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Abstract

The iterative elimination of strongly dominated strategies (IESDS) and mixed-equilibrium solu-
tion concepts are studied in an iterated two-person investment game with discrete strategy spaces,
non-recoverable investments, and either equal or unequal investment capital. In this game, the player
investing the largest amount wins the competition and receives a fixed reward; ties are counted as
losses. Both cases of symmetric and asymmetric dyads are studied theoretically and experimen-
tally. Results from two experiments provide support for the mixed-strategy equilibrium solution
on the aggregate but not the individual level, and evidence for a hierarchy of bounded IESDS.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Iterative elimination of strongly dominated strategies (IESDS) and mixed-strategy Nash
equilibrium are two of the most basic solution concepts of non-cooperative game theory.
The assumptions on the players’ state of knowledge that are sufficient to derive these
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solution concepts are by now well known. To state them, consider a finite non-cooperative
game in strategic (normal) form, which consists of a finite set of players, a finite set of
choices (strategies) for each player, and a payoff function assigning a payoff for each player
for every specification of choices by all the players. Call a factmutual knowledgeif every
player knows it, andcommon knowledgeif everyone knows it, everyone knows that everyone
knows it, and so on ad infinitum. Define theconjectureof a player as that player’s probability
assessment over the strategy choices of the other players. The following propositions have
been proved with differing degrees of formality (see Brandenburger (1992), and references
cited therein):
1. Suppose that the structure of the game and rationality of the players are common knowl-

edge. Then, each player chooses an iteratively undominated strategy.
2. Suppose that there are only two players, and that the structure of the game, rationality of

the players, and their conjectures are mutual knowledge. Then, the players’ conjectures
constitute a mixed-strategy Nash equilibrium.

3. For more than two players, suppose that there is a common prior on the set of states
of the world, that at some state, the structure of the game and rationality of the players
are mutual knowledge, and that the conjectures of the players are common knowledge.
Then, for each player, all the other players hold the same conjectures about that player,
and the resulting profile of conjectures constitutes a mixed-strategy Nash equilibrium.
Several brief comments on these propositions are in order. IESDS — a relatively weak

solution concept — is based on the assumption of common knowledge of rationality. In
certain games such as the finitely iterated Prisoner’s Dilemma and Centipede games, IESDS
leads to counter-intuitive results. As noted by Aumann (1996) (pp. 130–131), “common
knowledge of rationality is a very strong assumption, much stronger than simple rationality,
and in some situations may just be too much to ask for.” Common knowledge of rationality
is required in order to state a sufficient condition applying to all finite games. However, for
finite games that are typically played in the laboratory, there is an obvious bound — which
in many cases is quite small — on the levels of knowledge, or depth of reasoning, needed
to conclude that players actually choose iteratively undominated strategies. With regard to
the mixed-strategy Nash equilibrium, it turns out that the assumptions on the players’ state
of knowledge that lead to their conjectures being in equilibrium depend significantly on the
number of players. In particular, when there are only two players, mutual knowledge of the
conjectures is sufficient, but when there are more than two players, the stronger requirement
of common knowledge of conjectures is required.

1.1. Previous studies

Various experiments have been conducted in order to assess the descriptive power of
these two solution concepts, and indirectly, the validity of the assumptions on the players’
knowledge of rationality underlying these concepts. Following O’Neill (1987), studies of
mixed strategies conducted in the last 10 years have mostly focused on finitely iterated
two-person zerosum games with no pure-strategy equilibria, in which the player’s minimax
strategy is invariant over a set that includes all reasonable utility functions (O’Neill, 1987;
Brown and Rosenthal, 1990; Rapoport and Boebel, 1992; Rapoport and Budescu, 1992;
Budescu and Rapoport, 1994; Mookherjee and Sopher, 1994, 1997). The general findings
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of these experiments are that (1) when the strategy space of each player includes only very
few elements, the aggregate results are described quite well by the mixed-strategy Nash
equilibrium; (2) the descriptive power of this solution concept decreases as the number
of elements in the strategy set increases; and (3) the mixed-strategy equilibrium cannot
account for the persistent and systematic sequential dependencies found on the individual
level. The evidence seems to suggest that people do not start their play by randomizing
over their pure strategies. Rather, they gradually reach equilibrium play through some
process of adaptation (Binmore et al., 1996). The experimental evidence seems to be more
consistent with reinforcement-based learning than belief-based models (Mookherjee and
Sopher, 1997).

Experimental studies of IESDS have mostly focused on thedegreeor depth of iterated
dominance. As such, they have contributed to the understanding of the limitations on the
human cognitive system. In addition to the multitude of studies of the two-person finitely
iterated Prisoner’s Dilemma game, McKelvey and Palfrey (1992) studied the two-person
Centipede game, and Stahl and Wilson (1995) examined a class of 3×3 games. The most
prominent paradigm has been the Beauty Contest game, numerous variations of which
have been recently investigated by Nagel (1995, 1999), Camerer and Ho (1996), Stahl
(1996), Duffy and Nagel (1997), and Ho et al. (1998). In its simplest form, the basic game
proceeds as follows. Each ofn players chooses simultaneously and privately a numberxi ,
xi = 1, 2, . . . , n, from a fixed and commonly known real-valued interval, say [0, 100]. The
winner is the player whose chosen number is closest top(x1 + x2 + · · · + xn)/n, where
p<1 is a predetermined and commonly known constant. The winner is awarded a fixed
prize; in the case of a tie, the prize is split equally among the tied players. The game is
repeated several times with no rematching of players. Iterated elimination of weakly (rather
than strongly) dominated strategies leads to a unique solution where, in our example, each
player chooses zero. The general finding of the different variants of the Beauty Contest
game is that most subjects of groups ranging in size between 4 and 17 do not engage in a
high number of iteration steps. “The level of reasoning does usually not go beyond level
3 as observed in many other studies” (Nagel, 1999). However, the depth of reasoning and
rate of learning seem to depend on group size, sophistication of the players, and previous
experience with the game.

The present paper examines yet another game, called theInvestment game, which allows
for the simultaneousinvestigation of the IESDS and mixed-strategy equilibrium solution
concepts. As this game was inspired (Rapoport and Amaldoss, 1996) by our study of com-
petition between two firms for the development of a new technology product, and as the
instructions for the two experiments were presented in these terms, we motivate the game
within this context. No claim is made here that this game — an abstraction — can serve as
a complete model of such R&D competitions.

The paper is organized as follows. In Section 2, we first consider the case of symmetric
players (firms) with equal endowments (R&D budgets), formulate it as a non-cooperative
two-person game in strategic form, and then construct the symmetric Nash equilibrium
solution for the game. In equilibrium, each playerk (k=i, j) randomizes over the entire set
of his pure strategies. Next, we consider the case of asymmetric players. We show that, in
equilibrium, each player considers about half of the number of his pure strategies, the ones
that survive IESDS, and then randomizes over them according to two different probability
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distributions, one for the ‘strong’ player and the other for the ‘weak’ player. We end this
section with a comparison of the Investment game with previous games proposed to assess
the descriptive power of the IESDS and mixed-strategy equilibrium solution concepts.
Section 3 describes an experiment designed to study the symmetric case of the investment
game, and Section 4 the asymmetric case. Section 5 attempts to account for the major patterns
observed in the results of both experiments by adaptive learning. Section 6 concludes the
paper.

2. Problem statement and equilibrium solution

We consider the case of two firms competing in the development of a new technology
product. The successful firm obtains patent and monopoly rights to the product, whereas
the losing firm gets nothing. Like O’Neill (1986), we assume a discrete model and com-
monly known budgetary constraints. We further assume that whoever invests more wins the
competition, because the amount spent on R&D could potentially influence the successful
development and patenting of the product (e.g., Besanko et al., 1996).

Formally, we consider two players (firms),i andj, with endowments (R&D budgets)ei

andej , respectively, assumed to be commonly known. Each playerk (k=i, j) invests the
amountck (ck = 0, 1, . . . , ek). Investments are assumed to be made simultaneously; they
are not recoverable. Letr denote the payoff associated with winning the competition; we
assume that the value ofr does not depend on the actual investmentsci andcj , and that
r>ek>1. Let s denote the amount that each player receives in the event that both players
make the same investment (ci=cj ). The resulting payoff structure has the following form:

Ui(ci, cj ) =



r + ei − ci, if ci > cj

s + ei − ci, if ci = cj

ei − ci, if ci < cj

for playeri, and

Uj(ci, cj ) =



r + ej − cj , if cj > ci

s + ej − cj , if cj = ci

ej − cj , if cj < ci

for playerj, whereUk(ci ,cj ) is the payoff of playerk, given the investmentsci andcj , and
06s6r.

The most common assumption in patent race models is thats=r/2; if the two firms in-
vest the same amount in the development of the new product (ci=cj ), then the rewardr
is shared equally between them. We depart from this model by assumings=0. This as-
sumption is tenable in situations in which the competing firms are in a strict duopoly,
and simultaneously introducing the new product strictly cannibalizes existing product lines
without increasing the overall market. It applies to patent races where both firms intro-
duce the new product at the same time, and therefore, no patent is granted because of
litigation. It is, perhaps, even more applicable to arm races in which the development
of equal military technologies at about the same time (e.g., ballistic missiles, nuclear
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Table 1
Payoff matrices for the symmetric and asymmetric Investment gamea

Symmetric game

ci cj

0 1 2 3 . . . e

0 e, e e, r+e−1 e, r+e−2 e, r+e−3 . . . e, r
1 r+e−1, e e−1, e−1 e−1, r+e−2 e−1, r+e−3 . . . e−1, r
2 r+e−2, e r+e−2, e−1 e−2, e−2 e−2, r+e−3 . . . e−2, r
3 r+e−3, e r+e−3, e−1 r+e−3, e−2 e−3, e−3 . . . e−3, r
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

.

.

.

e r, e r, e−1 r, e−2 r, e−3 . . . 0, 0

Asymmetric game

ci cj

0 1 2 3 . . . e−1

0 e, e−1 e, r+e−2 e, r+e−3 e, r+e−4 . . . e, r
1 r+e−1, e−1 e−1, e−2 e−1, r+e−3 e−1, r+e−4 . . . e−1, r
2 r+e−2, e−1 r+e−2, e−2 e−2, e−3 e−2, r+e−4 . . . e−2, r
3 r+e−3, e−1 r+e−3, e−2 r+e−3, e−3 e−3, e−4 . . . e−3, r
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

.

.

.

e−1 r+1, e−1 r+1, e−2 r+1, e−3 r+1, e−4 . . . 1, 0
e r, e−1 r, e−2 r, e−3 r, e−4 . . . r, 0

a r>e>1 (e≡ei , ei=ej+1).

power capability, biological and chemical weapons) results in a stalemate (and conse-
quently, total loss of the resources expended in developing the technology). The sec-
ond reason for this assumption is that it drives the theoretical results presented below,
which imply randomization over all the strategies when the players are symmetric
(ei=ej ), and IESDS followed by randomization over the iteratively undominated strate-
gies when the players are not symmetric (ei 6=ej ). We wish to study these non-obvious
strategic implications in the context of a competition for the development of a new
product.3

2.1. Symmetric players

The competition between the two players is modeled as a non-cooperative two-person
game in strategic form with complete information and discrete strategy spaces
ci = {0, 1, . . . , ei} andcj = {0, 1, . . . , ej }. Consider first the case of symmetric play-
ers, namely,ei=ej . To simplify notation, definee≡ei=ej . The upper panel of Table 1
presents the payoff matrix for the general case of the Investment game.

3 An earlier and considerably more extensive version of this paper, which includes the subjects’ instructions,
appears in Rapoport and Amaldoss (1996), which is available upon request.
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Inspection of Table 1 verifies that neither player has dominated strategies and that the
game has no equilibrium solution in pure strategies. The following proposition is proved in
Appendix A.

Proposition 1. If the two players are symmetric and risk-neutral, there exists a unique
mixed-strategy Nash equilibrium given by

ppp = (p0, p1, . . . , pe) =
(

1

r
,

1

r
,

1

r
, . . . ,

r − e

r

)
, (1)

where ph (h = 0, 1, . . . , e) is the probability of investing h units. In equilibrium, each
player’s expected payoff is e.

For example, ife=5 andr=8, as in Experiment 1 below, then in equilibrium, each player
invests 0, 1, 2, 3, or 4 units with probability 1/8, and 5 units with probability 3/8. The
probability of a tie in this case is 7/32, and the expected payoff for each player is 5 units.

There are three important features of the equilibrium solution, all experimentally testable,
which warrant discussion. First, Proposition 1 implies that the expected payoff of each
player isindependentof the rewardr. In equilibrium, substantially increasing the reward
for winning the competition affects the mixed strategyppp, but not the expected payoff.
Therefore, symmetric players adhering to the equilibrium solution should be indifferent
to the magnitude of the reward associated with winning the competition when playing the
Investment game.

Second, by settingck=0, each player canguaranteethe value of his or her budget;
ck=0 implies thatUk(0, 0)=ek. The equilibrium strategies do not yield a higher payoff
thane; indeed, they do not even guarantee this payoff. As noted by Aumann and Maschler
(1972), who observed the same phenomenon in a class of two-person zerosum games, if
the equilibrium strategies are to be played at all, they are presumably played with the hope
that each player will obtain his or her equilibrium payoff. But then, why play ‘with hope’
when the two players could each guarantee the same payoff by choosing minimax rather
than equilibrium strategies? Therefore, it is doubtful whether players will invest any amount
in the Investment game. Randomization in the Investment game seems to be less likely to
occur than in the various two-person zerosum games studied experimentally by O’Neill
(1987), Rapoport and Boebel (1992), and Mookherjee and Sopher (1994, 1997).

Thirdly, the equilibrium outcome isPareto-deficient. If the game is iterated in time and
the two players tacitly coordinate their actions byjointly alternating between 0 and 1,
then the expected payoff for each player is (r+2e−1)/2. Unlike the equilibrium expected
payoff, this expected payoff increases linearly inr. For the parameters used in Experiment
1, the difference between the two expected payoffs is substantial. (For example, ife=5
and r=20, then the expected payoff almost triples from 5 to 14.5). Moreover, expected
payoffs exceeding the equilibrium payoffs can be obtained even without tacit coordination
(e.g., by each playerk independentlyrandomizing betweenck=0 andck=1 with equal
probabilities). One may anticipate, then, that as the reward for winning the competition,r,
increases, players will deviate (e.g., by tacit agreement, if the stage game is iterated many
times) from the equilibrium strategy and lower their investments in an attempt to maximize
payoff.
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The equilibrium solution can be constructed for the more general case that does not
require risk-neutrality. Denote the utility ofx by u(x) and assume thatu(x) is increasing.
If the two players are symmetric and share the same attitude to risk, then there exists
a unique mixed-strategy Nash equilibrium (see Rapoport and Amaldoss, 1996) given by
ppp=(p0, p1, . . . , pe) where the probabilityph (h = 0, 1, . . . , e − 1) is computed from

ph = u(e) − u(e − h − 1)

u(r + e − h − 1) − u(e − h − 1)
− u(e) − u(e − h)

u(r + e − h) − u(e − h)
(2)

and

pe = u(r) − u(e)

u(r)
.

In equilibrium, each player’s expected payoff isu(e).
It is easy to verify that, ifu(x)=x, the solution in Eq. (2) reduces to the one in Eq. (1). It

is also easy to verify that if the (common) utility functionu(x) is concave, the probability
of investing the entire capital,pe, decreases.4 To illustrate this case, assume thatu(x)=xc

(0<c), e=5, andr=8. Settingc=0.7, Eq. (2) yields

ppp = (p0, p1, p2, p3, p4, p5) = (0.1461, 0.1438, 0.1414, 0.1392, 0.1492, 0.2804).

Changing the reward fromr=8 tor=20, while keepinge=5 andc=0.7 as before, we obtain

ppp = (p0, p1, p2, p3, p4, p5) = (0.0675, 0.0685, 0.0704, 0.0745, 0.0981, 0.6211).

Fig. 1 displays the mixed-strategy equilibrium solution for a power utility function where
e=5 andr=8. The probabilities are portrayed as a function of risk aversion, measured here
by the power parameterc (0<c61). As the degree of risk aversion increases (c decreases
from 1 to 0), the probability of investingck=e decreases from 0.375 to 0, while the other
five choice probabilities increase but at slightly different rates.

2.2. Asymmetric players

The formulation of the asymmetric case is the same as above with the only exception
thatei 6=ej . Without loss of generality, assume thatei>ej , and refer to playersi andj as the
strongandweakplayers, respectively. As in the case of symmetric players, we assume that
r>ei>ej >1.

When the players are asymmetric, it is sufficient to consider the caseei=ej+1. This
is so because, ifei>ej+1, any strategy of playeri dictating ci=ej+s (s>1) is strongly
dominated by the strategyci=ej+1. To simplify notation, we denote playeri’s endowment
by e and playerj’s endowment bye−1, and designate the strategies of playersi and j as
rows and columns, respectively. The lower panel of Table 2 presents the payoff matrix for
the asymmetric Investment game.

When the players are asymmetric, their strategic considerations differ from the ones in
the symmetric Investment game. The strong player can guarantee himself a payoff ofr by

4 We wish to show that ifu(x) is concave and increasing, then [u(r)−u(e)]/u(r)<(r−e)/r. This inequality reduces
to u(e)/u(r)>e/r, as can be verified geometrically.
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Fig. 1. Equilibrium solution for the symmetric and asymmetric Investment games with a power utility function.
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Table 2
Aggregate distribution of payoffs in the symmetric casea

Payoff Empirical distribution Equilibrium
prediction

Group 1 Group 2 Both groups

GameL: low reward condition (e=5, r=8)
0 0.233 0.107 0.170 0.141
1 0.059 0.040 0.049 0.062
2 0.060 0.092 0.076 0.078
3 0.070 0.049 0.060 0.094
4 0.104 0.096 0.100 0.109
5 0.116 0.222 0.169 0.125
8 0.260 0.236 0.248 0.234
9 0.035 0.046 0.041 0.062

10 0.024 0.061 0.042 0.047
11 0.026 0.030 0.028 0.031
12 0.013 0.021 0.017 0.016

GameH: high reward condition (e=5, r=20)
0 0.456 0.357 0.406 0.562
1 0.027 0.058 0.043 0.040
2 0.028 0.057 0.040 0.043
3 0.042 0.044 0.043 0.045
4 0.055 0.042 0.048 0.047
5 0.135 0.147 0.141 0.050

20 0.207 0.237 0.222 0.188
21 0.017 0.036 0.027 0.010
22 0.012 0.015 0.013 0.007
23 0.011 0.010 0.011 0.005
24 0.010 0.003 0.006 0.003

a The relative frequencies were computed using the payoffs obtained over 80 trials. Group 1 played GameL
in the first 80 trials and GameH in the last 80 trials. Group 2 played GameH in the first 80 trials and GameL in
the last 80 trials. Each group includes 18 subjects.

investing his entire budget,e. Anticipating that, the weak player can then investcj=0 (and
receive a net payoff ofe−1). If, however, playeri anticipates that playerj will invest nothing,
he is better off investing 1 (rather thane). But once the strong player does not invest his
entire budget, he is no longer sure of winning.

Denote the strategy spaces of playersi andj by ci={0, 1, . . . , e} andcj={0, 1, . . . , e−
1}, respectively, and assume that both players are risk-neutral. Then, the equilibrium strate-
gies of the two players are characterized as follows (see proof in Appendix A):

Proposition 2. Pure strategies are iteratively eliminated in the order: row 0, column 1, row
2, column 3,. . . , row e − 1 (if e is odd) or columne − 1 (if e is even).

If e is even, the strong player randomizes over his odd-numbered strategies according to
the probability vector

pppI = (p1, p3, . . . , pe−1) =
(

2

r
,

2

r
, . . . ,

r − e + 2

r

)
, (3)
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and the weak player randomizes over her even-numbered strategies (including strategy 0j )
according to the probability vector

pppJ = (p0, p2, . . . , pe−2) =
(

r − e + 2

r
,

2

r
, . . . ,

2

r

)
. (4)

If e is odd, the strong player randomizes over his odd-numbered strategies according to the
probability vector

pppI = (p1, p3, . . . , pe) =
(

2

r
,

2

r
, . . . ,

r − e + 1

r

)
, (5)

and the weak player randomizes over her even-numbered strategies according to the prob-
ability vector

pppJ = (p0, p2, . . . , pe−1) =
(

r − e + 1

r
,

2

r
, . . . ,

2

r

)
. (6)

In equilibrium, the expected payoff of the strong player is eitherr + 1, if e is even, or r, if
e is odd. The expected payoff of the weak player for both odd and even values of e equals
e − 1.

The equilibrium solution for the asymmetric case shares some of the features of the
solution for the symmetric case. However, when the players are asymmetric, the expected
payoff of the strong player depends on the value ofr, while the weak player’s expected
value does not. Therefore, if they adhere to equilibrium play, the strong player should prefer
the reward to be higher, whereas the weak player should be indifferent to the size of the
reward.

As in the symmetric case, the weak player can guarantee her budget,e−1, by investing
0. Similarly, the strong player can guarantee the rewardr by investinge. Whene is odd, as
in our Experiment 2, the expected values of the two players under equilibrium play aree−1
and r. However, unlike minimax play, the equilibrium solution does not guarantee these
values to the weak and strong players. Therefore, exactly as in the symmetric case, we have
no reason to expect the weak player to invest any positive amount or the strong player to
invest any amount smaller thane.

Another experimentally testable implication is that the probability vectors of the strong
and weak players, in each case defined over the strategies that survive IESDS, are symmetric:
compare Eq. (3) with Eq. (4) and Eq. (5) with Eq. (6).

A third testable implication is that both players only play strategies that survive IESDS.
Eqs. (3)–(6) imply that about half of the pure strategies of each player survive IESDS. If
e is relatively large, it is highly unlikely that, without knowledge of non-cooperative game
theory and the possibility of inspecting and comparing all the entries in the payoff matrix,
boundedly rational players can go through the elaborate mental process of iteratively elim-
inating all the dominated strategies. The results of the finitely iterated Prisoner’s Dilemma
and Beauty Contest games suggest a more likely hypothesis that a (possibly large) subset of
the players identify and properly eliminate the first dominated strategy in the sequence (row
0), a smaller subset identify and eliminate the second element in the sequence (column 1),
and so on. This hypothesis about a hierarchy of players in terms of their depth of reasoning
will be tested in Section 4.
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Proposition 2 also assumes risk neutrality. Construction of the mixed-strategy equilibrium
solution for the more general case, where the players can share other attitudes toward
risk, requires the simultaneous solution of linear equations whose number increases ine.
Therefore, we provide below only the equilibrium solution for the investment capital used
in Experiment 2, namely,e=5.

If the strong and weak players are endowed with investment capital of 5 and 4, respec-
tively, then after the iterative deletion of row 0, column 1, row 2, column 3, and row 4, the
strong player should randomize over his iteratively undominated strategies 1, 3, and 5 with
respective probabilities

p1 = u(4) − u(2)

u(r + 2) − u(2)
, (7)

p3 = u(4)[u(r + 2) − u(r)] − u(r)[u(4) − u(2)]

u(r)[u(r + 2) − u(2)]
, (8)

and

p5 = u(r) − u(4)

u(r)
. (9)

After iteratively deleting her dominated strategies, the weak player should randomize over
her undominated strategies 0, 2, and 4 with respective probabilities

p0 = u(r) − u(4)

u(r + 4) − u(4)
, (10)

p2 = u(r)

u(r + 2) − u(2)
+ u(4)u(r + 2) − u(2)u(r + 4)

[u(r + 4) − u(4)][u(r + 2) − u(2)]

− u(r)

u(r + 4) − u(4)
, (11)

and

p4 = u(r + 2) − u(r)

u(r + 2) − u(2)
. (12)

The expected payoffs for the strong and weak players areu(r) andu(e−1), respectively.
It is again possible to verify that in the case of risk neutrality, Eqs. (7)–(9) reduce to Eq.

(5) and Eqs. (10)–(12) reduce to Eq. (6). With risk aversion, the probability that the strong
player invests his entire capital (Eq. (9)) or the weak player invests zero capital (Eq. (1))
decreases.

The comparison between the Investment and the Beauty Contest games shows several
major differences. First, the iterative elimination of dominated strategies in the Beauty
Contest game presupposes a mental computation of quantities like 100p, 100p2, 100p3

etc. (see Nagel, 1999), which most subjects may find difficult. In contrast, the line of
reasoning leading to the iterative elimination of dominated strategies in the Investment
game is cognitively simpler. Second, the Beauty Contest game requires symmetry of the
players, whereas the Investment game also allows for asymmetric players. Third, the Beauty
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Contest game has a unique pure-strategy equilibrium at zero, whereas the equilibrium for
the Investment game is in mixed strategies. Fourth, the Beauty Contest game is solved by
iterative elimination of weakly rather than strongly dominated strategies. As such, it actually
tests a slightly different mental process because the set of strategies that survive iterated
elimination of weakly dominated strategies may depend on the order in which strategies are
being eliminated (Osborne and Rubinstein, 1994). The fifth and possibly most important
difference between these two games is that, when the number of players is restricted to
two, as in the Investment but not the Beauty Contest game, a weaker hypothesis about the
players’ state of knowledge can be tested. As a result, one may expect deeper levels of
reasoning than those typically observed in the Beauty Contest game.

3. Experiment 1: the Investment game with symmetric players

3.1. Subjects

Thirty-six undergraduate and graduate students from the University of Arizona partici-
pated in the study. Subjects were recruited through advertisements placed on bulletin boards
on campus and class announcements. They were promised monetary reward contingent on
performance for participation in a decision making experiment. Subjects were run in groups;
18 subjects participated in Group 1 and another 18 in Group 2.

3.2. Procedure

Each experiment consisted of a single session lasting about 2 h. Upon arrival at the
laboratory, all the group members were randomly seated in separate booths. Subjects read
the instructions for the experiment5 on their individual computer terminals. Any form of
communication before or during the experiment was not possible.

Subjects were randomly matched into pairs on each trial. In particular, on each trial,
the 18 group members were rematched to form nine pairs according to a predetermined
assignment schedule. Subjects had no way of knowing the identity of their competitors
on any given trial. The assignment schedule ensured that each subject would be matched
with each of the other group members approximately the same number of times, and that a
subject would not be paired with the same competitor twice in a row.

The instructions explained and demonstrated the Investment game. The game was not
presented in matrix form. Rather, at the beginning of each trial, the subjects were only
informed of the values ofei , ej , r, and rules of the game. Once the subjects made their
investments privately, the computer compared each player’s investment with that of the
other dyad member and determined the winner. Ties were counted as losses. At the end of
each trial, each playerk was informed of (1) the values ofci andcj , (2) the winning player
(i or j), and (3) his or her reward for the trial (Uk).

Each group participated in two experimental conditions (or games) in a within-subjects
design. The payoff parameters for these two games were

5 The instructions are available from the authors upon request.
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Low Reward Condition (GameL): ei=ej=5, r=8.
High Reward Condition (GameH): ei=ej=5, r=20.
Each stage game was played repeatedly (with the same value ofr) for 80 successive trials.

The subjects in Group 1 were presented first with GameL (Phase 1: trials 1–80) and then
with GameH (Phase 2: trials 81–160), for a total of 160 trials. The order of presentation of
the two games was reversed in Group 2.

Investments were made in terms of a fictitious currency called ‘franc’. At the end of
the experiment, the individual payoffs were totaled and converted into US dollars at the
exchange rate of 80 francs=US$ 1.00. In addition, subjects were paid a US$ 5.00 show-up
fee.6

4. Results

We first examine the distribution of payoffs received by subjects and assess whether the
payoffs are insensitive to the size of reward as predicted by theory. Then, we study the
strategy profiles played by subjects both at the aggregate and individual levels. Finally, we
investigate how subjects came to conform to the theoretical predictions.

4.1. Payoffs

Table 2 presents the relative frequency distributions of payoffs for GameL (upper panel)
and GameH (lower panel). The realizable payoffs for GameL (column 1 of the up-
per panel) are 0, 1, . . . , 5, 8, 9, . . . , 12, whereas the ones for GameH (lower panel) are
0, 1, . . . , 5, 20, 21, . . . , 24. Columns 2, 3, and 4 of each panel present the observed rel-
ative frequencies of payoff for Group 1, Group 2, and across both groups, respectively.
The right-hand column of each panel shows the probability distribution of payoff under
equilibrium play.

4.2. Game L

The expected payoff per trial under equilibrium play ise=5. The mean payoff of both
groups in GameL is equal to 5.536. This mean does not differ significantly from the
theoretical value (z=0.335,p>0.36). Similar results hold when the relative frequencies of
each group are examined separately. The mean payoff earned by Group 1 is 4.456 (z=1.378,
p>0.08) and by Group 2 is 5.362 (z=0.986,p>0.16). Under equilibrium play, the variance
of the payoffs in GameL should equal 11.875. In actuality, the variance of the observed
payoffs computed across the subjects in both groups is 11.825; this variance does not differ

6 Another possibility would be to motivate subjects by payoffs in tickets for binary lotteries, rather than direct
monetary payoffs (e.g., Roth and Malouf, 1979; Roth, 1995a). Under relatively weak assumptions of monotonicity
and reduction of compound binary lotteries (Selten et al., 1995), this payoff scheme can be shown theoretically to
induce risk neutrality. However, recent experiments suggest that the use of the binary lottery scheme in experiments
may be counterproductive. “Not only does this procedure fail to induce risk neutrality, it even worsens results in
this respect compared to direct money payoffs” (Selten et al., 1995, p. 3).
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significantly from the theoretical value (χ2=158.3,p>0.1). Similar results obtain on the
group level: the variance of payoffs is 12.460 in Group 1 (χ2=82.894,p>0.1) and 10.785
in Group 2 (χ2=71.75,p>0.1).

The results are similar when we examine the aggregate distributions of payoffs rather than
their mean and variance. The relative frequency distribution of payoffs computed across the
subjects of both groups in GameL does not differ significantly from the predicted probability
distribution under equilibrium play (Kolmogorov–Smirnov statisticD160=0.03, p>0.2).
Similar results hold for Group 1 (D80=0.093,p>0.2) and Group 2 (D80=0.002,p>0.2).

4.3. Game H

Although the rewardr is higher in GameH than GameL by a factor of 2.5, the expected
payoff under equilibrium play is the same. The mean payoff per trial computed across
the two groups is significantly higher than predicted (combined mean is equal to 6.845,
z=2.705,p<0.004). This result is mainly attributed to Group 2. We cannot reject the null
hypothesis in Group 1 (mean=6.357,z=1.43,p>0.076), but have to reject it in the case of
Group 2 (mean=7.344,z=2.39,p<0.01). As for the variability of the payoffs in GameH,
the theoretical variance under equilibrium play is 64.75. The observed variance computed
across both groups (74.45) does not differ from the theoretical value (χ2=182.8,p>0.1).
Similar results hold for each of the two groups.

As may be expected from these results, the observed aggregate frequency distribution of
payoff computed across both groups differs from the theoretical distribution under equilib-
rium play (D160=0.159,p<0.01). The null hypothesis is rejected in the case of Group 2
(D80=0.206,p<0.01) but not Group 1 (D80=0.137,p>0.05).

A strong testable implication of the equilibrium solution is that the mean payoff per trial
in the symmetric case of the Investment game is independent of the rewardr for winning
the competition. This implication is clearly rejected when we compare to each other the
mean payoffs in GamesL andH (z=2.64,p<0.04). The observed payoffs in the symmetric
Investment game seem to be sensitive to the reward condition.

4.4. Strategy profiles

Table 3 shows the observed relative frequencies of choice of the six investment strategies.
Computed across subjects and trials, the frequencies are presented separately in terms of
group and game. The most notable finding is that in both GamesL andH the subjects did not
choose to always play the minimax strategy of zero investment. Rather, most of the subjects
played all six pure strategies. As predicted, strategyck=e was chosen considerably more
often than any other strategy. Also, as predicted, the subjects chose to invest their entire
budget significantly more often when the reward for winning the competition was increased
from 8 to 20. The Kolmogorov–Smirnov test of goodness of fit indicates no significant
difference between the observed and theoretical frequency distribution of choices under
equilibrium play in GameL (D80=0.119,p>0.2, for Group 1;D80=0.097,p>0.2, for Group
2; andD160=0.44,p>0.2, for the combined groups). A marginally significant difference
appears in the combined frequency of choices of both groups in GameH (D160=0.122,
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Table 3
Aggregate distribution of investment in the symmetric case

Investment Empirical distribution Equilibrium
prediction

Group 1 Group 2 Both groups

GameL: low reward condition (e=5, r=8)
ci=0 0.116 0.222 0.169 0.125
ci=1 0.116 0.117 0.116 0.125
ci=2 0.096 0.079 0.088 0.125
ci=3 0.084 0.153 0.118 0.125
ci=4 0.094 0.086 0.090 0.125
ci=5 0.494 0.343 0.418 0.375

GameH: high reward condition (e=5, r=20)
ci=0 0.135 0.147 0.141 0.050
ci=1 0.065 0.044 0.055 0.050
ci=2 0.053 0.054 0.053 0.050
ci=3 0.040 0.066 0.053 0.050
ci=4 0.044 0.094 0.069 0.050
ci=5 0.662 0.594 0.628 0.750

p<0.05). On further analysis, we find that the investment frequencies conform to the equi-
librium prediction in Group 1 (D80=0.103,p>0.2) but not in Group 2 (D80=0.156,p<0.05).

These results provide strong support to the equilibrium solution. Given the marginal
discrepancy in the observed frequency distribution of choices in the high reward condition,
we probed further to understand the reason for it. We find that the mean investment by
Group 2 does not differ significantly from the theoretical value (z=1.762,p>0.04). However,
the observed variance of choices is considerably different from the theoretical prediction
(χ2=189.08,p<0.005). Inspection of the results of GameH shows that strategyck=0 was
chosen more often than predicted. Such an investment pattern could be a consequence of
either a few subjects deviating from equilibrium behavior and playing the minimax strategy
of zero investment in most of the trials, or most subjects mixing strategies but investing zero
more often than predicted by theory. We will examine this issue further when discussing
individual level differences in investment strategy profiles.

4.5. Trends in investment

To discern possible trends in the investment pattern, we divided the 80 trials in each
game into eight blocks of 10 trials each, and then counted for each subject separately the
number of times that he or she contributed the entire endowment in each block (16 data
points for each subject across the two conditions). Table 4 presents the mean proportion
of trials in which the entire investment capital was invested by group, game, and block.
Under equilibrium play, the subjects in GameL should invest their entire investment capital
on 37.5 per cent of the trials. The upper panel of Table 4 shows that the trend in investing
all the resources drifts away from equilibrium behavior. However, the drift seems to be in
opposite directions, implying a group by game interaction effect. The lower panel of Table
4 shows that the subjects of Group 1 invest all of their resources in proportions that are
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Table 4
Experiment 1: mean proportion of trials on which the entire endowment was invested by game, group, and blocka

Group Block

1 2 3 4 5 6 7 8 Mean

GameL
1 0.49 0.42 0.46 0.43 0.51 0.53 0.55 0.56 0.49
2 0.36 0.37 0.36 0.37 0.33 0.32 0.33 0.31 0.34

GameH
1 0.55 0.52 0.59 0.58 0.66 0.61 0.60 0.64 0.59
2 0.74 0.70 0.72 0.71 0.62 0.62 0.61 0.58 0.66

a There are 18 subjects in each group and 10 trials in each block.

steadily moving towards the equilibrium prediction for GameH. In contrast to Group 1,
the corresponding proportions for the subjects of Groups 2 move away from equilibrium
play.7

4.6. Individual differences

As the results reported in Tables 3 and 4 pertain to aggregate data, they may conceal
considerable individual differences in investment strategy profiles. We suggested earlier
that these results are compatible with the hypothesis that there are two distinct segments
of subjects: one mixing their strategies, and the other playing the minimax strategy of zero
investment.

4.7. Game L

The upper panel of Fig. 2 exhibits the frequency distributions of the number of times the
entire budget was invested by each subject in the 80 iterations of the stage GameL. The
distributions are computed across the two groups (n=36) separately. We observe marked
individual differences, with the frequency of investing the entire budget ranging all the way
from 0 to 80. Further examination of the individual data shows that of the 18 subjects in
Group 1 playing GameL, only two played the same pure strategy (investing their entire
capital) in all the 80 trials. The remaining 16 subjects mixed their strategies. The equilibrium

7 To test for the statistical significance of the effects of group, game, and their interaction, as well to assess
learning trends in choices, we conducted a 2×2×8 group by game by block ANOVA with repeated measures
on the second and third factors. Both the group main effect (F1,5728=47.8, p<0.0001) and game main effect
(F1,5728=161.8,p<0.0001) were highly significant. There was no main effect due to block (F7,5728<1). Also,
the two-way interaction effects involving the block factor were not significant either (F7,5728<1 for the block
by group interaction, andF7,5728=1.4, p<0.2, for the block by game interaction). However, both the group by
game two-way interaction effect (F1,5728=27.5,p<0.0001) and the three-way group by game by block interaction
effect (F7,5728=3.8,p<0.0004) were highly significant. The significant group by game two-way interaction effect
indicates a tendency to lower the frequency of investing the entire resources from the first to the second phase of
the experiment (and, as noted above, increasing the frequency of investing zero capital), regardless of the value
of r. The three-way interaction effect indicates that learning is faster in the last four blocks of gameL than in the
first four blocks, whereas the opposite result holds for gameH.
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Fig. 2. Experiment 1: frequency distribution of the number of times the entire endowment was invested: (A)r=8;
(B) r=20.

solution (Eq. (1)), which pertains to individual results (and assumes risk-neutrality), does
not account for the strategy profiles of all the subjects. Estimates of the risk parameterc of
the power utility functionu(x)=xc were obtained for each subject separately by minimizing
the sum of squared differences between observed and predicted probabilities across all
the trials. The mean and the standard deviation of the risk parameter were 1.76 and 1.95,
respectively, showing considerable individual differences in the attitude to risk. All the 18
subjects of Group 2 in GameL mixed their strategies. The mean and the standard deviation
of the risk parameterc were 0.975 and 0.997, respectively.
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4.8. Game H

In the lower panel of Fig. 2, we again see that the frequency of investing the entire capital
ranges from 0 to 80. 15 of the 18 subjects in Group 1 of GameH mixed their strategies,
whereas three other subjects invested their entire capital on all 80 trials. The mean and the
standard deviation of the risk parametercof the 15 subjects who mixed their strategies were
1 and 0.894, respectively. Two of the 18 subjects in Group 2 of GameH always invested
their entire capital, whereas 16 mixed their strategies. The mean and the standard deviation
of the risk parameter for these 16 subjects were 0.80 and 0.69, respectively.

4.9. Sequential dependencies

Irrespective of the player’s attitude toward risk, the mixed-strategy equilibrium solution
calls for perfect randomization of choices between successive trials. Indeed, to minimize
or totally eliminate sequential dependencies, the subjects’ pairing in our experiment was
deliberately changed from trial to trial. It is plausible that some subjects repeatedly played
the same pure strategy knowing that their competitors were changed from trial to trial. But,
as we discussed earlier, such a play of pure strategy was limited to 2 of the 36 subjects in
GameL, and 5 of the 36 in GameH. Table 5 presents the first-order sequential dependencies
in the choice of strategies.

Independence and stationary probabilities jointly imply that the relative frequencies in
each column be roughly the same. Inspection of Table 5 (GamesL andH) shows that this
is not the case. Rather, there is a strongrepetition effectfor all six pure strategies; the

Table 5
Experiment 1: transition matrix of investment frequenciesa

Trial t Trial t+1

ck=0 ck=1 ck=2 ck=3 ck=4 ck=5 Total

GameL
ck=0 159(0.33) 51 (0.11) 35 (0.07) 53 (0.11) 34 (0.07) 147 (0.31) 479 (0.17)
ck=1 34 (0.10) 127(0.39) 30 (0.09) 30 (0.09) 30 (0.09) 79 (0.24) 330 (0.12)
ck=2 31 (0.13) 33 (0.13) 89(0.36) 27 (0.11) 12 (0.05) 57 (0.23) 249 (0.09)
ck=3 60 (0.18) 28 (0.08) 33 (0.10) 117(0.35) 37 (0.11) 63 (0.19) 338 (0.12)
ck=4 25 (0.14) 23 (0.09) 22 (0.09) 39 (0.15) 63(0.25) 74 (0.29) 256 (0.09)
ck=5 153 (0.13) 73 (0.06) 42 (0.04) 73 (0.06) 80 (0.07) 771(0.65) 1192 (0.42)
Total 472 (0.17) 335 (0.12) 251 (0.09) 339 (0.12) 256 (0.09) 1191 (0.42) 2844

GameH
ck=0 179(0.45) 18 (0.05) 18 (0.05) 14 (0.03) 15 (0.04) 158 (0.39) 402 (0.14)
ck=1 17 (0.11) 40(0.26) 16 (0.10) 12 (0.08) 12 (0.08) 57 (0.37) 154 (0.05)
ck=2 15 (0.10) 14 (0.09) 56(0.37) 19 (0.12) 12 (0.08) 37 (0.24) 153 (0.05)
ck=3 20 (0.13) 9 (0.06) 21 (0.14) 22(0.14) 32 (0.21) 49 (0.32) 153 (0.05)
ck=4 20 (0.10) 9 (0.05) 13 (0.07) 33 (0.17) 44(0.22) 80 (0.40) 199 (0.07)
ck=5 154 (0.09) 64 (0.04) 30 (0.02) 53 (0.03) 81 (0.05) 1401(0.79) 1783 (0.63)
Total 405 (0.14) 154 (0.05) 154 (0.05) 153 (0.05) 196 (0.07) 1782 (0.63) 2844

a The proportions of repetition appear (in boldface) on the main diagonal of the transition matrices. For all six
strategies, the probability of repeating a strategy is higher than the probability of switching to a new strategy.
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proportion of time that the strategy played on trialt was repeated on trialt+1 exceeds
that of any other strategy. For instance,p(ci ,t+1=5|ci ,t=5) is 0.65 in GameH and 0.79 in
GameL. This result suggests that though subjects chose different strategies on different
trials, they did not randomize their strategiesindependentlyon different trials. Such inertia
in the choice of strategy is consistent with the learning trends discerned in our analysis of
variance.

5. Discussion

Although the characteristics of the symmetric Investment game are not conducive to equi-
librium play, most implications of the equilibrium solution are supported at the aggregate
level. Subjects engaged in the competition rather than staying away from it and taking the
guaranteed payoffek. Almost all the subjects mixed their choices over all six strategies as
predicted, chose the strategy of investing all the capital more often than any other strategy,
and increased the frequency of choice of this strategy as the reward for winning the compe-
tition increased. However, the mean payoff differed significantly between the two games,
the proportions of trials on which the entire budget was invested in general diverged rather
than converged to the equilibrium, and strong sequential dependencies were detected on
both the aggregate and individual levels. Logit analyses indicate that, in deciding whether
to change the size of the investment on the previous trial, the subjects were mostly affected
by the opponent’s choice of strategy on the previous trial and the outcome of the previous
trial (Rapoport and Amaldoss, 1996). All of these findings suggest that equilibrium on the
aggregate level arises because players learn from experience rather than figure out equilibria
by introspection. We discuss adaptive learning in more depth in Section 5.

6. Experiment 2: the Investment game with asymmetric players

6.1. Subjects

Thirty-six undergraduate and graduate students from the University of Arizona partic-
ipated in the study. None of the subjects had taken part in Experiment 1. Subjects were
recruited in the same way as in Experiment 1 through advertisements on bulletin boards
and class announcements. They were all promised monetary rewards contingent on perfor-
mance. As before, each group included 18 players.

6.2. Procedure

The procedure was identical to that of Experiment 1 except for the following differences.
Rather than having two games (L andH), only a single game was played with the parameter
valuesei=5,ej=4, andr=10. Each subject participated in 160 iterations of this stage game,
80 in the role of the strong player (playeri) and 80 in the role of the weak player (player
j). The subjects were divided into nine pairs with the pairing changing randomly from trial
to trial. In Phase 1 (trials 1–80), each subject maintained one role (strong or weak) and in
Phase 2 (trials 81–160) the opposite role. Consequently, in each phase, each subject was
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randomly paired with one of the nine members who were assigned the opposite role. On the
average, in each phase, each player was matched with the same player approximately nine
times. However, as in Experiment 1, subjects did not know the identity of their opponent
on any given trial. On account of the possibility of carry over effects of role (from weak to
strong and vice versa) and group differences (as observed in Experiment 1), we examine
below four separate sets of nine players each:
Set 1WS — Group 1; order of play: (Weak, Strong)
Set 1SW — Group 1; order of play: (Strong, Weak)
Set 2WS — Group 2; order of play: (Weak, Strong)
Set 2SW — Group 2; order of play: (Strong, Weak)

7. Results

As in Experiment 1, we first discuss the frequency distribution of payoffs and then
examine the strategy profiles.

7.1. Payoffs

Table 6 presents the relative frequency distributions of payoff for the strong (upper panel)
and weak (lower panel) players in Experiment 2. The format of the table is similar to
Table 2. The realizable payoffs for the strong player are 1, 2, . . . , 5, 10, 11, . . . , 14, and
for the weak player they are 0, 1, . . . , 4, 10, 11, and 12. The observed relative frequencies
for Group 1, Group 2, and across the two groups are presented in columns 2, 3, and 4,
respectively. The equilibrium payoffs are shown on the right-hand column. With a single
exception, all the comparisons that we conducted between observed and predicted statistics
yielded non-significant results.

7.2. Strong players

Under equilibrium play by both players, the expected payoff of the strong player isr=10.
The mean payoff earned by the players in Group 1 (9.49) does not differ significantly from the
theoretical value (z=1.42,p>0.07). A similar result holds for Group 2 (mean=9.29,z=1.90,
p>0.05). The variance of the payoffs under equilibrium play is equal to 8. We find again that
the observed variances do not differ from the theoretical value (10.15 (χ2=100.2,p>0.1)
for Group 1; 10.88 (χ2=107.398,p>0.1) for Group 2). The relative frequency distribution
of payoffs combined across both groups does not differ from the equilibrium probability
distribution (Kolmogorov–SmirnovD160=0.094,p>0.1). The same result holds for each
of the two groups considered separately (D80=0.083,p>0.2, for Group 1, andD80=0.104,
p>0.2, for Group 2).

7.3. Weak players

The expected payoff per trial for the weak player under equilibrium play ise−1=4 and the
theoretical variance is equal to 8. The actual mean payoffs earned by the players in Groups
1 and 2 are 3.73 and 3.62, respectively. Neither of the means differs from the theoretical



A. Rapoport, W. Amaldoss / J. of Economic Behavior & Org. 42 (2000) 483–521 503

Table 6
Aggregate distribution of payoff in the asymmetric casea

Payoff Empirical distribution Equilibrium
prediction

Group 1 Group 2 Both groups

Strong player (ei=5, r=10)
1 0.023 0.040 0.031 0.000
2 0.032 0.029 0.031 0.040
3 0.033 0.013 0.023 0.000
4 0.071 0.092 0.082 0.080
5 0.013 0.001 0.007 0.000

10 0.560 0.534 0.547 0.600
11 0.072 0.116 0.094 0.000
12 0.069 0.058 0.064 0.160
13 0.048 0.015 0.032 0.000
14 0.079 0.102 0.091 0.120

Weak player (ej=4, r=10)
0 0.140 0.161 0.150 0.120
1 0.097 0.105 0.101 0.000
2 0.056 0.060 0.058 0.160
3 0.020 0.039 0.029 0.000
4 0.577 0.522 0.550 0.600

10 0.068 0.067 0.067 0.080
11 0.035 0.034 0.035 0.000
12 0.007 0.012 0.010 0.040

a The relative frequencies were computed using the payoffs obtained over 80 trials. Nine subjects in each group
were assigned the strong position (ei=5) in the first 80 trials and weak position (ej=4) in the second 80 trials;
another nine players were assigned the weak position in the first 80 trials and the strong position in the last 80
trials.

value (z=0.858,p>0.2, for Group 1, andz=1.162,p>0.12, for Group 2). Similarly, the
variances of the observed payoffs — 7.91 and 8.52 for Group 1 (χ2=78.07,p>0.2) and
Group 2 (χ2=84.16,p>0.2) — do not differ from the theoretical value. But the relative
frequency distribution of payoffs combined across both groups differs significantly from
the predicted distribution (D160=0.131,p<0.01). The significant difference is mainly due to
the payoffs earned by Group 2 (D80=0.146,p<0.01). The difference between the theoretical
and observed distributions for Group 1 is not significant (D80=0.117,p>0.2).

7.4. Strategy profiles

Table 7 shows the relative frequencies of choice of the investment strategies for the
strong (upper panel) and weak (lower panel) players. In each case, the relative frequencies
are summed across order of play. Also presented in Table 7 are the equilibrium probabilities
of choice for risk-neutral players (computed from Eqs. (5)–(6)).

The weak players in Experiment 2 did not always play their minimax strategy; rather,
across subjects, strategycj=0 was played 55.0 per cent of the time by the weak players. The
strong players in Experiment 2 also did not play their minimax strategy all the time; rather,
strategyci=5 was played 54.7 per cent of the time. In equilibrium, column 0 (cj=0) and
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Table 7
Aggregate distribution of investment in the asymmetric case

Investment Empirical distribution Equilibrium
prediction

Group 1 Group 2 Both groups

Strong player (ei=5, r=10)
ci=0 0.013 0.001 0.007 0.000
ci=1 0.150 0.194 0.172 0.200
ci=2 0.081 0.028 0.054 0.000
ci=3 0.101 0.087 0.094 0.200
ci=4 0.095 0.156 0.125 0.000
ci=5 0.560 0.534 0.547 0.600

Weak player (ej=4, r=10)
cj=0 0.577 0.522 0.550 0.600
cj=1 0.020 0.039 0.029 0.000
cj=2 0.062 0.072 0.067 0.200
cj=3 0.133 0.139 0.136 0.000
cj=4 0.208 0.228 0.218 0.200

row 5 (ci=5) each should be chosen 60 per cent of the time by risk-neutral weak and strong
players, respectively. Table 7 shows that, indeed,cj=0 was chosen by the weak player
almost exactly as often asci=5 by the strong player, and that both were chosen slightly less
frequently than predicted. This discrepancy from equilibrium cannot be accounted for by
risk aversion, because whenu(x) is strictly concave, the strong player should, indeed, invest
his entire capital less often than predicted, but the weak player should invest zero capital
more often than predicted.

The frequencies of choice of the investment strategies by the strong players support
the equilibrium solution. The relative distribution of frequencies combined across both
groups does not differ significantly from the predicted distribution (D160=0.073,p>0.2).
We fail to reject the null hypothesis when the results of each group are considered sepa-
rately (D80=0.056,p>0.2, for Group 1, andD80=0.090,p>0.2, for Group 2). However, the
frequencies of choice of the weak player do not support equilibrium play. When combined
across both groups, the relative frequency distribution of strategy choices differ from the
theoretical prediction (D160=0.153,p<0.01). The same significant discrepancy between
observed and theoretical distributions is obtained for each of the two groups separately
(D80=0.140,p<0.05, for Group 1, andD80=0.167,p<0.05, for Group 2).8

Table 7 shows that row 0 (ci=0), column 1 (cj=1), and row 2 (ci=2) were chosen
very infrequently (0.007, 0.029, and 0.054, respectively). Iteratively dominated strategies
occupying a higher position in the deletion hierarchy were chosen more frequently: column
3 (cj=0) and row 4 (ci=0) were chosen 13.6 and 12.5 per cent, respectively. These results

8 The random matching of subjects undermines, though does not completely eliminate, the possibility of correlated
strategies. We conducted another experiment identical to Experiment 2 in all details of the design with the only
difference of using fixed pairs for all 80 trials of each phase rather than matching them randomly on each trial.
The results of this experiment, which we plan to report elsewhere, were quite different. We observed many fixed
pairs slowly converging to the pair of pure strategies in which the strong player investsci=ei and the weak player
investscj=0.
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suggest that strongly dominated strategies, which should be iteratively deleted later in the
sequence, were chosen more often than strategies that should have been deleted earlier. We
shall test this hypothesis on the individual level later.

7.5. Trends in investment

We divided the 80 trials in each phase of the game into 8 blocks of 10 trials each. Then, for
each weak player, we counted the number of times she invested 0 units in each block, denoted
by f0, and for each strong player, the number of times he invested 5 units in each block,
denoted byf5. Table 8 presents the mean proportion of trials in which 0 units were invested
by the weak players and 5 units by the strong players. This information is presented by group,
order of play, and block. Subjects who had played the role of the strong player in Phase 1
increased the frequency of 0 units investment in Phase 2, when assigned the role of a weak
player. Whereas the mean proportion of 0 units investment across groups in Phase 1 was
0.49, the same mean proportion increased to 0.61 in Phase 2. The upper panel of Table 8 also
shows that the order of play effect was stronger in Group 1 than in Group 2. The order of play
effect was relatively steady across blocks in Group 1, but in Group 2, the effect was reversed
after about 40 trials. Next, the lower panel of Table 8 shows that the subjects experiencing
the role of weak player in Phase 1 decreased the frequency of investing 5 units in Phase 2
when assigned the role of the strong player. However, this effect was only manifested in
Group 2.9

7.6. Individual differences

Fig. 3 displays the frequency distributions, one for each player role, of the number of
trials in which 0 units (weak players) or 5 units (strong players) were invested by individ-
ual subjects in the 80 iterations of the stage game. The distributions are computed across
both groups and orders of play. Fig. 3 displays widely dispersed distributions with a com-
mon mode at the frequency class 51–60. A comparison of the two distributions by the
Kolmogorov–Smirnov test for two independent samples shows no significant difference

9 To test for the effects of group, order of play, and block, the frequencies of choicef0 andf5 were subjected to
a 2×2×8 group by order of play by block ANOVA with repeated measures on the group and block factors. Two
separate ANOVAs were conducted, one for the weak players and the other for the strong players.
As for the weak players, the order of play main effect (F1,2848=33.5,p<0.0001), order of play by group interaction
effect (F1,2848=7.5,p<0.006), order of play by block interaction effect (F7,2848=2.95,p<0.005), and the triple
interaction effect (F7,2848=3.1, p<0.003) were all significant. Neither of the other main or interaction effects,
none involving the order of play factor, were significant. The presence or absence of experience in playing the
other role for 80 trials was the major factor causing subjects in the weak role to change the proportion of zero
units investment. Although we have found no significant main effect due to group in Experiment 2, this result is
qualified by the significant two- and three-way interaction effects involving group. As we noticed in Experiment 1,
we have additional evidence that groups develop their own dynamics of play, and that switching opponents from
trial to trial may not be sufficient to remove this ‘population’ effect.
As for the strong players, we find again that previous experience with the other role, or lack of it, was the major
factor causing the subjects to change the proportion of trials in which the entire capital was invested. Only the
main effect due to order of play (F1,2848=7.20,p<0.007) and the order of play by group two-way interaction
effect (F1,2848=50.65,p<0.0001) were statistically significant.
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Table 8
Experiment 2: mean relative frequency of trials in which 0 (weak players) or 5 (strong players) were invested

Group Order Block

1 2 3 4 5 6 7 8 Mean

Weak playersa

1 W, S 0.52 0.51 0.34 0.53 0.42 0.46 0.49 0.50 0.47
1 S, W 0.64 0.73 0.66 0.63 0.78 0.72 0.68 0.61 0.68
2 W, S 0.41 0.43 0.36 0.48 0.66 0.49 0.67 0.53 0.50
2 S, W 0.67 0.59 0.56 0.44 0.54 0.59 0.46 0.49 0.54
Total 0.56 0.57 0.48 0.52 0.60 0.56 0.57 0.53 0.55

Strong playersb

1 S, W 0.47 0.54 0.53 0.51 0.63 0.60 0.63 0.56 0.56
1 W, S 0.60 0.56 0.59 0.60 0.57 0.51 0.53 0.53 0.56
2 S, W 0.49 0.41 0.49 0.67 0.62 0.57 0.62 0.72 0.57
2 W, S 0.53 0.44 0.41 0.51 0.53 0.48 0.54 0.50 0.49
Total 0.52 0.49 0.51 0.57 0.59 0.54 0.58 0.58 0.55

a 0 units were invested.
b 5 units were invested.

between them (p>0.1). Recall that the equilibrium prediction of investing 0 units by the
weak players or 5 units by the strong players in 80 trials is 0.6×80=48. Using the normal
approximation to the binomial distribution (with a significance level set at 0.01), we tested
the equilibrium prediction with the individual data. The null hypothesis was rejected for 22
of the 36 weak players and 18 of the 36 strong players.

7.7. Sequential dependencies

First-order sequential dependencies were assessed on the aggregate level, as in Exper-
iment 1, by computing transition matrices of joint frequencies of choice on trialst and
t+1 across subjects and trials. As the transition matrices are very similar to the ones pre-
sented in Table 5, they are omitted. Basically, they exhibit the same repetition bias as
observed earlier. In particular, for the weak players,p(cj ,t+1=0|cj ,t=0)=0.72, whereas
p(cj ,t+1=0|cj ,t=m) was equal to 0.27, 0.31, 0.21, and 0.40, form=1, 2, 3, and 4, respec-
tively. For the strong players, the conditional probability of investing all the endowment
wasp(ci ,t+1=5|ci ,t=5)=0.72, whereasp(ci ,t+1=5|ci ,t=m) was equal to 0.33, 0.38, 0.32,
0.33, and 0.11, form=4, 3, 2, 1, and 0, respectively. Similar results were obtained on the
individual level. In essence, the subjects in Experiment 2, regardless of their role, exhibited
the same strong repetition bias as in Experiment 1.

7.8. Iterative elimination of strictly dominated strategies

In equilibrium, only iteratively undominated strategies are chosen. To what extent can we
believe that the assumptions about common knowledge of rationality that underlie IESDS
are actually met by our subjects? Clearly, a player does not need to know anything about
his opponent to decide that it can never be optimal to play a strongly dominated strategy.
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Fig. 3. Experiment 2: frequency distribution of the number of times: (A) 0 units (weak players); (B) 5 units (strong
players) were invested.

However, as stated earlier, to justify deleting column 1 the weak player has to know that
the strong player will not choose his strongly dominated row 0 (ci=0). Similarly, to justify
deleting row 2, the strong player must assume that the weak player will delete column 1
(cj=1). In other words, playeri has to know that playerj knows that playeri will not play
his strongly dominated strategy.

When the number of steps in the IESDS is relatively large, the common knowledge
assumption would seem to be behaviorally unacceptable, as it imposes cognitive demands
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that can not be satisfied by boundedly rational players. But when the number of pure
strategies is relatively small, the full force of the common knowledge assumption is no
longer needed. EventE is said to have knowledge level of degree 1, if playeri knows it,
of degree 2, if playerj knows that playeri knows it, of degree 3, if playeri knows that
playerj knows that playeri knows it, and so on. The ‘hierarchy of knowledge of rationality’
hypothesis states that the proportion of players with knowledge level of degreed decreases
in d. When applied to our game, this hypothesis implies that some fraction of the subjects
iteratively deleted strongly dominated strategies, a smaller fraction deleted+1 strongly
dominated strategies, and so on.

Indirect support for this hypothesis has already been presented in Table 7. Under equi-
librium play, row 0 (ci=0), column 1 (cj=1), row 2 (ci=2), column 3 (cj=3) and row 4
(ci=4) should have been iteratively deleted in this order. Table 7 shows that they were in
fact deleted on 99.3, 97.0, 94.6, 86.4, and 87.5 per cent, of all the trials, respectively. The
hypothesis about hierarchy of knowledge of rationality predicts the sign of all 10 pair-wise
differences between the five levels ofd. Of these 10 predictions, nine are supported by the
data. Only the difference between levels 4 and 5 is not significant (t=−1.23,p>0.1). Note
that these are aggregate results that may mask considerable individual differences, whereas
the hypothesis above refers to individual players.

To test the hierarchy of knowledge of rationality hypothesis on the individual level,
we counted the number of subjects, out of 36, who chose any of the iteratively strongly
dominated strategies onm occasions out of 80 trials. Table 9 presents the results. It shows
that 32 of the 36 strong subjects always (on 80 out of 80 trials) deleted row 0. Further, 23
of the 36 weak players always deleted column 1. Table 9 also shows the number of subjects
who erroneously chose any iteratively strongly dominated strategy no more than four times
(5 per cent of the 80 decisions). If we allow for four ‘errors’ in a total of 80 rounds of
play, then the majority of the subjects reveal four levels of iterated dominance (the exact
frequencies are 34, 31, 26, and 19). Using this fairly strong criterion, 13 of the 36 subjects
reveal five levels of iterated dominance. These results are significantly stronger than the
ones reported in the different variants of the Beauty Contest game.

Subjects who approach the Investment game strategically, reason about their opponents’
decisions, and grasp the principle of IESDS, should iteratively eliminate strongly domi-
nated strategies whether they play the role of strong or weak player. By switching roles

Table 9
Experiment 2: number of subjects choosing iteratively strongly dominated strategies (m times out of 80 trials)

Strongly dominated strategies

m ci=0 cj=1 ci=2 cj=3 ci=4

0 32 23 6 11 3
1 2 3 7 4 5
2 0 2 6 2 0
3 0 2 2 0 4
4 0 1 5 2 1
5+ 2 5 10 17 23
Total 36 36 36 36 36
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after 80 trials, Experiment 2 was specifically designed to test this hypothesis. To test the
hierarchy of knowledge of rationality hypothesis across both player roles, we counted
for each subject the number of times, out of a total of 160 trials, that he or she played
each of the followingtuplesof iteratively strongly dominated strategies: (row 0), (row
0 and column 1), (row 0, column 1, and row 2), (row 0, column 1, row 2, and col-
umn 3), and (row 0, column 1, row 2, column 3, and row 4). The proportions of sub-
jects who played these tuples no more than eight times (5 per cent of 160 trials) were
0.972, 0.889, 0.772, 0.500, and 0.194, respectively. These results strongly support the hy-
pothesis about a hierarchy of levels of knowledge of rationality, showing that the ma-
jority of the subjects, regardless of their role, engage in up to four dominance iteration
steps.

8. Discussion

The equilibrium solution for the asymmetric Investment game has two major implica-
tions. The first implication is that only iteratively undominated strategies will be chosen.
Although this implication does not presuppose communality of beliefs or the same atti-
tude to risk, it may still impose strong demands on the players’ cognitive system when the
number of iteratively dominated strategies is large. Evidence from sequential bargaining
experiments (e.g., Roth, 1995b), Centipede game (McKelvey and Palfrey, 1992), and the
Beauty Contest game suggests that subjects typically do not use backward induction for iter-
atively deleting strongly or weakly dominated strategies even if the number of stages in the
game is limited and small. Our data support a bounded process of IESDS, which postulates
a hierarchy of classes of players who differ from one another in their level of knowledge of
rationality.

The second implication is that both the strong and weak players will choose the strate-
gies that are left after the iterative deletion according to two probability distributions,
which are symmetrical. The results of Experiment 2 support this implication. The pro-
portions of trials that the strong players invested all of their endowment and the weak
players invested none of their endowment are practically the same. And the frequency
distributions over players within a role who invested all the 5 units (strong players) or 0
units (weak players) do not differ significantly from each other (Fig. 3A and B). More-
over, at the aggregate level, the actual proportions of 0 units investment (weak players)
or 5 units investment (strong players) come very close to the equilibrium solution. How-
ever, at the individual level, even if only these proportions are considered, the equilib-
rium solution fails to account for the investment choices of the majority of the subjects.
Nor can it account for the sequential dependencies — the repetition bias — found on the
aggregate and individual levels. The strong sequential dependencies reported above, out-
comes of the Logit analyses (reported in Rapoport and Amaldoss, 1996), and significant
interactions involving the group factor all suggest, similarly to Experiment 1, that the be-
havior of subjects may possibly be explained by an adaptive learning process in which
players’ strategy choices are influenced to different degrees by the payoffs of both play-
ers, the outcomes of the previous trial, as well as by beliefs about the opponent’s future
choice.
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9. Adaptive learning

Our purpose in the present section is to account for the major patterns of results in
Experiments 1 and 2 by the ‘experience-weighted attraction’ (EWA) learning model that
was recently proposed by Camerer and Ho (1999), and subsequently tested experimentally
on different sets of data (Camerer and Ho, 1998, 1999). We chose the EWA model because
it has three desirable properties. Firstly, it satisfies the three principles of actual, simulation,
and declining effects. The first principle, shared by all reinforcement-based models, states
that successes increase the choice probability of chosen strategies. The second principle
asserts that unchosen strategies, which would have yielded high payoffs, are more likely
to be chosen in the future. The third principle states that, with experience, players move
to reduce discrepancies between actual and foregone payoffs. Secondly, the EWA model
contains both belief-based (e.g., Fudenberg and Levine, 1998) and reinforcement-based
(e.g., Roth and Erev, 1995) learning models as two special cases. Thirdly, the EWA model
captures interactive decision situations in which players use information about their own
payoffs together with information about the history of play by their opponents in adjusting
their choice behavior. These three properties render the EWA model especially suitable to
account for the dynamics of play in our two experiments, which seem to combine elements
of reinforcement (the sequential dependencies reported in both experiments) and beliefs
(the deletion of strongly dominated strategies in Experiment 2). We make no attempt to
compare the EWA model with alternative learning models (e.g., Fudenberg and Levine,
1998). Rather, we have a more modest purpose of using this model to account for some of
the major behavioral regularities that were reported in Sections 4 and 7.

9.1. The EWA learning model

At the heart of the EWA model are two parameters that are updated after each round
of play. The first parameter, denoted byN(t), is interpreted as the number of observations-
equivalents of past experience. The second parameter, denoted byA

cm

k (t), is interpreted
as the attraction of investingm units by playerk after roundt. The initial values of these
two parameters are denoted byN(0) andA

cm

k (0). For updatingN(t), the model assumes that
N(t)=ρN(t−1)+1, t≥1, where the parameterρ (0≤ρ≤1) is the rate of depreciation. While
updating the attraction of a strategy, payoffs corresponding to unchosen strategies are given
a weight ofδ, whereas the payoffs pertaining to chosen strategies are given additional weight
of 1−δ. Previous attractions are depreciated by another parameterφ (0≤φ≤1). Earlier, we
usedck=m to denote the strategy of investingm (m=0, 1, 2, 3, 4, 5) units by playerk (k=i,
j). To be consistent with Camerer and Ho (1999), hereafter we denote strategyck=m by
s
cm

k . The attraction of strategyscm

k , namelyAcm

k (t), is a weighted average of the payoff for
periodt and the previous attractionAcm

k (t − 1):

A
cm

k = φN(t − 1)A
cm

k (t − 1) + [δ + (1 − δ)I (s
cm

k , sk(t)]πk(s
cm

k , s−k(t))

N(t)
.

In the above expression,I(x,y) is an indicator variable which equals 1, ifx=y and 0, ifx6=y,
andπk(s

cm

k , s−k(t)) is the payoff playeri earns when he plays strategyck on trialt. Note that
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when,δ=0,ρ=0, andN(0)=1, the attractionAcm

k (t) resembles the reinforcement of classical
reinforcement-based learning models. Ifδ=1 andρ=φ, then the attraction corresponds to
updated expected payoffs as in belief-based learning models.

Having briefly described the attraction of choosing to investck on trial t, Acm

k (t), we pro-
ceed to define the probability of playeri investing ck on trial t+1 by the Logit
function:

p
cm

k (t + 1) = eλA
cm
k (t)

∑ek

l=1eλA
cl
k (t)

,

where the parameterλ measures sensitivity of the players to attractions.

10. Results

The model parameters for each of the two experiments were estimated by the maximum
likelihood method.

10.1. Experiment 1

We estimated separately the model parameters for GamesL andH. The estimated pa-
rameter values and measures of goodness of fit for the EWA model (column 3) and for each
of its two special cases — the reinforcement-based (column 4) and belief-based (column
5) models are presented in Table 10.

10.2. Overall model fit

Table 10 shows that, as expected, the hybrid EWA model outperforms both the rein-
forcement-based and belief-based learning models in tracking the investment behavior of
the subjects in both GamesL and H. This is affirmed by the goodness of fit statistics
of log-likelihood ratio, Akaike Information Criterion (AIC), Bayesian Inference Criterion
(BIC), andχ2 (p<0.00001), all four of which are reported in Table 10. The reinforcement-
based learning model outperforms the belief-based model, and is in turn slightly outper-
formed by the EWA model. Note that the reinforcement-based model hypothesizes that the
player’s decision depends on the sum of past payoffs. Whereas, the EWA model parameter
estimates support the hypothesis that decision depends on the average of past payoffs. The
reported parameter estimates are significant (α=0.01).

Using a similar format to Table 3, Table 11 presents the EWA model predictions of
the choice probabilities in GameL (top panel) andH (second panel). The EWA model
clearly over-estimates the choice probability of investing the entire resource (ci=5) in
both groups. Subjects of Groups 1 and 2 in GameL actually invested their entire resource
in proportions 0.494 and 0.343, respectively (Table 3). The corresponding EWA model
predictions (0.662 and 0.507) are considerably higher. Subjects of Group 2 invested 0 more
frequently (0.222) than the equilibrium prediction, a result which is tracked by the EWA
model quite accurately (0.216). However, the EWA model also fails in accounting for the
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Table 10
Estimation of learning model parameters: Experiment 1

Parameter Model

EWA Reinforcement-based Belief-based

Reward condition: low reward (r=8)
δ 0.000 0.000 1.000
φ 0.940a 0.927a 1.000
ρ 0.929a 0.000 1.000
N(0) 4.613a 1.000 303.295a

A0(0) 0.000 0.000 0.000
A1(0) 0.000 0.000 0.000
A2(0) 0.000 0.000 0.000
A3(0) 0.000 0.000 0.092a

A4(0) 0.000 0.000 0.000
A5(0) 1.929a 19.810a 3.116a

λ 0.755a 0.066a 0.475a

Log-likelihood −3551.70 −3563.76 −4649.39
AIC −3560.70 −3569.76 −4656.39
BIC −3587.55 −3587.65 −4677.27
ρ2 0.310 0.308 0.098
χ2 24.111 2195.386
(p-value, d.o.f) (0.00003) (0.00002)

Reward condition: high reward (r=20)
δ 0.000 0.000 1.000
φ 0.970a 0.954a 1.000
ρ 0.984a 0.000 1.000
N(0) 15.747a 1.000 233.758a

A0(0) 0.000 0.000 0.000
A1(0) 0.000 0.000 0.000
A2(0) 0.000 0.000 0.000
A3(0) 0.000 0.000 0.000
A4(0) 0.000 0.000 0.000
A5(0) 2.301a 74.635a 16.359a

λ 0.967a 0.030a 0.149a

Log-likelihood −2908.08 −2928.29 −3634.02
AIC −2916.08 −2933.29 −3640.02
BIC −2939.94 −2948.20 −3657.92
ρ2 0.435 0.431 0.295
χ2 40.416 1451.890
(p-value, d.o.f) (0.00003) (0.00002)

a Parameter estimates are significant (α=0.01).

sequential dependencies observed in Experiment 1. The first-order sequential dependency in
investing the entire resource is predicted by EWA model to be 0.974, whereas the observed
sequential dependency in this case is 0.65 (Table 5).

Moving next to GameH, Table 11 (second panel from the top) shows that the EWA
model considerably over-estimates the proportion of trials the subjects invested their entire
budget (in both Groups 1 and 2). The model probabilities are 0.866 and 0.858, compared
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Table 11
EWA model predictions of investment choices: Experiments 1 and 2a

Investment Predicted distribution Observed
behavior

Group 1 Group 2 Both groups

Experiment 1, GameL: low reward condition (e=5, r=8)
ci=0 0.078 0.216 0.147 0.169
ci=1 0.070 0.069 0.069 0.116
ci=2 0.083 0.048 0.065 0.088
ci=3 0.048 0.113 0.081 0.118
ci=4 0.060 0.047 0.054 0.090
ci=5 0.662 0.507 0.584 0.418

Experiment 1, GameH: high reward condition (e=5, r=20)
ci=0 0.062 0.030 0.046 0.141
ci=1 0.034 0.010 0.022 0.055
ci=2 0.036 0.036 0.036 0.053
ci=3 0.000 0.000 0.000 0.053
ci=4 0.002 0.066 0.034 0.069
ci=5 0.866 0.858 0.862 0.628

Experiment 2, weak player (e=4, r=10)
cj=0 0.808 0.745 0.777 0.550
cj=1 0.000 0.014 0.007 0.029
cj=2 0.002 0.050 0.026 0.067
cj=3 0.090 0.110 0.100 0.136
cj=4 0.100 0.081 0.090 0.218

Experiment 2, strong player (e=5, r=10)
ci=0 0.000 0.000 0.000 0.007
ci=1 0.113 0.159 0.136 0.172
ci=2 0.035 0.007 0.021 0.054
ci=3 0.060 0.020 0.040 0.094
ci=4 0.018 0.082 0.050 0.125
ci=5 0.775 0.732 0.754 0.547

a The right-hand columns show the relative frequencies computed using the observed investment decisions of
Groups 1 and 2 in Experiments 1 and 2 (refer to Tables 3 and 7).

to the observed probabilities of 0.662 and 0.594. Similarly, the predicted probability (0.99)
of sequential dependency in investing the entire capital exceeds the observed probability of
0.79 (Table 5).

10.3. Pre-game disposition

The estimates of the model parametersA0(0), A1(0), . . . , A5(0) indicate the predispo-
sition of the subjects to invest 0, 1, . . . , 5 units, respectively, before the experiment com-
mences. The model suggests that the subjects were predisposed toward investing the entire
capital at the commencement of both GamesL andH (A5(0)=1.929 for GameL, and 2.301
for GameH). This predisposition is considerably stronger in GameH (N(0)=15.747) than
GameL (N(0)=4.613). Pre-game disposition, both in its direction and strength, is consistent
with the structural differences between GamesL andH.
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10.4. Interpretation of the parameter values

As the estimated value ofδ is 0 in both GamesL andH, we can infer that the choice
of strategies in these games was not guided by expected payoffs. Rather, the investment
decisions were based on the payoffs earned in previous trials. In particular, the choice of
strategies was not based on beliefs about the likely actions of competitors. The estimates of
the parametersφ andρ are equal in both games, implying that the average of past payoffs,
rather than the sum of past payoffs, guided the choice of the investment strategy. Finally,
the estimates of the sensitivity parameterλ (GameL: 0.755; GameH: 0.967) suggest that
the subjects paid attention to the likely reward on winning the competition.

10.5. Experiment 2

Table 12 reports similar results for Experiment 2. As in Experiment 1, we find that the
EWA model outperforms both the reinforcement-based and belief-based models. Specifi-
cally, the EWA model fits the data better than the reinforcement-based (χ2=178.1,p<0.001)
and belief-based (χ2=1413.5,p<0.001) learning models. The AIC and BIC support this
inference. The parameter estimates are significant (α=0.01).

The lower two panels of Table 11 present the distribution of strategies predicted by the
EWA model for the weak and strong players. The model tends to over-predict the investment
of the entire capital by the strong players (0.754 versus 0.574) and zero investment by
the weak players (0.777 versus 0.550). Quite interestingly, the EWA model predicts the
deletion of dominated strategies, namely, strategiesci=0, cj=1, ci=2, cj=3, andci=4,
in proportions that closely approximate the actual choices of the subjects. Table 11 shows
that the strategiesci=0, cj=1, ci=2, cj=3, andci=4 were predicted to be deleted 100,
99.3, 97.9, 90.0, and 95.0 per cent of the time across subjects. The EWA model predictions
compare favorably with the actual percentages of deletion (obtained by subtraction), namely,
99.3, 97.1, 94.6, 86.4, and 87.5. In a manner similar to Experiment 1, the EWA model
over-estimated the magnitude of the sequential dependencies. For instance, the EWA model
predictsp(ci ,t+1=5|ci ,t=5)=0.97 and p(cj ,t+1=0|cj ,t=0)=0.98 compared to the observed
result of 0.72.

10.6. Pre-game disposition

Supposedly through introspection, the strong players had eliminated the option of in-
vesting 0 (A0(0)=0) before the experiment commenced. But they did not eliminate the
other two dominated strategies, namely,ci=2 andci=4 (A2(0)=7.432;A4(0)=9.188). At
the commencement of the game, the strong players were strongly disposed toward in-
vesting all their capital (A5(0)=11.681). However, the strength of this predisposition, as
indicated by the estimateN(0)=1.418, is less than the experience derived from playing two
trials.

In the bottom panel of Table 12, we notice that weak players were able to eliminate the
second level of dominated strategy, namelycj=1 (A1=0). There is some theoretical support
for elimination of the dominated strategycj=3 by introspection, as the corresponding
parameter estimate is not significant (A3=0.951). The strength of the predisposition, as
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Table 12
Estimation of learning model parameters: Experiment 2

Parameter Model

EWA Reinforcement-based Belief-based

Strength of player: strong player (ei=5)
δ 0.475a 0.000 1.000
φ 0.901a 0.925a 0.999a

ρ 0.857a 0.000 0.999
N(0) 1.418a 1.000 162.382a

A0(0) 0.000 0.000 0.000
A1(0) 7.696a 164.925a 1.668a

A2(0) 7.432a 146.647a 0.812a

A3(0) 7.120a 147.987a 1.412a

A4(0) 9.188a 166.002a 1.541a

A5(0) 11.681a 193.471a 2.545a

λ 0.4911a 0.0345a 1.440a

Log-likelihood −3031.54 −3120.60 −3738.31
AIC −3040.54 −3126.60 −3745.31
BIC −3067.38 −3144.49 −3766.19
ρ2 0.412 0.394 0.274
χ2 178.116 1413.542
(p-value, d.o.f) (0.00003) (0.00002)

Strength of player: weak player (ej=4)
δ 0.137a 0.000 1.000
φ 0.959a 0.941a 1.000
ρ 0.973a 0.000 1.000
N(0) 12.454a 1.000 312.914a

A0(0) 1.724a 47.789a 0.76a

A1(0) 0.000 0.000 0.000
A2(0) 0.491b 13.433a 0.152
A3(0) 0.951b 26.167a 0.411
A4(0) 1.534a 39.225a 0.555a

λ 1.644a 0.063a 3.726a

Log-likelihood −2835.51 −2851.16 −3446.49
AIC −2844.51 −2857.16 −3453.49
BIC −2871.35 −2875.06 −3474.37
ρ2 0.449 0.446 0.331
χ2 31.310 1221.953
(p-value, d.o.f) (0.00003) (0.00002)

a Parameter estimates are significant (α=0.01).
b Parameter estimates are not significant (α=0.01).

suggested by the estimateN(0)=12.454, is significant and about eight times higher than
that reported for the strong players.

10.7. Formation of beliefs about other players

We noted that the observed behavior of the subjects in Experiment 1 could be explained
by a reinforcement mechanism based on the average of past payoffs. This implies that those
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subjects were not forming beliefs about the likely behavior of other players. In contrast,
the model suggests that both the strong and weak players in Experiment 2 are guided
by expected payoffs as well as past payoffs. The weight placed on foregone payoffs is
significantly different from zero (δ=0.475 for the strong players;δ=0.173 for the weak
players). If the subjects were playing a fictitious game, thenδ=1. Such an hypothesis is
strongly rejected in the case of both strong and weak players.

10.8. Nature of attractions

Given the weights placed on foregone payoffs, the attractions are weighted combinations
of actual and foregone payoffs. Further, the choice of strategy was influenced by an average
of past attractions rather than the sum of past attractions. This inference is based on the
estimated values ofφ andρ, the sizes of which are almost equal for both strong and weak
players.

11. Discussion

The EWA model captures major behavioral regularities observed in both Experiments
1 and 2. It accounts for the general patterns of the choice probabilities in both GamesL
andH of Experiment 1. The evidence for a predisposition to invest the entire capital in
Experiment 1, which is stronger when the stakes are high (GameH) than low (GameL), is
in strong agreement with intuition. The EWA model also accounts for the general pattern
of the choice probabilities of both strong and weak players in Experiment 2. It predicts a
similar probability of choosingci=5 by the strong player (0.754) and choosingcj=0 by
the weak player (0.777), in accordance with equilibrium play. Most importantly, it accounts
remarkably well for the pattern of IESDS, with the probability of deletion generally de-
creasing as the level of knowledge of rationality increases. In both experiments, the EWA
model accounts for the strong sequential dependencies observed in the data. Finally, we note
the superiority of the EWA model over its two special cases — the reinforcement-based
and belief-based models — which is more pronounced in Experiment 2 than in Experi-
ment 1. This result is in agreement with our findings that both sheer reinforcement and
changes in belief combine to determine the choice probabilities in the Investment game,
and that the relative weight of sheer reinforcement is stronger in Experiment 1 than in
Experiment 2.

However, the EWA model is not equally successful in accounting for the quantitative
aspects of the data. It consistently over-estimates the probability of investing the entire
capital in both groups in Experiment 1. It consistently over-estimates the probability of
the most prominent choice in Experiment 2 (ci=5 andcj=0). In both experiments, it
also consistently over-estimates the probability of repeating the same choice on succes-
sive rounds. Finally, and perhaps most importantly, although the EWA model is formulated
on the individual level, it is tested on the aggregate level.10 Consequently, it does not

10 We have also fitted a separate EWA model for each group within each of the treatments. The qualitative results
of this additional analysis, not reported here, are consistent with the findings in Tables 10–12.
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account for the substantial individual differences observed in both of our experiments (e.g.,
Figs. 2 and 3). With an obvious trade-off between the number of free parameters to be
estimated from the data and the model’s goodness of fit, there is no simple way to evalu-
ate the performance of the EWA model, and for this matter any adaptive learning model,
when it is considered by itself. Learning models vary along a number of dimensions (e.g.,
number of parameters, functional form, extension of the model’s parameter space), and
it is necessary to consider them while selecting a model (Myung and Pitt, 1997). There
is definitely a need for more research in evaluating the performance of different learning
models.

12. Conclusions

The Investment game was constructed and Experiments 1 and 2 were conducted to in-
directly assess the validity of the assumptions about the players’ state of knowledge that
underlie the IESDS and mixed-strategy equilibrium solution concepts. These two solution
concepts were tested directly in a simple two-person non-zerosum game with finite strategy
spaces that captures some of the strategic aspects of competitions between two firms for
the development of a new technology product.

Many of the aggregate findings are accounted for quite well by the mixed-strategy equi-
librium concept. Mixing strategies, as suggested by the equilibrium solution, provides risk
neutral players an expected payoff that does not exceed the one guaranteed by minimax
play. Yet, subjects tend to mix their choices, though not exactly in accordance with the
mixed-strategy equilibrium. In both experiments, we find no evidence for tacit collusion
that can benefit both players. However, there are significant departures from equilibrium
play on the aggregate level and particularly on the individual level, the most important of
which is the persistent sequential dependencies that constitute the repetition bias. These
results stand in sharp contrast to previous results on randomization obtained in two-person
zerosum games with only two choices per player, but are in agreement with the results
of two-person zerosum games with larger strategy spaces. Further tests of the effects of
number of choices on randomization can be easily conducted by varying the size of the
endowments in the Investment game.

We find stronger evidence for IESDS than reported in most previous studies, with the
majority of our subjects in Experiment 2 engaging in a number of iteration steps as large as
four, and a substantial minority of our subjects (19 per cent) eliminating all five dominated
strategies. We attribute the difference between the results of the Investment and Beauty
Contest games to the difference in the assumptions about knowledge of the conjectures of
the other players as well as other differences between the two games in number of players
and familiarity with the task. The hierarchy of knowledge of rationality hypothesis, which
follows similar ideas about hierarchies of reasoning espoused by Stahl (1993), receives
strong support. Further attempts to test it directly require independent measures of the
players’ depth of reasoning.

In addition to accounting for several major behavioral regularities observed in the data,
the EWA learning model provides support for limited IESDS through introspection. The
subjects in Experiment 2 eliminated the first and second levels of iteratively dominated
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strategies through introspection, and then progressed to eliminate the next levels through
experience. In contrast to Experiment 1, the model suggests that the subjects in Experi-
ment 2 formed beliefs about their competitors. The EWA model parameters affirm that the
asymmetric Investment game, which requires IESDS, is more cognitively demanding in
comparison to the symmetric game.
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Appendix A

Proof of Proposition 1. It is easy to verify that the inequalityr>e implies that the payoff
matrix in Table 1 has no dominated strategies (for either of the two players).

The equilibrium equalities for the payoff matrix in Table 1 have the following form:

(r + e − k)

k−1∑
v=0

pv + (e − k)pk + (e − k)

e∑
v=k+1

pv = e, k = 1, 2, . . . , e, (A.1)

and

p0 + p1 + · · · + pe = 1. (A.2)

These aree+1 linear equalities ine+1 unknowns (namely,p0, p1, . . . , pe), the solution of
which is given by Eq. (1).

To verify Proposition 1, note that thee+1 probabilities in Eq. (1) sum up to unity:

e∑
1

1

r
+ r − e

r
= e

r
+ r − e

r
= 1.

Substituting the probabilities in Eq. (1) into Eq. (A.1) yields the expected value for strategy
k:

(r + e − k)

k∑
1

1

r
+ e − k

r
+ (e − k)

e−1∑
k+1

1

r
+ (e − k)

(
r − e

r

)
= e. �

Proof of Proposition 2. In the payoff matrix for the asymmetric game (Table 2), rowe
strongly dominates row 0. This follows directly from the conditionr>e. Once row 0 is
deleted, column 0 strongly dominates column 1. Following that, row 1 strongly dominates
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row 2. Continuation of this process leads to the iterative deletion of all even-numbered
strategies (including strategy 0) of playeri and all odd-numbered strategies of playerj.

Assume thate is even. Then, in the reduced payoff matrix that includes all the strategies
that survive IESDS, playeri’s expected payoff from playing strategyk, which we denote
by y, is given by

(r + e − k)

k−1∑
v=0

pv + (e − k)

e−2∑
v=k+1

pv = y, (A.3)

wherek takes on the odd integer values 1, 3, . . . , e − 1, andv takes on the even integer
values 0, 2, 4, . . . , e−2. In addition, playerj’s probabilities of playing her even-numbered
strategies must satisfy the condition

p0 + p2 + · · · + pe−2 = 1. (A.4)

Eqs. (A.3) and (A.4) constitutee/2+1 equalities ine/2+1 unknowns (p0 + p2 + · · · +
pe−2, y), the solution of which is given by Eq. (4) and byy=r+1.

To verify Proposition 2 (for evene), note that thee/2 probabilities in Eq. (4) sum up to
unity:

1

r

[
(r − e + 2) + 2

(
e − 2

2

)]
= 1.

Substituting the probabilities in Eq. (4) into Eq. (A.3) yields the expected value for strategy
k of playeri:

1

r

[
(r + e − k)(r − e + 2) + (r + e − k)2

(
k − 1

2

)
+ (e − k)2

(
e − k − 1

2

)]

= r + 1.

If e is even, playerj’s expected payoff from playing strategyk is given by

(r + e − k − 1)

k−1∑
v=1

pv + (e − k − 1)

e−1∑
k+1

pv = e − 1, (A.5)

wherek takes on the even integer values 2, 4, . . . , e − 2, andv takes on the odd integer
values 1, 3, . . . , e − 1. In addition, playeri’s probabilities of playing his odd-numbered
strategies must satisfy the condition

p1 + p3 + · · · + pe−1 = 1. (A.6)

Eqs. (A.5) and (A.6) constitutee/2 equalities ine/2 unknowns (p1 + p3 + · · · + pe−1), the
solution of which is given by Eq. (3).

To verify Proposition 2 (for evene), we note again that the probabilities in Eq. (3) sum up
to unity. Substituting the probabilities in Eq. (3) into Eq. (A.5) yields the expected payoff
for strategyk of playerj:
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1

r

[
(r + e − k − 1)2

(
k

2

)
+ (e − k − 1)2

(
e − k − 2

2

)
+ (e − k − 1)(r − e + 2)

]

= e − 1.

As the proof of Proposition 2 for odd values ofe is similar, it is omitted. �
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