniquely originating, and originates on both
� � and � � .

Step 5 � � � Init � � � � � � � �
� �+!"� � : � and � � has � -height 3.

PROOF. Since � � � Serv � � � � � � � � � � ! � �N: � , !<& � , � &� , and ! � & ! � . In that case, � � & Init � � � � � � � � � � ! � �N: � ,
and it is already established that � � has � -height 3. �

In other words, if the responder � finishes a run of the
protocol apparently with � , then under the conditions given,� will have finished a run with � .

5.2 Part II (Re-Authentication)

Like Kerberos, this protocol is designed to secure other
protocols in which the responder � —which typically pro-
vides some networked service—responds to requests from� but keeps no state itself. In such a case, � may need to is-
sue several requests to � and so must re-authenticate itself
each time. To that end the Neuman-Stubblebine protocol
has a re-authentication part, in which � reuses the ticket
issued to it in the initial protocol:

II 	 � 4 � , � * 	 ( � : !"��1AB� �
II � � 4 � , (�� * 	�1 B � * �
II
� � 4 � , (�� * � 1 B
This re-authentication protocol is known to be flawed on

its own [4]. However, it also introduces a potential attack
on the initial authentication protocol as well. If � keeps
no state—more specifically, if � does not track successful
runs of the authentication part of the protocol—then the fol-
lowing attack can be accomplished by starting a run of the
re-authentication protocol with � before the initial protocol
has finished:

1.
� � � � 4 � , � ��	

2. � 4 
0, � ( � ��	:! � 1 B � � � �
3. 
 4 � � � � , ( � ��	 : ! � 1 B�� � ( � : ! � 1 B � � � �

II 	 � � � � 4 � , ���-( � : !"� 1AB�� �
II � � 4 � � � �/, (��
�"1CB�� * �
4.
� � � � 4 � , ( � : ! � 1 B � � (�� � 1 B

The attack is possible because a term in � 5 - � 1 	 � � � �
can now originate on a secondary strand (from the re-
authentication part of the protocol). This attack does not
seem to be known in the literature. However, it is a pure
authentication attack; no session keys (for instance) are di-
vulged.

A variant of the re-authentication part, however, satisfies
the conditions of Lemmas 5.4, 5.5, and Theorem 5.6.

II * 	 � 4 � , � * 	�( � : ! � 1 B � �
II *� � 4 � , (�� * 	 � * � 1AB
II *� � 4 � , ( � � * � 1 B

To formalize II * , we add a “phantom” starting message
in which the initiator receives a copy of message 3 from a
run of protocol I. This serves merely to represent the state in
which a principal stores the results of a run of I, until ready
to begin a run of II * .

Definition 5.7 Let
�

be a strand space.

1. ReInit � � � � � � * 	 � � * � �+! � � : � $ � % � is the set of
strands in

�
of the form:

�-� ( � � 	 : !"��1AB � � $ % �
� � * 	 $ �
� (�� * 	 � * � 1 B �
� ( � � * � 1 B �

where ��	 � $ and $ � % � � .
�

reinit is the union of
the range of ReInit.

2. ReResp � � � � � � * 	 � � * ��� !"���N: � is the set of strands in�
of the form:

� � ( � : ! � 1 B � � � * 	 �
� (�� * 	 � * � 1 B �
� ( � � * � 1 B �

�
reresp is the union of the range of ReResp.

A NS+ space is an infiltrated strand space in which all the
regular strands are in

�
init,

�
resp,

�
serv,

�
reinit, or

�
reresp.

Observe that no node on these strands is an entry point
to � �"� � �4E � � . Likewise, $ 7 / E +�� � � � � � � 7 ���O1>7�� ��� + � � � � � � � �
� 5 -�� 1
	 � � � � is strongly unserved by these strands. Hence,
we may infer that the modified re-authentication protocol
does not interfere with the authentication property given in
Theorem 5.6. Setting � to be the set containing � � � , for
instance, yields:

Theorem 5.8 Suppose � is a bundle in a NS+ space, and

� � 	 � Resp � � � � � ��	 � � � � ! � �N: � has � -height 3;

� :���� , :�� � and : ���� � ; and

� : is uniquely originating.

Then � contains � � � Init � � � � � � � � � �+! � � : � with � -height
2.



6 Discussion

Cryptographic protocols are intended to accomplish very
specific goals such as authentication or exchange of keys.
Analysis of these protocols has usually centered around
understanding how well the protocols achieve these stated
goals when executed in isolation.

But in fact cryptographic protocols are never executed
in isolation. Key exchange is useful only if the keys are
then used for some further purpose, such as exchanging data
confidentially. Authentication is meaningful only if some
particular actions can be performed by the principals, that
would not have been permitted had they not been authen-
ticated. These further activities will typically involve the
keys or secrets established by the protocol, so there is a
risk that these later activities will interfere with the correct-
ness of the base protocol. In many cases, the constraints of
practical use mean that an “expensive” protocol is best com-
bined with a “cheaper” protocol, as Kerberos and Neumann-
Stubblebine combine one protocol that requires use of a Key
Distribution Center with a cheaper re-authentication proto-
col. Thus, real life is necessarily a case of mixed protocols,
even apart from the mixing of independently designed pro-
tocols that may be used for unrelated purposes.

In this paper we have developed the simple machinery
necessary to reason about this problem within the strand
space framework.
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[13] F. Javier THAYER Fábrega, Jonathan C. Herzog, and
Joshua D. Guttman. Strand spaces: Why is a security
protocol correct? In 1998 IEEE Symposium on Secu-
rity and Privacy. IEEE Computer Society Press, May
1998.

[14] F. Javier THAYER Fábrega, Jonathan C. Herzog, and
Joshua D. Guttman. Strand spaces: Proving secu-
rity protocols correct. Journal of Computer Security,
1999. Forthcoming.


