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Abstract
Purpose – The purpose of this paper is to show how to properly use the method of replacement to
construct mixed two- and four-level minimum setup split-plot type designs to accommodate the presence of
hard-to-assemble parts.
Design/methodology/approach – Split-plot type designs are economical approaches in industrial
experimentation. These types of designs are particularly useful for situations involving interchangeable
parts with different degrees of assembly difficulties. Methodologies for designing and analyzing such
experiments have advanced lately, especially for two-level designs. Practical needs may require the inclusion
of factors with more than two levels. Here, the authors consider an experiment to improve the performance of
a Baja car including two- and four-level factors.
Findings – The authors find that the direct use of the existing minimum setup maximum aberration (MSMA)
catalogs for two-level split-plot type designs may lead to inappropriate designs (e.g. low resolution).
The existing method of replacement for searching exclusive sets of the form (α, β, αβ) available in the
literature is suitable for completely randomized designs, but it may not provide efficient plans for designs
with restricted randomization.
Originality/value – The authors provide a general framework for the practitioners and have extended the
algorithm to find out the number of generators and the number of base factor at each stratum, which guide
the selection of mixed two-level and four-level MSMA split-plot type designs.
Keywords Hard-to-change factor, Minimum setup, Prototype testing, Regular design,
Restricted randomization, Split-plot fractional factorial design
Paper type Case study

1. Introduction
Two-level factorial experiments have been the most widely employed type of design in
industrial settings (Ilzarbe et al., 2008; Prvan and Street, 2002). However, in many practical
situations we are faced with mixed-level or multi-level experiments (e.g. Bagheri, Sarajia and
Naderia, 2000; Bagheri, Saraji, Chitsazan, Mousavi and Naderi, 2000; Chee et al., 1995;
Chee et al., 1996; Hunter and Naylor, 1970). This is especially true when the experimental
factors are naturally comprised of different number of levels, e.g., type of solvent
(ethyl acetate, acetonitrile, methanol, hexane) in a chemical process. Taguchi matrices can be
used to select designs with various combinations of factors and levels. These matrices
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represent orthogonal arrays based on the theory of factorial designs (Kacker et al., 1991).
However, Taguchi matrices lack explicit account for hard-to-change factors (Simonovic and
Kalin, 2016, p. 12, Section 2.2).

In the presence of hard-to-change factors, split-plot type designs are a common approach
to execute an experiment (e.g. Bailey, 1983; Huang et al., 1998; Ju and Lucas, 2002; Goos and
Vandebroek, 2003; Vining et al., 2005; Jones and Goos, 2007; Anbari and Lucas, 2008; Cheng
and Tsai, 2009; Jones and Nachtsheim, 2009). Although interest in such experiments has
been growing, most of the cases consider factors with only two degrees of difficulty for
changing levels: hard-to-change and easy-to-change factors (e.g. Box and Jones, 1992;
Bisgaard et al., 1996; Vivacqua and Bisgaard, 2004, 2009; Verma and Jha, 2015). However,
there are some few exceptions, for example, Paniagua-Quiñones and Box (2008, 2009). In this
paper, we consider experiments involving three and four interchangeable parts with
different degrees of assembly difficulties. The concept of interchangeability is based on the
notion that all parts of the same type are identical (Bisgaard, 1997). Generally, during
prototype testing, only one part of each type is available for experimentation.

We assume that the possible configurations of each part can be expressed by the
combination of the levels of one or more factors with a total of k+ j factors, in which k of
them are four-level factors and the remaining j have two levels. The simplest way to
construct mixed two- and four-level completely randomized designs is to consider a
fractional factorial design 2q−p, where q¼ 2k+ j. Each four-level factor is replaced by two
two-level pseudo-factors and their interactions using a three-column-system representation,
labeled as (α, β, αβ)i, i¼ 1,…, k. This procedure is known as method of replacement (see e.g.
Wu and Hamada, 2009). Catalogs for up to three four-level factors and 13 two-level factors of
completely randomized designs considering the minimum aberration (MA) criterion
(see e.g. Fries and Hunter, 1980; Bingham and Sitter, 1999a, b, 2003; Bingham et al., 2004) are
available for 8, 16, and 32 runs (see e.g. Ankenman, 1999; Wu and Hamada, 2009).
A completely randomized design is useful when all parts have the same degree of assembly
difficulty. When the effort to assemble each part or a group of parts is different, split-plot
type designs can lead to convenient savings in the execution of the experiment. Moreover, it
makes sense to have a lower number of setups associated with the harder-to-assemble parts.
With this objective, Ho et al. (2015) introduced the minimum setup (MS) criterion. In this
paper we use the method of replacement to construct mixed two- and four-level
split-split-plot (here denoted by split3-plot to simplify the notation) and split-split-split-plot
(split4-plot) designs from 2q−p designs according to the MS criterion. Trinca and Gilmour
(2015) provide a general way of creating multistratum designs. Their approach takes into
account the optimality criteria based on theoretical design properties and usually leads to
irregular fractional factorial designs. Here, however, considering a practitioner’s point of
view, we have decided to emphasize a more practical criterion (MS) and for the sake of
simplicity on the analysis, we restrict our construction method to regular designs. The paper
is organized as follows: the motivating experiment and its executed design are described in
Sections 2 and 3, respectively; alternative designs and their comparisons with the executed
one are presented in Section 4; a general framework for MS two-and four-level split-plot type
designs is presented in Section 5 and conclusions are outlined in Section 6.

2. Baja SAE racing experiment
Baja SAE racing is a competition promoted by the Society of Automotive Engineers (SAE)
in which teams of students from universities all over the world design and build small
off-road vehicles. Besides the performance of the car, the evaluation process
considers detailed reports and presentations of the engineering and design process used
in developing each system of the team´s vehicle, which should be supported with rigorous
engineering principles.
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One team of students who traditionally participate in the Baja SAE competition is faced
again with the challenge of building an improved Baja car prototype. Based on the
successful experience of employing statistically planned experiments to build the car for a
previous race (Ho et al., 2015), the team understands the benefits of continuously applying
the methodology to guide their decision-making process in the design phase of the project.
Similar to the previous experiment, the objective is to maximize the performance of the
vehicle on two tests carried out on a paved street with an asphalt layer. The first one, called
acceleration test, evaluates the time that the vehicle takes to cover a distance of 30 meters
starting from a complete stop. The second one, called velocity test, measures the final
velocity reached by the car between the 99 and 100 meters mark. The ideal setup is the one
that simultaneously provides the maximum final velocity and the minimum time to cover
the first 30 meters.

In this experiment, the focus is the transmission system. The following parts related to
the transmission system are considered: gear, driven clutch springs, driven clutch, and
gearbox. Table I summarizes the seven factors identified for the study by the student team.
Two different types of gears are available for testing. Four different types of drive clutch
springs are tested; four levels of pre-compression of the driven clutch springs are used; four
levels of the driven clutch masses are available; two different geometries of ramp are
employed; four levels of engine speed are considered; and two levels of the gear ratio are
used. The levels for each factor are left undisclosed due to confidentiality. There are a total
of 2,048 possible combinations to assemble the transmission system of the Baja vehicle.
The team has a short time period to run tests to design the transmission system. In addition,
there is only one piece available of each part type. With the next race approaching and
based on past experience, the team reached a consensus that would be able to execute an
experiment with up to 32 runs.

Moreover, assembling different transmission parts is associated with distinct levels of
difficulty and also distinct times to complete the task. It is suffice to say that the setup of
the gearbox, switching engine speed ( factor F ), and gear ratio ( factor G), is a lot easier
than assembling the masses ( factor D) and geometry of the ramp ( factor E) of the driven
clutch, which turns out to be easier than assembling the driven clutch springs ( factors B
and C). Finally, changing the type of gear ( factor A) takes the longest time due to its
complexity. In summary, the Baja experiment involves seven factors, which can be

Table I.
Degree of assembly
difficulty of
transmission parts
and factors for the
Baja SAE racing
experiment
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associated to four parts with different degrees of assembling difficulty, as shown in first
column of Table I.

The design is given by a split3-plot plan represented by (2)× (42)× (4× 2)× (4× 2).
The specific design of the Baja competition experiment is described on Section 4.

3. About the minimum setup minimum aberration (MSMA) criterion
To select a design, we should specify appropriate criteria. As pointed out in Ho et al. (2015),
the MS criterion is driven by the restrictions present in real applications, especially due to
hard-to-change factors. Thus, the MSMA criterion is chosen as the baseline to select designs
in the Baja experiment. The authors have shown that the MS criterion not only can be used
to differentiate designs with the same word length pattern (WLP), but also is independent
from the MA criterion. To illustrate these aspects let us consider the designs, d1 and d2, both
with six factors, three whole-plot factors (one four-level factor, namely, Factor A, and two
two-level factors, Factors B and C ) and three sub-plot factors with the same configuration
(two two-level factors, namely, factors D and E and one four-level factor F). By the method of
replacement, each four-level factor can be replaced by two two-level pseudo-factors.
Consequently, two two-level pseudo-factors K1 and K2 are assigned for a generic four-level
factor K. The generators of designs d1 and d2 are put in Table II.

Both designs have the same WLP. Therefore, from the WLP criterion, both d1 and d2 are
indistinguishable. Nevertheless, taking into account the number of setups at each stratum
(setup pattern) d1 and d2 are no longer equivalent, and so the MS criterion can be used to
differentiate designs with the same WLP, whenever hard-to-change factors are present.
The independency between MS and MA criteria is illustrated by the design d3 with three
generators at the sub-plot level (and other information are also put in Table II).
The resolution of d3 is IV (as its WLP presents seven words of length 4) better than d2
(which has Resolution III). Nonetheless, from the perspective of MS criterion, the number of
setups in each stratum in d3 is (16, 32), whereas in d2 is (8, 32). So, in terms of number of
setups, d2 is better than d3. Thus, when the experiment is driven by hard-to-change factors,
one approach is to first look up for MS designs and then within this class find a subclass of
designs with MA and clear effects. A key step in the search of MS designs is the
determination of the number of generators for each stratum.

One approach to find generators is to use the catalogs for MSMA split-plot type designs
available in Ho et al. (2015). These catalogs are built for two-level factors and so caution
must be taken when using to four-level factors. This issue is addressed in Section 4.

4. The executed and alternative designs for the Baja competition experiment
This section presents the executed design for the Baja experiment. Alternative plans are
also discussed in this section. This car prototype study is a 32-run experiment with seven

Designs
d1 d2 d3

Split-plot design (41× 22)× (22−1× 41−1) (41× 22−1)× (22× 41−1) (41× 22)× (22−1× 41−1)
Written as 2-level factors 24× 24 −3 24-1× 24−2 24× 24−3

Whole-plot generator C¼A1B
Sub-plot generators E¼A1B; F1¼A1C;

F2¼BCD
F1¼A1BD; F2¼BDE E¼BCD; F1¼A1BC;

F2¼A2BD
WLP (3, 3, 1) (3, 3, 1) (0, 7, 0)
Setup pattern (16, 32) (8, 32) (16, 32)
Resolution III III IV

Table II.
Properties of the

designs d1, d2, and d3
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mixed two- and four-level factors. The approach considered is to exchange each four-level
factor (e.g. factor B) by two two-level pseudo-factors (e.g. B1 and B2) and to use three
columns labeled as (B1, B2, B1B2) to generate one four-level factor (Wu, 1989).
This procedure is repeated four times to accommodate the four four-level factors in the
Baja experiment. In terms of run size, the experiment would be equivalent to a 211−6

fractional factorial design. In the literature catalogs of MA designs up to three four-level
factors and up to thirteen two-level factors are available (see Ankenman, 1999).

Considering that there is only one piece of each auto part and that the different
prototypes are assembled and tested sequentially a completely randomized design was,
then, discarded as a plausible option, since it requires 32 complete independent assemblies
and disassemblies of the vehicle. A natural choice is a split3-plot design, because the seven
factors from the Baja experiment are classified in four groups based on a decreasing degree
of difficulty in changing their levels. Hence, it is more rational to execute all runs under
the same gear ( factor A from the first group, the most difficult to change) and then switch
the other one to carry out the remaining runs, thus requiring only two setups of the gear.
Moreover, it is more economical to execute a small number of setups of the driven clutch
springs, and so on.

For the Baja experiment, from now on, let us refer to this design, executed by the
engineering student team, as d4. According to these catalogs, the MS design (after
replacement of each four-level factor into two two-level factors) is 2(1−0)× 2(4−2)× 2(3−2)× 2(3−2)

which results in (2, 8, 16, 32) setups for each stratum. In this case, B1 and B2 (two-level
factors) are replaced for the four-level factor B. Likewise, we proceed to the remaining three
four-level factor, that is, C1 and C2 for the four-level factor C; analogously, D1 and D2 for the
four-level factor D and; in the same fashion, F1 and F2 for the four-level factor F. Properties
of this design are put at the first block of columns in Table III as the number of four- and
two-level factors, the base factors and the generators of each stratum, the setup pattern,
WLP, and the resolution.

The design d4 should have Resolution III and would be optimum, in terms of
MSMA criterion, if all factors were two-levels. The employment of the catalogs available for
split-plot-type designs (Ho et al., 2015), for experiments with mixed two- and four-level factors,
requires special attention and care. According to these catalogs, the setup pattern of design d4
is (2, 8, 16, 32). After the replacement of four-level factors by two two-level pseudo-factors, the
factors labels were as follow:A, B1, B2, C1, C2, D1, D2, E, F1, F2, andG. Considering also the six
generators in Table III, some interesting results are observed. The generators B2¼AB1 and
C2¼AC1, chosen in the second stratum, yield the aliases B1B2¼A¼C1C2. However,
B1B2¼B3 and C1C2¼C3 represent part of the main effects of the four-level factors B and C,
respectively, since each four-level factor has three degrees of freedom (three columns or
contrasts) associated with it. In the third stratum the generators assigned are D2¼AD1 and
E¼B1C1D1, so part of the main effect of the four-level factor D is also confounded with the
main effect of the two-level factor A (D1D2¼D3¼A). So, considering the four-level factors,
this design has six words of length two, leading to a Resolution II instead of III, as for a
two-level design. TheWLP of design d4 (including words of length two) isWLP (d4)¼ (6; 3; 18;
23; 11; 2). Specifying WLP(d4) according to the type of words, in the sense of Wu (1989),
Wu and Zhang (1993) and Wu and Hamada (2009), we get: {(3; 3; 0; 0); (0; 1; 2; 0); (0; 3; 13; 2);
(0; 2; 14; 7); (0; 0; 4; 7); (0; 0; 0; 2)}, where each integer Aij denotes the number of i four-level
factors included in the composition of a word of length j; j¼ 2,…, 7 and i¼ 0, 1, 2, 3.
For example, for the six words of length 2, three of them are type 0 (involves only two-level
factors) and three of them are type 1 (involve components of one four-level factor).

Note that by the setup pattern, up to the second stratum in the Baja executed design d4,
eight setups are considered. Nonetheless, eight runs are insufficient to estimate the main
effects without confounding with other main effects. Wu and Hamada (2009) show that a
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maximum of one four-level factor can be assigned with this quantity of setups if one desires
a design of Resolution III, since exists only a single triple of the form (α, β, αβ). However, in
the Baja executed design d4, there are two four-level factors in the second stratum, thus two
mutually exclusive triples of the form (α, β, αβ) are needed to assign the two four-level
factors to result a design of Resolution III. So the number of runs up to the second stratum
needs to be increased to 16 runs. But due to operational or cost restrictions if one really
needs to use only eight runs up to second stratum, then the resolution of the design is II
instead of III, since some main effects are confounded with other main effects. This feature
negatively affects the analysis of the executed experiment. Therefore, the results of the
actual experiment on the Baja vehicle are omitted here. Instead, our approach in this paper is
to call attention to this fact and to show ways to avoid this situation.

Let us consider an alternative procedure based on the method of replacement
(see Wu, 1989; Mukerjee andWu, 1995) and an algorithm to search exclusive sets of the form
(α, β, αβ) to find out the setup pattern of an alternative design d5. The number of main effect
contrasts to be estimated in a mixed j two-level and k four-level factor design is t¼ 3k+ j
effects (higher than designs with all two-level factors). Let r¼ int [log2(t)] and for
2r⩽ t⩽ 2(r+ 1)−1, the minimum number of runs necessary to execute the experiments is
N¼ 2m; m¼ r+ 1; if k⩽ ((2m−1)/3), for m being even or k⩽ ((2m−5)/3), for m being odd
otherwise,m¼ r+ 2. As N¼ 2m¼ 2(q−p)¼ 2(2k+ j−p) then p¼ (2k+ j−m) is the number of the
generators and m is the total number of base factors. The total number of four-level factors
to be assigned is limited by the total number of mutually exclusive sets of columns of the
form (α, β, αβ) in 2(q−p) runs. Table IV presents the minimum value of N for 0⩽ k, j⩽ 15.

First, we address the MS for a completely randomized mixed two-level and four-level
design employing Table IV. In the Baja experiment, we have four four-level factors and
three two-level factors. From Table IV, a minimum of 16 runs is needed.

Additionally, it seems reasonable to apply the same procedure to determine the number of
generators (or the number of setups) at each stratum. Similarly, the number of four-level
factors to be assigned at each stratum is limited by the number of mutually exclusive sets of
columns of the form (α, β, αβ) in 2

Pi

1
qi�pi runs with qi¼ 2ki+ ji; ki¼ no. of four-level factors;

ji¼ no. of two-level factors; pi¼ no. of generators at stratum i if one wishes the estimation of
the main effects not confounded with other main effects.

No. of two-level factor No. of four-level factor (k)
( j) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 – 4 16 16 16 16 32 32 32 32 64 64 64 64 64 64
1 2 8 16 16 16 32 32 32 32 32 64 64 64 64 64 64
2 4 8 16 16 16 32 32 32 32 32 64 64 64 64 64 64
3 4 8 16 16 16 32 32 32 32 32 64 64 64 64 64 64
4 8 8 16 16 32 32 32 32 32 32 64 64 64 64 64 64
5 8 16 16 16 32 32 32 32 32 64 64 64 64 64 64 64
6 8 16 16 16 32 32 32 32 32 64 64 64 64 64 64 64
7 8 16 16 32 32 32 32 32 32 64 64 64 64 64 64 64
8 16 16 16 32 32 32 32 32 64 64 64 64 64 64 64 64
9 16 16 16 32 32 32 32 32 64 64 64 64 64 64 64 64
10 16 16 32 32 32 32 32 32 64 64 64 64 64 64 64 64
11 16 16 32 32 32 32 32 64 64 64 64 64 64 64 64 64
12 16 16 32 32 32 32 32 64 64 64 64 64 64 64 64 64
13 16 32 32 32 32 32 32 64 64 64 64 64 64 64 64 64
14 16 32 32 32 32 32 64 64 64 64 64 64 64 64 64 64
15 16 32 32 32 32 32 64 64 64 64 64 64 64 64 64 64

Table IV.
Minimum number of
runs for mixed two-
level and four-level
factors design
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Repeating this procedure at each stratum in the Baja experiment:

• First stratum: only one two-level factor and a minimum of two runs→ it corresponds
to the design 2(1−0).

• Second stratum: cumulative there are two four-level factors and one two-level factor.
From Table IV, a minimum of 16 runs is needed, so one generator is needed→ results
the design 2(1−0) × 2(4−1).

• Up to third stratum: there are three four-level factors and two two-level factors.
From Table IV, again a minimum of 16 runs is enough, so three generators are
required→ provides the design 2(1−0)× 2(4−1)× 2(3−3).

• Up to fourth stratum: again a minimum of 16 runs is enough and consequently three
more generators are needed yielding the following design 2(1−0)× 2(4−1)× 2(3−3)× 2(3−3).

• Applying such procedure, the setup pattern becomes: (2, 16, 16, 16).

On the assignments of the generators, one possible design (d5) is:

• Stratum 1: factor A is the first base factor.

• Stratum 2: factors B and C are both four-level factors; replacing the factor B by two
two-level factors B1 and B2 and letting both being the second and the third base
factors, respectively, the interaction B1B2¼B3 is also a main effect; the factor C
replaced by two two-level factors C1 and C2 with C1 as the fourth base factor, C2 has
three possibilities of assignment: C2¼AB1 (and C3¼AB1C1) or C2¼AB2
(and C3¼AB2C1) or C2¼AB3 (and C3¼AB3C1).

• Stratum 3: considering the first choice at Stratum 2 (i.e. C2¼AB1 and C3¼AB1C1)
the four possibilities are: D1¼AB2; D2¼AC1; (and D3¼B2C1); E¼AB3C1 or
D1¼AB2; D2¼B1C1; (and D3¼AB3C1); E¼AB2C1 or D1¼AB3; D2¼AB2C1;
(and D3¼B1C1); E¼B3C1 or D1¼AC1; D2¼AB3; (and D3¼B3C1); E¼B2C1.

• Stratum 4: considering chosen the first possibility (i.e. D1¼AB2; D2¼AC1;
(and D3¼B2C1); E¼AB3C1) then there is a single option: F1¼AB3; F2¼AB2C1;
(and F3¼B1C1); G¼B3C1 which is exactly the third alternative of the Stratum 3.
In the design d5, generators of factors D and F can be each other switched; similarly
with generators of the factors E and G.

• All 24 possible designs are MA of Resolution III, and present the sameWLP(d5)¼ (31,
33, 30, 30, 3), considering words of length three and higher. Specifying by type of
defining relations, we have WLP(d5)¼ {(1; 18; 12; 0), (0; 18; 12; 3), (0; 0; 12; 18), (0; 0; 12;
18), (0; 0; 0; 3)}.

Properties of design d5 are put in the second block of columns of Table IV.
Another alternative design d6 can also be proposed. It is a slight modification of previous
design d5 but built with 32 setups in the last stratum. This design is also of Resolution III
and may be written as 2(1−0)× 2(4−1)× 2(3−3)× 2(3−2) with the setup pattern (2, 16, 16, 32).
Among more than 4 thousand possibilities, the WLP of MA design is WLP(d6)¼ (14; 19;
14; 12; 4). Specifying by type of defining relations, we have W(d6)¼ {(0; 8; 6; 0), (0; 8; 10; 1),
(0; 2; 6; 6), (0; 0; 2; 10), (0; 0; 0; 4)} (see the third block of columns in Table III).

Now we are faced with a problem: which design plan should be chosen? The three
proposals have positive and negative aspects. Design d4 provides less number of setups in
the second stratum; but main effects are confounded with other main effects. Design d5
requires less resources (cost and time) since it uses less number of total runs. It is a
Resolution III split-plot design but presents a greater number of main effects confounded
with second-order interactions than d6 and also a larger number of setups at the second
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stratum than d4. The third option d6 is also a Resolution III design but the number of setups
for the last stratum is greater than d5, but less number of main effects is confounded with
second-order interactions.

In practical situations, the three proposals, depending on the point of view, present
advantages and disadvantages. However, if operational restrictions really exist and/or it is
known that there is not effect of the most-hard-to-change factor assigned, the first option
could be chosen in some situations. The reason is based on the fact that it would be unlikely
that the three main factors in a four-level factor would be simultaneously all active.

However, the above procedure of allocation of four-level factors and the determination of
the setup pattern may not be always efficient to provide a plan of Resolution III. Let us
illustrate with an example. Consider another design d7 based on a slight modification of the
Baja experiment. The description of the factors and the corresponding number of levels at
each stratum is in Table V.

From Table III, a minimum of 32 runs is enough for five four-level factors and four
two-level factors. After the replacement of one four-level factor by two two-level pseudo-factors,
the previous procedure to find out the setup pattern is applied, obtaining (8, 16, 16, 32). The first
four base factors are:A;B1;B2; C1. The following generators up to third stratum are considered:
C2¼AB1; D1¼AB2; D2¼AC1; E¼AB3C2; F1¼AB3; F2¼AB2C1; G¼B3C1. Note that up to
third stratum, 16 effects are to be estimated. To assign generators for the factors in the fourth
stratum, a fifth base factor needs to be included, for example H1. However, there is not any
triple mutually exclusive set of columns of the form (H1, β, H1β) to be assigned for the main
effects of the factor H (which allows at least the estimation of the main effects without
confounding with other main effects) since up to the third stratum, all 15 possible effects
(related to the four base factors) are assigned to some main effects leaving any effect free to
compose with the fifth base factor. So, if one desires a design of Resolution III, some
adjustments are needed. In this case, the setup pattern should be (8, 16, 32, 32) to accommodate
all five four-level factors that corresponds to the design: 2(3−0)× 2(5−4)× 2(3−2)× 2(3−3).

The previous procedure worked for designs d5 and d6 . In design d5, since up to third
stratum, four effects are left to be assigned for next stratum: the four-level factor F and one
two-level factor G. And in the design d6 the four free effects may be combined with the fifth
base factor to compose the triple of the form (5, β, 5β) for assignment of the factor F. So the
previous procedure needs some adjustments or additional restrictions to find out the setup
pattern in order to provide a design at least of Resolution III. The general framework is the
subject of Section 5.

5. A general framework
We now introduce the notation for mixed two-level and four-level split-plot type designs
with minimum number of setups in each stratum. Suppose that there are a total of

Stratum Factor No. of level No. of effects

1 A 2 1
B 4 3

2 C 4 3
D 4 3
E 2 1

3 F 4 3
G 2 1

4 H 4 3
J 2 1

Table V.
Design d7
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k+ j factors; k four-level factors and j two-level factors. These factors can be divided into s
groups according to the degree of difficulty in changing their levels. The groups of factors
are arranged in decreasing order according to the degree of difficulty in such a way that the
first group is the most difficult to change and the last group is the easiest to change.

Each group has ki four-level factors and ji two-level factors such thatPs
1 ki ¼ k;

Ps
1 ji ¼ j;

Ps
1 kiþ jið Þ ¼ kþ j. Note that up to stratum (group) i there are

ti ¼
Pi

1 3kiþ ji contrasts associated to main effects to be estimated: 3ki related to the four-
level factors; ji to the two-level factors.

Split-plot type experiments involve several strata, leading to different kinds of
experimental units. The number of strata is the same number of groups of factors (s). Here,
we denote the design as a splits−1-plot to simplify notation. The number of experimental
units in each stratum, in an unreplicated design, is equal to the number of treatment changes
considered in the respective stratum. Furthermore, the total number of runs of the
experiment is equal to the number of treatment setups in the last stratum.

Hence, we need to distinguish among the number of treatment setups for each stratum,
Ni and the total number of runsN involved in a single replicate of the experiment. In general,
in unreplicated experiments, Ni, i¼ 1, 2,…, s also represents the number of experimental
units associated with the ith stratum and N, the number of experimental units associated
with the combined design.

For the first stratum, there are k1 four-level factors; j1 two-level factors and a total of
t1¼ 3k1+ j1 main effect contrasts to estimate. Let r1¼ int [log2(t1)] and for
2r1 p t1o2r1þ 1�1, m1¼ r1+ 1 if k1p ð 2m1�1ð Þ=3Þ for even m1 or k1p ð 2m1�5ð Þ=3Þ for
odd m1 otherwise m1¼ r1+ 2.

For t1 ¼ 2r1 þ 1�1, m1¼ r1+ 2 if k1pð 2m1�1ð Þ=3Þ for even m1 or k1pð 2m1�5ð Þ=3Þ for
odd m1 and k2 0, otherwise m1¼ r1+ 1.

The minimum number of runs is N 1 ¼ 2m1 . We then use a 2q1�p1 fractional factorial
design with q1¼ 2k1+ j1 and N 1 ¼ 2q1�p1 treatments; p1¼ q1−m1, the number of
generated factors.

For a general ith stratum, we have ki four-level factors; ji two-level factors, and ti ¼Pi
1 3kiþ ji effects to estimate up to ith stratum. Let ri¼ int [log2(ti)] and for

2ri p tio2ri þ 1�1; mi¼ ri+ 1; if
Pi

1 kipð 2mi�1ð Þ=3Þ, for even mi or
Pi

1 kipð 2mi�5ð Þ=3Þ
for odd mi; otherwise mi¼ ri+ 2.

For ti ¼ 2ri þ 1�1, mi¼ ri+ 2, if
Pi

1 kipð 2mi�1ð Þ=3Þ, for even mi orPi
1 kipð 2mi�5ð Þ=3Þ, for odd mi and ki+ 1W0; i+ 1⩽s; otherwise mi¼ ri+ 1. The

minimum number of runs up to ith stratum is Ni ¼ 2mi . So, a 2qi�pi fractional factorial
design with qi¼ 2ki+ ji and qi−pi¼mi−mi−1 can be used (m0¼ 0) and the combined design
up to the ith stratum is a 2ð

Pi

1
qi�piÞ fractional factorial design with Ni ¼ 2 q1�p1ð Þ � � � � �

2 qi�pið Þ ¼ 2m1 � 2 m2�m1ð Þ � � � � � 2 mi�mi�1ð Þ treatments.
Note that

Ps
1 pi ¼ p represents the number of generators of the fractionated design.

The total number of runs of the complete combined design is
N ¼ Ns ¼ 2ðq1�p1Þ � � � � � 2ðqs�psÞ ¼ 2m1 � 2ðm2�m1Þ � � � � � 2ðms�ms�1Þ.

The same number of runs can be obtained, for example, by a 2q−p completely randomized
fractional factorial design or a 2 q1�p1ð Þ � 2ð

Ps

2
qi�piÞ ¼ 2 q1�p1ð Þ � 2 q�q1ð Þ� p�p1ð Þ fractional

factorial split-plot design. However, the first design involves only one randomization
step, and therefore each replicate of the experiment needs N¼ 2q−p treatment setups.
The second has two randomizations steps with (k1+ j1) hard-to-change factors and
(k+ j )−(k1+ j1) easy-to-change factors, and therefore each replicate of the experiment
needs N 1 ¼ 2ðq1�p1Þ setups of the k1+ j1 hard-to-change factors and N¼N2¼ 2(q−p) setups
of the (k+ j )−(k1+ j1) easy-to-change factors, N1oN2¼N. So, there are fewer setups
associated with the hard-to-change factors, which is desirable in practice to reduce
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experimental effort. Therefore, the notation 2ðq1�p1Þ � 2ðq2�p2Þ � � � � � 2ðqs�psÞ is employed to
emphasize the number of randomization steps. The combined design can be constructed
using regular fractional factorial designs. Known the number of strata, the task is to
determine the number of generators in each stratum that would provide the MS. The
following algorithm describes this task:

Algorithm for the determination of no. of generators at each stratum for experiments
with the minimum number of setups.

INPUT:
m0¼ 0;
k¼# four-level factors;
j¼# two-level factors;
N¼Total # runs;
s¼# strata;
ki¼# four-level factors at stratum i: k1, k2, …, ks; 0⩽ ki⩽ k;

Ps
1 ki ¼ k; i¼ 1,…, s

ji¼# four-level factors at stratum i: j1, j2,…, js; 0⩽ ji⩽ j;
Ps

1 ji ¼ j; i¼ 1,…, s
RESTRICTIONS:
t¼ 3k+ j ; the total number of effects;
r¼ int [log2(t)];
if 2r+ 1⩽ t⩽ 2r+ 1−1 then m¼ r+ 1 if k⩽ ((2m−1)/3) for m even or if k⩽ ((2m−5)/3) form

odd; other wise m¼ r+ 2;
N⩾ 2m

CALCULATE
ti¼ the number of effects to be estimated up to stratum i;
qi¼ the number of factors in full factorial 2qi at the stratum i;
2mi ¼ the minimum number of runs needed at stratum i to estimate the ti main effects;
mi¼ the minimum number of base factors at stratum i;
For i¼ 1 to s by 1
ti ¼

Pi
1 3kiþ ji ;

qi¼ 2ki+ ji;
ri¼ int [log2(ti);
if 2ri p tio2ri þ 1�1 then mi¼ ri+ 1 if

Pi
1 kipð 2mi�1ð Þ=3Þ for mi even or ifPi

1 kipð 2mi�5ð Þ=3Þ for mi odd; otherwise mi¼ ri+ 2;
if ti ¼ 2ri þ 1�1 then mi¼ ri+ 2 if

Pi
v kipð 2mi�1ð Þ=3Þ for mi even or ifPi

1 kipð 2mi�5ð Þ=3Þ for mi odd and ki+ 1W0; i+ 1⩽ s; otherwise mi¼ ri+ 1;
Ni ¼ 2mi .
End
OUTPUT:
pi¼# generators at stratum i;

pi ¼ qi� mi�mi�1ð Þ; p1; p2; � � � ; ps; 0ppipp;
Xs

1

pi ¼ p:

The algorithm provides the number of generators for each stratum and the setup pattern:
2 q1�p1ð Þ : 2 q1�p1ð Þþ q2�p2ð Þ : � � � : 2

Ps

1
qi�pið Þ. For illustrative purposes, consider the design

d5, d8 and one modified based on the design d8 (d8A).
Case 1: design d5 with the inputs: k¼ 4 four-level factors; j¼ 3 two-level factors, and s¼ 4

strata. According to Table IV, N¼ 16 runs are enough. The number of four-level factors (ki)
and two-level factors ( ji) in each stratum and outputs ( pi, mi, ti, ri) after running the
algorithm are put together in the first block of rows of Table VI. By the values of qi and pi, it
is possible to identify the MS split-plot design (2(1−0))× (2(4−1))× (2(3−3))× (2(3−3))which
provides the setup pattern (2, 16, 16, 16).
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Case 2: designs d8 with inputs: s¼ 4 strata; k¼ 4 four-level factors; j¼ 6 two-level factors;
according to Table IV, at least N¼ 32 runs are needed. The outputs and inputs (the number
of four-level and two-level factors at each stratum) of algorithm of the Case 2 are in second
block of rows of Table VI. It is a MS split-plot design (2(3−0))× (2(2−1))× (2(6−6))× (2(3−2)) with
the setup pattern (8, 16, 16, 32) setups.

Case 3: This example is similar to Case 2. The main different is at fourth stratum: one
four-level factor instead of three two-level factors. Inputs: s¼ 4 strata; k¼ 5 ( four four-level
factors); j¼ 3 (six two-level factors). The outputs and inputs (the number of four-level and
two-level factors at each stratum) are summarized in third block of rows of Table VI.
Running the algorithm, it yields the design (2(3−0))× (2(2−1))× (2(6−5))× (2(3−3)) with setup
pattern (8, 16, 32, 32).

6. Conclusions
The planning stage of an experiment is the most critical phase. The choices made will have
both theoretical and practical implications, since it will directly affect the properties of the
design, the cost of the experiment, its analysis, and the quality of the results. Therefore, a
proper design selection is extremely important in practice. A poor design selection may lead
to a total waste of the data collected during the execution of the experiment. Consequently, it
can jeopardize the whole effort for process or product improvement, resulting in a disbelief
of the usefulness of DOE applicability to problem-solving.

In this paper, we dealt with mixed-level or multi-level experiments specifically mixed two
and four-level designs. Due to the nature of the experiment (only one piece of each auto part
and the presence of hard-to-change factors), completely randomized designs were discarded
as plausible options. Thus, split-plot type designs have been a common approach to execute
an experiment with these features.

In this paper, we show how to properly use the method of replacement to construct mixed
two-level and four-level split-plot type designs from 2q−p fractional factorial designs and

Stratum Properties
Design 1 2 3 4 s¼ 4

d5 Input ki 0 2 1 1 k¼ 4
ji 1 0 1 1 j¼ 3
qi 1 4 3 3 MS split-plot design: (2(1−0))× (2(4−1))× (2(3−3))× (2(3−3))

Output pi 0 1 3 3
mi 1 4 4 4 Setup pattern: (21; 24; 24; 24)
ti 1 7 11 15 n¼ 16 runs
ri 0 2 3 3

d8 Input ki 1 1 2 0 k¼ 4
ji 1 0 2 3 j¼ 6
qi 3 2 6 3 MS split-plot design: (2(3−0))× (2(2−1))× (2(6−6))× (2(3−2))

Output pi 0 1 6 2
mi 3 4 4 5 Setup pattern: (23; 24; 24; 25)
ti 4 7 15 18 n¼ 32 runs
ri 2 2 3 4

d8a Input ki 1 1 2 1 k¼ 5
ji 1 0 2 0 j¼ 3
qi 3 2 6 3 MS split-plot design: (2(3−0))× (2(2−1))× (2(6−5))× (2(3−3))

Output pi 0 1 5 3
mi 3 4 5 5 Setup pattern: (23; 24; 25; 25)
ti 4 7 15 18 n¼ 32 runs
ri 2 2 3 4

Table VI.
Examples of

application of the
algorithm: Designs

d5; d8; d8A
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choose designs according to MS and MA criteria. We have illustrated that the direct use of the
existing MSMA catalogs for two-level split-plot type designs may lead to inappropriate
designs (e.g. low resolution). The existing method of replacement for searching exclusive sets
of the form (α, β, αβ) available in the literature is suitable for completely randomized designs,
but it may not provide efficient plans for designs with restricted randomization. Therefore, to
avoid the inadvertent choice of an undesirable design, we have extended the algorithm to find
out the number of generators and the number of base factor at each stratum, which guide the
selection of appropriate mixed two-level and four-level MSMA split-plot type designs.
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