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ABSTRACT

Visual contents, including images and videos, are dominant on the
Internet today. The conventional search engine is mainly designed
for textual documents, which must be extended to process and
manage increasingly high volumes of visual data objects.

In this paper, we present Mixer, an e�ective system to identify
and analyze visual contents and to extract their features for data re-
trievals, aiming at addressing two critical issues: (1) e�ciently and
timely understanding visual contents, (2) retrieving them at high
precision and recall rates without impairing the performance. In
Mixer, the visual objects are categorized into di�erent classes, each
of which has representative visual features. Subsystems for model
production and model execution are developed. Two retrieval layers
are designed and implemented for images and videos, respectively.
In this way, we are able to perform aggregation retrievals of the two
types in e�cient ways. The experiments with Baidu’s production
workloads and systems show that Mixer halves the model produc-
tion time and raises the feature production throughput by 9.14x.
Mixer also achieves the precision and recall of video retrievals
at 95% and 97%, respectively. Mixer has been in its daily opera-
tions, which makes the search engine highly scalable for visual
contents at a low cost. Having observed productivity improvement
of upper-level applications in the search engine, we believe our
system framework would generally bene�t other data processing
applications.
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1 INTRODUCTION

As cell phones become necessities in the human society, the growth
of user-generated contents (UGC) [17] in the format of texts, images
and videos in the Internet are explosive. It is a common practice for
one to take pictures or record videos and then to share their living
experiences via online social networks (OSNs) from time to times.
Haokan1, Douyin2, and Xigua3, the most popular Internet content
providers in China, reported that their daily active users (DAU)
have reached to 100-million. Within 2018 in China, more than 4.8
billion user-created videos are distributed and watched over the
Internet, while this number was only 1.7 billions in 2017 [38] Data
management at Web-scale refers to provide fast and high quality
service to users’ data access requests in the Internet, where the
growth rate of request volumns and data volumes are explosive. We
have designed and implemented a data management system in such
an Internet environment, focusing on e�ciently understanding and
fast retrieving visual data objects at web-scale by addressing the
following two major challenges.
1. The challenge of achieving the e�ectiveness of machine

learning in production systems.With the fast advancement of
deep learning (DL) techniques, understanding visual objects of im-
ages and videos by machines has become feasible. In 2015, convolu-
tional neural networks (CNNs) was demonstrated a better accuracy
and reliability than that of human experts in image classi�cation
for the �rst time [18]. However, incorporating these component-
wise accomplishments in a comprehensive production environment
is non-trivial. The rapid evolvement and wide applications of DL
research give us both opportunities and challenges, where novel
models are being developed and existing models are frequently up-
dated to respond the high dynamics of various applications. Unlike
traditional data management system that mainly produces textual
features, the system in our design produces visual features fre-
quently with the support of e�cient model productions. It is highly
desirable in practice to create an interactive tool for software engi-
neers to quickly test various DL models, and timely publish the best
selected models. This process is called model production. In addi-
tion, DL models are speci�cally designed for diverse understanding
tasks, such as a model for human face recognition [11], and another

1https://haokan.baidu.com/
2https://www.douyin.com/
3https://www.ixigua.com/
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model for scoring the visual clarity [44, 47]. These models are usu-
ally computational-intensive, and thus to thoroughly understand
the explosively growing volumes of visual objects is unbearable.
Performance factors, such as high accuracy and high throughput
are important considerations in the algorithm design for produc-
ing visual features. Computing task scheduling also faces unique
challenges in such a complex data management system. Moreover,
the lack of �ne-grained virtualization and the unstable resource
provision in GPU is another concern for model acceleration in an
e�cient way.
2. The challenge of gaining high performance of visual data

retrievals. Retrieving similar visual objects is a major function in
the system. The image-to-image search can be realized by retrieving
the feature vector of the query with approximate nearest neighbor
search (ANNS) [9, 23, 49] in a database. In such a system, e�cient
index building for the real-time visual data objects is sophisticated
and challenging. Most studies on the video-to-video search focus
on near-duplicate video retrieval (NDVR) [22, 28, 29, 41]. However,
NDVR only supports retrieving videos that are highly similar or
duplicated to the query. The recall rate declines signi�cantly by
extending NDVR to general cases. In addition, people edit a video
and redistribute it today, leading to a large amount of edited videos
all over the Internet. Some of the edited videos are semantically
similar to the original one, like adding simple visual e�ects to a
video, while some are not, like duplicating frames from a scenery
video just as the background of a talk show video. Furthermore,
some videos are maliciously edited and should not be considered
as the retrieval results at all, like concatenating a small video clip
repeatedly. Thus, recognizing the having-edited videos is another
key to improving the video retrieval quality. Furthermore, properly
ranking a visual object appeared in the retrieval results is important
and nontrivial. A video or an image is usually uploaded to multiple
platforms by its author for a reason of gaining pro�ts. It is cost-
e�ective to evaluate these duplicated or nearly-duplicated objects as
a group and determine their ranks. The associate resources on the
platforms, such as Likes and Comments, is helpful in assessing visual
objects. However, recursively fetching similar objects for every
entity in the retrieval result and then aggregating their features
are computationally expensive, which may lead to high execution
latencies. Therefore, how to e�ciently perform the aggregation
retrieval is critical for a highly responsive search engine.

To address the above-mentioned issues, in this paper, we present
Mixer, a system to e�ciently understand and quickly retrieve vi-
sual data objects, as an essential system infrastructure in the Baidu
search engine. Mixer categorizes the crawled visual objects by a
CNN-based classi�er [31, 32, 46] into classes and produces the visual
features accordingly. The features are stored in a uni�ed container,
called compound feature vector (CFV), as the forward indices. Mixer
also includes a comprehensive model production system tool that
assists engineers in developing, testing, and publishing DL models
timely. To e�ciently execute the models, Mixer abstracts a model
as a directed acyclic graph (DAG), where a vertex is a computation
unit or an operator to be individually encapsulated into a container,
and the edges guide how the visual data objects �ow among models.
By launching and revoking containers, executing models can scale
easily at the operator level. In addition, a heuristic scheduling algo-
rithm is developed to adjust resource provision to the operators for

maximizing the feature production throughput. For the retrieval
of images, the feature vectors served as the inverted indices, are
encoded with product quantization (PQ) [24] and are organized
in a GNOIMI-like architecture [53], so that they could be fetched
with ANNS approaches. For the retrieval of videos, Mixer extracts
key-frames via entropy analysis [50] and collects all similar frames
by leveraging the frame-level features. Similar videos containing
these frames are hence located, and the candidate list is further
re�ned by �ltering out the edited ones. The objects appeared in the
retrieval results are aggregated with their similar objects and asso-
ciate resources to ensure an accurate ranking. In order to keep the
system to be responsive, the visual objects are organized as a graph
structure, where the edges, i.e., the similarities, are sorted in a �at
table. In this way, neighbors or similar objects could be retrieved
by using a range scan. A breadth-�rst search is used to discover
the similar objects, and their features are aggregated before the
ranking. We evaluate the model production and the model execu-
tion based on Baidu’s production workloads. The results show that
Mixer halves the execution time for producing the models, and the
scheduling algorithm improves the feature production throughput
by 9.14x. Mixer also achieves the precision and recall rate of video
retrievals at 95% and 97%, respectively. Mixer makes the search
engine highly scalable for increasingly large volumes of visual data
objects at a low cost. Having observed productivity improvement of
upper-level applications in the search engine, we believe our system
framework would generally bene�t other related data processing
applications.

Our contributions are summarized as follows:

• We have designed and implemented Mixer, a system to e�-
ciently understand and retrieve visual data objects at web-
scale, which is a key component in the Baidu search engine.
• We show that the performance of understanding visual ob-
jects is determined by both the feature production and the
model production. Consequently we implement two individ-
ual subsystems for producing models and executing models
to gain high performance for Mixer.
• We design a video retrieval framework that is able to recog-
nize edited videos. We additionally develop the aggregation
retrieval function that combines multiple rounds of search
results to improve the ranking quality in a responsive way.
• We evaluate Mixer with production workloads and show the
e�ectiveness of our design in processing visual data objects
at web-scale.

The rest of the paper is organized as follows. Section 2 introduces
the background of processing visual data in Baidu. We discuss the
visual content understanding in Section 3 and the visual content
retrieval in Section 4. The performance of Mixer is evaluated in
Section 5. Section 6 presents related work and Section 7 concludes
the work.

2 BACKGROUND

2.1 Visual Resources

In Baidu, we keep crawling hundreds of millions of textual resources
and visual resources from the Internet on a daily basis. A textual
source could be an article or a collection of comments, while visual
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Figure 1: Typical webpages nowadays

sources are data objects like images and videos. The typical web-
pages crawled from the Internet are shown in Figure 1, where the
visual objects could be a supplement to the article, such as the left
one for news published at cnn.com, or vice versa, such as the right
one for a video uploaded to youtube.com. The visual objects have
distinct Uniform Resource Locators (URLs) from that of the web-
page containing them4, so they are crawled as individual resources
in Baidu. It is worth noting that a video is usually accompanied
with a cover image selected by the author, which has a separate URL
from the video. The correlations between these resources are also
captured. In Baidu, a video is stored with two �elds: furls contains
the player pages and cimg refers to the cover image. An image also
has a �eld of furls indicating the pages containing the image.

2.2 Mixer in Baidu

Mixer is placed between Baidu infrastructure systems and various
applications, being independent of the textual webpage processing
pipeline. The infrastructure systems support Mixer with major
services, such as local storage systems, accessing to the archive [36],
and others. When a webpage is fetched from the Internet by the
crawler, it is dismantled into textual documents and visual objects,
i.e. images and videos. While the textual documents are processed
in the conventional pipline [37], which involves in indexing by
indexer and ranking by ranker; and the visual objects are delivered
to Mixer for special processing. Part of the indexing and ranking
functions in Mixer are implemented themselves while the others are
provided by the indexer and ranker. Mixer supports the upper-level
applications with APIs that can be used to realize complex logic.
Figure 2 details the software stack in Baidu, which includes Mixer.
The predecessor system of Mixer: Before Mixer, Baidu under-
stands visual objects following the MapReduce model [10], where
the images and videos are processed in batch. But with this method,
the feature production becomes the bottleneck of the whole sys-
tem soon. Before the development of Mixer, it takes 1.5 months to
generate city tags for 2 billion videos, while the amounts of newly
crawled videos and images quickly reach 40 millions/day and 20
millions/day, respectively. Another problem is the image/video re-
trieval. Before Mixer, the videos/images are associated with the
textual tags that are either collected from the documents of the
furls or extracted from directly understanding the visual content

4While the article shares the same URL with the webpage, the comment section usually
has a di�erent URL.
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Figure 3: Content understanding inMixer. The processing of

visual objects used to query or to index di�ers on two steps.

A visual object is deduplicated and its CFV is stored into the

forward index table only if it is crawled from the Internet

for indexing.

with DL models. However, the tags are not descriptive enough to
help retrieving visual objects at high precision and recall.

3 CONTENT UNDERSTANDING

The textual content has been well processed in Baidu [37]; the
search engine should also be extended to handle the visual resources.
To e�ciently process the visual objects crawled from the Internet,
we deploy a classi�er in Mixer, which categorizes an input image
or video into one of 12 classes. Despite that di�erent features are
produced for di�erent classes, the features of visual objects are held
in a uni�ed container. To e�ciently craft the visual features, on
one hand, we have designed and integrated a model production
subsystem into Mixer for fast model development and update, and,
on the other hand, we have carefully optimized the model execution,
aiming to maximize the feature production throughput.

3.1 Visual Data Object Processing

In content understanding, Mixer produces a compound feature vec-

tor (CFV) for a visual object. The CFV is then stored in the forward
index table, whose key is the resource ID of the visual object. When
the resources or the models are updated, the features should be
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Table 1: Representative features in the CFV

textual features furls, cimg, likes, resolution, duration
visual features SIFT [33], clarity [44, 47], celebrities
miscs d-indicator∗ , layout

∗d-indicator: Indicator of a dead resource

re-crafted accordingly. Building such a forward index table helps
update the existing features e�ciently, which is critical in improv-
ing the overall retrieval performance. Di�erent features in the CFVs
are further built into di�erent inverted index tables for e�ective
retrievals. Figure 3 overviews the basic process of Mixer crafting
the CFVs from visual resources.

3.1.1 Coarse-Grained Deduplication. Copies of images and videos
are massively distributed across the Internet. Since the extraction
process of visual features is highly computation-intensive, e�ec-
tively eliminating the duplicates is a key to improving the overall
performance. When deduplicating a crawled visual object, we re-
move its watermark region if it has any, and employ a hash-based
algorithm to generate a �ngerprint for it [30]. If the same �ngerprint
exists already, the video or image is considered to be duplicate, thus
it is discarded. All these steps are integrated in the coarse-grained
deduplication module. With this deduplication e�ort, Mixer removes
∼50% duplicate images and ∼25% duplicate videos before feature
crafting.

3.1.2 Compound Feature Vector. A CFV is a 128-dimension vector,
which consists of three types of features, namely textual features,
visual features andmiscs. The textual features are extracted from the
visual object without visual understanding, such as the resolution
of an image or the playback duration of a video. A feature is a visual
feature if it is directly generated from the visual content. Otherwise,
this feature is attributed to the miscs. Table 1 gives representative
features in the CFV, where some features are exclusively built for
images and some are for videos. The features in the CFV are one
of the following types: boolean, string, numeric, tag, and vector. For
example, SIFT [33] is a vector and celebrities is a set of tags that are
people names. In Mixer, the resource ID (rid) is used as the key for
the CFV that uniquely identi�es a visual resource in the forward
index table.

3.1.3 Feature Cra�ing. Some features can be generated trivially,
such as the furl; but many others are not, which are particularly
the visual ones. Since the visual resources on the Internet are rich
and diverse, it is impossible to �nd an understanding model for all.
In practice, di�erent models are developed to craft various visual
features. However, understanding the visual objects with all models
is computationally unbearable. Thus, Mixer employs a CNN-based
classi�er [31, 32, 46] to categorize all crawled images and videos
into 12 major classes, including scenery, movie, portrait, and others.
For di�erent classes of visual contents, di�erent features are crafted.
With the evolution of the system, we notice that the bottlenecks of
feature production come from two sources: the model production
and the model execution.

A CPU operator

A GPU operator

performance profile

The FPM pool

scheduler 
master

containers

developers

sampler OCR LOGO
[a video] a feature production model (FPM)

[a boolean]
yes
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Figure 4: Themodel production and execution are processed

in the following steps. 1) The developers publish their mod-

els to a pool; 2) O�line tests are carried out to generate the

performance pro�le for the uploaded models; 3) The sched-

uler master encapsulates the operators into containers and

deploys them onto computation nodes according to the per-

formance pro�le and the resource monitor; 4) The tra�c

manager directs the data �ow to the nodes; 5) Containers

are launched/revoked based on the dynamic resource provi-

sion.

3.2 Model Production and Execution

Most visual features are produced by advanced DL models. In order
to incorporate the state-of-the-art development from the machine
learning community, Mixer consists of a comprehensive model
production subsystem, which allows the developers to upload and
test their models in an agile and responsive way. These models
are managed in a pool so that Mixer could deploy them in the
production environment on demand, allowing fast iterations of the
system. When executing the models, our major concern is how
to make Mixer best utilize the computational resources. Figure 4
shows a overview of the model production and execution.

3.2.1 Model Production. A feature production model (FPM) is one
entity producing one type of feature in Mixer. In Figure 4, a model
production example of the FPM is presented. The FPM accepts a
video as the input and outputs a boolean value telling if a logo is
contained in it. Inside the FPM, three operators are concatenated,
which are sampler [50] that decodes and samples frames from
the input video, OCR [13] that recognizes texts in the frames, and
LOGO [39] that identi�es the commercial logos. The operators are
either executed on CPU or on GPU. The FPM is thus abstracted as
a directed acyclic graph (DAG), where the vertices are operators
and the edges are the data �ows between them. It is worth noting
that an operator could be an FPM itself.

After a developer uploads her model, she can request Mixer to
deploy and test her model by using a small portion of online tra�c.
The experimental results are returned to the developer so that she
can tune the parameters and further re�ne the model. Mixer also
supports developerswith tools that use AutoML [20, 40, 54] to adjust
parameters for optimization or automatically turn the GPU code
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Figure 6: The common operators in two FPMs could be

merged into one if the input data are the same.

into TensorRT-supported ones to gain high performance [2]. Before
the �nal publishing in the FPM pool, we will carry out thorough
tests towards the models and generate the performance pro�les for
proper model deployment in the production environment.

Figure 5 compares the model production e�ciency before and
after the model production subsystem goes online. We measure
the number of published models every three months, and it shows
that the increasing rate is improved by 2.31x, from 6 models/month
to 13.83 models/month. To further con�rm if such improvement
results really come from the our e�orts to raise the e�ciency of
model development, we also collect the time used to train models
by the developers right before and after the subsystem goes online.
We �nd that the iteration time of model training at 80th percentile
decreases from 593 minutes to 295 minutes, which closely matches
the improvement observed from increasing model number.

3.2.2 Model Execution. When deploying and executing an FPM,
Mixer abstracts it as a DAG, schedules the operators, and directs
tra�c according to the edges. An overview of this process is pre-
sented at the right side of Figure 4. A vertex, i.e., an operator, in
the DAG is mapped to a group of identical container instances. By
checking the performance pro�le and consulting with the resource
manager module, the scheduler deploys the instances onto physical
nodes properly. Then the tra�c manager module is informed to
direct tra�c to these nodes. During the execution, container in-
stances are launched or revoked to respond to a dynamic resource
provision, and the tra�c is redirected accordingly.

Before the execution, we �nd an optimization opportunity to
merge the same vertices from di�erent DAGs if the processed data
are the same. For example, to detect the advertisement and the

Algorithm 1 The heuristic algorithm arranging computing re-
sources to the operators in an FPM

1: procedure Schedule(D, R)
2: Input: D: the DAG of the FPM; R: the available com-

putation resources; r: the minimum resources to be
scheduled; updateActiveNodes(·): mark active nodes in
the DAG; activeSinks(·): the active sinks of the DAG;
measureThrpt(·): measure the out throughput of an operator;
devoteRes(·)/revokeRes(·): devote/revoke resources from an
operator

3:

4: updateActiveNodes(D)
5: S← activeSinks(D)
6: while S != ∅ do
7: for s in S do

8: T0 ← measureThrpt(s)
9: devoteRes(s, r)
10: T ← measureThrpt(s)
11: if T ≤ T0 then
12: revokeRes(s, r)
13: schedule(D - s, R)
14: else

15: R← R - r
16: updateActiveNodes(D)
17: S← activeSinks(D)

commercial logo in a video, we both need sample frames and recog-
nize texts from them. Figure 6 illustrates such a case. Furthermore,
for the operators that are widely used as the essential building
blocks across FPMs, such as the sampler that is almost used by
every video-related FPM for preprocessing, they are turned into
resident services from which the resources are never revoked.

The resource provision is highly dynamic during the model
execution. New resources might be available and the arranged re-
sources could also be claimed back by other services with higher
priorities. In addition, the optimal resource distribution to the op-
erators in an FPM varies along the execution lifetime. It is a waste
to arrange any resource to the last operator(s) in the DAG at the
beginning stage of the execution since no data has arrived. Another
constraint in the resource provision is that the new resources some-
times are too scarce to be allocated to the operators evenly. Thus
we develop a heuristic scheduling algorithm in Mixer to dynam-
ically allocate computing resources among operators in an FPM.
Algorithm 1 describes how the resources are devoted or revoked in
Mixer with the objective of maximizing the processing throughput
of an FPM. In the algorithm, we gradually activate nodes in a DAG
from the source to the sink according to the data arrival. Among
the activated nodes, we allocate the resources in the reverse direc-
tion: the resources are experimentally devoted into the sinks of
the activated sub-graph for throughput improvement observations.
If there is no improvement observed, the resources are revoked
and we recursively schedule the nodes in a smaller sub-graph by
eliminating the sinks.

Another challenge of e�ciently executing models is to imple-
ment and manage a multi-tenant mode on GPUs. Unlike CPU, GPU
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link list. To build an inverted index for an input vector v on-

the-�y, the new vector is 1) encoded and written into aWAL.

Then, 2) the closest centroid with respect to the Euclidean

distance is located, and the address of the new vector is in-

serted as the head of the real-time inverted indices. 3) Fol-

lowing the commits of the WAL, the real-time inverted in-

dices are periodically merged into the base inverted indices.

4) For searching the closest neighbors of a query vector q, all

neighboring centroids are traversed and a top-k list is gen-

erated based on the comparison results.

cannot be virtualized in �ne-grain [45]. A container only agrees
a complete GPU card to be bound. As a result, a physical node
equipped with four GPU cards (the most deployed setup in our data
centers) can only tolerate four instances of GPU operators. Run-
ning additional instances leads to potential resource contention and,
more severely, system crash. However, running only one instance
on a GPU card signi�cantly underutilize the computing resources.
To dynamically utilize available computing resources on GPU, we
test if any two FPMs could e�ectively run on a single GPU card
before the model publishes and records this in the performance
pro�le. With this updated information, more instances of GPU oper-
ators are allowed to execute on a physical node, thus, we eventually
enhance the overall execution capability of Mixer.

4 CONTENT RETRIEVAL

The features generated in content understanding in types of tag
and vector are either built into the inverted indices or used as a
search query. Since building inverted indices for tags follows the
conventional techniques for textual webpages [37], we focus on
organizing the vectors. In Mixer, currently there are two vector-
typed features, the SIFT feature and the facial feature [11]. In order
to e�ectively retrieve visual objects with these features, we make
Mixer handle images and videos di�erently. For the images, we
build an Image Retrieval Layer (IR layer) that accepts a feature
vector, and returns a list of similar images if the input is a query

Image Retrieval Layer

key-frames frame rank lists
… ………

candidate videos

…

Video Retrieval Layer

1

2

3

candidate videos

Information 
entropy 
analysis Temporal order 

verification

4
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Feature 
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Candidate 
refinement

5

Result
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Figure 8: We con�gure the Video Retrieval Layer (VR layer) to

help us retrieve duplicate videos, where the information en-

tropy analysis is setup for feature extraction and the tem-

poral order veri�cation as well as the similarity score cal-

culation are used for candidates re�nement. The sequence

to search duplicate videos upon a query is in the follow-

ing steps: 1) A set of key-frames are extracted from the

query video and their SIFT features are calculated; 2) The

features are used to search the most similar frames in the

IR layer; 3) By aggregating these frames, a candidate video

list is formed; 4) The candidate videos are further re�ned by

temporal order veri�cation so that only the videos with a consis-

tent frame order to the query video persist; 5) The similarity

scores of the videos appeared in the �nal candidate list are

further calculated.

vector, or inserts the input into the inverted indices otherwise. To
compare the videos, we design a Video Retrieval Layer (VR layer),
whose query could be a video and returns the similar videos by
leveraging the IR layer.

4.1 Image Retrieval Layer

The IR layer is a GNOIMI-like [53] architecture where the feature
vectors are encodedwith Product Quantization (PQ) [24]. Compress-
ing a 1024-byte SIFT feature into a 128-byte PQ vector improves the
throughput by 3-4x. To cluster the vectors, two levels of centroids
are trained and there are K centroids in each level. Empirically,
K is set to 256 in Mixer to avoid too large subcells or too many
neighbors in the search space. A write ahead log (WAL) is incorpo-
rated to accept newly crafted feature vectors, and the vectors are
merged into the inverted index �les periodically. Figure 7 illustrates
the structure of the IR layer, and how it handles the indexing and
searching operations.

4.2 Video Retrieval Layer

The VR layer is a video-to-video retrieval framework, where an
image is also a legal query and is processed as a video with only one
frame. In our production environment, varying goals are expected to
be achieved, such as �nding duplicate videos or searching speci�c
people in videos. Thus, we generalize the VR layer that follows
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put video and a candidate video with the framemapping. (a)

shows that the playback order of the candidate video con-

forms to the input video. In (b), the candidate video has an

inconsistent playback order. (c) presents a case that the can-

didate video duplicates frames from the input video.

several steps to process the query video. 1) In feature extraction, the
query video is pre-processed and visual features are extracted. 2)
These features are then sent to the IR layer for searching frames
that contains similar features. 3) Using the similar frames to form
the candidate video list, we still need to eliminate part of the list
for candidate re�nement. 4) Finally we carry out the result ranking
to eventually return the retrieval result.

Within the processing pipeline, feature extraction, candidate re-
�nement, and result ranking are con�gured with di�erent modules
for varying video retrieval tasks. So far we have con�gured the
VR layer to provide the functions of searching duplicate videos,
searching similar videos that are recorded for the same incident,
recognizing people in videos, and searching 360-degree videos. Next
we will use the con�guration of searching duplicate videos as a
representative case to illustrate the VR layer in details.

Figure 8 presents the work�ow of the VR layer that is con�gured
to search duplicate videos. In the feature extraction, information
entropy analysis [50] is employed to extract key-frames and their
SIFT features are calculated, which are used as the input to the IR
layer for searching similar frames. If the VR layer is con�gured
to recognize people, human faces and their features in the query
are the extraction target. To process 360-degree videos, the query
video is transformed into cubic projection and is then cut into six
individual frames before the feature extraction.

As the candidate video list is formed based on the similar frames
returned from the IR layer, this method also quali�es a number
of edited videos. Some of them are maliciously edited, such as to
concatenate a small video clip repeatedly, and some are completely
di�erent contents at the video level, e.g. a personal talk shows
duplicating frames from scenery videos as the background. These
edited videos should be detected and �ltered out from the candidate
video list. So we adopt the temporal order veri�cation in candidate
re�nement to remove the editted videos e�ciently. Particularly, for
a candidate video with n frames, we can generate a frame mapping

{I1, . . . , In } representing the frame correlation between it and the
input video, where Ik contains the IDs of the similar frames in
the input video. To detect the inconsistent playback order in the
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Figure 10: The graph structure representing the resource re-

lationship. A video v1 is embedded in multiple player pages

d1, d2, . . ., and it uses p1 as its cover image. Before generating

the aggregation CFV of v1, the features of related resources

are collected. The associate resources are located by furls and

cimg in the CFV of v1, and the comparable resources, i.e., v2,

v3, p2, and p3 are retrieved via two range scans. For these

comparable resources, we still collect the associate resources

of them, but exclude their comparable resources.

candidate video, we can check the rule as follows:

∃i ∈ Ia ∃j ∈ Ib i > j ∧ a < b .

Or a candidate video with duplicate frames could be recognized
with the rule:

∃i ∈ Ia ∃j ∈ Ib i = j ∧ a , b .

The example videos following the rules are shown in Figure 9. More
importantly, new rules could be installed with little e�orts, and
this helps extend the temporal order veri�cation module against
emerging types of videos in the future.

Accompanied with the �nal video candidates, their similarity
scores to the query video are also generated based on the frame-
level similarities and the frame mapping. The VR layer calculates
the similarity score of a candidate video follows the formula:

1

n

n∑

a=1

(
αa

|Ia |

∑

i ∈Ia

sai −
βa

|Ia | · |Ib |

∑

i ∈Ia

∑

j ∈Ib

(|j − i | − (b − a))),

where sai is the similarity score between the ath frame of the query
video and the ith frame of the candidate video, and Ib is the next non-
empty frame set from Ia . The formula shows the similarity score
between videos are from two major components, one comes from
the frame-level similarities and the other is the distance di�erence
between mapped frames. We use two coe�cients αa and βa to
weigh the two components, which are frame-dependent. In practice,
the �rst frame and the last frame have higher weights than others.

4.3 Aggregation Retrieval

To comprehensively assess a visual resource retrieved from the
IR/VR layer, we need to consider all relevant resources, such as a
video encoded in di�erent resolutions and the player pages with
helpful textual information at various platforms. The process of
locating and grouping the relevant resources for the retrieved result
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Figure 11: The City Names FPM. OCR [13] and ASR [8, 35] are

used to extract textual information from the frames and

the audio, respectively. BERT [12] is a pre-trained model for

language understanding, and selector is merely a classi�er

choosing the cities from over 350 candidates with k-means.

is named aggregation retrieval. We generate an aggregation CFV

based on the CFVs of all resources in a group, which will be used
to determine the rank of the visual resource shown to the user.

In addition to the associate resources that are explicitly presented
and updated in the CFV, e.g., the furl and the cimg (see Section 3.1.2),
we also need to collect information from the comparable resources

for generating the aggregation CFV. The comparable resources are
the similar objects fetched from the IR layer or the VR layer. How-
ever, recursively retrieving the visual objects signi�cantly increases
the response latency. Thus, the comparable resources in Mixer are
organized as graphs where the edges are weighed by the similarity
scores between them. The edge is directed due to the fact that two
images might have di�erent similarity scores in each other’s similar
object list. The edges are calculated when the visual objects are
built into the inverted indices in the IR/VR layer, and are stored in
the similarity table. The edges are sorted by their sources so that the
comparable resources of a visual object could be fetched e�ciently
by a range scan. Figure 10 shows how the visual resources are
abstracted as graphs and how the edges are hold in the similarity
table.

To discover the comparable resources that should be grouped,
Mixer conducts a breadth-�rst-search in the graph and adds the
sink into the group if the edge weight is high enough. For a vertex
with two or more hops from the visual object, the similarity score
is the product of all edges along the path. The grouping algorithm
stops if enough vertices, which is empirically set as 10, have been
selected or no sink with an enough score at the current hop is
found. Figure 10 illustrates an example of grouping the comparable
resources v2 and v3 for a video v1 and p2 and p3 for its cover image
p1. The �elds of the aggregation CFV are synthesized in di�erent
strategies, e.g., we accumulate the likes and select the maximum to
represent the clarity.

5 EVALUATION

All of our experiments are conducted on a K8s-like [1] PaaS (Plat-
form as a Service) with 2500 machines in a cluster. Each machine is
equipped with an Intel Xeon Gold 6271C processor (24 cores at 2.6
GHz), 32G DDR4-2666 main memory, four NVIDIA T4 GPU cards,
and a 4T NVMe-SSD. The CPU on a machine is abstracted into 1500
standard cores in resource provision. The machines are connected
through 25 Gbps full-duplex Ethernet.

Table 2: Performance of City Names using di�erent schedul-

ing algorithms

heuristic alg. �xed-quota alg.

time elapsed (hours) 10 88
avg. throughput (FPS) 1481 162

5.1 Scheduling Performance

We �rst evaluate the heuristic scheduling algorithm proposed to
optimize the resource provision in each FPM (Algorithm 1). The ex-
periments are carried out with the City Names FPM that recognizes
cities from an input video. The City Names FPM is presented in
Figure 11. We select this FPM since all of its operators can be both
scheduled on CPU and GPU. In the experiments, a set of 160K videos
are the input to be processed, and the total resource provision is
capped. There are 9000 standard CPU cores and 2650 GPU cards
to be allocated. As the baseline, we use a �xed-quota scheduling
algorithm that arranges the computation resources according to
the throughput ratio of operators when using the same hardware
resource. Speci�cally, {5000, 1000, 2500, 500} standard CPU cores
and {1000, 500, 1000, 150} GPU cards are allocated to {OCR, ASR,
BERT, selector} in the �xed-quota scheduling. The overall perfor-
mance of our heuristic algorithm and the baseline are presented
in Table 2, where our heuristic scheduling algorithm outperforms
the �xed-quota scheduling by 7.4x and 9.16x in terms of the overall
processing time and the average throughput, respectively. We also
look into the scheduling details by pro�ling the CPU/GPU resource
provision whenever the algorithm is activated. The scheduling al-
gorithm is setup to work every two hours to avoid high overhead
raised by frequent resource reallocation. The pro�ling results are
shown in Figure 12, in which we use JOB1 to represent the heuristic
algorithm and use JOB2 as the baseline. The y-axis is the resource
provision in standard CPU cores/GPU cards. From the �gure, we
can see that in the early stages (Stages 1 and 2), the computing re-
sources are mostly devoted into OCR and ASR since the data have just
arrived. When the execution is close to the end, most computing
resources are revoked from OCR and ASR and are arranged to BERT

and selector. Such a migration signi�cantly optimizes resource
provision compared to the �xed-quota scheduling algorithm.

To evaluate the heuristic scheduling algorithm more comprehen-
sively, we measure the GPU utilization in our data centers before
and after the scheduling mechanism is used. Other metrics can
hardly distinguish the e�ects of the heuristic scheduling: The CPU
standard cores are always fully allocated; the feature production is
workload-dependent so its throughput does not necessarily vary
accordingly. The results are shown in Figure 13, in which the y-axis
is the GPU utilization and the x-axis is the timeline before and after
installing the heuristic algorithm. We at �rst apply the heuristic
algorithm over 5% of the overall workloads, and this e�ectively
improves the GPU utilization to 15.4% from 12.1% in last month.
While 30% workloads are scheduled with the heuristic algorithm,
the GPU utilization is further increased to 18.5% at that month.
To the end, the GPU utilization grows to 24.8% as all workloads
are scheduled with the heuristic algorithm. As a comparison, the
GPU utilization was only 11.2% when the �xed-quota scheduling
algorithm was used.
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Table 3: Performance of the VR layer

precision@1 recall@1 bad-cases

similar video retrieval 94.7% 91.7% n/a
duplicate video retrieval 97.6% 98.1% 0.14%

5.2 Retrieval Performance

Since the IR layer is built as a GNOIMI-like [53] architecture, which
has been well-studied, we focus on the retrieval performance of the
VR layer in this section.

5.2.1 VR Layer. We evaluate the VR layer in terms of retrieval
performance and cost. The experiments are conducted based on the
database that contains 1 billion videos, which are 5% of all videos

crawled from the Internet but serve ∼80% queries at that moment.
Based on the VR layer, we con�gure and test two subsystems in our
production environment by similar video retrievals and duplicate
video retrievals. For similar video retrievals, Mixer fetches similar
videos recorded towards an incident happening in the roughly
same temporal-spatial space [28]. For duplicate video retrievals, we
expect to extract the videos with the same content. In particular,
these two subsystems share the same con�gurations in the VR
layer except that rules are set di�erently in the temporal order
veri�cation module. For the duplicate video retrieval, rules for
verifying temporal order are more restrict that only videos with
roughly the same duration are quali�ed.

To evaluate the similar video retrieval, 1000 videos in the data-
base are selected as the ground truth, and another 1000 videos
are identi�ed as similar ones by human. The similar videos are
used as the query set. We measure two metrics, precision@1 and
recall@1, in the experiment. For each query video, the VR layer
returns videos with their similar scores higher than 0.75 (this is an
application-dependent value, see Section 4.2), and only the rank 1
video is selected as the result. We de�ne recall@1 as the number of
the returned video divided by the cardinality of the query set since
for some videos, their query results might be empty sets. preci-
sion@1 is the portion of returned videos that are also in the ground
truth set. The results are shown in Table 3, from which Mixer has
achieved the recall at 91.7% by using the frame-level features and
the precision at 94.7% with the assistance of the temporal order
veri�cation module.

For duplicate video retrievals, 1000 representative videos, which
are selected by human to cover as many as possible types, are used
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Table 4: Performance of aggregation retrieval (ar.)

precision (%) recall (%)
w/ ar. w/o ar. w/ ar. w/o ar.

plag. recognition 84.3 93 n/a n/a
old news 62.7 81.2 n/a n/a
origin lookup 92.8 96.69 78.38 98.65

as the ground truth in the database. To generate the query set,
we slightly edit these videos by attaching a logo onto their �rst
frames. The query set consists of 1000 videos and we con�gure the
similarity score threshold in the VR layer as 0.98. The precision@1

and recall@1 are measured and reported in Table 3, which are at
97.6% and 98.1%, respectively. Another importantmetric is bad-cases.
Baidu constantly accumulates cases that impair user’s experience
and strives to eliminate them in every development iteration. Before
the VR layer is deployed, the videos are indexed and retrieved
with tags. There are ∼1K bad-cases collected that fail to fetch the
duplicate video from the database. These cases are also tested and
the results are reported in Table 3. We can �nd that only 0.14% of
the bad-cases still fail the system, which shows the e�ectiveness of
our design.

As the cost is always one of the most important concerns, we
use cores/mv·qps to de�ne the cost of the VR layer, which measures
how many standard cores we need to devote for maintaining 1 QPS
to the database at the scale of 1 million videos (The resources for
extracting key-frames and understanding visual content are not
counted). For example, if we need to provision 10,000 standard cores
for keeping 50 QPS to the database of 20 million videos, the cost
is 10 cores/mv·qps. We measure the overall cost of the duplicate
video retrieval subsystem whenever 200 million additional videos
are accumulated in the database. The results are shown in Figure 14,
where the x-axis is the number of videos in the database and the
y-axis is the cost. From this Figure, we see that the cost of our
system decreases from 270 to 7.2 cores/mv·qps while the video
database scale increases from 200-million to 800-million. At this
stage, we continue to make engineering e�orts to reduce the cost of
the VR layer. When the database scale increases from 800-million
to 1-billion, the VR layer has been well developed and the cost
converges at 7.2 cores/mv·qps, showing the favorable scalability of
our design.

5.2.2 Aggregation Retrieval. We evaluate the e�ectiveness of the
aggregation retrieval module with three upper-level applications,
i.e., plagiarism recognition, old news, and origin lookup. In plagiarism

recognition, given a list of input videos, one should recognize any
two of them have plagiarism. Application old news is implemented
to identify if a news is out-of-date. Application origin lookup locates
the origin video/image upon accepting a query. For the plagia-

rism recognition and old news, we use two query sets of ∼1K and
∼4K, respectively. The query sets are composed of problematic
queries accumulated from users in Baidu. For the origin lookup, we
randomly sample ∼10K user queries in the realistic workload. We
report precision for all three applications but additional recall for
the origin lookup. As the precision is calculated by recruiting people
to manually identify the irrelevant entries, the ground truth used
to calculate the recall is collected by sending the same query to
the competitors, i.e., Google5, Sougou6, and Toutiao7, and combin-
ing all of the returned results. Table 4 shows the accuracy results
of these applications with and without the aggregation retrieval.
By precision measurements, plagiarism recognition, old news, and
origin lookup each reaches 93%, 81.2%, and 96.69% after applying
the aggregation retrieval, respectively. The improvements are 8.7%
(from 84.3%), 18.5% (from 62.7%), and 3.8% (from 92.8%). Addition-
ally, the recall in origin lookup is also increased by 20.27% (from
78.38% to 98.65%). Thus, we can observe that the aggregation re-
trieval can substantially improve the ranking performance of the
upper-level applications.

6 RELATEDWORK

6.1 Video Analytics at Scale

Recent advances in DL techniques have motivated a large body
of studies in video analytics in large scales. Due to the high com-
putational demands of DL models, processing all videos in the
dataset might be unbearable so that e�orts are made to narrow
down a group of candidates that are actually sent to inference
when a query arrives. NoScope [27] performs binary classi�ca-
tion tasks over videos e�ciently by adopting di�erence detectors
and specialized networks as the �lters before the reference net-
work. Focus [19] also identi�es the presence of a class of objects
in videos. It indexes the videos with low cost CNNs at the inges-
tion time and uses the ground-truth CNN to verify the retrieval
results. TAHOMA [3] introduces physical representations of the
input image into the query optimization, e.g., carrying out resolu-
tion scaling or color-depth reduction, and with such techniques, the
data handling cost could be drastically reduced. However, the above
systems can hardly adapt to �exible user’s queries. To implement
complicated queries, a SQL-like language, FRAMEQL, is developed
in BlazeIt [25, 26] to handle aggregation and limit operations over
videos. Panorama [59] extends the system to handling unbounded
vocabulary queries over videos. Another work [34] introduces prob-
abilistic predicates that �lter unquali�ed data blobs in the machine
learning inference queries. VStore [52] identi�es the con�guration
of video formats as the central concern and explores an idea called
backward derivation to realize the system. Vaas [6] features an

5https://www.google.com/
6https://www.sogou.com/
7https://www.toutiao.com/

2915



interactive interface that is convenient for users exploring various
methods for their analytics tasks.

6.2 Quantization-based ANNS

Another thread of research converts visual objects into tags or
high-dimensional feature vectors in advance, and the retrieval is
carried out by exactly matching the tags or �nding vectors that are
closed to the query. The quantization-based approximate nearest
neighbor search (ANNS) is e�ective in the vector retrieval due to
its e�ciency [4, 5, 15, 21, 53]. As the GPU has been widely adopted
in general data-processing systems [14, 55–58] due to its capacity
of massively parallel computing, such a device could also accelerate
the vector retrieval tasks. PQT [49] exploits the massive parallelism
of GPU by processing multiple vectors simultaneously. Faiss [23]
proposes a GPU k-selection algorithm, whose naive GPU imple-
mentation is the bottleneck of the processing pipeline. RobustiQ [9]
further improves the GPU-based solution in terms of robustness.
Due to the e�ciency of processing user queries, the ANN search
has been adopted in industrial systems [48].

6.3 Near-Duplicate Video Retrieval

Our video retrieval layer is inspired by the studies on issues of near-
duplicate video retrieval (NDVR). Early approaches to recognizing
near-duplicate videos employ hand-crafted features. A hierarchical
solution [51] uses features from color histograms followed by ex-
pensive local features to identify the near-duplicate videos. Schemes
based on Bag-of-Words [7, 41] are suggested to serve the increas-
ing scale of videos. Another type of discriminate features could be
generated via hashing algorithms [42, 43]. Recently, visual features
extracted from the deep CNN architectures are demonstrated to be
e�ective in NDVR tasks [16, 29]. In order to retrieve videos more
than duplicates, NDVR is extended to �ne-grained incident video
retrieval (FIVR) [28].

7 CONCLUSION

In this paper, we present Mixer, an advanced search engine towards
intellegently understanding and e�ciently retrieving visual objects
at web-scale. In Mixer, visual objects are categorized into represen-
tative classes; thus only a limited range of necessary features are
extracted from a video or an image. Unlike the conventional search
engine designed for textual documents, the feature production in
Mixer must catch up the delivering pace of fast-evolving and diverse
models, such as rapid advancement of deep learning algorithms. In
order to incorporate the latest methods from AI community, we im-
plement a full-�edged model production subsystem in Mixer to help
engineers develop, test, and publish their models systematically
and conveniently. We also design a heuristic and generic algorithm
to provision dynamic resources when executing various feature
production models that are abstracted into DAGs. For the retrival
of visual objects in Mixer, an IR layer is developed to hold feature
vectors extracted from images, and similar candidates are located
via ANNS approaches. Another VR layer implemented on top of
the IR layer can be con�gured to realize di�erent video-to-video
retrieval tasks. In addition, Mixer accurately ranks the retrieved
visual objects by grouping the relevant objects in the aggregation
retrieval module. Mixer has been deployed in daily operations for

three years in Baidu, demonstrating its values of cost-e�ectiveness,
scalablility and high-performance of the system.
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