
Discrete Comput Geom 16:69-112 (1996) Discrete & Computational 

Geometry 
O 1996 Springer-Verlag New York Inc. 

Mixed-Volume Computation by Dynamic Lifting Applied to 
Polynomial System Solving 

J. Verschelde, 1 K. Gatermann, 2 and R. Cools 1 

1 Department of Computer Science, Katholieke Universiteit Leuven, 
Celestijnenlaan 200 A, B-3001 Heverlee, Belgium 
Jan.Verschelde @cs.kuleuven.ac.be 
Ronald.Cools @cs.kuleuven.ac.be 

2 Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, 
Heilbronner Str. 10, D-10711 Berlin-Wilmersdorf, Germany 
gatermann @ sc .ZIB -Berlin .de 

Abstract. The aim of this paper is to present a flexible approach for the efficient compu- 

tation of the mixed volume of a tuple of polytopes. In order to compute the mixed volume, 

a mixed subdivision of the tuple of polytopes is needed, which can be obtained by embed- 
ding the polytopes in a higher-dimensional space, i.e., by lifting them. Dynamic lifting is 

opposed to the static approach. This means that one considers one point at a time and only 

fixes the value of the lifting function when the point really influences the mixed volume. 

Conservative lifting functions have been developed for this purpose. This provides us with 
a deterministic manipulation of the lifting for computing mixed volumes, which rules out 

randomness conditions. Cost estimates for the algorithm are given. The implications of 
dynamic lifting on polyhedral homotopy methods for the solution of polynomial systems 

are investigated and applications are presented. 

1. Introduction 

The aim of  this paper is to present an algorithm for computing the mixed volume of a tuple 

ofpolytopes.  Although the motivation for this paper stems from the polyhedral  homotopy 

methods for sparse polynomial  systems, our approach is of  independent interest, see 

Section 9 of  [25] for other applications of  volume and mixed-volume computation. The 

algorithm is developed from a geometric viewpoint. Recently, much research has been 

devoted to the computation of  the mixed volume. 
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Definition 1.1. 
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The mixed volume Vn (79) of an n-tuple of polytopes 

79 = (P1, P2 . . . . .  Pn) 

i s  

Ic{1,2,...,n} 

where voln(P) equals the volume of P and P1 + P2 = {x + ylx 6 P1, Y E P2}. 

(1) 

If all polytopes in 79 are identical, then Vn(P, P . . . . .  P)  = n! voln(P). The mixed 

volume is multilinear and invariant under a shift of the polytopes. See, e.g., Chapter 4 
of [9] for more on mixed volumes. 

Note that formula (1) is in general not a good way for computing mixed volumes. 

In [52] Verschelde et al. showed how the recursion formula, used in [3] for computing 
the mixed volume, is already useful for solving practical problems, despite its combi- 
natorial implementation. Based on an idea of Betke [4], a more flexible approach for 
the computation of the mixed volume has been presented by Huber and Sturmfels in 
[30]. We henceforth call their approach the lifting method. In [10] and [18] Canny and 
Emiris applied it to the efficient computation of sparse mixed resultants. The exploitation 
of symmetry relations has been examined in [50], which led to the development of the 
symmetric lifting method. 

The idea of this paper is to apply the concepts of incremental convex hull constructing 

algorithms, see [12], [15], [25], [28], and [43]. In a lifting method all points are lifted, 
i.e., embedded into an (n + 1)-dimensional space. See [4] for the application on two 

polytopes and [45] for the generalization to tuples of polytopes. Afterward, the faces of 

the lower hull of the lifted points need to be computed. This is a static approach. By 
dynamic lifting, a point is only lifted when it is sure to belong to the subdivision, which 
is achieved by placing (or pushing) the point with respect to a regular subdivision, see 
[35]. This offers a flexible computational tool to investigate which points influence the 
mixed volume. 

For polynomial systems the mixed volume of the Newton polytopes of the polynomials 
gives an upper bound for the number of isolated solutions [3], see Section 4. In [30] a so- 
called polyhedral homotopy method based on lifting has been presented, which enables 

all isolated solutions of a polynomial system to be computed. The approach presented in 
this paper offers a flexible computational tool to investigate which coefficients can have 
an influence on the number of solutions of the system. Hereby an algorithm is presented 
for incrementally solving polynomial systems, which tends to be more stable than the 
static polyhedral homotopy continuation. 

This paper consists of four parts. The first part is devoted to the case of computing a 
regular triangulation for one polytope. In the second part the dynamic lifting algorithm is 

generalized to the computation of the mixed volume. The impact on polynomial system 
solving is discussed in the third part. This paper concludes with a section summarizing 
the main properties of the algorithms investigated. 
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2. Dynamic Construction of Regular Triangulations 

This part describes the dynamic lifting algorithm applied to one polytope. Its structure 

is as follows. After some preliminary definitions, the basic version of the algorithm is 

sketched. The following subsections describe the key steps in this algorithm. Some cost 

estimates are given in the final subsection. 

2.1. Regular Triangulations 

For completeness we start with some well-known definitions [34]. We assume the points 

to be vectors in Euclidean space E", equipped with the standard inner product (-, .). 

Definition 2.1. Given a set A c E". The dimension of  A equals d, denoted by 

dim(A) = d, if A contains at most d + 1 points Co, el . . . . .  Cd such that e0 -- cj, 

j = 1, 2 . . . . .  d, are linearly independent, For a finite set A C E", the convex hull 
of A, denoted by conv(A), is the smallest convex set that contains A. The polytope P 
of A is defined by P = conv(A). A face of a polytope P is the intersection of hyper- 

planes which define half-spaces that contain the polytope entirely. The polytope itself is 

considered as a trivial face. All other faces, the empty set included, are proper faces. A 

vertex of a polytope is a face of dimension zero. A face of dimension k is called a k-face. 

Definition 2.2. Given a polytope P in n-dimensional space, with dim(P) = d. A facet 

0 P of P is a face of  P,  with dim(0 P)  = d -  1.0 P is defined as the intersection of P with 

one hyperplane that defines a half-space which contains P entirely and is characterized 

by its inner normal y: 

1. u y ~ OP, (x, y) = (y, y). 
2. (-, y)  attains its minimum at OP, i.e., (y, ~/) > (x, y) ,  u e OP, u  ~ OP. 

Since the functional (-, y)  is constant on OP we denote (OP, y) :=  (x, y),  for one 

x e 0 P. The facet itself is denoted by O r P = cony(0 r A), with 0 e A = {x E A I (x, y)  = 

miny~a (y, y)}. 

Definition 2.3. The lower hull of  a polytope P consists of  all facets 0 r P with y, > 0. 

The following definitions are based on the definitions in [30] and in [35]. See Lecture 5 

of [56] for a more detailed mathematical background. 

Definition 2.4. Given a set of points A C E n, a subdivision S of A consists of a 

collection of cells S = {C1, C2 . . . . .  Cm}, with Ck C A, Vk, which satisfies: 

I, dim(Ck) = n. 

2. conv(C/) N conv(Ck) is a proper face of  both conv(Cl) and conv(Ck), I # k. 

3. Ukm__l conv(Ck) = conv(A). 
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Fig. 1. The construction of a regular triangulation by lifting. 

See [25] and [15] for references on how subdivisions can be computed by means of a 

lifting function. 

Definition 2.5. A lifting function to lifts every point of a set A, o9: A ~ ]E: a ~-~ to(a). 

This yields the lifted point 

(a) 
a =  to(a)" 

TheAset of lifted points is denotedby ~. The lifted polytope is denoted by P" = 

conv(A). The collection of lifted cells C is denoted by S. Note that lifted points are also 

sometimes referred to as weighted points. 

For every liffingSunction a subdivision is induced by associating the cells with the 

projected facets Oy P of t h rower  hull.., of P', P = conv(A). As each cell C is characterized 

by the inner normal y of C = 0y P, the cell C can be denoted by C r, see Fig. 1. 

Definition 2.6. A subdivision S = {C1, C2 . . . . .  Cra} of A is called a regular sub- 

division when there is a lifting function to which induces S. It is denoted by So~. 

Note that in [30] a regular subdivision is called a coherent subdivision. 

As mentioned in the introduction the usefulness of subdivisions lies in the volume 

computation. Given a subdivision S of a polytope P, its volume can be computed by 

voln (P) = ~ voln (C). (2) 
CeS 

The computation of the volumes of the cells is straightforward for special subdivisions: 

Definition 2.7. A subdivision S is called a triangulation, and therefore denoted by 

A = {C1, C2 . . . . .  Cm} when #Cj = n + 1, u  i.e., conv(Cj) is an n-dimensional 
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simplex. A triangulation A is said to be a regular triangulation if it can be induced by a 

lifting function ~o. 

For cells C = {Co . . . . .  c,} of a triangulation we have 

1 
voln (C) = --71 det(cl - e0 . . . . .  c ,  - e0)]. (3) 

n~ 

Other applications of triangulations, e.g., Voronoi diagrams, can be found in [15] and 

[43]. 

A regular triangulation is denoted as ZXo~. It can be computed by random lifting func- 

tions. See [16] for an algorithm to construct a regular triangulation, with the assumption 

that the lifted points are in general position. An implementation of  this algorithm in three 

dimensions has been presented in [19]. 

Proposit ion 2.8 (see [30]). If  the lifting function o9 is chosen sufficiently at random, 

then the induced subdivision is a triangulation. This holds even for integer lifting func- 

tions. 

In practice it is often desired to exploit the structure of the polynomial system (see 

Section 4 for the relationship between polynomials and subdivisions) and to construct a 

special subdivision, e.g., a symmetric one, like in [50]. In this case, the assumption of 

randomness, which does not take the additional constraints of  the system into account, 

cannot be relied upon. The aim of dynamic lifting is to provide a deterministic lifting 

algorithm which enables the construction of subdivisions with a special geometry. 

2.2. The Dynamic Lifting Algorithm 

The basic version of an incremental construction of a regular triangulation is described 

in Algorithm 2.9. There we write A x for the set of lifted cells which contain x in 

the triangulation for the points that are already processed. The general notation is the 

following. Let S~o be a regular sub~vi~on of a and consider x E A. Denote S x = {C E 

So~l x E C}. Analogously, S~ = {C E So~l x ~ C'}. 

Algori thm 2.9. The dynamic lifting algorithm: 

Input: A. 

Output: Ao~, w. 

/x~ := {Co); 
w := 0; 

E : :  Co; 

B := 0; 

a set of points 
a regular triangulation of A 

compute an initial cell 

with lifting value = 0 

the points already processed 

the set of interior points 
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while E 5k A do 

x E A\E;  
E := E U {x}; 

if  x E Ao~ 

then B := B tO {x}; 

else co := co(Ao~, x); 

Xn+l ~m. 09, 

A x := New_Facets(A~, x); 
O) 

A,o :=/xo~ u A~; 

end if; 

end while; 

Yx E B: XAn+I :=  O.,I -3 !- 1. 

There are five subalgorithms in Algorithm 2.9: 

1. Compute an initial cell Co. 

2. Choose the next point x to be processed x ~ A\E .  

invariant: Ao~ is a triangulation of E 
choose next point 

to be processed 

3? C ~ A,o: x ~ conv(C) 

update the set of interior points 

determine next value 

of the lifting function 
compute new facets 

update the lower hull 

lift out the interior points 

3. Check whether a point x already belongs to the triangulation x E Ao~, i.e., whether 

there is a C E A,o such that x ~ conv(C). 
p ~  

4. Give a point the lifting value co (A,o, x). 

5. Compute the set of new cells in the triangulation A x 
O)" 

The initialization steps for Algorithm 2.9 are described in the next section. In order to 

achieve a simple update of  the triangulation, i.e., like A,o := A,o U A x, it is necessary 

to apply special lifting functions, defined in Section 2.4. In Section 2.5 a pivoting mech- 

anism and an efficient data structure are presented to compute the new cells. To control 

the condition of  the lifting, the regular triangulation will be made fiat, as described in 

Section 2.6. In the last section it is proven that this algorithm runs in polynomial t ime 

in #A,o. 

2.3. Computation of an Initial Cell and Vertices 

At this early stage of  computation, degeneracy, i.e., dim(A) < n, should be detected. 

By characterizing the degenerate case, an initial cell can be computed by the Greedy 

Algorithm, see p. 212 of [27]. Algorithm 2.10 formulates this algorithm. 

Algorithm 2.10. Computation of an initial cell: 

Input: A C E n. 
Output: C = {e0, el . . . . .  ei}, a collection of  linearly independent points. 

I f  dim(A) = n, then i = n, otherwise i < n. 

1. Let y # 0. If  0rA = 0_yA, then dim(A) < n. 

Otherwise, take c0 ~ OrA and el E 0_yA, Cl # Co. This yields C := {e0, el}. 

2. For i f rom 2 to n do the following. Let y # 0: (ej - Co, y)  = 0, for j = 1, 2 . . . . .  

i - 1. I f  OvA = 0_yA, then dim(A) < n. Otherwise, if (0yA, 2/) # (Co, y),  then 

take ei E OvA, else take ei E 0_yA. This yields C :=  C U {ei}. 

Except for nongeneric choices of y the points in C are vertices. 
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An implementation of Algorithm 2.10 is now described. If 0 E A, we can take 

Co := 0. Then the procedure for computing an initial cell C consists of finding n linearly 

independent vertices of the point set A. The determination of the directions y ' s  is as 

follows. It is natural to take the first direction along the first coordinate axis. The ith 

direction ~/is not explicitly chosen as in Algorithm 2.10, but equivalently a change of 

coordinates is performed such that the ith unit vector can be chosen as y. The change of 

coordinates is done by a unimodular transformation U that preserves the first i - 1 unit 

vectors and maps ei-1 to the (i - 1)th unit vector (modulo a scalar multiple). By these 

orthogonality assumptions, the next point ci can be chosen by taking the point with the 

largest ith component. 

Example 2.11. Consider the matrix M whose columns contain the points of A. Because 

0 r A, let c0 = (1, 0) t and perform an affine shift with c0, so that 0 E A'. Let y = (1, 0) t, 

then el corresponds to the third column in M', which has the largest (underlined) first 

component. This yields cl = (4, 2) I. 

La 4 
M =  0 0 2 4 --+ 0 0 2 4 " 

The unimodular transformation 

U = _ gives U M ' =  - 4  0 1.__0 " 

In Step 2 the maximum with respect to F = (0, 1) t equals 10. Since we maintained the 

positions of the points in the matrix, the point e2 of the initial cell is the fourth column 

of the original matrix M. Because the unimodular transformation is volume preserv- 

ing and at each step the maximum value along the coordinate axis has been taken 

(see the underlined entries in the matrices), the cell will have a volume as large as 

possible. 

Note that the steps in Algorithm 2.10 can be used for searching an optimal point to 

be added next. Optimal means that this point has a large contribution to the volume. To 

achieve this goal approximately, we propose to choose a certain direction randomly and 

then compute a vertex with respect to that direction. This corresponds to the principle 

of randomized incremental constructions, see [12] and [28]. 

Once Algorithm 2.10 terminates with an initial cell Co, the volume computation 

problem is nondegenerate. For an efficient computation of the volume, the nonvertex 

points of the remainder point set A \ C o  can be omitted in advance, as those points 

will have no influence on the volume. A vertex of a polytope can be considered as the 

solution of a linear optimization problem, see [46] and p. 184 of [27]. In [26] a feasibility 

problem is proposed for computing an irredundant representation of a polytope. Let 



76 J. Verschelde, K. Gatermann, and R. Cools 

A = {al, a2 . . . . .  a,n}, to solve the membership question x e conv(A) we use the 

following: 

min /z0 +/-tl  + " ' + # n  
m 

E ) ~ i a i j + ~ j X j  =Xj ,  j = l , 2  . . . . .  n, 
i = 1  

m 

subject to ) ~  Zi +/~o = 1, (4) 
i = 1  

)~i > 0 ,  i = 1 , 2  . . . . .  m, 

/zj > 0, j = 0 , 1  . . . . .  n. 

It has as a trivial feasible but not optimal solution all # j  = 1 and all ~-i = 0. If  the 

problem has an optimal feasible solution, with all # j  = 0, for j = 0, 1 . . . . .  n, then x 

can be written as a convex combination of  the other points in A, the coefficients in this 

combination are given by the Zi's and thus x ~ conv(A). 

The vertex set of  A can be computed by repetitive application of  (4): 

Algor i thm 2.12. Computation of  the vertex set: 

Input: A. a set of points 
Output: V the vertex set 

V :=  A; initialization 
while A r I~ do enumerate points in A 

choose x E A; next point to be checked 
A :=  A\{x}; update A 
if x ~ conv(V\{x}) to decide, solve (4) 

then V :=  V\{x}; update V 

end if; 

end while. 

So, an option has been added to Algorithm 2.9. One can start with all points or compute 

the vertices first. In the latter case, the test 9? C 6 A,o: x ~ conv(C) in Algorithm 2.9 

is always false. For the choice of  the next point to be processed in the latter case, we 

observe the following. For n = 2 it can be guaranteed that the number of  cells in the 

subdivision will be minimal. For n > 2 it is still necessary to choose the point along a 

random direction to achieve this goal approximately. 

2.4. Conservative Lifting Functions 

The purpose of  this section is to introduce special lifting functions which allow the 

dynamic construction of  a regular triangulation. 

L e m m a  2,13. Given "So> = {Cy}, consider x r conv(Cy). Choose a lifting value wE)  

so that (~, y) > (CAr, y). Let S" be the induced subdivision of Cy U {x}, then So~ C S',o. 
! 

For each new cell C ~ S~\S~. x ~ C. 
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Proof. , A s  ~ ,  F) > if, F), V~" e C'r, )/ still attains its minimum at C" e, so CAr e S ~ O)" 

.Hence So) C S' The second statement is trivial to prove. [] O)" 

Figure 2 illustrates the application of Lemma 2.13 and introduces the concept of 
conservative lifting. 

Definition 2.14. Let C'y be a cell. Consider a point x. Let 09 (x) = x~n+l so that ~ )/) > 

~', Y), V~" 6 C'y, then o9 is called a conservative lifting with respect to C ~  LetSo) be a 
regular subdivision. If o9 is a conservative tiftingwith respect to each cell Cy 6 So,, then 
09 is called a conservative lifting with respect to So). 

This kind of lifting preserves the cells in the subdivision, so it is conservative. The 

advantage of using conservative tiffing functions lies in the simplicity of placing [12], 
[15], [35] the points in the triangulation: no deletion or modification of existing cells 
is required. By using different orders of placing the points, any placeable triangulation 
can be obtained. Note however that not every regular triangulation is placeable, see [35]. 

Theorem 2.15 implies that a regular triangulation can always be maintained by successive 
applications of a conservative lifting function with respect to a regular triangulation, on 
a point x. 

Theorem 2.15. Let So~ be a regular subdivision of A induced by w. Consider a point 
x, lifted conservatively with respect to So). Let S~ be the regular subdivision of A U {x}, 

"g~ , then c S' For each new cell C E S~ \ SO). x E C. l f  3C• E So): x E conv(Cr), then 
j , ~  - -  o )  . 

So) = S ' .  

Proof. By applying Lemma 2.1 3 successively on all individual cells in the subdivision, 
the theorem is proven. It is sufficient to see that, for any CAr, (~, F) > (CAr, F). [] 

The efficient computation of the new cells S~\So) is the topic of Section 2.5. The last 
statement of Theorem 2.15 shows that a nonvertex point inside the convex hull of one of 
the cells can be lifted out. 
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An explicit formula for constructing an optimal conservative lifting function is given 

by the following: 

Proposition 2.16. Let ~y be a cell. Then the lowest lifting value obtained by a discrete 
conservative lifting function is given by 

A (( nx))k  
w(Cy,x)  : = m a x  1, (C'Y' Z--~k=l + 1 . 

Yn+l 
(5) 

Given a regular subdivision "ffo~. The lowest lifting value obtained by a conservative 

lifting function is given by 

w (S'~, x) := m ~  o~(Cy, x). (6) 
Cy ~S~ 

The lifting described in Proposition 2.16 is the one applied in Fig. 2. 

2.5. Computation of New Cells by Pivoting 

The aim of this section is the efficient computation of new cells and to show how a 

triangulation can always be obtained. It leads to the implementation of the subalgorithm 

New_Facets of Algorithm 2.9. We need the following fundamental lemma (Carathrodory, 

see, e.g., [34] and [56]). 

Lemma  2.17. Let C = {Co, el . . . . .  cn} be a cell, spanning the n-dimensional simplex 

conv(C). Consider a point x. Then 

n n 

x e conv(C) r 3)~k: x = y~).kCk, E ) ~ k  = 1, 
k=0 k=0 

)~k-->O, k = O ,  1 . . . . .  n, (7) 

i.e., x can be written as a convex combination of the points in C. Moreover, this repre- 

sentation is independent of the order of the points inside C. 

Computation of the )~k'S can be done by solving a linear system. Consider the set of 

shifted points {Cl - Co . . . . .  cn - e0, x - e0} to be the columns of the matrix M. Solve 

the homogeneous linear system defined by M A  = 0. The existence of a solution is 

guaranteed by dim(C) = n and the uniqueness is guaranteed by #C = n + 1. 

To decide whether x ~ P, apply the following: 

Theorem 2.18 (Carathrodory). Let A be a triangulation of the polytope P, then 

x E P r 3C E A: x E conv(C). 

Lemma 2.17 gives a simple computable criterion to implement the membership test 
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Fig. 3. Given a simplex defined by C = {c0, cl, c2} and three possible point configurations: x ~ conv(C), 

adding y to conv(C) leads to two new simplices, while for z there is only one new simplex. 

x e conv(C). As illustrated in Fig. 3, computing the decomposition of  x with respect to 

the points in C provides additional information indicating which new cells arise. So, it 

also illustrates conditions (8) in Lemma 2.19. 

A 

L e m m a  2.19. Let So, = {C r } and C r = {"eo,~)L . . . . .  ~n}. Cons ider~ ,~= )--]~=0 Xk~'~, 
with )--]k=0 ~-k = 1 andS.+1 such that ~ ,  y). > ( C r, y ). Let S~ be the induced subdivision 
of C r t3 {x}. Then the new cells C ~ S ' \ S ~  are given by 

~0 . . . . .  ~k-l,X,~k+l . . . . .  2.} where ~.k < O. (8) 

Proof. First bring the cell Cy in a diagonal form Cy, by a shift and a transformation: 

= T(ck - - '~0) ,~  E t.r. ~' "~-e o = 0 a n d ~  is the kth unit vector, k = 1, 2, .. . ,  n. Then 

= E ~-k~k O 9 - - ~ 0  = E )~kC'k -- X~ , because )~k = 1 
k = 0  k = 0  \ k = 0  / k = 0  

n 

r ~ = r 6~-~o) = ~ ] z k r  (~k -~o) 
k=O 

n 

r X k = ~ ,  k = l , 2 ,  n, ~ o = l - - ~ " ' z  �9 . . ~ X . 

k = l  

Due to Lemma 2.13 all new cells contain x. Since a cell has n + 1 points we need only 

consider the case that x replaces one e~. There are two cases. 
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Case 1: ~' replaces~ o. The inner normal 8 of this facet Ca satisfies 

k#o,  l#O, 

~ , 8 )  = ~1,8  ) ~:~ 81 X~ k +Xn+lSn+l =81 

r 81 1 - ~kk = Xn+l~n+l 

~n+l 8n+l 
<=~ ~-0 = 

81 

C~ is a cell of S,~ if C'~ is in the lower hull. The inner normal of a facet in the lower hull 

satisfies 5n+1 > 0 and (~k, 8) < (~0, 8) r 8k < 0, for all k ~ 0. Thus {x, el . . . . .  en} 

5~\So), if and only if),0 < 0. 

Case 2: ~' replaces ~ ,  k > 0. For the inner normal 5 we compute 

l # k ,  

(~, 8) -~- ~0' 8) ~ XkSk "4- Xn+l~n+l = 0 

~k 

If C~'~ is part of the lower hull, then (~k, 8) > (~0, 8) r 6k > 0. Thus {Co . . . . .  ek-1, 
/ 

X, Ck+ 1 . . . . .  en} ~ S,o\S,o, if and only if)~k < O. [] 

Lemma 2.19 enables the computation of new cells if the triangulation consists of one 

simplex. If the m~angulation consists of several simplices a direct and simple approach 

for computing J x is successively applying Lemma 2.19 to all cells in the subdivision. 

Afterward, it must be checked whether each new cell corresponds to a facet of the lower 
J ~  

hull of conv(A). An obvious way to do this is by computing the inner products of their 

normal with all the other points. 

Better ways to avoid the computation of spurious cells use a kind of minimalist data 

structure, like in [16]. The triangulation is stored as a list of cells. Each cell Cy is 

characterized by n + 1 vertices and an inner normal y. For each vertex there is a pointer 

to the neighboring cell, which can be obtained by replacing that vertex by another one, 

see Fig. 4. Note that in Fig. 4 each vertex appears only once and that no null pointers are 

drawn. 

The application of Lemmas 2.17 and 2.19 requires the solution of a linear system 

M A  = 0, defined after Lemma 2.17. As this has to be done for each new point to 

be added to A, the factorization matrix for the first n columns of M can be stored. 

This reduces the solution of a linear system to a back substitution, which requires only 

O (n 2) operations, whereas the factorization of an n-dimensional matrix requires O (n 3) 

operations. 

To decide for a new point x whether x ~ A, Theorem 2.18 can be implemented 

by enumerating all cells C and computing the decomposition of x with respect to the 

vertices of C. A better way is to exploit the neighborship relation. Starting with one cell 
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Fig. 4. Four connected cells. 
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C, e.g., the initial cell, walk toward x along one chain of cells as pictured in Fig. 5. One 

ends either with a cell C with x e conv(C) or with a cell close to x. For each cell in the 

chain the representation x = )--~-k XkCk is computed. If  x ~ conv(C),  then some Xk < 0 

is chosen and the walk continues at the cell to which the pointer associated to the vertex 

x~, corresponding to ~-k, points to. The walk stops when a null pointer associated to a 

vertex with Xk < 0 is encountered. 

The data structure can be used for the determination of the new cells in two ways. 

The walk described above finishes with one cell close to x. With Lemma 2.19 one 

new cell is determined. The neighboring new cells can be determined by considering the 

neighboring points on the edge of the triangulation and by computing their decomposit ion 

with respect to this one new cell which contains x. Alternatively, all outer cells, i.e., those 

with vertices with null pointer, while computing the decomposit ion x = ~ X~Ck, Can 

be enumerated. The vertices with Xk < 0 and null pointer at vertex cg yield the new cells 

due to Lemma 2.19. 

4,  

3, 

2, 

1- 

0 
CO 

(2, 

3 1 

i 2 3 4 5 6 

11 . ~ c I  + Sc �9 x : - - T c 0 +  ~ 2 

1 1 C = - ~ c 1 - ~  2 + ~ c a  

.I , O, 1 

Fig. 5. An efficient walk from the simplex defined by C = {e0. cl, c2} to the point x = (7, 4) t . The lifting 
values are indicated by the big numbers. Only three instead of nine simplices need to be visited. The dashed 
arrow represents an alternative path. 
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To compare the cost of both alternatives the number of decompositions which have 

to be determined has to be counted. Such a decomposition is needed for each cell in the 

walk. As a conclusion, we can state that the walk will be fruitful when the triangulation 

contains inner points, like the case in Fig. 5. When all nonvertex points have been 

eliminated in advance, such a walk can be more expensive than the simple enumeration 

of all outer cells. 

2.6. Flattening a Regular Subdivision 

Section 2.4 provided lower bounds on the lifting for a new point to be added to the 

triangulation. This section deals with specifying operational upper bounds on the lifting, 

necessary to counter the following numerical problems. With fixed-point arithmetic, the 

lifting value might cause an overflow, see Fig. 2 for how the lifting becomes steeper and 

steeper. With floating-point arithmetic, the rounding errors which occur while solving 

an ill-conditioned linear system might producean erroneous result. 

To control the condition of the lower hull A, we present the flattening of a regular 
subdivision. This involves a modification of the lifting function and provides an extension 

of the basic version of the dynamic lifting algorithm, as described in Algorithm 2.9. 

Definition 2.20. A cell ~ is called flat, if all lifting values are zero. A subdivision is 

calledflat, if all its cells are flat. 

The subdivision induced by a zero lifting consists of one cell with normal (0 . . . . .  0, 1). 

A subdivision S induced by a conservative lifting function is associated with zero lifting 

and this lifting is used for the following steps of the dynamic lifting algorithm. This 

process is called flattening a subdivision. 

As flattening is performed several times a list of regular triangulations So, $1, $2 . . . . .  

where Si is a regular subdivision of the set A (i) such that (.OiACi_n, ~ 0 and Si_ 1 is 

a subdivision of one cell (= A (i-1)) of the subdivision Si, is obtained. This can be 

interpreted as reversing the order of refinement, as defined in [35]. 

All S,. together form the subdivision which is computed with the pivoting algorithm 

together with the variant of checking normals. Usually the other variants using the data 

structure do the same. However, in very special situations these variants compute an 

even finer subdivision. This detail is discussed in Section 3.7 as well. We assume that 

this final subdivision is induced by a lifting function, but because of the flattening this 

lifting is never computed explicitly. 

From an implementational point of view the flattening only changes the lifting values, 

but all old cells remain stored. The pivoting algorithm, presented in the previous section, 

only requires the lifting to be conservative and has no other demands on the lifting 

function. So, flattening does not alter the algorithm for computing new cells. 

Concerning the flattening mechanism, there is a bound on the maximal lifting value 

that needs to be set. Each time this bound is exceeded after determining the value of the 

conservative lifting function for the new point, the whole subdivision will be flattened. 

For reasons of simplicity, this bound can be set to one. The second alternative is to invoke 
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the flattening automatically, when numerical problems occur during the update. With an 

exception handling mechanism like in Ada this can be implemented in a straightforward 

way. The third alternative is to flatten after each update, so that a lifting value equal to 

one can be taken for each new point. 

2.7. Complexity and Cost Estimates 

The complexity model used is the binary Turing machine, see [21] for complexity theory. 

The complexity of volume and mixed-volume computation is known to be #P-hard, see 

[13], [14], and [25]. In the theory of computational convexity, the following important 

result has been derived: 

Proposition 2.21 [25]. When the dimension n is fixed, the volume of  a polytope can be 

computed in polynomial time in the input size. 

The idea of this result is based on linear programming, which can be used to derive, 

in polynomial time, a description of the polytope in terms of an inequality system, 

representing its facets. Once the facets are given in this representation, by an enumeration 

of the facets with respect to a common point of the polytope, the volume can be computed, 

straightforwardly by calculating determinants when the polytope is simplicial. Note that 

it is crucial here to consider n as a constant number. 

In this section the cost for the optimal, average, and worst case is measured by 

counting the number of arithmetical operations in the important steps of the dynamic 

lifting algorithm. Fixed-point arithmetic is assumed throughout. Evidence is provided 

that the algorithm runs in polynomial time. The results are interpreted empirically in 

Section 4.3.1. 

Lemma 2.22. Given a finite set of points A C E n. The computation of an initial cell 

requires O(n 3) operations. 

Proof. Computing an initial cell is equivalent to computing n linearly independent 

vectors, which can be brought back to the triangulation of a matrix with n rows. [] 

For the following, it is assumed that the problem is nondegenerate. Here we denote 

A' = A \C ,  where C is an initial cell. 

Lemma 2.23. The cost of checking whether a point belongs to a triangulation A 

requires at least O(n2), at most O((#A)n2), and on average O((#A)n) arithmetical 

operations. 

Proof. As the factorization matrices are stored, only the solving of a triangular system 

is required for each cell. This requires O (n 2) arithmetical operations for one cell. In the 

optimal case the decomposition (see Lemma 2.17) of one cell can suffice, while in the 

worst case all cells need to be considered, which takes time O((#A)n2). In the average 
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case assume a uniform distribution of the cells in A and start the walk (see Fig. 5) at the 

center of A. Each path only goes through one facet of the starting cell. Hence, the path 

will on average only cross (1/n)th of the cells in A, which takes time O((#A)n). [] 

Lemma 2.24. The cost of  adding a point x to a triangulation A requires at least 
O ((#aX)n 3 + n2), at  most 0 ((#AX)n 3 -t- (#a)n2), and on average 0 ((#aX)n 3 -k- (#a)n)  

arithmetical operations, with A x the collection of new cells. 

Proof. Factorization matrices are computed only once, each time a new cell is con- 

structed. So, for all cases, time O ((#ax)n 3) is needed. In the optimal case only one 

decomposition has to be computed, which takes time O (n2), while for the worst case all 

cells in a need to be considered, which takes time O ((#A)n2). The average cost bound 

is derived by application of Lemma 2.23. [] 

Theorem 2.25. The construction of  a placeable triangulation A of  a point set A C E n 

takes at least 0 ((#a)n 3 -k- (#A')n2), at most 0 ((#a)n 3 -1- (#A') (#a)n2), and on average 

O ((#a)n 3 + (#A')(#a)n) arithmetical operations. 

Proof. Factorization matrices are computed only once, each time a new cell is con- 

structed. So, for both cases, time O ((#A)n 3) is needed. In the optimal case, at each step, 

at least one decomposition needs to be computed. Because there are #A ~ steps in the 

algorithm, this takes time O ((#A')n2). Hence O ((#A)n 3 -4- (#A')n 2) is obtained as the 

cost in the optimal case. In the worst case, at each step, for j = 1, 2 . . . . .  #A', all cells in 

the corresponding triangulation a (j) need to be considered. Applying Lemma 2.24 for 

each step, a total number of O ()'-~.#.a' 1 (#A(J})n 2) arithmetical operations is needed. As 

#A Cj) < #A, for j = 1, 2 . . . . .  #A/, O((#A)n 3 q- (#A')(#A)n 2) is obtained as a bound 

for the cost in the worst case. In the average case application of Lemma 2.23 yields 
O((#a)n  3 -b (#a')(#A)n). [] 

Theorem 2.25 indicates the bottleneck of the algorithm: determining the cells in a for 

which pivoting yields new cells. All cost bounds contain three important factors which 

influence the general cost of the algorithm. On the input side we have the number of 

points #A' and the dimension n of the problem. On the output side the complexity of the 

facet structure of the lifted polytope plays a role, as the number of cells # a  is also taken 

into account. This number of cells can be influenced by the choice of the lifting function. 

It is natural to assume that a random lifting will induce a triangulation with an average 

number of cells. In the dynamic lifting algorithm a random placeable triangulation is 

obtained by adding the points in a random order. 

Note that the number of cells can grow exponentially, and #A >> n 3, with the bound 
for #A given by O((#A) tn/2J), see p. 92 of [43] for more precise bounds on the number 

of facets. Still, the bound is polynomial in the output size. The cost with respect to the 

space of the dynamic lifting algorithm is proportional to the number of cells, as the list 

of cells is maintained during the computations. 
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3. Dynamic  Construct ion of  Regular  Simple Mixed Subdivis ions  

This part deals with the application of the dynamic lifting algorithm to the general case. 

Therefore we first need to extend the definitions of Section 2.1 to the case of several 

polytopes. Algorithm 2.9 can be applied in a straightforward manner, by means of the 

Cayley trick, as explained in the second section. However, the other sections consider 

a more complicated generalization of Algorithm 2.9. The third section deals with the 

degeneracy check by the computation of an initial mixed cell. In the fourth section the idea 

of Betke is elaborated explicitly with fans, which leads to a powerful computational tool 

for the computation of the mixed volume by means of static lifting. Conservative lifting 

functions are extended to the general case in the fifth section. In the sixth section the 

connectivity of the mixed cells is conjectured and the main kernel of the dynamic lifting 

algorithm is presented. The idea of unfolding cells with the same normal is described in 

the seventh section. The computational complexity of the problem and cost estimates of 

the algorithm are treated in the last section of this part. 

3.1. Regular Simple Mixed Subdivisions 

Definition 3.1. Let .A be a tuple of point sets with a respective tuple of polytopes 7 9. 

Assume that the sets in .,4 are ordered in the following way: 

.,4 = (A1 . . . . .  A1,  A2 . . . . .  A2 . . . . .  A . . . . . .  Ar)  r 

;2 ~ with E k i = n "  
& A ^ 

V = (e l  . . . . .  P l ,  ~P2 . . . . .  P2 . . . . .  e r  . . . . .  P;) i=, 

(9) 

The tuples .A and "P are said to be unmixed when r = 1, semimixed when 1 < r < n, 

and fully mixed when r = n. 

Let C = (C1, C2 . . . . .  Cr), Ci C Ai ,  be a cell. The volume of  C is writ ten as 

vol~ (C) = voln (conv(C)) where the following conventions are used: 

conv(C) = conv(C1 + C2 + . . -  + Cr) C IF, ~, 

type(C) = (dim(C0, dim(C2) . . . . .  dim(Cr)) E N r. 

(10) 

(11) 

Given a tuple of point sets, based on a subdivision of the Minkowski sum, Definition 2.4 

can be extended in the following way, see [30]: 

Definition 3.2. Assume the union of the sets A i in .,4 = (Al, A2 . . . . .  At) affinely 

spans E n. A subdivision of .,4 is a collection S = {C1 . . . . .  Cm} of m cells Cj = 
(Cjt, Cj2 . . . . .  Cjr), Cji C Ai, satisfying: 

1. dim(Cj) = n for j = 1 . . . . .  m. 

2. conv(Cj) N conv(C~) is a proper common face of conv(Cj) and conv(Ck), j # k. 

3. U~=I conv(Cj) = conv(A). 
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The subdivision is called mixed if  the following additional property holds: 

r - 
4. )--~i=l dim(Cji) = n for all cells Cj ~ S. 

The subdivision is calledfine mixed if: 

r # 
5. ~ i = 1 ( ( C j i )  - 1) n for all cells Cj ~ S. 

Note that the fifth item in Definition 3.2 represents an additional property, not implied 

by the previous ones. 

Definition 3.3. A cell C is called mixed when it has a contribution to the mixed volume. 

I f  the subdivision is mixed, then all cells C with type(C) = (kl . . . . .  kr) are mixed, 

see [30]. For computation of the mixed volume, it is sufficient that the collection of the 

mixed cells is fine mixed, which is weaker than the last part of  Definition 3.2. 

Definition 3.4. A mixed subdivision is called a simple mixed subdivision when, for all 

mixed cells Cj, ~-~7=l(#(Cji) - 1) = n. 

In Example 3.7 a regular simple mixed subdivision is given for which the subdivision 

is not fine mixed. 

Definition 3.5. A cell C which is mixed and satisfies #Ci = ki -4- 1, i = 1 . . . . .  r, is 

Called simple mixed. 

Definition 3.6. A subdivision S of  a tuple .A = (A1, A2 . . . . .  At) is called regular if 

there is a tuple co of lifting functions, co = (col, oa2 . . . . .  Oar), so that the cells of  S are the 
r A 

facets of  the lower hull o f  E i = I  conv(Ai). 

As before, a regular subdivision induced by a lifting co is denoted by So~ and the 
r A 

cells by C r,  as they are facets 0 r (~"~i=l conv(Ai)) characterized by their inner normal 

y.  In [48] a mixed subdivision induced by a lifting function is called a coherent mixed 

subdivision (CMD) and a regular fine mixed subdivision is called a tight coherent mixed 
subdivision (TCMD). For the relationship with fiber polytopes, see [5]. 

Given a mixed subdivision, it is sufficient to consider only the mixed cells, as shown 

in [30], to compute the mixed volume: 

Vn(7 J) = y ~  kl! " " k r !  voln(C). (12) 

C E A ~  

type(C) = (k I . . . . .  kr) 

Given a simple mixed cell C E S, C = (C1, C2 . . . . .  Cr), with C i : {Co/,  Cl i  . . . . .  Ckii} , 

i = 1, 2 . . . . .  r. Its volume can be computed by 

voln(C) - Idet(Cl l -col  . . . . .  Cli-Coi . . . . .  Ckii--Coi . . . . .  Ckrr--COr)l. (13) 
kl ! . . .  kr ! 
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Fig. 6. The polytopes P] and/'2 with their sum. The big numbers indicate the values of the lifting function. 
The mixed cells can be found as parallelograms (with one side dashed and one side solid) in the subdivision 
of P1 +/)2. 

In case the subdivision is not mixed, a recursive scheme as presented in [50] can be 

applied for computation of  the mixed volume. 

The following example illustrates the definitions. 

Example  3.7, Consider the following tuple of  lifted point sets: 

(/(!t (i)(!///(it (it (it (i/It , ~ =  (A1,  ~ 2 )  = , . . . . . .  

The polytopes in the tuple 79 = (P1, PX) and the sum P] + ,~ are shown in Fig. 6. The 

two mixed cells in the subdivision of .4 are 

(/(i/(!tl I(i/(!tlt 
a n d  

({tit ti)} {/i)tZ)}) 
with respective inner normals 2/1 = (1, - 1, 4) and y2 = (1, 1, 2). The other two unmixed 

cells are 

with respective inner normals Y3 = (1, 0, 2) and Y4 = (0, 0, 1). This subdivision is not 

fine mixed as the second component of  the last cell contains too many points. Note that 

by giving the rightmost point of  P2 lifting value > 0, the subdivision becomes fine mixed. 
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However, we only need to have a simple mixed subdivision and the mixed volume can 

be computed by 

1 
Vn(P) = 1!. 1! 1!- 1----~ v~ 

1 
+ 1 ! - 1 ! ~  vol2(C~) = 4 + 2 = 6. 

In Fig. 6 in the subdivision of  Px + P2 the unmixed cells can be found as the cells with 

respectively either all sides dashed or all sides solid. Their volumes equal respectively 

vole (P1) = 4/2! and vo12 (P2) = 4/2!. Adding the volumes of  all cells yields vo12 (P] + 

/'2) = 10. Note how formula (1) can be applied: Vn(P) = volz(Pl + P2) - vol2(P1) - 

volz(P2) = 10 - 2 - 2 = 6. 

3.2. The Cayley Trick 

In this section Algorithm 3.8 presents a geometric description of  the so-called Cayley 

trick. This geometric description is due to Sturmfels, as mentioned in [29]. See [22], 

[23], and [31] for other references. 

Algor i thm 3.8. The Cayley trick: 

Input: ,,4 = (Al, A2 . . . . .  Ar), 
E~=I ki = n. 

Output: A~o. 

a tuple o f  point sets 

a regularfine-mixed subdivision of ,A 

{(:1) 
"-- F 

construct extended point sets with 

eo = O and ei = ith unit vector in E r-1 

construct a regular triangulation 

Jr projects to original coordinates 

An example for the first step of  Algorithm 3.8 is given in Fig. 7. 

G3 

= nv(A2) 

0"2 / / 2  , (~1 2 , O~ 1 

/ / 
tZ2 g 2  

Fig. 7. The polytopes P1 and/)2 are shown on the left. On the right is the big polytope as the convex hull of 
the extended point sets. 



Mixed-Volume Computation by Dynamic Lifting Applied to Polynomial System Solving 89 

Denote ~" as the projection map that forgets the additional coordinates introduced 

by the Cayley trick, but which keeps the lifting coordinate. Following the notations of 
Algorithm 3.8, we state the following proposition. 

Proposition 3.9. Let ~ be a regular triangulation of .A. Then /x'~ = ~(~'~) is a 
regular fine-mixed subdivision of .A. 

Proof. The projection ~ copies the lifting w on .Aonto A. As the extended coordinates 
are the same for all points which belong to the same component, there is a one-to-one 

A 
correspondence between the cells Cy E "~o~ and ff(Cy) E /x,o. The property of fine 
mixed is obtained because <~,o is a triangulation. [] 

In the following sections we describe an approach to avoid calculation of the cells 
that do not contribute to the mixed volume. 

3.3. Computation of an Initial Mixed Cell 

The aim is to detect the degeneracy V, (7 9) = 0 by computing a mixed cell 

C = (C1, C 2 . . . . .  C r )  , 

with C i : {Co/, Cli . . . . .  Ckii} C Ai.  A straightforward approach could be to apply 
Algorithm 2.10 to compute, from each set Ai in r ki linearly independent points with 
respect to a common origin. However, this approach is only sure to work when, for each 

Ai, dim(A/) --- n, as is illustrated in the following example. 

Example 3.10. Consider the following tuple ,,4 = (A1, A2), n = 2 = r: 

, 4 =  ( { ( ~ ) ,  (30), ( ~ ) } ,  { ( ~ ) ,  ( ~ ) } ) .  (14) 

The first two points of A1 should not be taken, because then there is no other linearly 

independent point left in A2 to choose. Therefore A2 must be considered first. 

Ordering the sets according to their dimension is only enough whenever the A i 'S lie 
in complementary affine spaces. However, for the applications we have in mind, the 
sparsity of the vectors also plays an important role, as is illustrated in the following 
example. 

Example 3.11. Consider the following tuple .,4 = (A1, A2), n = 3, r = 2, with the 
type of mixture given by (1, 2): 

:({(i) ( i ) . . . .  (Z)} I(i)(i)(i)}) 
Both sets have the same dimension. The last point of the first set Am must be chosen, 
otherwise no initial mixed cell can be found. 
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The instrument to deal with sparse vectors is provided in the following definition. 

Definition 3.12. Given a set A C E n. Consider i 6 {1, 2 . . . . .  n}. The occurrence ofi  
with respectto A is occ(i, A) = #{a e Alai ~ 0}. Consider x 6 E". The occurrence ofx 
with respect to A is occ(x, A) = minx,#0 occ(i, A), if x r 0 whereas occ(0, A) = #A + 1. 

This extends to the tuple of sets -4 = (A1, A2 . . . . .  Ar): the occurrence of i with respect 

to -4 is occ(i, -4) = Y]~=I occ(i, Aj) and the occurrence of x with respect to .4 is 

OCC(X, .4) ~-- Z j = I  OCC(X, A j). 

Example 3.13. Consider again the tuple -4 of Example 3.11. The vector (8 2 1 8 2 1) 

gives the respective occurrences of the respective vectors with respect to -4, as listed in 

the order in which they appear in (15), i.e., occ((0 0 0) t, -4) = 8, occ((1 0 0) t , -4) = 2, 

etc. 

The key step for an algorithm for computing an initial mixed cell is presented in 

Algorithm 3.14. 

Algorithm 3.14. 

Input: i ,  ki, 
Iii-1 A- E --- ~ j= l  j, 

7-~ = ( A  i . . . . .  A r )  with 

0 ~ Aj, #Aj = dim(Aj) + 1, 

dim(Aj tO E) < dim(A j+l U E). 

Output: Ci, 
E , ~ .  

G := {0}; 
for j from 1 to ki do 

choose x ~ Ai such that 

(1) dim(E U {x}) > dim(E) 

(2) x has minimal occurrence with respect to 7~ 

of all possible choices which satisfy (1); 

exit when no such x can be found; 

Ci := Ci U {x}; E := E U {x}; Ri : :  Ri\{X}; 

end for. 

Computation of the ith component of an initial mixed cell: 

current component 

set of chosen points 

remainder of-4 

invariant conditions 

ith component of cell 
updated sets 

initialization 

linearly independent 
take sparsity into account 

update Ci, E and 

Algorithm 3.14 has to be applied r times, each time respecting the invariant conditions 

given in the input specification. When the algorithm terminates with a component Ci, 
# C  i < k i ,  then no linearly independent points could be found and the problem is de- 

generate. Proposition 3.15 provides a formal guarantee for Algorithm 3.14. The proof 

interprets Algorithm 3.14 as the computation of one nonzero term in the expansion of 

the permanent of a matrix in Z~ • See [53] for an efficient algorithm for computing 

permanents of degree matrices. 

Proposition 3.15. If Algorithm 3.14 yields a C i w i t h  •C i < ki, then V, (7 9) = O. 
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Proof. Without loss of  generality, the sparsest case can be focused, i.e., all vectors in 

,4 are unit vectors, denoted by el. For notational convenience, r = n is assumed. With .4 

the following matrix M can be associated: Mij = 1, if ej ~ Ai, otherwise Mij = 0. So, 

the ith row of M represents Ai, for i = 1, 2 . . . . .  n. Then Vn(79) = 0 r per(M) = 0. 

When Algorithm 3.14 is iterated on each row, it picks from each row exactly one element 

on that column for which in the following rows there are a maximum number of zeros. 

Only when per(M) = 0 will the algorithm not find enough nonzero elements. [] 

By computing the vertex set of  each separate point set in the tuple, those points which 

will certainly not influence the mixed volume, regardless of  the subdivision used to 

compute it, can also be eliminated. 

3.4. Normal Fans and Mixed Cells 

Powerful tools to investigate the combinatorial structure of polytopes and subdivisions 

are fans. Based on this abstraction, we present a major algorithmic cornerstone of both 

the static and dynamic lifting algorithm. General definitions can be found in Lecture 7 

of  [56]. Here we reformulate the definitions using our notations. 

Definition 3.16. Let A C IE ~, then 

K ( A ) = { y ~ E  n IVx, y ~ A :  (x, F) = (y, F)} 

is the normal cone I on "A. Let A C B, then 

K (A, B) = {y E K (A) I YY E B \ A ,  Vx E A: (y, y) < (x, y)} 

is the normal cone on A with respect to B. 

Definition 3.17. Let A C E n, then 

.AfJ(A) = {K(O• A) [ dim(0yA) = j} 

is the normal cone complex of the j-faces OyA of conv(A). If  A is a lifted polytope, the 

normal cone complex of  the j-faces of  the lower hull of  conv(A) will be denoted by 

A~ "j (A). The normal fan .Af(A) of A is the set of  all normal cone complexes A/"j (A), for 

j = 0 , 1  . . . . .  n. 

As the definition is given for point sets, it extends naturally to polytopes. We refer to 

p. 193 of  [56] for an alternative definition of normal fans. 

Definition 3.18. Given two normal cone complexes Y and ~. Their common refinement 
is defined as 

. T ' A ~ : = { K N K ' I K  ~ Y ,  K'  ~G}. 

The root of a normal cone complex Y is defined by N K ~ y  K. 

1 Cone = Kegel, both in German and Dutch. 
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a 2  

-~'r ..,"" 
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I .~d(P2) 
Fig. 8. The normal complexes .N'vl (P'1D and .N'l(~2), with P1 
intersection points indicate the mixed cells. 

", Pa+P2 

I I I ' a l  
o 2 4 

and P2 as in Fig. 7. The circles around the 

In [4] Betke proposed a new idea for the computation of mixed volumes based on 

lifting and normal fans. See also Lemma 2.1.5 of [25]. In [45] this idea has been gener- 

alized to more than two polytopes. Note that the idea of intersecting normal cones also 

appeared in [8]. Here we reformulate the idea in the following theorem. 

Theorem 3.19. Given .A = ('A1, "A2 . . . . .  Ar), a tuple of lifted point sets, with 
F k = r ~-,i=l i n, see (9). The normals in the common refinement Ai=I ]q-k; (~i) of the 

normal cone complexes of the ki-faces of the lower hull of c~onv(A'i) are the outer 

normals of the facets of the lower hull ofconv(A'l + A'2 + " "  "}-Ar). These facets deter- 

mine the mixed cells in the subdivision of .A. 

Example 3.20. Theorem 3.19 is illustrated in Fig. 8, on the same polytopes that have 

been used to illustrate the Cayley trick. The lifting is assumed to be linear. The lifted 

square ~ has four 1-faces. The corresponding normal cones are two-dimensional and 

share the one-dimensional normal cone K(PI)  which defines the root, drawn as a point. 

For the triangle there are three normal cones of 1-faces. They are two-dimensional and 

have one common one-dimensional normal cone, drawn as a po].nt. The intersection 
1 1 points in Fig. 8 represent the normals that span the cones of A/'v 1 (P1) A .hfv 1 (P2). These 

normals define the mixed cells in the subdivision. 

In [ 10], [ 18], and [30] the idea of B etke has been used to compute all mixed cells. Here 

the algorithm suggested by Theorem 3.19, and in [10] and [18] described as the lift-and- 

prune algorithm, is elaborated and presented m preparethe dynamic lifting algorithm. 

Given a tuple of lifted point sets .,4 = (A 1, A 2 . . . . .  A r), any lifted cell Cy of a regular 

subdivision can be characterized by its inner normal as 

(16) 

A r A 

Since conv(Cy) = conv()--~4= 10yAi) is a facet of the lower hull, the functional (-, y) 
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attains its minimum over A~- at 0y A'i, i.e., 

(~, y)  = (b, y),  V~,b  e 0• i = 1 , 2  . . . . .  r, 

93 

(17) 

(~, y)  > (g, y),  'v'~eA~i\OyA'i, V~oeO~,Ai, i = 1 , 2  . . . . .  r. (18) 

Algorithm 3.21 presents a way to compute all mixed cells by searching for feasible 

solutions to the constraints (17) and (18). The algorithm enumerates all possible com- 

binations of  ki-faces, with proper feasibility tests to limit the search space. The order of  

enumeration is organized so that mixed cells which share some faces also share a part 

of  the factorization work to be done to solve the system defined by (17). 

Conditions (17) and (18~are used in the following way. After choosing a ki-face 

C~. = t~oi, c~i . . . . .  Ck, i} of ai ,  it is checked whether (C'1 . . . . .  C'i) can lead to a mixed 

cell in the induced subdivision. In the ith step we already have the upper triangular 

matrix M1, with x rows, originating from the vectors Cj~ - 'c0~) t, v = 1, 2 . . . . .  i - 1, 
i - I  

j = 1, 2 . . . . .  k~, with x = Y~.~=I k~. Then this matrix M1 is extended with new rows 

defined by the vectors (~ji -'Coi) t, j = 1, 2 . . . . .  ki. By making row combinations 

and pivoting, we obtain M1 :=  L �9 M1 with entries M1 = (mkt), such that rout = O, 

Iz = x + 1 . . . . .  x _jr_ ki, l = 1, 2 . . . . .  x. A unimodular transformation U yields an upper 

triangular form: M1 :=  U �9 M1. Condition (17), with v = 1, 2 . . . . .  i, is then equivalent 

to M1y = 0. If  M1y = 0 implies Yn+l = 0, then conv(~l)  + . . .  + conv(Ci) lies in 
A 

a hyperplane perpendicular to the lifting axis and hence (C1 . . . . .  Ci) cannot be part of  

any mixed cell. This concludes the first feasibility test. 

For the second feasibility test, the rows of  the matrix M2 are extended with the 

vectors (ai - e0i) , ai E Ai \Ci ,  since, in (18), it is sufficient to consider only b = c'0i. 

In the ith step we use MI y = 0 to eliminate tc + ki unknowns, which reduces the 

dimension of  the space of  inequalities to ~n - x - ki. If  thesys tem of inequalities 

Mzy  >_ 0 implies - Z , + I  -> 0, then .conv(C~ + - . .  + conv(Ci) is not a lower facet 

of  conv(A1 + . . .  + Ai) and hence (C1 . . . . .  Ci) cannot be part of any mixed cell. The 

test whether M2y > 0 =:~ -Yn+l > 0 is equivalent to determining whether the vector 

(0 . . . . .  0, - 1 )  belongs to the cone spanned by the vectors in the columns of  M2. The 

Farkas lemma (see, e.g., [56]) deals with this problem and can be worked out by linear 

programming. 

A l g o r i t h m  3.21.  

Input: (kl, k2 . . . . .  kr), n = ~ = I  ki, 

(A1, A2 . . . . .  At),  
A A 

( ~ 1 ,  ~ 2  . . . . .  ~ r ) .  
A A 

Output: Go~ = {C ~ So~ I V,(C) > 0}. 

At  level  i ,  1 < i < r: 

DATA and INVARIANT CONDITIONS: 

(Ml,X): M l y = 0 ~ y n + l = 0 ,  

Shared factorizations subject to inequality constraints: 

type of  mixture 

lifted point sets 

k i -faces of lower hull of  conv (A/) 

collection of  lifted mixed cells 

i - 1  
K = E j= ,  kj 

(M2,  to): M 2 y  ___~ 0 - ~  - - Y n + l  ~--- 0 

dim(M2) = n -- tr 

equalities (17) 

upper triangular up to row x 

inequalities (18) 

still feasible and reduced 
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ALGORITHM: 

for each ~/ e ~"/do 

Triangulate (Mr, to, Ci); 

i fM1y = 0 5/r ~/n+t = 0 

then Eliminate(M1, M2, K, Ci, Ai), 
if M2y >__ 0 ~ --Yn+l >-- 0 

enumerate over all ki-faces 

ensure invariant conditions 

test for feasibility with respect to (l 7) 

eliminate unknowns 

test for feasibility with respect to (18) 
then proceed to next level i + 1; 

end if; 

end if; 

end for. 

At level i = r: 

Compute F: Mlt '  = 0; 

Merge the new cells with the list Go~. 

Note that (18) had to be weakened to > type inequalities in order to be able to compute 

also subdivisions that are not mixed. This also explains the merge operation at the end. 

The feasibility tests in the algorithm allow an efficient computation of the mixed ceils. 

As an alternative to these feasibility tests we refer to similar criteria which can be verified 

by means of linear programming, as presented by Emiris and Canny in [ t8]. 

In Algorithm 3.21 a lot of face-face combinations that do not lead to mixed cells 

need to be tested. For semimixed tuples of polytopes, it might often be beaten by the 

Cayley trick and it is cegainly not the appropriate tool for the unmixed case. The dynamic 

lifting algorithm applies Algorithm 3.21 with a relatively small input set, which assures 

its efficiency. 

3.5. Conservative Lifting Functions Applied to Mixed Cells 

A linear lifting function co is face structure preserving, i.e., there is a one-to-one cor- 

respondence between the faces OyA i of Ai and the faces of the lower hull of ~.. For a 

generic choice of linear co a mixed subdivision ,,4 is induced. However, in the context of 

dynamic liffing a nonlinear lifting is more appropriate. 

Analogously to Definition 2.14, we define conservative lifting functions. Denote | 

as the collection of mixed cells in the regular subdivision of,A = (A1, Aa . . . . .  Ar) and 

S u as the corresponding regular subdivision of Ai, i = 1, 2 . . . . .  r. 

Definition 3.22. Let CAr = (C'1, C2 . . . . .  ~ )  be a cell. Consider a point x with respect 

to CA/. Let co(x) = ~'n+l so that 0 ,  Y) > ( C i ,  y), then co is called a conservative lift- 

ing with respect to the ith component of Ce. If co is a conservative liftingwith respect 

to all cells in S'~) and with respect to the ith component of all cells in | then co is 

called a conservative lifting with respect to "ff~> and with respect to the ith component 

of| 

Analogously to Proposition 2.16, optimal discrete lifting functions can be defined. 
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Proposition 3.23. Consider a point x with respect to  A i . Then the lowest possible value 

o f  a discrete conservative l i~ng function is given by 

/ 
c"~( i ) x m I ogi(~o~,~/),x) := max ~ogi(S~, ) , ^  a x  ogi(~yi, x) , 

\ Cy e G~ / 
i = 1,2 . . . . .  r, (19) 

where, on the right-hand side, formulas (5) and (6) are applied respectively. 

Analogously to the unmixed case, the mixed cells are preserved by conservative 

lifting. Denote the collection of mixed cells in the regular subdivision of (Al . . . . .  A i  U 

{x}, Ar) by 8"~o~ and the corresponding subdivision of Ai [-J {X} by ~(i) 
�9 " ' ~  O )  " 

Lemma 3.24. Consider x with respect to Ai. Let dim(Ai ~ {x}) < n. Let x be lifted 

conservatively with respect to the ith component of  So~. Then 8o~ c_ 8~ .  l f  x �9 conv(Ai), 
- "  . . . . .  ^ 

then o~ = 8'o~, otherwise, u e 8~\8o~,  Cy = (C1, . . . ,  Ci, . . . ,  : ~ �9 Ci. 

Proof. Due to the conservative lifting of x, for each ~y e ~o~, (-, ~/) still attains its 

minimum at C• so �9 8',o. The proof of the second statement is trivial. [] 

Lemma 3.25. Consider x with respect to Ai. Let dim( Ai U {x}) = n. Let x be lifted 

conservatively with respect to the ith component o f  ~o~ and with respect to ~(_i). Then 

8w c 8 '  and ) c S o~ �9 f i x  e conv(Ai), then 8w  = 8 '  otherwise, u e 
- -  O )  - -  0 ) '  0 ) ,  

^ "~ ^ ~ )  ~ ~ i  C r = (C1 . . . . .  Ci . . . . .  :'~ e Ci and belongs to the lower hull o fconv(Ai  Ux~). 

Proof. The statements concerning the mixed cells can be derived from Lemma 3.24. 

Because ~r belongs to the lower hull of conv(a~ + A'2 + " "  + Ar), its components C"~. 

belong to the lower hull of conv(Ai). [] 

Note that in special cases it may happen that no new mixed cells are obtained (~o~ = 8~'7~) 

although x ~ conv(Ai). 

Lemma 3.25 uses the change of the normal cone complex A/'v ki (A'i) by adding a point 

x. Observe that A/~v j (~j), j ~ i, do not change. If x r then A%i = ~- U {x} 

has new facets in the lower hull in comparison with A^i, which gives new cells in S'~ ). 

The new facets in the lower hull generate new ki-faces. Some of them are ki-faces of 

old faces. Others are new. The normal cone of one old k i - f a c e  C is modified: K (C, A"i) C 

K (C, ai) .  Instead of K (C, A^i) e A/~v ' (a~) we have K (C, "A'i) �9 .Iv'k' (~'i) .  The normal 

cones of the new ki-faces K (C, A'i)  are new elements of.N "ki (A"i). 

The analogue definition for flattening corresponds to Definition 2.20. 

Computing new mixed cells can be done by lifting the new point x conservatively and 

applying Algorithm 3.21, where the input for the ith component can be restricted to the 

new ki-faces that containS. It is important to note that even a simple mixed subdivision 

cannot be guaranteed, because we are only dealing with the collection of mixed cells. 
See Section 3.7 for how to deal with this fact. 
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3.6. Incremental Construction with Connectivity 

In this section the analogue pivoting mechanism of the dynamic lifting algorithm for the 

general case is described. Here we conjecture that in a regular subdivision, all mixed 

cells are connected. Therefore, we first investigate the modification of the normal cone 

complexes by the addition of a new point more carefully. 

Assume that dim(Aj) = n for all j = 1 . . . . .  r. There is a subdivision S~ ") of Ai 

inducedby o9i. In addition to the normal cone complex A/v k~ (A'i) we consider, for each 

facet Oy ai in the lower hull of  ~/ ,  the normal cone complex.A/k' (0• a'~-). For each ki-face 

C of 0ya"~. there is a cone K :---- K(C, Or A,-) e .N "k' (O~A'/). If C is a common face of 

two facets 0~a"~ and 0ra"~, then K (C, ar~i)  n K (C, orza"i) C K (C, ~,.) ~ JV'~v' (~i). 
A 

We consider the r o o t / ~ r ~ v ~  (O~,A'~) K of the normal cone complex. Since O~Ai is a facet 

of the lower hull, the root is generated by the outer normal - y  of 0~ Ai. 

Adding a point x r conv(Ai) to Ai gives riseAto new facets O~A'i in the lower hull 

and thus gives rise to new normal cones K(OrA'i) and new normal cone complexes 

.Ik/~v ' (Oe~'i) and new roots. This process can be visualized nicely with an example. 

Example  3.26. Consider again the same polytopes as in Fig. 8. On the left in Fig. 9 

the normal cone complexes .N "1(~)  and.A/'v t (P2) are drawn in a way that the intersection 

points are put above the corresponding mixed cells of the induced subdivision of (PI, P2). 

Since the induced subdivisions S ~l) and S ~2~ consist only of one cell, respectively, the 
t o ]  (02  

complexes.A/'l ( ~ ) a n d - ~ v  ( ~ )  are already the complexes.N "l (0r P//) for the cells Oy P//in 

the subdivision of Pi. On the right the point (3, 1) t has been considered with respect to/)2 

and amended after lifting it conservatively. A new cell C2 is obtained, so S~ 2] = {CI, C2}. 

Thus two roots are drawn. Two cones K1 e .N'v 1 (~])  and K2 e .N'v 1 (~2) have a nonempty 

intersection which is drawn as the line between the two roots. The conservativeness of 

the lifting is reflected by the fact that the intersection points in the left picture also exist 

in the right picture. 
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Fig. 9. The normal cone complexes.A/"1 (~11) and.~v 1 (~2), with the same subdivision of P1 + P2 as in Fig. 8, 
are shown on the left. The roots of the normal cone complexes have been placed so that intersections between 
dashed and thick lines lie above the mixed cells. On the right, one point has been amended to/)2. 
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In Fig. 9 it is seen that the three mixed ceils are connected to each other. The argument 

presented in the following sentence is due to Pedersen. By considering the corresponding 

construction with normal cone complexes, passing from one intersection point to another 

one becomes possible by going back to the roots. For a polytope it is obvious that all 

faces are connected to each other, i.e., for each pair of k-faces ~, ~*, there is a path of 
k-faces ~(J), j = 0 . . . . .  s, such that ~(0) = ~, ~(sl = ~ . ,  dim(~dl O ~(j+l)) ~ k - 1, 

j = 0 . . . . .  s - 1. The notion of connectivity of mixed cells is more complicated. 

Definition 3.27. Let $09 be the induced subdivision of.A. Denote the collection of lifted 
" 

mixed cells in by_ ~09. Two mixed cells C', D E ~,o are connected to each other if  

there is a path from C to D: a sequence of mixed ceils C'~J~ ~ ~09, j = 0, 1 . . . . .  s, exists 

such that ~'~0; = ~" and C'~) = D,  with 

. . . ,  A(j+I ) 
dim(Ci9 J n C i ) > ki -- 1, Vi = 1 . . . . .  r, j = 0 . . . . .  s - 1. (20) 

Ignoring the lifting value~ the mixed cells C and D are said to be connected to each 
A 

other. If  all mixed cells in Go~ are connected to each other, then | is connected. Ignoring 

the lifting values, | is connected if all its mixed cells are connected to each other. 

The following conjecture was first stated by Pedersen [42]: 

Conjec ture  3.28. Let So~ be the induced subdivision of .A and let ~o~ be the set of mixed 

cells. Then ~09 is connected. 

For n = 2, Pedersen has given a proof, based on normal fans. His idea has been shown 

on the left of Fig. 9. 

Algorithm 3.29 allows the exploitation of the connectivity of the mixed cells. It is 

important to note that this only happens when ~(~) ~ 0, for full-dimensional polytopes. 

Also, as long as Conjecture 3.28 remains unproven, this part of the algorithm remains 

heuristic, but this can be directly switched off by omitting the test on A(~) = 0 and 

applying Algorithm 3.21 with all lower ki-faces instead of only the neighboring ones. 

Furthermore, note that, for Algorithm 3.29, it is sufficient that this conjecture holds for 

any placeable regular mixed subdivision. 

Algorithm 3.29. 

Input: (kl, k2 . . . . .  kr)-- n = )-~7=1 ki, 

(Al, A~2 . . . . .  ar), 
. . . . .  ), 

09 , ~ , . .~ , ), 

G,o = { c e s091 v.(c) > 0}, 
x, i. 

Output: (A'1 . . . . .  A'/U {'s . . . .  --Ar), 

( ~ 1  . . . . .  ~ i  U ~ /  . . . . .  ~ r ) ,  
( ~ ( 1 )  ~ ( i )  | l  ~ ( i ) x  ~ ( r ) ]  
~.~09 ' ~ .~  ' --09 - -  ~ w  ~ " " " ' 09 /~ 

| u ~ .  

The dynamic lifting algorithm to compute new mixed cells: 

type of mixture 

lifted point sets 
A 

ki-faces of lower hull of conv(Ai) 

facets of lower hull of conv(A,-) 

collection of mixed cells 

a point to add to A i 

updated lifted point sets 

updated ki -faces 

updated regular triangulations 

updated collection of mixed cells 
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COMPUTE ~ .  

~n+l := w(Gto, A(/), x, i); 

ai := ~- U {~}; 

if A~) = 0 

then 

ifdim(Ai) < n 

then ~ ' / :=  Enumerate-Faces~(~i, ki, xA); 
else AA~/)x := lnitial_Facets(.Ai, x~); 

~ := Enumerate-Faces(A~ )x, ki, x~); 
( i )  . _ _  ~ ( i )  U ~ ( i ) x .  
to , - -  to to 

end if; 
"~'(i)x "~(i) . else A~o := New_Facets(Ato ,x~, 

�9 ~. "= Enumerate-Faces(A(O x, ki, x~); 
v !  �9 \ t o  . 

"s . -  ~ " )  u " s  . 
- - t O  " - -  ~ t o  - -  - - t o  

end if. 

COMPUTE Gx : 

if A~) = 

then ~x := Algorithm_3.21(~l . . . . . . . . . .  ~x ~r); 

else | := 0; 

for all cells C ~ ~to do 

~i ~--rx ._ Neighboring_Faces(C, ~x); 

if 77 # 0 then 

for all j in {1 . . . . .  r}\{i] do 

~j. := Neighboring_Faces(C, ~j); 

end for; 

:= Algorithm_3.21._. ..--_ . . . . . . . . . .  ; 
|  :=  @x t3 | 

to tO to~  

end if; 

end for; 

end if. 

lift the point conservatively 

update lifted points set 

update triangulation of Ai 

new ki-faces 

initial facets of lower hull 

new ki-faces 
update the lower hull 

apply Algorithm 2.9 

new ki-faces 

update the lower hull 

new mixed cells 

exploit neighborship relations 
apply the connectivity 

neighbored new ki-faces 

apply the connectivity 

new mixed cells 

update mixed cells 

The idea is to apply Algorithm 2.9 to compute the n e w  k i - f a c e s  of A~. tJ I ~  after adding 
a point x to A i. The new mixed cells will be computed by repeated applications of 

Algorithm 3.21 which is called for each old mixed cell which is neighbored to a new ki- 
face. Algorithm 3.21 is c~alled with the following small input set: Let C = (C1 . . . . .  Cr) 

be the old mixed cell. ~ are those new ki-faces which have a common (kj - 1)-face 
A 

with C"i. ~j, j ~ i, are the kj-faces which share a common (kj - 1)-face with ~j. In 

practice, it turns out to be efficient to put the new faces ~ in front of the argument list 

of Algorithm 3.21, in order to avoid to make face-face combinations which lead to other 

mixed cells, not containing any of the new faces. 

In the beginning, when only the initial cell and some other cells exist, Algorithm 3.21 is 

called with all new ki-faces. Note that, when dim(Ai) becomes n, due to the consideration 

of x, Initial_Facets first computes one initial cell and then applies Algorithm 2.9 to all 

other points in Ai. Note that #Ai might be larger than dim(A/). The new ki-faces are 



Mixed-Volume Computation by Dynamic Lifting Applied to Polynomial System Solving 99 

computed by Enumerate_Faces, which applies either to the whole list ~- or to the new 

cells in A~ )X. 

Algorithm 3.29 combines the advantages of both the Cayley trick (Algorithm 3.8) 

and the generalization of  Betke's idea (Algorithm 3.21), because it allows exploitation 

of  the neighborship relations, so that many spurious face-face combinations can be 

prevented a priori, as opposed to the feasibility tests in Algorithm 3.21. This implies 

that Algorithm 3.29 provides an efficient solution to the unmixed, semimixed, and fully 

mixed case. 

3.7. Unfolding Cells with the Same Inner Normal 

For the unmixed case, we mentioned in Section 2.6 that, due to flattening, different cells 

could get the same inner normal. Because the cells are stored as before, this fact does 

not influence the computation of new cells or the computation of  the volume. However, 

for static polyhedral continuation, i.e., the approach presented in [30], all cells need to 

have a different inner normal. 

For dynamic polyhedral continuation, see Section 4.2, the following approach can be 

applied. The solutions which correspond to the existing cells have to be extended to the 

enlarged system, and therefore they can all use the same homotopy, generated by the 

same inner normal. In order to compute the solutions which correspond to the new cells, 

the points which belong to those new cells with the same inner normal can be relifted, 

by exploiting the data structure and by appfication of  conservative lifting functions. In 

Fig. 10 the unfolding of cells is pictured on a small example. 

The application to this unfolding method is straightforward when the Caytey trick is 

used to compute the mixed volume. However, when only the mixed cells are computed 

in Algorithm 3.29, we still have to rely on the recursion mechanism described in [50] 

to deal with the case when some mixed cells are not exactly of  type (ki, k2 . . . . .  kr). 

So, there is a tradeoff on the bound to be set for the lifting value. If  the bound is low, 

flattening will occur frequently, which leads to relifting afterward. 
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Fig. 10. AA~angulation a is shown on the left. The big numbers indicate the values of the lifting function. In 
the middle a has been flattened and new cells which contain x = (3, 1) t have been added. The two new cells 
have the same inner normal F = (-  1, 0, 2). The modification of the lifting is displayed on the right. Here the 
two new cells have a different inner normal. The arrow indicates the order of traversing the new cells while 
relifting. 
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3.8. Complexity and Cost Estimates 

Like volume computation, the problem of mixed-volume computation is known to be #P- 
hard, see [14] and [25]. The analogue result as in the unmixed case from computational 

convexity is given by the following proposition. 

Proposition 3.30 [25]. When the dimension n is fixed, the mixed volume of  a tuple of  

polytopes can be computed in polynomial time in the input size. 

By application of the Cayley trick, Theorem 2.25 can be extended in a straightforward 

way. Again it is assumed that the problem is nondegenerate. 

Theorem3.31. Given a tuple of points sets .4 = (At, A2 . . . . .  Ar). Denote m = 

n + r - 1. Let #.A = Y]~=I #Ai and .A' = .A\C, with C a cell. The construction of a 

placeable fine-mixed subdivision S of .A takes at least O( (#S)m 3 + (#.A')m2), at most 

O((#S)m 3 + (#S)(#.A')mZ), and on average O((#S)m 3 h- (#S)(#.A')m) arithmetical 

operations. 

Note that #S stands for the cardinality of the whole subdivision, with mixed as well as 
unmixed cells included. The Cayley trick becomes more expensive when r increases. 

The cost of the static lifting method, based on the idea of Betke, has been investigated 

in great detail in [14] and in [17] and [18]. Following these approaches, a bound on the 
complexity of linear programming is needed. Therefore, the following result (see [24]) 

is used. 

Theorem 3.32 (Karmarkar's Projective Algorithm Runs in Polynomial Time). 
Karmarkar's algorithm can be adapted to solve the general linear programming problem 

in 0 (n L ) steps, where the average step-complexity is 0 (nS/2 L ). The required precision 

is O(L).  

Fixed-precision calculation is assumed, so the factor L is omitted in what follows. 

Recall the following notations: ~i denotes the ki-faces of the lower hull of Pi and the 

collection of mixed cells in the subdivision S~ is denoted by @o,. 

A 

Theorem 3.33. Let ei ~ [0, 1] be the probability of  success that a ki-face in ~i passes 

the feasibiliAty test. On average, computing the collection of  mixed cells ~o~ requires 

O (H~=I (~q~i)Ei [in + (n -- i)7/2]) arithmetical operations. 

Proof In order to compute | all face-face combinations need to be considered. This 
explains the product of the cardinalities of the ki-faces with their respective probabilities. 
At level i, it takes time O(in) to perform the elimination step in Algorithm 3.21. Ap- 
plying Theorem 3.32, the average time needed to solve a linear programming problem 
in dimension n - i is given by O((n - i)7/2). [] 

Note the practical importance of this elimination step in Algorithm 3.21, as it allows 
reduction of the dimension of the second feasibility test. The asymptotic complexity 
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for the dynamic lifting algorithm is the same as given in Theorem 3.33, although in 

practice Algorithm 3.21 can benefit from sharing factorizations, i.e., at level i all face- 

face combinations of one branch can use the result of the same elimination step, while in 

Algorithm 3.29 these factorizations have to be computed again, each time the algorithm 

is invoked with a new point. 

4. Impact on Polynomial System Solving 

4.1. The Theorem of Bernshte~n 

Computation of the full solution set of a polynomial system F = (fl ,  f2 . . . . .  f , )  in 

n unknowns is often required in many applications. The third section provides some 

examples. Homotopy continuation methods have proven to be reliable for this purpose, 

see [36] for an introduction. The system to be solved is embedded into a family of 

systems, the so-called homotopy, which defines paths of solutions from known solutions 

to the desired solutions to be traced numerically by continuation methods. Recently, 

polyhedral homotopy methods have been presented [30], [52] for computation of all 

isolated roots of sparse Laurent polynomial systems in Cg, with C0 = C\{0}. 

Definition 4.1. A Laurentpolynomial f is defined as 

f(x) = E caxa' Ca E Co, X a : XlalX2...a. .X na., A C Z n, #A < oo. 
CaEA 

The set A is the support of f ,  A = supp(f).  Its convex hull, P = conv(A), is the Newton 

polytope of f .  

Definition 4.2. A Laurent polynomial system F is defined by a tuple of Laurent poly- 

nomials, F = (fl ,  fz . . . . .  fn). The tuples .4 and 79 collect respectively the supports and 
Newton polytopes: 

.4 = (A1, A2 . . . . .  An), 

79 = (P1, P2 . . . . .  Pn), 

Aj = supp(J~) 
Pj = conv(Aj)' 

j = 1 , 2 , . . . , n .  

The relationship between tuples of polytopes and systems of polynomial equations 

has been given by Bernshtein, see [3]. 

Theorem 4.3. Let F be a system of n Laurent polynomials with support .4 and the 

associated tuple of Newton polytopes 79. Then for almost all choices of the coefficients 

the system F has exactly as many roots in C~ as Vn (79). 

Canny and Rojas presented a refined version of this theorem in [11]. They named 

the mixed volume of the Newton polytopes the BKK bound, named after its inventors, 

Bernshtein [3], Kushnirenko [33], and Khovanskil [32]. See Chapter 4, Section 27, of 

[9] for more on the importance of mixed volumes in algebraic geometry. In [44] more 

refinements of the theorem are presented. Instead of the above definitions which might 
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'i "2 

i I  2 

1~2 3 

~ / / x .  

z1:~2 + + c1~ 

3 3Jo + Cllz3tO + C12~23tl .~_ C13t  0 ~--. 0 Y(~,,~2,t) = ~ ' ~  
~1~2 ~-s-s'~ + c21z3to + c22~]t1 + c2sto = 0 

71 = (1 , -1 ,3 )  7, = (0,0,1) 

Fig. 1 1. The regular triangulation is shown on the left. The corresponding polynomial system and the induced 
homotopy are displayed at the right. 

look artificial, a Newton polytope can be related to a Laurent polynomial via an amoeba, 

see Chapter 6, Section 1, of [23], which models the asymptotic behavior of the roots. 

In [8] Newton polyhedra have been applied to compute the local uniformization for all 

branches of a curve defined by a system of equations in n-dimensional space. 

4.2. Incremental Polyhedral Continuation 

In [30] another constructive proof of Bernshtein's theorem has been presented, intro- 

ducing the concept of polyhedral continuation for computing all isolated solutions of 

F(x) = 0. Here we illustrate the idea of incremental polyhedral continuation with a 

small example. 

Example 4.4. In Fig. I 1 a regular triangulation of a polynomial system with the ran- 

domly chosen complex coefficients is shown. The triangulation Ao~ also subdivides the 

system F in initial form systems Fy,, which are subsystems of F whose exponent vectors 

all belong to Cy,, i = 1, 2 . . . . .  #A~. The induced homotopy F can be used directly to 

extend the solutions of the initial form system F~ to the system F. In order to extend the 

solutions corresponding to the subsystem Fy,, a transformation needs to be used, defined 

by the components of the inner normal Yl: 

-, 1) Yl = ( 1 , - 1 , 3 )  = 3 x , - ~ ,  , X 1 <--'- "~]t 1/3, X 2 +-- ~2t -1/3, (21) 

which leads to the homotopy 

/X~IIX~22 -{- CllX~ll tl -{- C12X~22 q-C13 = 0 ,  

7"/Y' (~l 'X '2 ' / )  = /X~llX~2 -J- C21X~ll/1 -{- C22X~22 "l- C23 0. 
(22) 

For t = 0, 7-/y, (~, 0) = Fy, (~) and, for t = 1, 7-/y, (~, 1) = F(~). So, by letting t vary 

from 0 to 1, the desired solutions can be computed. 
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This example illustrates the advantages of the induced homotopy obtained by the 

dynamic lifting algorithm: all lifting values are as low as possible which leads to a 

well-conditioned homotopy whose solution paths are weakly nonlinear and hence less 

expensive to track numerically than with a homotopy induced by a random lifting func- 

tion. 

4.3. Computat ional  Experiences 

After having done all this hard work ourselves, it is now time to put the computer to 

work. The algorithms presented above have been implemented in Ada, with the aid of 

the Verdix Ada System (VADS). All modules and programs are compiled and executed 

on a DECStation 5000/240. Except for the linear program solver, we have worked with 

integer calculus, because we are dealing with Newton polytopes. 

4.3.1. The Nine-Point Problem. A long-standing problem in mechanism design has 

been the problem of finding all four-bar linkages whose coupler curve passes through nine 

prescribed points. Recently, in [55], for the first time a complete solution has been given. 

In [39] an efficient homotopy has been designed by exploiting its product-decomposition 

structure. 

In [39] the unknowns of this system are grouped in two 6-tuples z = (n, ~', x, ~', a, a ~) 

and w = (m, ~_y ,  ~', b, b). The coordinates of the precision points are defined by the 

numbers 3i and 8i, for i = 1, 2 . . . . .  8. The ninth precision point lies in the origin. The 

first four equations are 

n = a~, ~ = ~ x ,  m = b~, ~ = by ,  (23) 

and the remaining eight equations have the following form: 

ft" (g, W) : ~/i (Z, W)~//(Z, W) --[- ~/i (Z, W)y? (Z, W) --~ y? (Z, W)~i (Z, W) : O, (24) 

i = 1 , 2  . . . . .  8, 

where the polynomials Vi (z, w), ~ (z, w), and V ~ (z, w) can be written in terms of linear 

ones: 

)/i (z, w) ----- qi (z)ri (w) - qi (w)ri (z), (25) 

~/i(z, w) ----- r i ( z )p  i (w) -- r i (w)pi (z), (26) 

yi0(Z, W) = Pi (z)qi (W) -- Pi (w)qi (Z), (27) 

where Pi, qi, and ri are defined as 

pi(z) ----- n ' -~ /x ,  qi(z) --- n - S i ~ ,  ri(z) : ~ i ( a ' - - x ~  +~/(a - x )  --  8i~/,  (28) 

p;(w) = ~-~/y, q~(w) = m-6/~, r;(w) = 3~(~-y~+~(b-y)-6~6~. (29) 

By the first four equations (23), the unknowns n, "~, m, and ~ can be replaced by their 

respective right-hand sides into the remaining eight equations (24). The resulting system 
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is unmixed and consists of eight equations of degree seven. Hence the total degree, i.e., the 

product of all degrees of the polynomials, equals 78 =5,764,801. This substitution blows 

up the total degree (originally equal to 2448 = 1,048,576), and the best m-homogeneous 

Brzout bound (from 286,720 to 645,120, m = 4), but leaves the BKK bound unchanged. 

The fact that all polytopes in the system are the same makes it easier to handle. 

Now we give the results of our program on this eight-dimensional problem. In the 

system there are 259 terms, but only 158 of them lead to vertices. The time needed to 

verify this was less than 3 minutes (163 cpu sec.). For a random addition of the points, 

there are 13,339 simplices in the triangulation, computed in about 36 minutes (2162 cpu 

sec). The volume equals 83,977 divided by 8 !. Computation of the volume, given the 

triangulation, costs about 1.3 minutes (75 cpu sec.). 

The cost bounds for the dynamic lifting algorithm, as derived in Section 2.7, will be 

checked on this example. The time for the computation of the volume, given the triangu- 

lation A, corresponds to O ((#A)n2). Multiplication by n gives O ((#A)n3), yielding 600 

cpu sec. (75 cpu sec. x 8) as the total cost for all factorizations. By dividing O ((#A)n"-) by 

#A and multiplying by #A', the cost for computing the additional decompositions in the 

optimal case is given by 0.8 cpu sec. (75 cpu sec./13,339 • (158 - 9)). In the worst case, 

multiplying O ((#A)n 2) by #A' yields 11,175 cpu sec. (75 cpu sec. x (158 - 9)) as the to- 

tal cost for computing all decompositions. In the average case, dividing O ((#A')(#A)n 2) 

by n yields 1397 cpu sec. (11,175/8). After adding the factorization and decomposition 

costs the following inequality is obtained: 601 < 2,162 < 11,775, while the average cost 

bound equals 1997 cpu sec., which is quite close to the actual computing time. Note that 

the latter time contains not only the arithmetic operations, but also the overhead caused 

by, e.g., memory management. 

The purpose of this example is to demonstrate the complexity of volume computation, 

and not to claim that this leads to an efficient approach for solving this system. It is worth 

noting that the BKK bound 83,977 is less than 286,720, which is the bound for the number 

of the solutions which the brute-force technique in [55] was based on. As explained in 

[39], the product-decomposition structure of the system should be exploited in order to 

solve it more efficiently. 

4.3.2. A PUMA Robot. The hand position and orientation of a PUMA robot can be 
modeled [37] by the following: 

x21+ x ~ -  I = O, 

+ I = o, 

x +xg-1 = 0 ,  

+ x l  - 1 = 0 ,  

0.004731xix3 - 0.3578x2x3 - 0.1238xl - 0.001637x2 - 0.9338x4 + x7 - 0.3571 = 0, 
0.2238XlX3 + 0.7623x2x3 + 0.2638xl - 0.07745xz - 0.6734x4 - 0.6022 = 0, 

x6x8 + 0.3578xl + 0.004731x2 = 0, 
-0.7623Xl + 0.2238x2 + 0.3461 = 0. 

The total degree of this system equals 128. By partitioning the set of unknowns in 

Z = {{Xl, x2}, {x3, x4, XT, x8}, {xs, x6}}, the 3-homogeneous Brzout bound equals 16. 

The BKK bound equals 16, which is the exact number of isolated roots of this system. 

The remarkable fact of this system is that any initial mixed cell has volume 16. 
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4.3.3. C a m e r a  M o t i o n  f r o m  P o i n t  M a t c h e s .  The following system models  the displace- 

ment of  a camera between two positions in a static environment, with the coordinates of  

the matched points as given in [17]. The coordinates of the frames have been scaled, i.e., 

all components have been divided by 1000. In [20] this problem has been formulated 

using epipolar  geometry. 

-3.6dlql  + 4.1dlq2 + 2.0dlq3 + 0.1dl + 4.1d2ql + 1.8d2q2 + 3.7d2q3 - 0.2d2 

+2.0d3ql + 3.7d3q2 - 4.0daq3 + 0.3d3 + 0.1ql - 0.2q2 + 0.3q3 + 5.8 = 0, 
-2.140796dlql - 3.998792dlq2 + 3.715992d~q3 - 0.2828dl - 3.998792d2ql 

-1.575196d:q2 - 3.998792d2q3 + 3.715992d3q1 - 3.998792d3q2 - 2.140796d3q3 
+0.2828d3 - 0.2828ql + 0.2828q3 + 5.856788 = 0, 

0.3464dlql + 0.1732dlq2 - 5.999648dlq3 - 0.1732dl + 0.1732d2ql - 5.999648d2q2 
-0.1732d2q3 + 0.3464d2 - 5.999648d3ql - 0.1732daq2 - 0.3464d3q3 - 0.1732d3 

-0.1732q1 + 0.3464q2 - 0.1732q3 + 5.999648 = 0, 

-5701.3dlql - 2.9dlq2 + 3796.7dlq3 - 1902.7d~ - 2.9d2q~ - 5698.7d2q2 

+1897.3d2q3 + 3803.3d2 + 3796.7daq~ + 1897.3daq2 + 3803.3d2 + 3796.7d3q~ 

+1897.3d3q2 + 5703.1daq3 + 0.7d3 - 1902.7ql + 3803.3q2 + 0.7q3 + 5696.9 = 0, 

-6 .8dlql  - 3.2dlq2 + 1.3dlq3 + 5.1dl - 3.2d2ql - 4.8d2q2 - 0.7d:q3 - 7.1d2 

+l.3d3ql - 0.7d3q2 + 9.0daq3 - d3 + 5.1ql - 7.1q2 - q3 q- 2.6 = 0, 

- d l q l  - dzq2 - d3q3 q- 1 : O. 

The total degree of  this system equals 64. By partitioning the set of  unknowns as {{dl, 

d2, d3}, {ql, q2, q3}}, the 2-homogeneous Brzout  bound 20 is obtained, which equals 

the mixed volume and the exact number of  isolated solutions. The system is semimixed, 

i.e., there are only three different support sets. Therefore, it can be handled efficiently 

with the Cayley trick and, by exploiting the connectivity conjecture, the dynamic lifting 

algorithm computes the mixed volume more efficiently than the static lifting algorithm. 

4.3.4. A n  I n v e r s e  P o s i t i o n  P r o b l e m .  This system occurs as Example  3.3 in [53] and 

has been described in [54]. It represents an inverse posit ion problem for six-jointed robot 

ar lns .  

+ z L  + - 1 = 0, 

zL + + zL  - 1 = 0, 

z41 + + z4 3 - 1 = 0, 

Z~l+Z22+Z~3-1  ---- 0, 

C1Z33 -- C2 "~- Z21Z31 "~- Z22Z32 ~--- 0, 

--C3 "~ Z31Z41 "~ Z32Z42 "~- Z33Z43 ~- 0, 

--C4 "~ Z41Z51 ~ Z42Z52 -~- Z43Z53 : 0, 

--Cl "~ Z51Z61 "~ Z52Z62 "]- Z53Z63 -~- 0, 

- - c l e 2 z 3 2  -4- d2z21 q- d3z31 + d4z41 q- dszs1 - e l z22  + e2z22z33 q- e3z32z43 

- e 3 z 3 3 z 4 2  q- e4z42z53 - e4z43z52 d- e5z52z63 - e5z53z62 - P61 ~ O, 

c le2z31  d-  d2z22 d- d3z32 d- d4z42 d- d5z52 ~- elz21 - e2z21z33 - e3z31z43 

q-e3z33z41 - e4z41z53 q- e4z43z51 - esz5{z63  -t- e5z53z61 - P62 : 0, 

c l d 2  + d3z33 -t- d4z43 + dsz53 q- e2z21z32 - e2z22z31 q- e3z3{z42 

- e 3 z 3 2 z 4 1  �9 e4z41z52 - e4z42z51 -]- e5z51z62 - e5z52z61 - P63 : 0. 

The total degree of  this system equals 1024. The 2-homogeneous Brzout  number equals 

320, with partition of  the unknowns, computed in [53], 

Z : {{Z21, Z23, Z41, Z42, Z43}, {Z31, Z32, Z33, Z51, Z52, Z53}}. 
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A better root count is provided by the BKK bound which equals 288. For any random 

complex choice of the parameters, there are only 16 finite regular solutions. This example 

illustrates the difficulty the dynamic lifting algorithm has when the factorizations cannot 

be shared (see the last paragraph of Section 3.8). 

4.3.5. A H e a r t - D i p o l e  P r o b l e m .  The following problem has been presented as a heart- 

dipole problem, see [38] and [40]. The original problem description can be found in 

[41]. 

a + b = 0.6325, 
c + d = 0.8465, 

t a  + u b  - v c  - w d  = 0.1245, 
v a  + w b  + t c  + u d  = 5.3452, 

a t  2 - a v  2 - 2 c t v  + b u  2 - b w  2 - 2 d u t o  ~- 1.4352, 
c t  2 - c v  2 + 2 a t v  + d u  2 - d w  2 + 2 b u w  = 0.9896, 

a t  3 - 3 a t v  2 + c v  3 - 3 c v t  2 + b u  3 - 3 b u w  2 + d w  3 - 3 d w u  2 = 0.3464, 
c t  3 - 3 c t v  2 - a v  3 + 3 a r t  2 + d u  3 - 3 d u w  2 - b w  3 + 3 b w u  2 = 3.1345. 

The right-hand sides of the equations are the parameters of the system and have been 

chosen at random. The total degree of this system equals 576. When partitioning the 

set of unknowns into Z = {{a, b, c, d}, {t, u, v, w}}, the 2-homogeneous Brzout bound 

equals 193. The BKK bound equals 121. In [38] the number of solutions with a generic 

choice of the parameters, the so-called coefficient-parameter bound, is reported to equal 

32. However, there is a type error in the formulation of the system, as presented in [38], so 

that for the original problem, presented in [41] and in [40], there can be only four regular 

solutions, for random right-hand sides. There are only two real symmetrical solutions. 

Note that in [40], this system has been reduced to a quadratic univariate equation. 

4.3.6. B u t c h e r ' s  P r o b l e m .  The next system belongs to the POSSO test suite, available 

at the site gauss.dm.unipi.it by anonymous ftp. 

1 
z u  + y v  + t w -  w 2 -  1 / 2 w -  ~ = O, 

Z U  2 + y v  2 - -  t w  z + W 3 + 11) 2 - -  1 / 3 t  + 4 / 3 w  = 0, 

x z v -  t w  2 + w 3 - 1 / 2 t w  + w z -  1 / 6 t  + 2 / 3 w  = O, 

1 z u  3 + y v  3 + t w  3 - w 4 -  3/2w 3 + t w -  5 / 2 w  2 -  1 / 4 w -  ~ = O, 

1 
x Z U V  + t w  3 - -  113 4 "~- 1 / 2 t w  2 - -  3/2W 3 -t- l t w  - -  7/4W 2 -- 3 / 8 W  - -  g = O, 

X Z V  2 + t w  3 - -  W 4 + t w  z - -  3/2W 3 + 2 / 3 t w  -- gW7 2 __ 1/12W -- ~ = 0, 

- - t t O  3 q-  W 4 - -  t tO 2 q-  3/2W 3 -- 1 / 3 t w  + 13/12W 2 + 7/24W + ~ = 0. 

This example clearly illustrates the efficiency of the mixed volume as root count. The 

total degree equals 4608. The 4-homogeneous Btzout number equals 1361. With the 

algorithm presented in [49] a set structure, which yields the generalized Btzout number 

605, can be obtained. The BKK bound equals 24 and can be computed in less than 1 

minute. There are five isolated solutions and a component of solutions: t = - 1  = w, 

z = O =  y ,  a n d u ,  v E C .  
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Table 1. Characteristics of the polynomial systems. 
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Characteristics 
Description of 

Section the applications n r d B Vn (79) N 

4.3.1 Nine point 8 1 5,764,801 645,120 83,977 8,652 

4.32 PUMA robot 8 8 256 16 16 16 

4 .3 .3  Camera 6 3 64 20 20 20 

4 .3 .4  Inverse position 11 11 1,024 320 288 16 

4.3.5 Heart dipole 8 8 576 193 121 4 

4.3.6 Butcher 7 7 4,608 605 24 5 

4.3.7 Cyclic n-roots 5 5 120 108 70 70 

6 6 720 504 156 156 

7 7 5,040 3,960 924 924 

8 8 40,320 20,352 2,560 1,152 

4.3.7. The Cyc l i c  n - R o o t s  P r o b l e m .  The following application belongs to a family of 

systems which have been presented in [2], [6], and [7]. The general formulation goes as 
follows: 

fk(x) = X(i+j)modn, k = I ,  2 . . . . .  n - 1, 

i=1 j=t 
?I 

f .  (x) = I -Ix~ - 1. 
j=l  

In Table I the performance of the mixed volume as root count, compared with the Btzout 

bounds, can be seen. This application also demonstrated the #P-hardness of the problem 

of mixed-volume computation. Augmenting the dimension n leads to a significantly 
harder problem. 

Note that when the system has to be solved, it is better to apply the following trans- 

k for formation: Yi ~- x i / x n ,  i = 1, 2 . . . . .  n - 1, after dividing the kth equation by x, ,  

k = 1, 2 . . . . .  n, as proposed in [17]. Here, the last unknown y, only appears in the 

last equation, which means that the system can be solved more efficiently. However, the 

original formulation has been used here for solving the system. 

4.3.8. E x e c u t i o n  Times.  In Table I the characteristics of each application are summa- 

rized. The meaning of the columns is as follows. The first and second columns provide 

a label and a short description of the application. The following columns respectively 

list the dimension n, the number of different polytopes r in the tuple, the total degree 

d, a generalized Btzout bound B, the mixed volume V, (79), and the number of isolated 
solutions N in Cg. 

Table 2 lists the number of mixed cells #A and the cardinality #<~ of the triangula- 

tion of the polytope used in the Cayley trick. The second part of the table contains the 

execution times for solving the applications. It should be stressed that these timings are 

only meaningful in relative comparison to each other and that they are only meant to 

give an idea of the performance of the current implementation of the algorithms. There 

are three stages in solving a polynomial system by polyhedral homotopy continuation. 

First, there is the computation of the mixed volume which can be done by either the 
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Table 2. Cardinalities and execution times for root counting and solving. 

Cardinalities Times for root counting and solving (cpu. sec.) 

Section #A #<] mvc dmvc Cayley sphc dphc cont. 

4.3.1 13,339 - -  - -  2,162.0 . . . .  

4.3.2 1 580 3.5 5.3 27.1 11.5 8.0 14.2 

4.3.3 12 392 6.4 27.3 14.3 46.2 46.7 51.3 

4.3.4 17 - -  669.1 4,282.0 - -  1,036.1 1,938.0 1,920.2 

4.3.5 36 - -  101.4 349.0 - -  763.6 509.1 668.0 

4.3.6 4 1,867 53.2 67.0 109.3 77.3 49.2 109.1 

4.3.7 14 166 0.6 0.7 1.7 77.4 53.2 26.0 

25 1,109 5.5 6.8 28.7 337.2 217.6 181.7 

124 13,180 84.1 90.3 1,010.7 9,322.3 5,400.3 2,192.4 

268 - -  853.7 882.9 . . . .  

static lifting algorithm (mvc), the dynamic lifting algorithm (dmvc), or the Cayley trick 

(Cayley). The second stage consists of solving a system with randomly chosen coeffi- 
cients. Timings are given for the static (sphc) and dynamic (or incremental) polyhedral 
homotopy continuation (dphc) methods. Finally, timings for the third and last stage, the 

continuation to the target system (cont.), are listed. A " - - "  in the table indicates that the 
computations on our DS 5000/240 were too expensive to perform. 

It can be seen that the dynamic lifting algorithm often requires more work than the 
static lifting algorithm. This is due to the fact that in the dynamic lifting algorithm, 
the factorizations cannot be shared (see the last paragraph of Section 3.8). However, in 

general this additional work pays off because the polyhedral continuation can be done 
more efficiently, as dynamic lifting is very capable in controlling the magnitude of the 

lifting values. 

5. Conclusions 

Three different algorithms have been investigated for computing mixed volumes by 
means of mixed subdivisions: the Cayley trick, static, and dynamic lifting. The key 
idea of the paper is the presentation of conservative lifting functions which allow the 
construction of regular triangulations without the randomness assumption, generally 
required by all other approaches. This has led to the construction of well-conditioned 
polyhedral homotopies for computing all isolated solutions to polynomial systems, which 
provides an important elaboration of the ideas presented in [30]. 

The Cayley trick is efficient when either it is desired to compute all ceils, i.e., also the 

cells that do not contribute to the mixed volume, or when the system is semimixed and 
the total number of cells compared with the number of mixed cells is not exponentially 
large. The fact that the lifting function is again ruled out can be considered an advantage. 
The disadvantage of this approach is that, for fully mixed systems, the number of mixed 

cells is much less than the total number of cells. Note that the space complexity of 

the Cayley trick can be overcome by using reverse enumeration methods, developed by 
Avis and Fukuda, see [1]. However, these techniques cannot be applied to remove the 
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randomness assumption on the lifting function and hence offer less control on the growth 

of the lifting values than the dynamic lifting algorithm. 

For fully mixed systems, the lifting method, based on Betke's idea, allows only the 
computation of the mixed cells and has to be preferred. The static lifting algorithm, with 

randomized lifting and with properly worked out feasibility tests, provides a very efficient 

way to compute mixed subdivisions and mixed volumes. It is used in the dynamic lifting 

algorithm which turns out to be less efficient, due to the fact that factorizations can no 

longer be shared. Nevertheless, the extra work done by the dynamic lifting algorithm 

pays off when it comes to constructing polyhedral homotopies for solving polynomial 

systems. The efficiency of both the static and dynamic lifting algorithms depends largely 

on the efficiency by which the feasibility tests can be worked out, which is determined 

by the efficiency of the linear programming solver. So, linear programming forms the 

computational bottleneck of both algorithms. 

Another important conclusion of this project is that computing the mixed volume 

is in practice no harder than solving the system by tracking all solution paths. The 

incremental aspect of solving polynomial systems, in [51] applied for computing the 

solutions inside a bounded domain, also provides more insight into the complexity of 

homotopy continuation for this problem, see [47] for the complexity analysis of Btzout's 

theorem. 

Finally, some important open problems can be mentioned. First, there is the proof of 

the conjecture on the connectivity of the mixed cells. Furthermore, from an algorithmical 

point of view, it would be interesting to develop algorithms, analogous to the flipping 

mechanisms proposed in [16], which transform placeable (mixed) subdivisions into any 

desired regular (mixed) subdivisions, with, e.g., either a minimum or a maximum number 

of cells. Last, but not least, the BKK bound does not provide an exact root count for many 

applications. It would be worthwhile to develop a systematic approach to reformulate 

problems to an equivalent formulation with a lower mixed volume, e.g., like was done 

with the cyclic n-roots problem. 

Acknowledgments 

The authors are grateful to Birkett Huber for explaining the Cayley trick and to Paul 

Pedersen for introducing the connectivity property by means of fans. This work also 

benefited from many valuable discussions with Pierre Verlinden. Last, but not least, the 

authors wish to thank the anonymous referees for their careful reading and many valuable 
comments. 

References 

1. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements 
and polyhedra. Discrete Comput. Geom., 8(3):295-313, 1992. 

2. J. Backelin and R FrOberg. How we proved that there are exactly 924 cyclic 7-roots. Proceedings of 
ISSAC-91, pages 103-111. ACM, New York, 1991. 

3. D. N. Bernshte~n. The number of roots of a system of equations. Functional Anal. Appl., 9(3): 183-185, 
1975. Translated from Funktsional. Anal. i Prilozhen., 9(3): 1-4, 1975. 



110 J. Verschelde, K. Gatermann, and R. Cools 

4. U. Betke. Mixed volumes of polytopes. Arch. Math., 58:388-391, 1992. 
5. L. J. Billera and B. Sturmfels. Fiber polytopes. Ann. of Math., 135(3):527-549, 1992. 
6. G. Bjtrk and R. FrSberg. A faster way to count the solutions of inhomogeneous systems of algebraic 

equations, with applications to cyclic n-roots. J. Symbolic Comput., 12(3):329-336, 1991. 
7. G. Bj~rk and R. Fr~berg. Methods to "divide out" certain solutions from systems of algebraic equations, 

applied to find all cyclic 8-roots. In M. Gyllenberg and L. E. Persson, editors, Analysis, Algebra and 
Computers in Mathematical Research, pages 57-70. Lecture Notes in Mathematics, volume 564. Dekker, 

New York, 1994. 
8. A. D. Bryuno and A. Soleev. Local uniformization of branches of a space curve, and Newton polyhedra. 

St. Petersburg Math. J., 3(1):53-82, 1992. Translated from Algebra i Analiz, 3(1):67-101, 1991. 
9. Yu. D. Burago and V. A. Zalgaller. Geometric Inequalities, Grundlehren der mathematischen Wis- 

senschaften, volume 285. Springer-Verlag, Berlin, 1988. 
10. J. E Canny and I. Emiris. An efficient algorithm for the sparse mixed resultant. Proceedings of the lOth 

International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 
89-104. Springer-Veflag, New York, 1993. 

11. J. Canny and J. M. Rojas. An optimal condition for determining the exact number of roots of a polynomial 

system. Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, pages 

96-101. ACM, New York, 1991. 
12. K. L. Clarkson, K. Melhorn, and R. Seidel. Four results on randomized incremental constructions. In 

A. Finkel and M. Jantzen, editors, Proceedings of the 9th Annual Symposium on Theoretical Aspects of 
Computer Science, Cachan, France, February 1992, pages 463-474. Lecture Notes in Computer Science, 

volume 577. Springer-Verlag, Berlin, 1992. 
13. M. E. Dyer and A. M. Frieze. On the complexity of computing the volume of a polyhedron. SIAM J. 

Comput., 17(5):967-974, 1988. 
14. M. Dyer, P. Gritzmann, and A. Hufnagel. On the complexity of computing mixed volumes. SlAM J. 

Comput., to appear. 
15. H. Edelsbrunner. Algorithms in Combinatorial Geometry. ETACS Monographs on Theoretical Computer 

Science, volume 10. Springer-Verlag, Berlin, 1987. 
16. H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations. Pro- 

ceedings of the Eighth Annual Symposium on Computational Geometry, pages 43-52. ACM, New York, 

1992. 
17. I.Z. Emiris. Sparse Elimination and Applications in Kinematics. Ph.D. thesis, Computer Science Division, 

Dept. of Eleclxical Engineering and Computer Science, University of California, Berkeley, CA, 1994. 

18. 1. Emiris and J. Canny. Efficient incremental algorithms for the sparse resultant and the mixed volume. 
Technical Report 839, Computer Science Division, University of California, Berkeley, CA, 1994. Also in 

J. Symbolic Comput., 11(1):1-33, 1996. 
19. M.A. Facello. Implementation of a randomized algorithm for Delaunay and regular triangulations in three 

dimensions. Comput. Aided Geom. Design, 12(4):349-370, 1995. 
20. O.D. Faugeras and S. Maybank. Motion from point matches: multiplicity of solutions, lnternat. J. Comput. 

Vision, 4:225-246, 1990. 
21. M.R. Garey and D. S. Johnson. Computers atut Intractability. A Guide to the Theory of NP-Completeness. 

l~reemann, San Francisco, CA, 1979. 
22. I.M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Generalized Euler integrals and A-hypergeometric 

functions. Adv. in Math., 84:255-271, 1990. 
23. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, Resultants and Multidimensional 

Determinants. Birkh~iuser, Boston, MA, 1994. 
24. P. Gritzmann and V. Klee. Mathematical programming and convex geometry. In P. M. Gruber and 

J. M. Wills, editors, Handbook of Convex Geometry, volume A, chapter 2.7, pages 627-674. North-Holland, 

Amsterdam, 1993. 
25. P. Gritzmann and V. Kiee. On the complexity of some basic problems in computational convexity: II. 

Volume and mixed volumes. In R. Schneider, T. Bisztriczky, P. McMullen, and A. I. Weiss, editors, 

Polytopes: Abstract, Convex and Computational, pages 373-466. Kluwer, Boston, MA, 1994. 

26. P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: computational complexity and applica- 

tions to Grtbner bases. SlAM J. Discrete Math., 6(2):246-269, 1993. 



Mixed-Volume Computation by Dynamic Lifting Applied to Polynomial System Solving 111 

27. M. Gr0tschel, L. Lov~z, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Algo- 

rithms and Combinatorics, volume 2. Springer-Verlag, Berlin, 1988. 

28. L.J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi 

diagrams. Algorithmica, 7(4):381-413, 1992. 

29. B. Huber. Numerically solving sparse polynomial systems. Presented at AMS-IMS-SIAM Summer Re- 

search Conference on Continuous Algorithms and Complexity, Mount Holyoke College, South Hadley, 

MA, June 1994. 

30. B. Huber and B. Sturmfels. A polyhedral method for solving sparse polynomial systems. Math. Comp., 
64(212):1541-1555, 1995. 

31. M.M. Kapranov, B. Sturmfels, and A. V. Zelevinsky. Chow polytopes and general resultants. Duke Math. J., 

67(1):189-218, 1992. 

32. A. G. Khovanskii. Newton polybedra and the genus of complete intersections. Functional Anal. Appl., 
12(1):38-46, 1978. Translated from Funktsional. Anal. i Prilozhen., 12(1 ), 51-61, 1978. 

33. A. G. Kushnirenko. Newton polytopes and the Btzout theorem. Functional Anal. Appl., 10(3):233-235, 

1976. Translated from Funktsional. Anal. i Prilozhen., 10(3), 82 83, 1976. 

34. S. R. Lay. Convex Sets and Their Applications. Wiley, New York, 1982. 

35. C. W. Lee. Regular triangulations of convex polytopes. In P. Gritzmann and B. Sturmfels, editors, Ap- 
plied Geometry and Discrete Mathematics--The Victor Klee Festschrift, pages 443-456. DIMACS Series, 

volume 4. AMS, Providence, R1, 1991. 

36. A. Morgan. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems. 
Prentice-Hall, Englewood Cliffs, NJ, 1987. 

37. A. Morgan and V. Shapiro. Box-bisection for solving second-degree systems and the problem of clustering. 

ACM Trans. Math. Software, 13(2):152-167, 1987. 
38. A. P. Morgan and A. J. Sommese. Coefficient-parameter polynomial continuation. Appl. Math. Comput., 

29(2):123-160, 1989. Errata: 51:207, 1992. 

39. A.P. Morgan, A. J. Sommese, and C. W. Wampler. A product-decomposition theorem for bounding Btzout 

numbers. SlAM J. Numer. Anal., 32(4): 1308-1325, 1995. 

40. A.P. Morgan, A. Sommese, and L. T. Watson. Mathematical reduction of a heart dipole model. J. Comput. 
Appl. Math., 27:407-410, 1989. 

41. C.V. Nelsen and B. C. Hodgkin. Determination of magnitudes, directions, and locations of two independent 

dipoles in a circular conducting region from boundary potential measurements. IEEE Trans. Biomed. 
Engrg., 28(12):817-823, 1981. 

42. P. Pedersen. Private communication, 1994. 

43. E P. Preparata and M. 1. Shamos. Computational Geometry: An Introduction. Springer-Verlag, Berlin, 

1985. 

44. J. M. Rojas. A convex geometric approach to counting the roots of a polynomial system. Theoret. Comput. 
Sci., 133(1):105-140, 1994. 

45. R. Schneider. Polytopes and Brunn-Minkowski theory. In R. Schneider, T. Bisztriczky, P. McMullen, and 

A. I. Weiss, editors, Polytopes: Abstract, Convex and Computational, pages 273-300. Kluwer, Boston, 

MA, 1994. 

46. A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathe- 

matics and Optimization. Wiley, Chichester, 1986. 

47. M. Shub and S. Smale. Complexity of Btzout's theorem, I: Geometric aspects. J. Amer. Math. Soc., 
6(2):459-501, 1993. 

48. B. Sturmfels. On the Newton polytope of the resultant../. Algebraic" Combin., 3:207-236, 1994. 

49. J. Verschelde and R. Cools. Symbolic homotopy construction. Appl. Algebra Engrg. Commun. Comput., 
4(3):169-183, 1993. 

50. J. Verschelde and K. Gatermann. Symmetric Newton polytopes for solving sparse polynomial systems. 
Adv. in Appl. Math., 16(1):95-127, 1995. 

51. J. Verschelde and A. Haegemans. Homotopies for solving polynomial systems within a bounded domain. 
Theoret. Comput. Sci., 133(1):141 161, 1994. 

52. J. Verschelde, P. Verlinden, and R. Cools. Homotopies exploiting Newton polytopes for solving sparse 

polynomial systems. SIAM J. Numer. Anal., 31 (3):915-930, 1994. 

53. C. W. Wampler. Btzout number calculations for multi-homogeneous polynomial systems. Appl. Math. 
Comput., 51 (2-3):143-157, 1992. 



112 J. Verschelde, K. Gatermann, and R. Cools 

54. C. Wampler and A. Morgan. Solving the 6R inverse position problem using a generic case solution 

methodology. Mech. Mach. Theory, 26(1):91-106, 1991. 
55. C. W. Wampler, A. E Morgan, and A. J. Sommese. Complete solution of the nine-point path synthesis 

problem for four-bar linkages. ASME J. Mech. Design, 114(1): 153-159, 1992. 
56. G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics, volume 152. Springer-Verlag, New 

York, 1995. 

Received February 10, 1995, and in revised form July 5, I995. 


