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MIXING AND MONODROMY OF ABSTRACT POLYTOPES

B. MONSON, DANIEL PELLICER, AND GORDON WILLIAMS

Abstract. The monodromy group Mon(P) of an n-polytope P encodes the
combinatorial information needed to construct P. By applying tools such as
mixing, a natural group-theoretic operation, we develop various criteria for
Mon(P) itself to be the automorphism group of a regular n-polytope R. We
examine what this can say about regular covers of P, study a peculiar example
of a 4-polytope with infinitely many distinct, minimal regular covers, and then
conclude with a brief application of our methods to chiral polytopes.

1. Introduction

This paper can be read as an attempt to correct our confused understanding
of recent efforts to extend operations, such as mixing and covering, from the well-
understood domain of maps to the domain of abstract polytopes of higher rank. In
the case of maps, or 3-polytopes, the local topology is Euclidean, at least in finite
cases, so that one can draw on a rich supply of topological techniques, such as the
theory of covering surfaces, to make progress (see [16] for instance). But for higher
ranks n � 4, it seems that we are forced to rely more on purely combinatorial
methods, which become essentially group-theoretic for more symmetric polytopes.

Although we have several new results, and examples which may seem strange to
the world of maps, it is true that much of our exposition consists in clarifying the
properties of constructions and tools invented elsewhere. We hope that we have
given proper credit for the most significant of such ideas. What is original to us is
more or less the following.

In Section 2 we recall basic definitions for general n-polytopes Q and their mor-
phisms. We exhibit in subsection 2.4 various quotients and covers with unexpected
properties, including Example 2.13, which provides a modest counterexample to
some published results.

In Section 3 we introduce the monodromy group Mon(Q) for frequent use later
on. Theorem 3.9 and Propositions 3.11, 3.13 and 3.16 may be familiar in the world
of maps, but we have been unable to track down much discussion of them for
polytopes of higher rank.

Section 4 concerns the flag action, a well-established tool which is particularly
suited to investigating ‘better behaved’ covers. We make a connection to quotients
by sparse subgroups of string C-groups in Proposition 4.8.
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2652 B. MONSON, DANIEL PELLICER, AND GORDON WILLIAMS

In Section 5 we introduce the mix of a family of groups and describe several new
results, such as Theorems 5.11 and 5.12 concerning covers by regular polytopes and
the mixing of their automorphism groups.

Section 6 contains our most interesting results and asks when Mon(Q) is isomor-
phic to the automorphism group of a regular polytope P. This important question
involves the uniqueness of minimal regular covers P, a property which is forced
for polyhedra (Proposition 6.1) but which can fail in higher ranks (Example 6.8).
Theorems 6.4 and 6.7 provide guarantees of unique minimal regular covers.

Finally, in Section 7 we turn our attention to chiral polytopes P. After re-
interpreting Mon(P) in a natural way (Theorem 7.2), we discuss in Example 7.6 a
recently discovered chiral 5-polytope with strange covering properties.

2. Covers and quotients of abstract polytopes

2.1. Polytopes. An abstract n-polytope P has some of the key combinatorial
properties of the face lattice of a convex n-polytope; in general, however, P need
not be a lattice, need not be finite, and need not have any familiar geometric real-
ization. We refer to [17] for more details concerning the following overview of some
basic ideas.

Definition 2.1. An abstract n-polytope P is a partially ordered set with properties
A, B and C below. A pre-polytope need only satisfy properties A and B and a
flagged poset just A:

A: P has a strictly monotone rank function with range {−1, 0, . . . , n}. Moreover,
P has a unique least face F−1 of rank −1 and unique greatest face Fn of rank n.

An element F ∈ P with rank(F ) = j is called a j-face; typically Fj will indicate
a j-face. Naturally, faces of ranks 0, 1 and n − 1 are called vertices, edges and
facets, respectively. Faces of rank n−2 are called ridges. Notice that each maximal
chain or flag in P contains n+ 2 faces. We let F(P) be the set of all flags in P.

B: Whenever F < G with rank(F ) = j−1 and rank(G) = j+1, there are exactly
two j-faces H with F < H < G.

For 0 � j � n− 1 and any flag Φ, there thus exists a unique j-adjacent flag Φj ,
differing from Φ in just the face of rank j . With this notion of adjacency, F(P)
becomes the flag graph for P. Whenever F � G are incident faces in P, the section
G/F is defined by

G/F := {H ∈ P |F � H � G} .

C: P is strongly flag–connected, that is, the flag graph for each section is con-
nected.

It follows that G/F is a (k − j − 1)-polytope in its own right whenever F � G
with rank(F ) = j � k = rank(G). For example, if F is a vertex, then the section
Fn/F is called the vertex-figure over F . Similarly, any j-face F becomes a polytope
in its own right if we give it the structure of F/F−1.

Remark 2.2. Typically, P, Q, R and so forth will denote polytopes, and occasionally
pre-polytopes, for which notions like flag adjacency and flag action (defined in
Section 4) remain meaningful. A pre-polytope P is said to be flag-connected if
F(P) is a connected graph; it then fails to be a polytope if some proper section
itself has a disconnected flag graph.
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If i1, . . . , ik ∈ {0, . . . , n − 1} and Φ ∈ F(P), it is natural to inductively define
Φi1···ik := (Φi1···ik−1)ik . Note how the sequence i1, . . . , ik defines a walk in the flag
graph F(P) [17, pp. 12-13].

2.2. Morphisms. A poset homomorphism η : P → Q need only preserve incidence
and hence can be very general. For example, P and Q can have different ranks; η
could collapse P onto a single face of Q; or P could be a section of Q and η the
natural inclusion. We have little need as yet for such generality. Here is the right
sort of morphism for most of our purposes:

Definition 2.3 ([17, Sect. 2D]). Let P and Q be pre-polytopes, both of rank n.
A rap-map is a rank and adjacency preserving homomorphism η : P → Q. (This
means that η induces a mapping F(P) → F(Q) which sends any j-adjacent pair
of flags in P to another such pair in Q.) A surjective rap-map is called a covering;
we then say P is a cover of Q and write P → Q.

If we restrict our considerations to covers P,R from a particular class of poly-
topes (typically the regular polytopes), then a cover R is minimal over Q if
R → P → Q implies P = R or P = Q. Note that the latter is possible only
if Q also belongs to the given class of polytopes.

We now establish some simple but useful properties of rap-maps.

Lemma 2.4. Suppose η : P → Q is a rap-map of pre-polytopes with rank n. For
any flag Φ of P and i1, . . . , ik ∈ {0, . . . , n− 1}, we have

((Φ)η)i1···ik = (Φi1···ik)η .

Proof. Since η is a rap-map we have (Ψj)η = ((Ψ)η)j for any flag Ψ and 0 � j �
n− 1. Now use a simple induction on k. �

Lemma 2.5. Suppose η : P → Q is a rap-map (of pre-polytopes). If Q is flag-
connected, then η is surjective. (Indeed, Q is covered by a flag-component of P.)

Proof. Since the simple arguments used here reappear in so many situations, we
give rather more detail than usual. First let us fix some ‘base flags’ Λ of P. Since
η is a rap-map, Φ := (Λ)η is a flag in Q. Let Ψ be any other flag of Q. By
flag-connectedness, there exist consecutively adjacent flags

Φ = Φ0,Φ1, . . . ,Φm = Ψ,

say with Φj = Φ
ij
j−1, where ij ∈ {0, . . . , n−1} for 1 � j � m. In brief, Ψ = Φi1···im .

But again since η is a rap-map, we must have (Λi1···im)η = Ψ by Lemma 2.4.
Thus η induces a surjection F(P) → F(Q), so η itself is certainly surjective. �

It follows at once that every rap-map of polytopes is a covering. In a similar way,
we find that a covering of polytopes is determined by its effect on one particular
base flag:

Lemma 2.6. Let P,Q be n-polytopes and suppose η, λ : P → Q are rap-maps. If
(Φ)η = (Φ)λ for some flag Φ of P, then η = λ.

Proof. Being rap-maps, η and λ must coincide on flags adjacent to Φ and so on
all flags (by induction on the length of a chain of consecutively adjacent flags).
Compare [17, Prop. 2A4]. �
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Naturally, we define an isomorphism η : P → Q to be a bijection such that
both η and η−1 are order preserving. Clearly isomorphisms are rap-maps. Notice
that the condition that η−1 be order preserving is redundant, if P and Q are flag-
connected pre-polytopes. This follows easily from the proof of Lemma 2.5, since
incident faces in Q do lie in a flag, which in turn is covered by a flag of P.

The group of all automorphisms η : P → P of P will be denoted Γ(P), with
identity 1. Each automorphism η ∈ Γ(P) induces a bijection on the flag set:

η : F(P) → F(P),

Φ �→ (Φ)η.

For any flagged poset P, the resulting action of Γ(P) on F(P) is faithful, and the
mapping η → η embeds Γ(P) in Sym(F(P)), the symmetric group on flags of P.
When it suits us, we can therefore consider the automorphism group of P to be a
subgroup of the symmetric group on flags.

Since we will soon have need of examples, let us now describe the most symmetric
polytopes.

Definition 2.7. The n-polytope P is regular if Γ(P) is transitive (hence sharply
transitive) on the flag set F(P).

If P is regular, we may specify any one flag Φ as the base flag, then define ρj to
be the (unique) automorphism mapping Φ to Φj , for 0 � j � n−1. From [17, Sect.
2B] we recall that Γ(P) is then a string C-group, meaning that it has the following
properties SC1 and SC2:

SC1: Γ(P) is a string group generated by involutions (sggi), that is, it is gener-
ated by involutions ρ0, . . . , ρn−1 which satisfy the commutativity relations typical
of a Coxeter group with string diagram, namely

(2.1) (ρjρk)
pjk = 1, for 0 � j � k � n− 1,

where pjj = 1, pjk = pkj , for 0 � j, k � n−1, and pjk = 2 whenever |j−k| > 1. The
periods pj := pj−1,j in (2.1) are assembled into the Schläfli symbol {p1, . . . , pn−1}
for the sggi.

SC2: Γ(P) satisfies the intersection condition

(2.2) 〈ρk : k ∈ I〉∩〈ρk : k ∈ J〉 = 〈ρk : k ∈ I∩J〉, for any I, J ⊆ {0, . . . , n− 1} .

Naturally, we also say that the regular polytope P has Schläfli symbol {p1, . . . , pn−1}.
The fact that one can reconstruct a regular polytope in a canonical way from any
string C-group Γ is at the heart of the theory [17, Sect. 2E]. Later we introduce
other sorts of symmetry conditions, such as chirality, which relax regularity in a
natural way (see Section 7).

Example 2.8. For each p ∈ {2, . . . ,∞} there is, up to isomorphism, a unique
2-polytope or polygon {p}. In fact, {p} happens to be (abstractly) regular, and its
automorphism group is the dihedral group

D2p = 〈ρ0, ρ1 | ρ20 = ρ21 = (ρ0ρ1)
p = 1〉,

of order 2p. It is convenient to introduce here a little terminology that we will first
use in the proof of Proposition 5.15. We shall say that γ ∈ D2p is even (resp. odd ) if
γ = (ρ0ρ1)

k (resp. γ = (ρ0ρ1)
kρ0) for some integer k. Understood in this definition

are the two involutory generators, so we might say (ρ0, ρ1)-even, for example, to
be more explicit. Of course, the even elements in 〈ρ0, ρ1〉 are those that act like
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rotations in the usual action of the dihedral group on the (possibly infinite) polygon
{p}; the odd elements are precisely those that act like reflections. No element is
both even and odd.

We will encounter other kinds of sggi ’s G, typically written G = 〈r0, . . . , rn−1〉
to emphasize the specified list of involutory generators; we then say that G is an
sggi of rank n. Usually we ask that homomorphisms of sggi ’s respect these lists of
generators. In Section 3 we will see that the monodromy group of P is always an
sggi , though it might not be a string C-group.

2.3. Quotients. Let P be an n-polytope (or even any flagged poset), and let ∼ be
any equivalence relation on the faces of P which is stratified by rank (so F ∼ G ⇒
rank(F ) = rank(G)). Then the set Q := P/∼ of all classes F̂ := {G : G ∼ F} can

be ordered by agreeing that F̂ � Ĝ if and only if there exists a finite sequence of
faces F1, . . . , Fk, G1, . . . , Gk in P such that

F = F1 ∼ G1 � F2 ∼ G2 � . . . � Fk−1 ∼ Gk−1 � Fk ∼ Gk = G .

Certainly ‘�’ is a reflexive and transitive relation on Q. Moreover, if rank(F ) =
rank(G) in such a chain of faces, then all faces must have the same rank and so lie in
the same class. Hence the relation is also antisymmetric, and Q is partially ordered.
(We have defined the transitive closure of the more obvious order relation.) In fact,
Q is a flagged poset and

η : P → Q,

F �→ F̂

is a rank preserving, surjective poset homomorphism.

Definition 2.9. Q is the quotient of P induced by ∼, with natural map η.

This notion of a quotient is very general. We will mainly need two more special-
ized versions, the first of which is described in

Lemma 2.10. Let λ : P → Q be a rap-map of pre-polytopes, taking Q to be flag-
connected. Then λ induces a quotient Pλ isomorphic to Q, where the faces of Pλ

are just the fibres (H)λ−1, H ∈ Q.

Proof. Note that λ is surjective by Lemma 2.5. It is easy to see that any chain of
mutually incident faces in Q lifts under λ to a similar such chain in P. One can

then check that F̂ � Ĝ (in the quotient order on Pλ) if and only if (F )λ = (F ′)λ
and (G)λ = (G′)λ for certain F ′ � G′ in P. Now it is easy to verify that

Q → Pλ,

H �→ (H)λ−1

defines an isomorphism of posets. �

In fact, as is the case elsewhere in the literature, quotients for us will usually be
induced by group actions, although we shall see a few examples of a more peculiar
nature below. Thus, if P is a polytope, or even any flagged poset, we begin with a
subgroup N of the automorphism group Γ(P). We then define F ∼ G if and only
if G = Fτ for some τ ∈ N . Clearly, this defines on the faces of P an equivalence
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relation stratified by rank. The equivalence classes are just the N -orbits on P, and
we customarily write

Q = P/N .

Notice that the order induced on Q is now guaranteed to be transitive, and we have

F̂ � Ĝ in Q if and only if F1 � G1 in P for faces F1 ∈ F̂ , G1 ∈ Ĝ.
Before resuming our general discussion we present some examples. These illus-

trate that it is very easy to be led astray when thinking of the sort of combinatorial
coverings and quotients described above.

2.4. Examples. Our first example illustrates that the image of a polytope under
a rap-map might not be a polytope.

Example 2.11. In an ordinary 3-cube P identify two opposite squares F,−F ,
without identifying any of their vertices or edges. In the resulting pre-polytope Q,

the new facet F̂ , or more precisely the section F̂ /Q−1, is no longer connected; it
consists of two disjoint 4-gons. However, the natural map η : P → Q is clearly a
covering (surjective rap-map).

The next example shows that the inverse image of a flag under a certain rap-map
need not necessarily contain a flag.

Example 2.12. Consider two opposite 2-faces in a 5-cube P. Observe that if we
merely identify a single pair F,−F of opposite 2-faces, again without identifying
their edges or vertices, then the resulting quotient is not actually a pre-polytope.

Indeed, if in P we choose an edge E of F and a 3-cube C on −F , then F̂ = {F,−F}
is the only 2-face in this quotient with E < F̂ < C.

However, if we identify all pairs of opposite 2-faces in P, then the resulting
quotient Q is a pre-polytope. To see this inspect the various sections G < H in Q,
where rank(G) = rank(H)− 2 = −1, 0, 1, 2, 3. The natural map η : P → Q is still a
covering; but notice that the section defined by a 2-face once more consists of two
disjoint 4-gons, so Q is not a polytope. Now let F0, F1 be an incident vertex and
edge in a particular 2-face F of P; and let F3, F4 be an incident ridge and facet of
P containing the face −F opposite to F . Then

Ψ = [F̂0, F̂1, F̂ , F̂3, F̂4]

is a flag of Q which is covered under η by no flag of P. (F̂0 is covered only by F0,

F̂4 is covered only by F4 and these faces lie in no flag of R.) In fact, Q has 7680
flags (twice as many as does P) and so cannot be flag-connected. Note that we
customarily suppress the improper faces in a flag; for Ψ these are Q−1 and Q5.

We show next that quotients by group actions need not arise from rap-maps;
likewise, the quotient induced by a rap-map need not arise from a group action.

Example 2.13. The regular toroidal polyhedron P = {4, 4}(2,0) has group Γ =
〈ρ0, ρ1, ρ2〉 of order 32. The action on the 8 edges is faithful, and we may write

ρ0 = (2 3)(4 6) , ρ1 = (1 2)(3 5)(4 7)(6 8) , ρ2 = (2 4)(3 6) .

A typical base flag Φ is shaded in Figure 1.
A ‘northeast’ translation is given by τ = (ρ1ρ2)

2(ρ0ρ1)
2. We let Σ = 〈τ, ρ1〉, a

subgroup of order 4. Then Q = P/Σ � {2, 2} is a regular 3-polytope. But since
ρ1 ∈ Σ, the base flag Φ is identified with Φ1 and the natural map P → Q cannot
be a rap-map.
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Figure 1. The toroid {4, 4}(2,0) has the dihedron {2, 2} as a quotient.

Remark 2.14. Example 2.13 provides a counterexample to the ‘only if’ implications
of Lemma 2D5(b) and Proposition 2D11(b) in [17]. However, these seem to be
minor blemishes and have little consequence elsewhere. Either the ‘if’ parts of the
results are used, or a natural sharpening of hypotheses will rule out the above sort
of peculiarities; see [9, Cor. 2.3].

Example 2.15. Let P and Q be the two maps of type {4, 4} on the left and right
copies of the Klein bottle shown in Figure 2.

η

Figure 2. One Klein bottle covers another.

Then there is a rap-map η : P → Q under which the three gray flags in P are
mapped to the gray flag in Q. However, Γ(P) is a group of order 16, hence with
6 flag orbits in P. Since P is a 3-fold cover of Q, the latter polyhedron cannot
possibly arise from the action of a subgroup of Γ(P). The maps P and Q can be
described as {4, 4}|2,6| and {4, 4}|2,2|, respectively, in the notation of [31].

2.5. Quotients and sggi’s. Suppose G = 〈r0, . . . , rn−1〉 is an sggi of rank n. We
require some notation for standard subgroups of G. For −1 � j � n, let

Gj := 〈ri : i = j〉,
G<j := 〈ri : i < j〉,
G>j := 〈ri : i > j〉.

Notice that this convenient notation is a little inconsistent. As natural conventions
we set G<0 = G>n−1 = {1} and G<n = G>−1 = G. It is easy to check that

Gj = G<jG>j = G>jG<j

for 0 � j � n− 1 (the essence of stringiness).
We have already observed that the automorphism group Γ(P) for a regular n-

polytope P is an sggi of rank n. To emphasize the crucial role of the specified
generators consider the symmetry group [4, 3] = 〈ρ0, ρ1, ρ2〉 of the cube. Let r0 =
ρ0, r1 = ρ1, r2 = ρ2, r3 = (ρ0ρ1ρ2)

3. Then G = 〈r0, r1, r2, r3〉 is a rank 4 sggi; but
note that r3 ∈ G3. The intersection condition (2.2) clearly fails.
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We record some results on double cosets in G.

Lemma 2.16 ([8, Lemmas 2.1, 2.2]). Let G = 〈r0, . . . , rn−1〉 be an sggi and N any
subgroup of G.

(a) If Gi uN = Gj vN for u, v ∈ G and i = j, then Gi uN = G(= Gj vN).
(b) Let 0 � i1 < i2 < · · · < im � n− 1. Suppose ui1 , . . . , uim ∈ G so that

GijuijN ∩Gij+1
uij+1

N = ∅
for 1 � j < m. Then there exists some u ∈ G such that GijuijN = GijuN for all j.

Proof (adapted from [8]). Part (a) actually holds for any group with specified gen-
erators rj , not necessarily involutions and not necessarily arranged in a stringy way,
so long as we define Gj as before. Thus GiuN = GjuN for i = j implies

GiGj(GiuN) = GiGj(GjuN) = Gi(GjuN) = Gi(GiuN) = GiuN .

One then proves by induction on k � 1 that Gi(GjGi)
kuN = GiuN . Now note

that any element of G is a product of terms selected alternately from Gi and 〈ri〉.
Part (b) does depend on the ri’s being arranged in a stringy way; but again

these generators need not be involutions. The case m = 1 is trivial. For m = 2 we
need only note that u ∈ GijuijN implies GijuijN = GijuN ; so suppose m � 3. By
induction we have u′ such that Giju

′N = GijuijN for j = 2, . . . ,m; and we have
v such that GijvN = GijuijN for j = 1, 2. From the overlap at i2 we get g′ ∈ Gi2

and n′ ∈ N such that v = g′u′n′. But g′ = ab = ba for some a ∈ G<i2 ⊆ Gij , when

j = 2, . . . ,m, and some b ∈ G>i2 ⊆ Gij , when j = 1, 2. Then u = b−1v = au′n′

will work. �
Following [8, §2], we now define a flagged poset Q for any pair G,N :

Definition 2.17. Suppose N is a subgroup of an sggi G of rank n. Let the j-faces
of Q be the double cosets GjuN , u ∈ G. Define GiuN � GjvN if and only if i � j
and GiuN ∩GjvN = ∅.

By Lemma 2.16(b), the proper faces in a typical flag of Q look like

[G0uN, . . . , GjuN, . . . , Gn−1uN ]

(with a common double coset representative u). If N produces the sort of degener-
acy suggested in Lemma 2.16(a), then one rebuilds the ordering by indexing double
cosets with j ∈ {−1, . . . , n}. In any case, from Lemma 2.16 we get

Proposition 2.18 ([8, Th. 2.3]). Let N be a subgroup of the sggi G=〈r0, . . . , rn−1〉.
Then Q as defined above is a flagged poset of rank n.

As a special case we have

Proposition 2.19. Suppose P is a regular n-polytope with automorphism group
Γ = 〈ρ0, . . . , ρn−1〉. For any subgroup N of Γ, let Q be the flagged poset with faces
ΓjτN , τ ∈ Γ, as defined just above. Then

P/N � Q .

Proof. Let Φ = [F0, . . . , Fd−1] be the base flag of P corresponding to the given

generators ρj . A typical j-face of P/N is an orbit F̂ = {Fα : α ∈ N}, where F is

a j-face of P. If F = Fjτ , where τ ∈ Γ, we define η : P/N → Q by F̂ η := ΓjτN .
It is a routine matter to show that η is a bijection and that both η and its inverse
are order preserving. �
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Clearly we must impose some special conditions on the groups in the previous
propositions in order to guarantee that Q be a polytope; see Proposition 4.8 below,
for example, or consult [10]. Notice that when N = {1}, we recover a description
of P itself in which a typical flag becomes

(2.3) [Γ0τ, . . . ,Γjτ, . . . ,Γn−1τ ], τ ∈ Γ.

Note that the corresponding j-adjacent flag has j-face Γjρjτ [17, Sect. 2E].

3. The monodromy group of a polytope

Next we describe some tools for working with covers R → Q. In order to
understand how Q arises by identifications in R, we modify Hartley’s approach in
[8] and instead exploit the monodromy group. For the moment, our pre-polytopes
need not have any special symmetry properties.

Definition 3.1. Let P be a (pre-)polytope of rank n � 1. For 0 � j � n−1, let rj
be the bijection on F(P) which maps each flag Φ to the j-adjacent flag Φj . Then
the monodromy group for P is

Mon(P) = 〈r0, . . . , rn−1〉
(a subgroup of the symmetric group on F(P)).

Remark 3.2. It is easy to check that r2i = 1 and that (rirj)
2 = 1, for |j − i| > 1, so

that Mon(P) is an sggi. Thus Mon(P) is a string C-group if and only if it satisfies
the intersection condition (2.2).

If w = rj1 · · · rjm , then Φw = Φj1...jm for any flag Φ. Therefore, a relation
rj1 · · · rjm = 1 in Mon(P) forces the corresponding type of flag-walk to close, re-
gardless of the initial flag. This in turn suggests how P arises by identifications in
some cover; we refer to [8] for more details and to [12] for an application.

The monodromy group is a well-established tool in the theory of maps. We refer,
for example, to [3, pp. 20-31], or to [30, p. 540], which uses the term ‘connection
group’.

Lemma 3.3. Suppose P is a flag-connected pre-polytope. Then Mon(P) is transi-
tive on F(P), and all flag-stabilizers are conjugate.

Proof. This follows at once from the flag-connectedness of P. �
If η ∈ Γ(P), we have from Lemma 2.4 that (Φi)η = (Φη)i, for 0 � i � n− 1. We

conclude that riη = ηri, where η is the bijection induced on F(P) by η. In other
words, the actions of Γ(P) and Mon(P) on F(P) must commute.

More generally, a rap-map ξ : R → P might induce a surjection ξ : F(R) →
F(P) on flag sets. (This will certainly be so when P is a polytope, or more generally,
a flag-connected pre-polytope, in which case ξ must be a covering.) In such cases,
ξ will commute with the actions of the respective monodromy groups Mon(R) and
Mon(P). Here are some useful consequences of these observations:

Lemma 3.4. Let Q be an n-polytope with monodromy group Mon(Q) = 〈r0, . . . ,
rn−1〉. Suppose F and G are incident faces of Q with rank(G) = j < k = rank(F ).
Let S be the section F/G, a (k − j − 1)-polytope.

Let Φ̃ and Λ̃ be two flags of Q containing both F and G and such that the
restricted flags Φ and Λ of S are in the same Γ(S)-orbit.

Then for w ∈ 〈rj+1, . . . , rk−1〉 we have Φ̃w = Φ̃ if and only if Λ̃w = Λ̃.
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Proof. Note that each w = rt1 · · · rtl ∈ 〈rj+1, . . . , rk−1〉 restricts in a natural way
to an element w = rt1 · · · rtl ∈ Mon(S). Moreover, (Φw)η = (Φη)w for all η ∈ Γ(S).
If Φη = Λ we conclude that Φw = Φ if and only if Λw = Λ. The result follows from
observing that w fixes all faces of Φ̃, Λ̃ which lie outside the section S. �

The following results are just special cases of the previous lemma.

Lemma 3.5. Let Φ and Λ be two flags of polytope Q which lie in the same Γ(Q)-
orbit, and let w ∈ Mon(Q). Then Φw = Φ if and only if Λw = Λ.

Lemma 3.6. Let Φ and Λ be two flags of an n-polytope Q which lie on a common
facet F , and suppose there is an automorphism of F which maps Φ to Λ. Let
w ∈ 〈r0, . . . , rn−2〉 ⊂ Mon(Q). Then Φw = Φ if and only if Λw = Λ.

Next we describe the interplay between the actions of the monodromy group and
the automorphism group on the flag set.

Lemma 3.7. Let P be any n-polytope, with some specified flag Ψ; and suppose
τ1, . . . , τk ∈ Γ(P). For 1 � j � k choose wj ∈ Mon(P) such that Ψwj = (Ψ)τj.
Then

Ψwk···w1 = (Ψ)τ1 · · · τk.

Proof. We use induction on k. The case k = 1 follows from our choice of the wj ’s,
which in turn is enabled by Lemma 3.3. Assume that Ψwk−1···w1 = (Ψ)τ1 · · · τk−1.
Since any automorphism τk commutes with the action of Mon(P) on F(P), we
obtain

(Ψ)τ1 · · · τk−1τk = (Ψwk−1···w1)τk = (Ψτk)
wk−1···w1 = (Ψwk)wk−1···w1 = Ψwk···w1 .

�
Corollary 3.8. Let P be a regular n-polytope with base flag Φ, automorphism
group Γ(P) = 〈ρ0, . . . , ρn−1〉, and monodromy group Mon(P) = 〈r0, . . . , rn−1〉. Let
τ = ρi1 · · · ρik ∈ Γ(P). Then

(a) the flag Ψ := Φτ−1 satisfies Ψτ∗
= Φ, for τ∗ = rik · · · ri1 ∈ Mon(P).

(b) Ψ = Φρik . . . ρi1 if and only if Ψ = Φri1 ···rik .

Proof. In Lemma 3.7 choose wj = rj for τj = ρj . �
Our next result is verging on folklore, at least in the polyhedral case (but see

[32, §7]).

Theorem 3.9. Let P be a regular n-polytope with base flag Φ, automorphism group
Γ(P) = 〈ρ0, . . . , ρn−1〉, and monodromy group Mon(P) = 〈r0, . . . , rn−1〉. Then
there is an isomorphism Γ(P) � Mon(P) mapping each ρj to rj.

Proof. We attempt to define

ϕ : Γ(P) → Mon(P),

ρi1 · · · ρik �→ ri1 · · · rik .
Now suppose ρi1 · · · ρik = 1 is a relation in Γ(P). Applying Corollary 3.8 to the flag
Ψ = (Φ)ρi1 · · · ρik = Φ, we get Φrik ···ri1 = Φ, hence also Φri1 ···rik = Φ. But since
P is regular, an arbitrary flag Λ ∈ F(P) can be written as Λ = (Φ)μ for suitable
μ ∈ Γ(P). Thus

Λ = (Φri1 ···rik )μ = ((Φ)μ)ri1 ···rik = Λri1 ···rik ,
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since μ is an automorphism. Thus ri1 · · · rik = 1 in Mon(P). It follows that ϕ is
a well-defined homomorphism. It is even easier to show that ϕ is injective; and
clearly ϕ is surjective. �

Corollary 3.10. Let P be a regular polytope and Λ, Ψ be two flags of P. Then
there is a unique element in Mon(P) that maps Λ to Ψ.

Proof. Corollary 3.8 asserts for τ = ρi1 · · · ρik ∈ Γ(P) that Φ = (Ψ)τ if and only
if Ψ = Φ(τ)ϕ. The proof follows easily from this observation and from the proof of
Theorem 3.9. �

Now we can use the monodromy group to rephrase questions about coverings.

Proposition 3.11. Suppose κ : R → P is a covering of n-polytopes (or even
flag-connected pre-polytopes). Then there is an epimorphism

κ : Mon(R) → Mon(P)

(of sggi’s, i.e. mapping standard generators to standard generators).
Suppose also that κ maps the flag Λ′ in R to the flag Λ in P. Then

(3.1) (StabMon(R)Λ
′)κ ⊆ StabMon(P)Λ .

Proof. We have Mon(R) = 〈r′0, . . . , r′n−1〉 and Mon(P) = 〈r0, . . . , rn−1〉. All we
can do is attempt the obvious definition: if w = r′j1 · · · r

′
jk

∈ Mon(R), then we let
(w)κ := rj1 · · · rjk . Clearly we need only show that this mapping is well defined.
So let r′j1 · · · r

′
jk

= 1 be a relation in Mon(R), and set u = rj1 · · · rjk ∈ Mon(P).
Let Λ ∈ F(P) and note that Λ is covered by some flag Λ′ ∈ F(R). (It is here that
we want P to be flag-connected.) Thus Λ = (Λ′)κ, and with the aid of Lemma 2.4
we get

Λu = ((Λ′)κ)rj1 ···rjk = ((Λ′)r
′
j1

···r′jk )κ = (Λ′)κ = Λ.

Since Λ is arbitrary, we have u = 1. A similar calculation gives the second part. �

The following result is easy, but nevertheless useful when working with non-
regular polytopes.

Corollary 3.12. Suppose κ : Q → Q̃ is an isomorphism of polytopes, and let Ψ be
a flag of Q. Then Mon(Q) and Mon(Q̃) are isomorphic as sggi’s and

(StabMon(Q)Ψ)κ = StabMon(Q̃)(Ψ)κ .

We also have a converse to Proposition 3.11.

Proposition 3.13. Suppose that R and P are n-polytopes and that

κ : Mon(R) → Mon(P)

is an epimorphism of sggi’s. Suppose also that there are flags Λ′ of R and Λ of P
such that

(3.2) (StabMon(R)Λ
′)κ ⊆ StabMon(P)Λ .

Then there is a covering κ : R → P, which induces κ as in Proposition 3.11.
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Proof. If Λ′ = [F ′
0, . . . , F

′
n−1] and Λ = [F0, . . . , Fn−1], we set (F ′

j)κ := Fj , for
0 � j � n− 1. Now suppose F ′ is any j-face of R, say in flag Φ′. Then Φ′ = (Λ′)w

for some w ∈ Mon(R). We define (F ′)κ to be the j-face of Λ(w)κ. Now the strong
flag-connectedness of R ensures that Mon(R)j = 〈ri | i = j〉 acts transitively on

flags of R which contain F ′. Using this and (3.2) we see that the j-face in Λ(w)κ is
independent of our choice of w.

Now it is clear that κ is a rap-map. In particular, κ is adjacency preserving,
since we do assume that κ : r′j �→ rj , for 0 � j � n− 1. �

Remark 3.14. If R is regular, then condition (3.1) or (3.2) is fulfilled automatically,
since all flags Λ′ are equivalent, with trivial stabilizer, in Γ(R) � Mon(R) (see
Theorem 3.9). In such cases, a covering κ : R → P induces an epimorphism

Γ(R) = 〈ρ0, . . . , ρn−1〉 → Mon(P) = 〈r0, . . . , rn−1〉
sending ρi to ri, for 0 � i � n− 1 (see Section 4).

Proposition 3.13 holds more generally when P is a flag-connected pre-polytope.
However, it is clear from the proof that R should be a polytope.

Corollary 3.15. Suppose η : R → P is a cover of regular n-polytopes, which
maps the base flag Ψ for R to the base flag Φ for P. Let Γ(R) = 〈σ0, . . . , σn−1〉
and Γ(P) = 〈ρ0, . . . , ρn−1〉 be the corresponding string C-groups. Then there is an
epimorphism

η∗ : Γ(R) → Γ(P)

of string C-groups mapping σj to ρj, for 0 � j � n− 1.

Proof. Compose isomorphisms from Theorem 3.9 with the epimorphism from Propo-
sition 3.11. �

We conclude the general results of this section with a look at minimal regular
covers.

Proposition 3.16. Suppose Q is an n-polytope whose monodromy group is a string
C-group, and let R be the regular n-polytope with Γ(R) � Mon(Q) (as sggi’s). Then
R is a minimal regular cover of Q and is the only minimal regular cover up to
isomorphism.

Proof. Let P be any regular cover ofQ. By Proposition 3.11 and Theorem 3.9, there
is an epimorphism Mon(P) → Mon(Q) � Γ(R) � Mon(R). By Proposition 3.13
we obtain a cover κ : P → R. Clearly R is a minimal regular cover, unique to
isomorphism. �

Example 3.17. In [12] Hartley and Williams determine Mon(P) = 〈r0, r1, r2〉
for each classical (convex) Archimedean solid P in E

3. For example, the regular
toroidal map R = {6, 3}(2,2) covers the truncated tetrahedron P and

Mon(P) � Γ(R) = Γ({6, 3}(2,2)),
a string C-group of order 144; see Figure 3 and compare [17, p. 19]. In this case,
the map κ in Proposition 3.11 is an isomorphism.

Here is another way to look at this. Since R is regular, each flag stabilizer
in Mon(R) � Γ(R) is trivial, by Theorem 3.9. In Mon(P), the flag stabilizer
of a ‘triangular’ flag is 〈(r0r1)3〉; for a ‘hexagonal’ flag it is 〈x−1(r0r1)

3x〉, where
x = r2 or r2r1. There are 24 flags in each of three types in P. Now that we
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Figure 3. The toroid {6, 3}(2,2) covers the truncated tetrahedron.

understand these flag-stabilizers, we further conclude from Proposition 3.13 that
the truncated tetrahedron itself covers the tetrahedron. Looking ahead a bit, let us
finally consider the subgroup N = 〈(ρ0ρ1)3〉 of Γ(R). It follows from Theorem 4.3
in the next section that R/N � P.

4. Flag actions

Definition 4.1. Suppose that Γ = 〈ρ0, . . . , ρn−1〉 is a string C-group of rank n and
let Q be an n-polytope with monodromy group Mon(Q) = 〈r0, . . . , rn−1〉. Then we
say that Q admits the flag action by Γ if there exists an epimorphism

ϕ : Γ → Mon(Q)

which maps ρj to rj for 0 � j � n− 1. To indicate this action we write

Ψτ := Ψ(τ)ϕ

for Ψ ∈ F(Q) and τ ∈ Γ.

Remark 4.2. It is easy to see that this definition is equivalent to that of Hartley in
[8]. Notice that every n-polytope Q admits the flag action by the universal string
Coxeter group

U := [∞, . . . ,∞]

of rank n. We could in fact ask whether Q admits the flag action under a more
general sggi W of rank n; for example, W could be the monodromy group of a
seemingly unrelated n-polytope K. As yet, we have no use for this level of generality.

Theorem 4.3 ([8, Theorem 5.2]). Suppose P is a regular n-polytope with base flag
Φ = [F0, . . . , Fn−1] and corresponding specified generators for the automorphism
group Γ = 〈ρ0, . . . , ρn−1〉. Also suppose that Q is any n-polytope admitting the flag
action by Γ. Fix a flag Ψ for Q and let

N := {τ ∈ Γ : Ψτ = Ψ} =: StabΓ(Ψ)

be the Γ-stabilizer of Ψ. Then there is a polytope isomorphism

η : P/N → Q
which maps ΦN = [F0N, . . . , Fn−1N ] to Ψ.
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Proof. We may identify the j-faces of P with the right cosets Γjτ , for τ ∈ Γ; in
particular, the base face Fj becomes Γj . After a look at Proposition 2.19, we

attempt to define η : P/N → Q by letting (ΓjτN)η := [Ψτ−1

]j (the j-face in the

flag Ψτ−1

). Our arguments will imply that P/N actually is an n-polytope.
Now if τ̃ = γτα with α ∈ N and γ ∈ Γj , then

Ψτ̃−1

= Ψα−1τ−1γ−1

= Ψτ−1γ−1

has the same j-face as Ψτ−1

, since γ−1 ∈ Γj . Thus η is well defined.
Clearly η is onto since Q is flag-connected; and η is a rank preserving poset

homomorphism because of Lemma 2.16(b).

Suppose Ψτ−1

and Ψλ−1

have the same j-face in Q. By strong flag-connectivity
in Q, there exists γ ∈ Γj mapping the first of these flags to the second via the flag
action. Thus τ−1γλ = n ∈ N . Then in P/N we must have ΓjτN = ΓjλN . Thus η
is 1− 1.

Finally, we note that two incident faces in Q lie in a flag, which we may write

as Ψτ−1

for some τ ∈ Γ. Thus η−1 is also order preserving. �

Corollary 4.4. In the previous theorem, the polytope P is a regular cover of Q.

Proof. Regarding the covering, just compose maps as follows:

P natural→ P/N
η→ Q .

We need only show that the natural map sends adjacent flags in P to adjacent flags
in P/N . If not, then N must identify the two distinct j-faces in some rank 1 section
of P. Thus, for some u ∈ Γ we would have ΓjρjuN = ΓjuN , whence ρju = gux

for some g ∈ Γj and x ∈ N . It follows that the flag Ψu−1

in Q is fixed under
flag action by g−1ρj . This is a contradiction since g−1 fixes the j-faces in all flags,
whereas ρj does not. Alternatively, the covering is implied by Proposition 3.13 and
Theorem 3.9. �

There is a converse of sorts:

Proposition 4.5. Let Q be an n-polytope and let P be a regular cover of Q. Then
Q admits the flag action by the string C-group Γ(P).

Proof. By Proposition 3.11 there exists an epimorphism κ : Mon(P) → Mon(Q) of
sggi’s. But by Theorem 3.9, Γ(P) � Mon(P). �

Remark 4.6. The epimorphism κ : Mon(P) → Mon(Q) provides a useful reminder
that the covering P → Q is a rap-map. Perhaps, then, it would be a little more
natural to replace Γ = Γ(P) by Mon(P) in Definition 4.1.

Next we consider the quotients of regular polytopes by ‘sparse’ subgroups of the
automorphism group. (We refer to [17, p. 58] for a history of this term.)

Definition 4.7. Let Γ = 〈ρ0, . . . , ρn−1〉 be the automorphism group of the regular
n-polytope P. A subgroup N � Γ is said to be sparse if

(4.1) τ−1Nτ ∩ Γ0Γn−1 = {1} ,

for all τ ∈ Γ.
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Proposition 4.8. Let P be a regular n-polytope with automorphism group Γ =
〈ρ0, . . . , ρn−1〉 and corresponding base flag Φ = [F0, . . . , Fn−1]. Suppose that N is a
sparse subgroup of Γ. Then Q := P/N is an n-polytope which admits the flag-action
by the string C-group Γ.

Proof. By [17, Prop. 2E23] we know that Q is an n-polytope whose facets and
vertex-figures are respectively isomorphic to those of P. (Thus, in this special case,
facets and vertex-figures of P are preserved; note that Q is equivelar.)

By Lemma 2.16(b), a typical flag of Q can be written as

Ψ = [Γ0τN, . . . ,ΓjτN, . . . ,Γn−1τN ] ,

that is, with one and the same τ ∈ Γ representing each double coset. Note that the
j-adjacent flag Ψj is represented by ρjτ and so has j-face ΓjρjτN . (The fact that
ΓjρjτN = ΓjτN follows from the sparseness of N and the intersection condition
on Γ.)

For any α ∈ Γ, we therefore want to define Ψα to be the flag in Q with repre-
sentative α−1τ . We need only show that this action is well defined. Suppose then
that the flag Ψ is also represented by μ ∈ Γ, so that μ = γjτλj , for 0 � j � n− 1,
with λj ∈ N and γj ∈ Γj . Since Γ is an sggi, we have γj = αjβj = βjαj for certain
αj ∈ Γ<j ⊆ Γn−1 and βj ∈ Γ>j ⊆ Γ0. For any j < i we have γiτλi = μ = γjτλj ,
so that

τλjλ
−1
i τ−1 = γ−1

j γi

= β−1
j α−1

j βiαi

= (β−1
j βi) (α

−1
j αi) ∈ Γ0Γn−1 .

(Since j < i, α−1
j commutes with βi.) By (4.1), we have γj = γi. Indeed, γ0 =

. . . = γn−1 ∈
⋂n−1

i=0 Γi = {1}, by the intersection condition. Hence μ = τλ for some
λ ∈ N . But the flags with representatives τ and μ = τλ are clearly identical. �
Remark 4.9. Clearly we need some sort of condition on N in order that the quotient
P/N be a polytope. Perhaps the most familar instance of Proposition 4.8 is when
P = {4, 4} is the familiar regular tessellation of the plane by squares, with N some
subgroup of Γ(P) generated by translations. A proper quotient will then be a
toroidal, or cylindrical, polyhedron with the same Schläfli type.

Corollary 4.10. The Γ-stabilizer of the base flag [Γ0N, . . . ,Γn−1N ] in Q is N .

Proof. If τ = 1 in the proof of Proposition 4.8, then μ = τλ = λ ∈ N . �
Definition 4.11. Let N be a subgroup of G. Then the core of N in G, or
core(G,N), is the intersection of all G-conjugates of N :

core(G,N) :=
⋂
g∈G

g−1Ng .

We note that core(G,N) is the largest normal subgroup of G which is contained
in N . We easily verify the following

Lemma 4.12. Suppose Q is an n-polytope which admits the flag action by the
string C-group Γ, through the epimorphism

ϕ : Γ → Mon(Q),

ρj �→ rj .
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Let N be the Γ-stabilizer of a fixed flag Ψ in Q. Then

kerϕ = core(Γ, N).

Remark 4.13. We will see in Example 6.8 that Γ/core(Γ, N) � Mon(Q) is not
always a string C-group. However, if Mon(Q) is a string C-group, then clearly Q
admits a flag action by Mon(Q) itself via the identity map Mon(Q) → Mon(Q).

We can now gather together several useful and related results from the literature:

Theorem 4.14. Let P be a regular n-polytope with automorphism group Γ =
〈ρ0, . . . , ρn−1〉, and suppose that Q is an n-polytope which admits the flag action by
Γ. Let N := StabΓ(Ψ) be the Γ-stabilizer of a base flag Ψ for Q.

(a) Let ω, μ ∈ Γ. An automorphism αω ∈ Γ(Q) mapping Ψ to Ψω exists if and
only if ω ∈ NormΓ(N). In such cases, αω = αμ if and only if ωμ−1 ∈ N .

(b) Γ(Q) � NormΓ(N)/N .
(c) All orbits of Γ(Q) acting on F(Q) have cardinality |Γ(Q)|. The number of

such flag orbits is

[Γ : NormΓ(N)] = [Mon(Q) : NormMon(Q)(StabMon(Q)(Ψ))] .

(d) Let R be a regular n-polytope which also admits the flag action by Γ, and let
K = StabΓ(Λ) be the Γ-stabilizer of a base flag Λ for R. Then K �Γ, Γ(R) � Γ/K
and P/K � R � P(Γ/K).

(e) Suppose that Mon(Q) is a string C-group. Let R be any regular n-polytope
such that Q also admits the flag action by Γ(R). Then R covers P(Mon(Q)), which
in turn is a regular cover of Q.

(f) Let Q̃ be an n-polytope; suppose Λ is a flag of Q̃. If η : Q → Q̃ is an

isomorphism of polytopes, then Q̃ admits the flag action by Γ; and StabΓ(Λ) =
τNτ−1, for some τ ∈ Γ satisfying Λτ = (Ψ)η.

Conversely, suppose that Q̃ admits flag action by Γ and that StabΓ(Λ) = τNτ−1,

for some τ ∈ Γ. Then there exists an isomorphism η : Q → Q̃ which maps Ψ to
Λτ .

Proof. For fixed ω ∈ NormΓ(N), we define αω ∈ Γ(Q) as follows. If F is a j-
face of Q, then F ∈ Ψβ for some β ∈ Γ. If also F ∈ Ψγ , then Ψγ = Ψβμ, for
some μ ∈ Γj , by the strong flag-connectivity of Q. Thus, βμγ−1 ∈ N , and indeed
ω(βμγ−1)ω−1 ∈ N . It follows that

Ψωβ = Ψωγμ−1

,

so Ψωβ and Ψωγ share the same j-face, which we define to be (F )αω. Notice that
a (general) flag Ψβ of Q is mapped to another flag Ψωβ. It is now easy to check
that αω is an automorphism of Q and that all automorphisms arise in this way.
Furthermore, the mapping

NormΓ(N) → Γ(Q),

ω �→ αω−1

is an epimorphism with kernel N . This addresses parts (a) and (b).
For part (c) compare [17, Prop. 2A5]. It is easy to check that as β runs through

Γ, the Γ(Q)-orbit of the flag Ψβ corresponds naturally to the coset NormΓ(N)β.
In light of this correspondence, the given equality makes sense when both sides are
infinite.
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For (d) just apply (a) and (b) with R in place of Q and K in place of N .
Regularity of R forces NormΓ(K) = Γ, by part (c).

In part (e) we have Mon(Q) � Γ(P(Mon(Q))) by Theorem 3.9. Clearly, the
identity map Mon(Q) → Mon(Q) induces the regular cover P(Mon(Q)) → Q.
Since

Mon(P(Mon(Q))) � Γ(P(Mon(Q)) � Mon(Q),

the map Γ(R) → Mon(Q) induces a coveringR → P(Mon(Q)), by Proposition 3.13.
For the first part of (f), suppose that ϕ : Γ → Mon(Q) defines the flag action

on Q. From Corollary 3.12 we conclude that ϕη defines the flag action of Γ on Q̃.
The remaining details use the fact that Γ acts transitively on F(Q̃).

Conversely, given the conjugate stabilizers Ñ = StabΓ(Λ) = τNτ−1, the isomor-

phism η is readily constructed using the description of Q (and of Q̃) provided by
Theorem 4.3. �

Remark 4.15. In some form or another, part (a) of Theorem 4.14 appears as [14,
Prop. 7]; part (b) as [9, Th. 3.6] (but see also [17, Prop. 2D8]); part (c) in [12, Th.
2.2] or [14, Prop. 9]; part (e) in [12, Th. 2.3]; and part (f) in [8, Th. 5.3]. Several
subgroup relations are summarized in

Γ �� Mon(Q)

NormΓ(N) �� NormMon(Q)(StabMon(Q)(Ψ))

N = StabΓ(Ψ) �� StabMon(Q)(Ψ)

core(Γ, N) �� 1

5. The mix or parallel product

The ‘parallel product’ of a pair of groups is a natural construction with many
applications in the theory of maps and polytopes. The idea is described in [30],
where it is used, for instance, to investigate chiral maps and their regular covers; see
also [22, 23]. Here we use instead the term ‘mix’, which is defined in [17, Ch. 7] as
part of a more general discussion of mixing operations on sggi’s. We begin with an
extension of the idea to quite general families of groups with specified generators.

Definition 5.1. Let n be a positive integer, and suppose that {G(m) : m ∈ M} is
a family of groups, each generated by a specified list g0,m, . . . , gn−1,m of n elements.
(We allow redundant generators, such as some gj,m = 1.) The mix

♦m∈MG(m)

of this family of groups is the subgroup of the (strong) direct product
⊗

m∈M G(m)
generated by g0, . . . , gn−1, where gj := (gj,m)m∈M .

Remark 5.2. Note that the mix also has n specified generators, the jth of which
has gj,m as its mth component. A typical element of the mix is a sequence (xm),
not necessarily of finite support if M is infinite, with xm ∈ G(m) for all m. In our
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work, the indexing set M will always be at most countable, and usually finite, in
which case we will use notation such as G♦H or G♦H♦ · · ·♦K without any fuss.

We naturally say that the groups G(m) have rank n. Usually we tacitly assume

that an epimorphism ϕ : G̃ → G from one group of rank n to another respects
specified generators, so that g̃j �→ gj , for 0 � j � n − 1. On the other hand, each
natural projection πk : ♦m∈MG(m) → G(k) is clearly onto, so that the mix is a
kind of subdirect product.

It is easy to check that the mix is a commutative and associative operation, up
to isomorphism in the class of groups of rank n.

We now establish a few important but readily verified properties of the mix.

Lemma 5.3. Suppose G̃ is a group of rank n such that for each m ∈ M there
exists an epimorphism ϕm : G̃ → G(m), where one such map, say ϕ1, is in fact an
isomorphism. Then

♦m∈MG(m) � G̃ .

Proof. Just check that

η : G̃ → ♦m∈MG(m),

g �→ (gϕ1, . . . , gϕm, . . .)

is an isomorphism respecting specified generators. �
Of course, we will mainly be concerned with the mix of sggi’s. It is easy to check

the next result.

Lemma 5.4. Suppose that each G(m) is an sggi of rank n, say with Schläfli symbol
{p1,m, . . . , pn−1,m}. Then the mix ♦m∈MG(m) is also an sggi, with Schläfli symbol
{p1, . . . , pn−1}, where pj = lcm{pj,m : m ∈ M}, for 1 � j � n− 1.

Naturally, for a given j we take pj = ∞ when there are infinitely many different
polygonal sizes pj,m for m ∈ M . We also observe that if G,H, . . . ,K are isomorphic
sggi’s, then G♦H♦ · · ·♦K � G.

We can already use mixing to help understand the standard subgroups of the
monodromy group of any polytope:

Theorem 5.5. Let Q be an n-polytope with monodromy group Mon(Q) = 〈r0, . . . ,
rn−1〉. For fixed −1 � j � k � n, let {S(m) : m ∈ M} be the set of all sections
F/G in Q, where G < F , rank(G) = j and rank(F ) = k. (Thus each S(m) is
a (k − j − 1)-polytope; and the indexing set M can be infinite if Q is an infinite
polytope.) Then

〈rj+1, . . . , rk−1〉 � ♦m∈M Mon(S(m)) .

Proof. Any flag Φ = [G, . . . , F ] of the section S(m) = F/G certainly extends to a

flag Φ̃ for Q, perhaps in several ways. For each g ∈ 〈rj+1, . . . , rk−1〉, Φ̃g differs from

Φ̃ only in proper faces of S(m), so that g induces a permutation g(m) of the flags in
F(S(m)). In particular, ri(m) maps any flag Φ of S(m) to Φi, for j+1 � i � k−1,
and so we may write

Mon(S(m)) = 〈rj+1(m), . . . , rk−1(m)〉
for all m ∈ M . Now we may define an epimorphism

ϕ : 〈rj+1, . . . , rk−1〉 → ♦m∈M Mon(S(m)),

g �→ (g(m))m∈M .
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If g(m) = 1 for all m ∈ M , then g fixes (elementwise) all sections F/G with
rank(G) = j and rank(F ) = k; and in any case, since g ∈ 〈rj+1, . . . , rk−1〉, g must
also fix all sections of the form Qn/F or G/Q−1, where Q−1 and Qn are the minimal
and maximal faces of Q. Thus g = 1 and ϕ is an isomorphism of sggi’s. �

Corollary 5.6. Suppose Q is an n-polytope with monodromy group Mon(Q) =
〈r0, . . . , rn−1〉 and facet set {F (m) : m ∈ M}. Then

〈r0, . . . , rn−2〉 � ♦m∈MMon(F (m)) .

Corollary 5.7. Suppose Q is an n-polytope with facet set {F (m) : m ∈ M},
where each F (m) is a regular (n− 1)-polytope. Then the subgroup 〈r0, . . . , rn−2〉 of
Mon(Q) is isomorphic to the mix

♦m∈MΓ(F (m)) .

Proof. This follows at once from Theorems 3.9 and 5.5. �

Let us now examine the mix of the automorphism groups of a family of regular
n-polytopes.

Definition 5.8. Let P and Q be regular n-polytopes with automorphism groups
Γ(P) = 〈ρ0, . . . , ρn−1〉 and Γ(Q) = 〈σ0, . . . , σn−1〉, and let τj := (ρj , σj) ∈ Γ(P)×
Γ(Q), 0 � j � n − 1. Whenever the sggi Γ(P)♦Γ(Q) = 〈τ0, . . . , τn−1〉 is a string
C-group, we shall say that the corresponding regular polytope is the mix of P and
Q and denote it by P♦Q. On the other hand, if Γ(P)♦Γ(Q) is not a string C-
group, we say that the corresponding flagged poset P♦Q is non-polytopal. Similar
definitions apply to any family {P(m) : m ∈ M} of regular n-polytopes.

Example 5.9. By Proposition 5.15 below, non-polytopal mixes can occur only in
ranks n � 4; compare [31, Th. 2] and the example in [17, p. 185]. Perhaps the
simplest of many non-polytopal mixes is {2, 3, 3}♦{3, 3, 2}. Here with a little help
from GAP [7], or easily enough by hand, we find that

(τ2τ1)
((τ1τ0)

3) = (τ1τ2)
((τ2τ3)

3) ∈ 〈τ1, τ2〉 .
In [6] Cunningham has determined all polytopal mixes of regular convex polytopes.
See also [5] for a wide-ranging exploration of related problems, including a study
of semi-polytopes, a class of pre-polytopes which generalize abstract polytopes.

Sometimes then the mix of regular polytopes is polytopal. In these cases, it is
useful to set up a little machinery:

Lemma 5.10. Suppose {P(m) : m ∈ M} is a family of regular n-polytopes whose
mix is the regular n-polytope R. For each m ∈ M choose a base flag Φ(m) for P(m)
and let ρ0,m, . . . , ρn−1,m be the corresponding involutory generators of Γ(P(m)).
Then the automorphism group for R is

Γ = 〈ρ0, . . . , ρn−1〉 := ♦m∈MΓ(P(m)) ,

with ρj = (ρj,m)m∈M , for 0 � j � n− 1. Let Φ be the base flag of R associated to
the ρj’s.

(a) Then for each m ∈ M , the natural projection

πm : Γ → Γ(P(m)),

ρj �→ ρj,m
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induces a covering κm : R → P(m).
(b) For τ ∈ Γ, (Φτ )κm = Φ(m) if and only if τ ∈ kerπm.
(c) (Φτ )κm = Φ(m) for all m ∈ M if and only if τ = 1. Thus, Φ is the unique

flag of R which satisfies Φκm = Φ(m), for all m ∈ M .

Proof. This is a routine application of Theorem 3.9 and Proposition 3.13. From
the proof of the latter we note that κm maps the general flag [Γ0τ, . . . ,Γn−1τ ] of R
to the flag [Γ(m)0(τπm), . . . ,Γ(m)n−1(τπm)] of P(m). (See equation (2.3) which
describes a flag of a regular polytope qua coset geometry.) �

Theorem 5.11. Let {P(m) : m ∈ M} be a family of regular n-polytopes whose mix

R := ♦m∈MP(m)

is polytopal. Then R covers each P(m). Furthermore, if S is any regular n-polytope
covering all the P(m)’s, then S covers R.

Proof. Our first claim follows at once from Lemma 5.10. Now suppose for each m
there exists a covering γ(m) : S → P(m). Let Ψ be a fixed base flag of S and
choose Φ(m) := (Ψ)γ(m) before proceeding to construct the mixed polytope R.
By Corollary 3.15, we have induced epimorphisms

γ(m)∗ : Γ(S) → Γ(P(m))

of string C-groups. Clearly, we now have an epimorphism

γ : Γ(S) → Γ(R),

α �→ ( (α)γ(m)∗ )m∈M .

This map induces the desired covering of R by S. �

In stating the next result it is convenient to abuse language a little. Suppose P
and Q are regular n-polytopes. Then all facets of P are isomorphic to some regular
(n− 1)-polytope, say K; likewise all facets of Q are isomorphic to some L. We say
that the facets of P cover those of Q if K covers L.

Theorem 5.12. Let {P(m) : m ∈ M} be a family of regular n-polytopes. Suppose
that there is a particular polytope, say P(1), whose facets cover the facets of every
polytope P(m) in the family. Then the mix

♦m∈MP(m)

is a regular n-polytope.

Proof. For each m ∈ M choose a base flag Φ(m) for P(m); as in Lemma 5.10,
let Γ(P(m)) = 〈ρ0,m, . . . , ρn−1,m〉, and let Γ := ♦m∈MΓ(P(m)) = 〈ρ0, . . . , ρn−1〉,
where ρj := (ρj,m)m∈M . We must show that Γ satisfies the intersection condition.

From our hypothesis and Corollary 3.15 we obtain epimorphisms

ϕm : 〈ρ0,1, . . . , ρn−2,1〉 → 〈ρ0,m, . . . , ρn−2,m〉 .
Notice that π1ϕm = πm on the subgroup 〈ρ0, . . . , ρn−2〉 of Γ.

Now let K be a facet of P(1). It follows from Lemma 5.3 that 〈ρ0, . . . , ρn−2〉 �
Γ(K) is a string C-subgroup of Γ. By [17, Prop. 2E16(b)] we need only prove for
1 � k � n− 1 that

〈ρ0, . . . , ρn−2〉 ∩ 〈ρk, . . . , ρn−1〉 = 〈ρk, . . . , ρn−2〉 .
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So assume τ ∈ 〈ρ0, . . . , ρn−2〉 ∩ 〈ρk, . . . , ρn−1〉. Clearly,
(τ )πm ∈ 〈ρ0,m, . . . , ρn−2,m〉 ∩ 〈ρk,m, . . . , ρn−1,m〉 = 〈ρk,m, . . . , ρn−2,m〉,

since Γ(P(m)) is a string C-group. Taking m = 1, we get (τ )π1 = ρi1,1 · · · ρil,1,
for suitable ij ∈ {k, . . . , n− 2}. Let λ = ρi1 · · · ρil ∈ 〈ρk, . . . , ρn−2〉. Then for each
m ∈ M we have

(λ)πm = ρi1,m · · · ρil,m
= (ρi1,1 · · · ρil,1)ϕm

= (τ )π1ϕm

= (τ )πm .

Thus τ = λ ∈ 〈ρk, . . . , ρn−2〉. �

Remark 5.13. Compare [2, Lemma 3.3] or [5, Proposition 2.41]. For ease of read-
ing, we have omitted from Theorem 5.12 equally valid dual conditions concerning
vertex-figures. Clearly, the conclusion holds when, for example, all the P(m) share
isomorphic facets.

It is clear on geometric grounds that the mix of any family of polygons is an-
other polygon. This fact also follows immediately from Theorem 5.12, since all
1-polytopes are isomorphic. More precisely, we have

Corollary 5.14. Suppose { {pm} : m ∈ M} is a finite or countably infinite family
of polygons, and let p := lcm{pm : m ∈ M}. Then

♦m∈M{pm} � {p}
(and ♦m∈MD2pm

� D2p).

The proof is routine. With just a bit more effort we obtain a similar result in
rank 3. (Compare [5, Corollary 2.46].)

Proposition 5.15. Let {P(m) : m ∈ M} be any family of regular polyhedra; and
suppose P(m) has Schläfli type {pm, qm}. Then Q = ♦m∈MP(m) is also a regular
polyhedron, with type {p, q}, where p := lcm{pm : m ∈ M} and q := lcm{qm : m ∈
M}.

Proof. As in the proof of Theorem 5.12, let Γ(P(m)) = 〈ρ0,m, ρ1,m, ρ2,m〉, and let
Γ := ♦m∈MΓ(P(m)) = 〈ρ0, ρ1, ρ2〉, where ρj := (ρj,m)m∈M . By Corollary 5.14,
both 〈ρ0, ρ1〉 and 〈ρ1, ρ2〉 are (dihedral) string C-subgroups of Γ. We may therefore
apply [17, Prop. 2E16], so let α ∈ 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉; we need to show α ∈ 〈ρ1〉. We
can assume that α is (ρ0, ρ1)-even; otherwise replace α by αρ1 (see Example 2.8). In
other words, α = (ρ0ρ1)

k for some integer k. Projecting to Γ(P(m)), we conclude
for each m that

(ρ0,mρ1,m)k ∈ 〈ρ0,m, ρ1,m〉 ∩ 〈ρ1,m, ρ2,m〉 = 〈ρ1,m〉,
by the intersection condition in Γ(P(m)). This forces (ρ0,mρ1,m)k = 1, for each m,
so that α = 1. The values for p, q follow from Lemma 5.4. �

We conclude this section with a look at mixing the regular facets of a polytope.

Lemma 5.16. Suppose Q is an n-polytope whose facets are all regular. Then all
ridges in Q (faces of rank n− 2) are isomorphic regular polytopes.
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Proof. Suppose Fn−2, Gn−2 are two faces of rank n− 2 in Q. By ‘ridges’ we more
accurately mean the corresponding sections Fn−2/Q−1 and Gn−2/Q−1. Flags in
such sections can be extended to flags of Q, say Φ = [F0, . . . , Fn−2, Fn−1] and Ψ =
[G0, . . . , Gn−2, Gn−1], again suppressing improper faces. Let Φ = Φ0,Φ1, . . . ,Φk−1,
Φk = Ψ be a chain of consecutively adjacent flags. Now suppose Φj+1 = Φt

j . If
0 � t � n− 2, then Φj+1 and Φj share the same (regular!) face, say Hn−1 of rank
n− 1. Thus the two faces of rank n− 2 in these flags are isomorphic, being facets
of Hn−1. On the other hand, if t = n − 1, then the two faces of rank n − 2 are
identical, being common to the two flags. It follows at once by induction that Fn−2

and Gn−2 are isomorphic. �
Corollary 5.17. Let Q be an n-polytope with the property that all its facets (or
dually, its vertex-figures) are regular. Then the mix of all regular polytopes occurring
as facets (or vertex-figures) of Q is a regular (n− 1)-polytope P.

Proof. Consider the case that Q has regular facets. By Lemma 5.16, these regular
facets in turn have their own isomorphic facets (namely, the ridges of Q). Now we
can apply Theorem 5.12 (with n− 1 instead of n). �
Remark 5.18. Given an at most countable family of regular (n− 1)-polytopes with
isomorphic facets, we can conversely ask whether these polytopes are, up to iso-
morphism, precisely the facets of some n-polytope. See [20] for some results in this
direction.

A somewhat related problem is to determine the mix of the monodromy groups of
all finite polyhedra (taken over isomorphism classes, of course). Obviously we get a
group of type {∞,∞}, but must this be the universal Coxeter group U := [∞,∞]?
In a conversation with one of us, Steve Wilson has explained that U must indeed
arise, even if one mixes just the regular polyhedral maps. On the other hand, we
may still ask whether U results if we mix, say, over all convex polyhedra.

6. Polytopality of monodromy groups

We have observed in Proposition 3.16 that an n-polytope Q whose monodromy
group Mon(Q) is a string C-group must have an essentially unique minimal regular
coverR. Since Γ(R) � Mon(Q), this regular cover is certainly finite whenQ itself is
finite. It is therefore interesting to establish criteria which guarantee that Mon(Q)
is a string C-group. Or could this always be the case? Well, ‘no’ in fact; but because
of our next result, the search for counterexamples must begin in rank 4.

Proposition 6.1. The monodromy group of any polyhedron Q (not necessarily
regular) is a string C-group of type {p, q}, where p is the least common multiple of
all facet sizes in Q and q is the least common multiple of all vertex degrees.

Proof. Let Mon(Q) = 〈r0, r1, r2〉, and suppose that { {pm} : m ∈ M} is the set
of (polygonal) facets of Q. Of course, each {pm} is automatically regular; and
Mon({pm}) � D2pm

= 〈ρ0,m, ρ1,m〉, say, by Theorem 3.9. It follows from Theo-
rem 5.5 and Corollary 5.14 that 〈r0, r1〉 is a string C-group, namely the dihedral
group D2p � ♦m∈MD2pm

obtained by mixing over the facets of Q. By mixing over
vertex-figures of Q we similarly get 〈r1, r2〉 � D2q.

Appealing again to [17, Prop. 2E16], we now let g ∈ 〈r0, r1〉 ∩ 〈r1, r2〉. We want
to show that g = 1 or r1. Consider any flag Φ = [V,E, F ] of Q. Since g ∈ 〈r0, r1〉,
Φg and Φ share the same facet F ; similarly, Φg and Φ share vertex V . Thus Φg = Φ
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or Φ1. But a look at the polygon {p} shows that the former case occurs if and only
if g is r0r1-even, in which case Λg = Λ for all flags Λ. Thus g = 1 or r1. �
Corollary 6.2. Any 3-polytope Q has an essentially unique minimal, regular cover
R. Moreover, R is finite if and only if Q is finite.

Remark 6.3. The monodromy groups and associated regular covers of general maps
have appeared frequently in the literature; see [15, 16, 30], for instance.

We now try to extend the above result to polytopes of higher rank.

Theorem 6.4. Let Q be an n-polytope with the property that all its facets (or
dually, its vertex-figures) are covered by one particular facet (or vertex-figure) which
happens to be regular. Then Mon(Q) = 〈r0, . . . , rn−1〉 is a string C-group.

Proof. We adapt the proof of Theorem 5.12. Let {F (m) : m ∈ M} be the facet set
of Q, and say the regular facet F (1) covers all facets. (Recall that for simplicity
we often write F (m) in place of the section F (m)/Q−1.) Suppose Γ(F (1)) =
〈ρ0, . . . , ρn−2〉; and let κm : F (1) → F (m) be a cover. From Theorem 3.9 and
Proposition 3.11 we get epimorphisms

κm : 〈ρ0, . . . , ρn−2〉 → Mon(F (m)) .

By Theorem 5.5 and Lemma 5.3 we find that

〈r0, . . . , rn−2〉 � ♦m∈MMon(F (m)) � 〈ρ0, . . . , ρn−2〉 ,
which is a string C-group of rank n − 1. Again we apply [17, Prop. 2E16(b)], so
suppose 1 � k � n − 1, and let g ∈ 〈r0, . . . , rn−2〉 ∩ 〈rk, . . . , rn−1〉. We must show
g ∈ 〈rk, . . . , rn−2〉. Notice that if Λ is any flag of Q, then Λ and Λg share the same
j-face, for j = 0, 1, . . . , k − 1 or n− 1.

In particular, suppose Φ is some flag of Q which contains the special regular
facet F (1). Since Q is strongly flag-connected, there is a sequence of flags Φ =

Ψ0,Ψ1, . . . ,Ψs = Φg such that Ψj = Ψ
ij
j−1, with ij ∈ {k, . . . , n−2} for j = 1, . . . , s.

Thus h = ri1 · · · ris ∈ 〈rk, . . . , rn−2〉 and Φg = Φh. Clearly Φu = Φ, where u =
gh−1 ∈ 〈r0, . . . , rn−2〉.

Now for any flag Λ of Q, let Λ∗ be the flag induced in the facet of Λ. Since
u ∈ 〈r0, . . . , rn−2〉 we have (Λ∗)

u = (Λu)∗. Now suppose Λ has facet F (m). Since
F (1) is regular, we can assume (Φ∗)κm = Λ∗. Then

(Λ∗)
u = ((Φ∗)κm)u = (Φu

∗)κm = (Φ∗)κm = Λ∗ .

(Recall that any cover κm commutes with monodromy actions.) On the other
hand, u certainly fixes the facet in each flag Λ; we conclude that u = 1 and g =
h ∈ 〈rk, . . . , rn−2〉. �
Corollary 6.5. Let Q be an n-polytope with the property that all its facets (or
dually, its vertex-figures) are isomorphic to a particular regular (n − 1)-polytope.
Then Mon(Q) is a string C-group, and Q has an essentially unique minimal regular
cover.

Example 6.6. Any simple or simplicial convex polytope has a unique (and finite)
minimal regular cover.

For instance, let Q be the cyclic 4-polytope with 6 vertices. Then Mon(Q) is a
string C-group of order 26 · 37 and the corresponding regular polytope has Schläfli
type {3, 3, 12}. The vertex-figure of this regular cover is a map M of type {3, 12}
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and listed as {3, 12} ∗ 1296(b) in Hartley’s Atlas [11]. Each (convex) vertex-figure
in Q itself is a triangular bipyramid; thus some edges of Q are surrounded by 3
tetrahedra and others by 4, thereby accounting for the 12 in the Schläfli symbol.

Various other geometric conditions guarantee that Mon(Q) is a string C-group.
Here is one last result of this sort:

Theorem 6.7. Let Q be an n-polytope with regular facets such that all vertex-figures
are facet-transitive. Then Mon(Q) is a string C-group.

Proof. We use much the same notation and approach as in the proof of Theorem 6.4.
First, from Corollaries 5.6 and 5.17 we conclude that 〈r0, . . . , rn−2〉 is a string C-
group. Next we fix some flag Φ of Q, and in similar fashion obtain an element
u = gh−1 ∈ 〈r0, . . . , rn−2〉 satisfying Φu = Φ.

Since facets are regular, we conclude from Lemma 3.4 that Λu = Λ for any flag
Λ having the same (n − 1)-face as Φ. On the other hand, u ∈ 〈rk, . . . , rn−1〉 must
(globally) fix every vertex-figure of Q. Again by Lemma 3.4 we conclude that u
fixes any flag containing the vertex in Φ. A standard inductive argument on the
length of flag chains allows us to conclude that u = 1. �

The several results above certainly direct our search for a polytope Q for which
Mon(Q) is not a string C-group: the rank must be at least 4, the facets (or vertex-
figures) cannot be isomorphic and regular, etc. Eventually, we did find such a
polytope, which we have called the Tomotope T , as a small nod to the contributions
of our colleague Tomaž Pisanski. We describe the properties of T in considerable
detail in [18]. A brief summary follows.

Example 6.8. Let U be the familiar face-to-face tiling of Euclidean space R
3 by

regular tetrahedra and octahedra, two of each arranged alternately around every
edge of the tiling. (We may take the centres of the octahedra to be points of Z3

with odd coordinate sum.) In fact, U is an infinite semiregular 4-polytope, and

Γ(U) � B̃3, the affine Coxeter group with diagram

� �

�

�

�
�
��

�
�
��

4

(6.1)

(By definition, a semiregular polytope has regular facets and a vertex-transitive
automorphism group; see [20].)

Now slice out a 2 × 2 × 2-cube containing eight tetrahedra, a core octahedron
and three other octahedra, each split into four identical but non-regular tetrahedra.
The latter pieces fit into the twelve ‘dimples’ on the surface of the stella octangula
shown in Figure 4.

Next identify opposite square faces of the 2 × 2 × 2-cube in toroidal fashion,
so that the eight original vertices of the cube become one. Finally, we reflect in
the centre of the core octahedron and so identify antipodal faces of all ranks. The
resulting 4-polytope T is clearly a quotient of U . One readily counts 4 vertices
(labelled 1, 2, 3, 4); 12 = 4 · 6/2 edges; 16 = 4 · 4 triangular 2-faces; 4 tetrahedral
facets; and 4 hemioctahedral facets. Thus T has 192 = 4 · (24 + 24) flags. Each
vertex-figure is a hemicuboctahedron.
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Figure 4. The Tomotope.

In fact, T remains semiregular. Its automorphism group Γ(T ) has order 96 and
is a quotient of Γ(U). On the other hand, a calculation in GAP shows that Mon(T )
is an sggi of order 18432 and type {3, 12, 4}, which fails the intersection condition.
Moreover, the conclusion of Proposition 3.16 also fails for T ; in [18, Th. 5.9] we
demonstrate that T has infinitely many minimal, mutually non-isomorphic regular
covers.

Although polytopes such as T may seem very peculiar, it is likely that Mon(Q)
fails to be a string C-group for almost all abstract polytopes Q of higher rank.

7. Chiral polytopes

From one intuitive point of view, regular polytopes have maximal ‘reflection’
symmetry. Chiral polytopes, on the other hand, have maximal ‘rotational’ symme-
try, while failing to be regular. To start thinking about chirality, recall that for any
regular n-polytope P, the rotations σj := ρj−1ρj , 1 � j � n − 1, generate a sub-
group Γ(P)+ having index 1 or 2 in Γ(P). In the latter case, P is said to be directly
regular, and certain properties of the σj ’s lead, in a natural way, to the theory of
chiral polytopes. We refer to [26,27] for a deeper look at this very interesting class
of symmetric polytopes.

Definition 7.1. Suppose that P has rank n � 3. Then P is chiral if it is not
regular, but if for some base flag Φ := [F−1, F0, . . . , Fn] there exist automorphisms
σ1, . . . , σn−1 of P such that σj fixes all faces in Φ\{Fj−1, Fj} and cyclically permutes
consecutive j-faces of P in the rank 2 section Fj+1/Fj−2 of P.

The automorphism group of P now has two flag orbits, with adjacent flags always
in different orbits, so that the flag graph F(P) is bipartite. Let us say that the
orbit of Φ contains white flags, while those in the orbit of Φ0 are black.

Actually, the σj ’s can be chosen so that if F ′
j denotes the j-face of P with

Fj−1 < F ′
j < Fj+1 and F ′

j = Fj , then Fjσj = F ′
j for j = 1, . . . , n − 1. These σj ’s

generate Γ(P) and furthermore satisfy at least relations of the following form:

(7.1)
σp1

1 = σp2

2 = · · · = σ
pn−1

n−1 = 1,
(σi · · ·σj)

2 = 1, 1 � i < j � n− 1,
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for certain 2 � p1, . . . , pn−1 � ∞. Once more P has Schläfli type {p1, p2, . . . , pn−1}.
The specified generators also satisfy an intersection condition analogous to but a
little more technical than that for the regular case in (2.2).

It is conversely possible to reconstruct a chiral polytope from a suitable group
[26]. If Λ = 〈σ1, σ2, . . . , σn−1〉 satisfies (7.1) and the appropriate intersection con-
dition, then there exists a chiral (or directly regular) n-polytope P(Λ) of type
{p1, p2, . . . , pn−1} with Γ(P(Λ)) � Λ (or Γ+(P(Λ)) � Λ). The directly regular case
occurs if and only if Λ admits an involutory automorphism ρ such that (σ1)ρ = σ−1

1 ,
(σ2)ρ = σ2

1σ2, and (σj)ρ = σj for 3 � j � n− 1.
Each (isomorphism type of) chiral polytope gives rise to two enantiomorphic

chiral polytopes: if one of these, say P, is associated with the base flag Φ, then
its enantiomorphic ‘twin’ P− is associated to an adjacent flag, say Φ0 := (Φ \
{F0})∪ {F ′

0}. As a result of this change, σ1, σ2, . . . , σn−1 must be replaced by new
generators σ1 := σ−1

1 , σ2 := σ2
1σ2 and σj := σj , for 3 � j � n− 1 (cf. [27, Section

3]). Here we borrow an idea from [2]: if ω is any word in the σj ’s and their inverses,
then ω is the new word obtained from ω by replacing each σk by σk. For example,
if ω = σ2σ3, then

(7.2) ω = σ2
1σ2σ3 = σ1(σ1σ2σ3)

−1 = σ1σ
−1
3 σ−1

2 σ−1
1 = σ1σ2σ3σ

−1
1 ,

where we have invoked (7.1) a few times. Hence this particular ω has period 2,
being a conjugate of ω. (We will never have to worry whether ‘barring’ is well
defined under refactorization of a group element in Γ(P).) We emphasize that P
and P− are isomorphic polytopes, rather as a left hand and right hand are isometric;
likewise Γ(P) and Γ(P−) are differently generated versions of the same group.

One way to better understand all this is to employ the monodromy group (but
compare the approach in [27, Sect. 3]). The first task in our approach is to mix
the automorphism groups of enantiomorphic twins. Suppose then that Mon(P) =
〈r0, . . . , rn−1〉 is the monodromy group of a chiral n-polytope P; and let sj = rj−1rj ,

for 1 � j � n − 1. Since Mon(P) is an sggi, it is easy to see that Mon+(P) :=
〈s1, . . . , sn−1〉 has index at most 2 in Mon(P).

Now check directly that (Φ)σj = Φs−1
j . Since the actions on Φ of σj and sj

commute, we also get (Φ)σ−1
j = Φsj , so altogether we have (Φ)σj

ε = Φs−ε
j , 1 �

j � n − 1, ε = ±1. Any z ∈ Mon+(P) can now be written as, say, z = t1 · · · tm,
where all tj ∈ {sε1, . . . , sεn−1}. Let (z)ϕ := τ1 · · · τm be the corresponding element
of Γ(P), for appropriate τj ∈ {σε

1, . . . , σ
ε
n−1}. It follows at once from Lemma 3.7

that

(7.3) Φz−1

= (Φ)(z)ϕ .

(We will soon see that ϕ is well defined.)
In similar fashion we define sj := r0sjr0, so that s1 = s−1

1 , s2 = s21s2, sk = sk,

for 3 � k � n− 1. Then all (Φ)σj
ε = Φs−ε

j . But we can also write z ∈ Mon+(P) as
z = t1 · · · tm, with tj ∈ {s1ε, . . . , sn−1

ε}, and then set (z)ψ := τ1 · · · τm. Now we
obtain

(7.4) Φz−1

= (Φ)(z)ψ .

It is now clear that Mon+(P) has index exactly 2 in Mon(P). For if r0 ∈ Mon+(P),
then writing r0 = t1 · · · tm, we get from (7.3) that Φ0 = Φr0 = (Φ)τ1 · · · τm, contra-
dicting the fact that Φ and Φ0 lie in different Γ(P)-orbits.
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Theorem 7.2. Suppose the chiral n-polytope P has automorphism group

Γ(P) = 〈σ1, σ2, σ3, . . . , σn−1〉,
so that the enantiomorphic twin P− has group

Γ(P−) = 〈σ1, σ2, σ3, . . . , σn−1〉 = 〈σ−1
1 , σ2

1σ2, σ3, . . . , σn−1〉.
Then

(7.5) Mon(P) � (Γ(P)♦Γ(P−))� C2 � Mon(P−) .

Proof. Recall that the generators σj for Γ(P) correspond to the white base flag Φ,
whereas the generators σj for Γ(P−) correspond to the black base flag Φ0.

Since P and P− are isomorphic, we need only consider Mon(P). For brevity
write H := Γ(P)♦Γ(P−), with generators βj := (σj , σj), 1 � j � n − 1. First,
referring to the notation just above, we set

(7.6)
η : Mon+(P) → H,

x �→ ((x)ϕ, (r0xr0)ψ) .

This mapping is well defined: for if x = t1 · · · tm = 1, then also r0xr0 = t1 · · · tm = 1;
and (x)η = (1, 1) by (7.3) and (7.4). Since (sj)η = βj , it is clear that η is an
epimorphism.

Suppose then that x ∈ ker(η). For any white flag Ψ, there exists g ∈ Mon+(P)
such that Ψ = Φg. Since gxg−1 ∈ ker(η), we conclude from (7.3) that Φ =

(Φ)(gxg−1)ϕ = Φgx−1g−1

. Thus Ψx−1

= Ψ, so x fixes all white flags. Similarly
any black flag Ψ can be written as Ψ = Φr0g, for suitable g ∈ Mon+(P). Since

r0gxg
−1r0 ∈ ker(η), we further conclude that Ψx−1

= Ψ. Thus x fixes all flags and
η is an ismorphism.

The map

ρ : H → H,

(α, γ) �→ (γ, α)

is clearly an automorphism of period 2, so long as it is well defined. But this follows
from the fact that (β1)ρ = β−1

1 , (β2)ρ = β2
1β2, (βk)ρ = βk, for 3 � k � n − 1.

Furthermore, since r0 transforms generator sj of Mon+(P) in the same way that ρ
transforms βj , we can extend η to an isomorphism

η̂ : Mon(P) → (Γ(P)♦Γ(P−))� C2 ,

where the factor C2 = 〈ρ〉. �

Remark 7.3. The chirality group X(P) for a chiral or directly regular polytope P
provides some measure of how P deviates from regularity. We refer to [1, 2] for
details and applications, as well as to [5, Ch. 3] for extensions of the idea to wider
classes of polytopes. It is also clear from [5] that X(P) is isomorphic to the kernel of
the natural projection from Γ(P)♦Γ(P−) to either component. Referring to (7.6)
and (7.3), we may therefore set

X(P) = {x ∈ Mon+(P) : (x)ϕ = 1} = {x ∈ Mon+(P) : Φx−1

= Φ}.
On the other hand we also conclude from (7.6) that X(P) is isomorphic to

{(r0xr0)ψ : x ∈ Mon+(P), (x)ϕ = 1},
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which is a normal subgroup of Γ(P−). (The corresponding quotient of Γ(P−) by
this normal subgroup is the comix Γ(P)�Γ(P−) described in [5].)

We now have

Corollary 7.4. Let P be a chiral or directly regular n-polytope. Then the chirality
group X(P) is isomorphic to the stabilizer of, say, the white flag Φ under the action
of Mon+(P). X(P) is also isomorphic to a normal subgroup of Γ(P−). Analogous
interpretations of X(P) hold after swapping the roles of P and P−.

If, as for the Tomotope, the monodromy group of a chiral polytope fails to be a
string C-group, then such peculiar behaviour already occurs within the natural mix
described in (7.5). Now recall from [26, Props. 4 and 9] that all facets (likewise
all vertex-figures) of a chiral n-polytope are isomorphic and are either themselves
chiral or directly regular. All faces of rank n−2 and all cofaces of edges are, in fact,
regular. Certainly, we may conclude at once from Proposition 6.1 and Corollary 6.5
that many chiral polytopes do behave ‘nicely’:

Corollary 7.5. The monodromy group of a chiral polytope P with regular facets
(or with regular vertex-figures) is a string C-group. In this case P and P− have a
common and essentially unique minimal regular cover, as constructed from the mix
described in Theorem 7.2. In particular, any chiral polyhedron has such a unique
minimal regular cover.

Our search for a chiral n-polytope P for which Mon(P) is not a string C-group is
constrained in much the same way as our search for the Tomotope: the rank n � 4,
and the facets and vertex-figures must themselves be chiral (n−1)-polytopes. This
already rules out many instances on the grounds of the Schläfli symbol alone. We
did find an example, but we didn’t have to invent it! (This polytope also provides
an affirmative answer to Problem 3 in [25].)

Example 7.6. The long-standing search for the first finite chiral polytopes of rank
n > 4 ended in [4]. Several new examples were described there and were discovered
with the aid of efficient new algorithms for assessing ‘low index subgroups’ of the
rotation subgroups of suitable infinite Coxeter groups. In Section 5 of that paper
the authors describe in detail an interesting chiral 5-polytope P, with Γ(P) � S6

generated by

σ1 = (1, 2, 3),
σ2 = (1, 3, 2, 4),
σ3 = (1, 5, 4, 3),
σ4 = (1, 2, 3)(4, 6, 5).

This example also appears in a recent atlas of chiral polytopes arising from almost
simple groups [13]. See also [24] for a contrasting approach to the existence of chiral
polytopes of higher rank.

Evidently P has Schläfli type {3, 4, 4, 3}. It is improperly self-dual with 6 vertices,
15 edges, 40 triangles, 15 octahedral 3-faces and 6 chiral facets, each in fact a copy
of the universal 4-polytope K of type { {3, 4} , {4, 4}(1,2) }. (The vertex-figures
are dual to these.) The middle section is the simplest chiral toroidal polyhedron
M = {4, 4}(1,2).

This suggests that we can erect P on the complete graph K6. However, we must
fill in two triangles on each triple of points and allocate the octahedra and chiral
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facets in careful fashion. (Of course, such details are implicit in the selection of
generators σj above.)

Our contribution is brief, though we think interesting. The monodromy group
Mon(P) = 〈r0, r1, r2, r3, r4〉 has order 518400 = 7202, and also has type {3, 4, 4, 3},
since P is equivelar. However, the intersection condition (2.2) does fail. To see this
we begin with the epimorphism

Γ(P)× Γ(P−) → {±1} × {±1},
(α, β) �→ (sgn(α), sgn(β)) .

For convenience let Γ(P)⊥Γ(P−) denote the pre-image of {±(1, 1)}. This group
has index 2 in the direct product and consists of all pairs (α, β) for which sgn(α) =
sgn(β). Since the permutations σj and σj have the same cycle structure, we get

Γ(P)⊥Γ(P−) � Γ(P)× Γ(P−).

Similar statements hold for Γ(K) and Γ(M), each of which contains odd permuta-
tions.

Next we examine the chiral map M; it is the quotient of the tessellation {4, 4}
by the translation group T generated by vectors 〈1, 2〉 and 〈−2, 1〉. Thus

Γ(M) � Γ+({4, 4})/T
has order 20 = 4(12 + 22). From Theorems 5.5 and 7.2 we have an isomorphism

Mon+(M)
η→ Γ(M)♦Γ(M−),

sj �→ (σj , σj), j = 2, 3.

Now a careful look at {4, 4} shows that the translation with vector 〈1, 2〉 acts
trivially on M but in the same way as t = s22s

2
3s

−1
2 s3 ∈ Mon+(M). Since τ :=

(t)η = ( ( ) , (1, 4, 5, 2, 3) ), the chirality groups X(M), X(F) and X(P) all contain
the element τ of order 5. It is now easy to see that Γ(M)♦Γ(M−) has order
100 and is isomorphic to the rotation group of the regular toroidal map {4, 4}(5,0),
which covers both M and M−. Thus Γ(M)♦Γ(M−) actually has index 2 in
Γ(M)⊥Γ(M−), so there exists

λ = (α, β) ∈ Γ(M)⊥Γ(M−) ⊆ Γ(K)⊥Γ(K−),

but with λ ∈ Γ(M)♦Γ(M−).
Now consider the facet K. The chirality group X(K) contains τ , but by Corol-

lary 7.4 is isomorphic to a normal subgroup of Γ(K) � S5, so X(K) � S5 or A5.
This forces the left-most inclusion in

A5 ×A5 ⊆ Γ(K)♦Γ(K−) ⊆ Γ(K)⊥Γ(K−).

But Γ(K), Γ(K−) contain odd permutations, so the right-most inclusion is equal-
ity and λ ∈ Γ(K)♦Γ(K−). A similar look at the vertex-figure K∗ gives λ ∈
Γ(K∗)♦Γ(K∗−). The element λ therefore forces the intersection condition (2.2)
to fail for Mon(P).

As a byproduct of these calculations and Remark 7.3, we note that the chirality
group X(P) � A6 (see [2, p. 1280]).

At this time we do not understand the regular polytopal covers of P (let alone
those for chiral polytopes of higher rank in general). However, Egon Schulte has
pointed out that P at least has some finite regular cover R. We begin with the
crystallographic string Coxeter group W = [3, 4, 4, 3]. Following [19] we reduce W
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modulo 5 to obtain W 5 � O(5, 5, 0), the general orthogonal group of dimension 5
over GF (5). Using [19, Th. 3.3(b)], we find that W 5 is a string C-group of order
28 · 32 · 54 · 13 and Schläfli type {3, 4, 4, 3}. Finally, we let G = Mon(P)♦W 5. It
follows from an argument detailed in [21] that G is the automorphism group of a
regular 5-polytope R, still of type {3, 4, 4, 3}, which covers the chiral polytope P
(and its twin P−). It is amusing to note that R has 2426112000000 = 214 ·36 ·56 ·13
flags, compared to a measly 1440 for P itself!

We intend to pursue these ideas in a sequel to this paper.
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