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Mixing between ordinary and exotic fermions
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The results of a comprehensive analysis of the limits on mixings between ordinary fermions and
possible heavy fermions with exotic SU(2))&U(1) assignments (e.g., left-handed singlets and/or
right-handed doublets) are presented. A general formalism for describing such mixings is given. It
is shown that a variety of constraints, including the relation between the 8' and Z masses and the
Fermi constant, charged-current universality, limits on induced right-handed charged currents, and
fiavor-diagonal neutral currents suffice to limit all directions in parameter space that are not exclud-
ed by the absence of Aavor-changing neutral currents. Limits on s, the square of the mixing be-
tween ordinary and exotic fermions, are quite stringent for the v„L, pL, uL, and dL
(s (0.002-0.005) if only one particle is allowed to mix at a time, but are weaker by an order of
magnitude if fine-tuned cancellations between different mixings are allowed. Similar statements ap-

ply to quark mixings with heavy sequential doublets. Limits on s for the other light fermions (v,L,
eL, ez,pz, uz, dz) are in the range 0.02-0.06, while those for the s, c, b, v„and v are considerably
weaker. Slightly stronger limits are found in specific models (e.g., E6). Implications for the masses
of the heavy exotic fermions are discussed.

I. INTRODUCTION

Many of the possibilities for new physics beyond the
standard model predict the existence of new fermions,
often with exotic SU(2)XU(1) assignments. In addition
to direct production, these new fermions can manifest
themselves through their mixing with the ordinary
(known) quarks and leptons. In this paper we present a
systematic analysis of the limits on such mixings that are
implied by the many high-precision experiments involv-
ing charged-current and flavor-diagonal neutral-current
processes, as well as the W and Z masses. (Constraints
from limits on flavor-changing neutral currents, which
are generally more stringent but can be evaded by fine-
tuning, are also presented. ) It will be seen that the limits
on mixings are fairly stringent, at least for v„e, v„, p
u, and d, but that the corresponding constraints on the
masses of exotic new fermions (implied for reasonable re-
lations between the masses and mixings} are rather weak.
There have been a number of earlier analyses of limits on
mixings' (all completed, however, before the last genera-
tion of high-precision neutral-current experiments ), but
these have a11 been restricted to specific models or to
specific types of fermions, such as neutrinos, leptons, or
quarks only. The present analysis is very general, apply-
ing to all models that do not involve exotic electric
charge or color assignments, and allowing all of the
.known fermions to mix with exotic partners simultane-
ously. Surprisingly, the limits obtained in the general
case are almost as stringent as those for specific models
(such as those restricted to exotic fermions occurring in
27-plets of E6 or mirror fermions with a Hermitian mass
matrix), which are also presented for comparison.

In the standard model, the three families of known
left-handed (L) fermions are assigned to doublet represen-
tations of weak SU(2),

e L P L L

L S

while the right-handed (R) fermions are SU(2) singlets:

R ~ R ~ R

eR ~ PR ~ VR bR ~ R ~ R
(2)

where we have assumed the existence of the t and v,. In
(1} and (2} and the rest of Sec. I, pairs of particles en-
closed in parentheses refer to SU(2) doublets, while those
not enclosed are singlets.

There are several possibilities for new fermions, as
shown in Table I. Sequential fermions are simply repeti-
tions of the known fermions, with canonical (L-doublet,
R-singlet) SU(2}X U(l) assignments. One usually consid-
ers complete sequential families (quarks plus leptons).
Sequential fourth-family fermions have received much re-
cent phenomenological and theoretical attention.

There are several classes of possible fermions with non-
canonical SU(2) X U(1) assignments. For example, mirror
fermions have the opposite SU(2) assignments from
those of normal fermions, i.e., L-handed singlets and R-
handed doublets. Usually one considers full mirror fami-
lies (quarks plus leptons). Mirror fermions occur natural-
ly in some grand unified theories [such as SO(18} mod-
els ], and appear necessary for a consistent formulation of
the (chiral} standard model on the lattice (though it is
not clear whether they should be interpreted as real or as
a lattice artifact). Most often, however, they are intro-
duced ad hoc in models to cancel anomalies.

Vector doublets refer to new quarks or leptons for
which both the L and R-handed com-ponents are SU(2)
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TABLE I. Possible types of new fermions. Pairs of particles
enclosed in parentheses are SU(2) doublets, while other particles
(not enclosed) are SU{2) singlets. N and E refer to any new

color singlets (leptons) with electric charges 0 and —1, respec-
tively, while U and D represent new color triplets (quarks) with
electric charges 3

and —3.

As an example, consider an E6 model with each fer-
mion family assigned to a 27-piet, as shown in Table II.
Each 27-piet contains, in addition to the 15 ordinary fer-
mions, (i) a new vector singlet D quark: DL, DR, (ii) a
new vector doublet of leptons

Sequential fermions

N U

D D
L

Noncanonical SU(2) )& U(1) assignments

(a) Mirror fermions

U
E

R DL D

(b) Vector doublets

N U U

R' DL
(c) Vector singlets

EL ER, UL UR, DL DR

(d) Weyl Neutrinos

NL, NR

Exotic electric charges

D —l /3

Q
4i3 ' L L

Q
5/3

U2/3
L

TABLE II. Fermion content of an E6 27-piet of left-handed
fields. Shown also are the SO(10) and SU(5) representations.
v', L, NL, and sL are new Acyl neutrinos, E is a charged lepton,
and D has the same charge and color as the d quark. The super-

script c refers to antiparticle. The right-handed particles are re-

lated to the left-handed antiparticles by f„=C3TL, where C is

the charge-conjugation matrix.

SO(10) SU(5} SU(2) XU(l}

16

10

Le

Q

uL
L

C
&eL

E+

N
D: E-

iL

SL

doublets. Similarly, vector singlets are new particles
(E, U, or D) for which both L and R are singlets.

Finally, one can introduce new SU(2)-singlet Weyl neu-
trinos NL (or Ns). These, as well as new doublet neutri-
nos (sequential, mirror, or vector doublet), can be mass-
less or heavy. In the latter case one can have Majorana
masses or one can combine pairs of Weyl neutrinos to
form massive Dirac neutrinos.

M~ & 18 GeV, Me, MU, MD &23 GeV (3)

from DESY PETRA and SLAC PEP, though in some
cases the limits may be weaker depending on the (model-
dependent) lifetimes and decay modes. It should be pos-
sible to set lower bounds -40 GeV for some of the mod-
els in Table I using recent UA1 (Ref. 9) and UA2 (Ref.
10) direct production data, but again the limits would de-
pend on the details of the decays and have not been sys-
tematically analyzed. Similar comments apply to indirect
determinations of the ratio I z/I u, (Ref. 11). Future col-
liders should extend the sensitivity of direct searches sub-
stantially. '

Mixing between ordinary fermions and heavy fermions
with noncanonical SU(2))&U(1) assignments will usually
induce fiavor-changing neutral currents (FCNC's) be-
tween the ordinary fermions. In particular, the existing
limits on d~s, c~u, b~d, b~s, and p~e FCNC's are
extremely stringent. We will summarize these limits in
Sec. II, but we have little to add over previous analyses.
However, there are certain (fine-tuned) directions in pa-
rameter space (those in which each ordinary mass eigen-
state mixes with a distinct linear combination of heavy
fermions) in which no FCNC's are induced. Our major
concern in this paper is to show that these remaining
directions can all be limited (rather stringently for the v„e, v„, p, u, and d) by existing charged-current and
flavor-diagonal neutral-current data. In particular,
charged-current universality, limits on induced right-
handed currents, and the relation between Mgr Mz and
the Fermi constant put strong constraints on the possible
mixings of the lighter left-handed fermions with exotic L
singlets, while neutral-current data limit the possible mix-
ings of the right-handed and heavy (ci,bL, 7.1 ) left-
handed particles.

It is easy to see that in the absence of exotic electric
charge and color assignments the sequential fermions and
noncanonical SU(2) X U(1) models in Table I are the most
general possibilities for new fermions. ' In particular, the
only possible exotic SU(2) X U(1) assignments are left-
handed singlets, which can occur in mirror or vector
singlet models, or right-handed doublets, which occur in
mirror and vector doublet models. (The neutrinos are
slightly more complicated because of the possibility of
Majorana masses. ) In this paper we will mainly be con-

L ~ R

and (iii) two new Weyl neutrinos v,'L, sL .
Finally, one can have models with exotic electric

charges (as illustrated in Table I) or noncanonical color
assignments. We will not consider such models in this
paper.

The limits on new fermions from direct production at
accelerators are fairly weak. One has' roughly
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cerned with the mixing between these and the ordinary
(L-doublet, R-singlet) fermions of (1}. In Sec. II we will

develop a formalism that is sufficiently powerful to deal
with all of these cases. In general, the mixing between n

ordinary and m exotic fermions must be described by a
unitary (n +m ) X ( n +m ) matrix. However, we will

show that the observed absence of FCNC between the or-
dinary quarks and charged leptons implies an enormous
simplification: all of the remaining (non-FCNC) mixings
can be parametrized by one effective mixing angle for
each ordinary (left- or right-handed) particle.

Things are more complicated for the neutrinos. This is
partly because there is no empirical evidence to justify
the neglect of FCNC's between the ordinary neutrinos.
Fortunately, such an assumption is not needed: we will
show that because one must suin over the unobserved
flavors of the final neutrinos in weak processes, one can
still describe most mixing effects by one effective mixing
angle per ordinary neutrino. The other complication is
that there are more possibilities for the SU(2}XU(1) rep-
resentations of exotic neutrinos, i.e., in the general Ma-
jorana case, the left-handed neutrinos N&L, N2L, N3L in
the representations

E-
E+

N3L
2 L

(4)

can all mix (Dirac neutrinos are a limiting case). This
complicates the analysis of neutral-current data because
X& and N2 have nonzero but different neutral-current
couplings. We show that this effect can be parametrized
by one (bounded) auxiliary parameter per neutrino.
Throughout we will assume that all neutrinos (ordinary
and exotic) are either "massless" (i.e., with masses too
small to be kinematically relevant to present experiments)
or "heavy" (i.e., too heavy to be produced in normal
weak decays or to be important in present scattering ex-
periments). In particular, we assume that the v„and v,
are massless or very light. This is actually the most con-
servative assumption for deriving upper limits on mix-
ings. If it should turn out that m, and/or m„are actu-

ally "large" (i.e., near their present limits' or -250 keV
and -35 MeV, respectively), then the upper limits on
mixings with exotic heavy neutrinos would become
stronger, because the kinematic effects of neutrino mass
are similar to those of mixing (and of the same sign) for
most of the experiments considered here.

In Sec. III we present the charged- and neutral-current
data that we use. It will be seen that there are a large
number of rather stringent constraints, but that care is
needed in the analysis to ensure that all effects of mixings
[e.g., on the determination of subsidiary parameters, such
as ordinary (Cabibbo-type) quark mixing angles or flux
normalizations] are properly included.

In Sec. IV we describe the results of the fits. We show
that there are enough constraints to simultaneously
determine the weak mixing angle sin 0~ and to limit the
mixings of all of the ordinary L- and R-handed ferrnions.
We present the results of several types of fits, such as
those in which only one particle is allowed to mix at a

time, those in which all of the particles can mix with ex-
otic partners simultaneously (allowing for fine-tuned can-
cellations between the effects of different mixings), and
those in which additional model-dependent constraints
are imposed. We also discuss the implications of the mix-
ing limits for the masses of the heavy exotic particles, us-
ing typical expected relations between masses and mix-
ings.

In Sec. V we summarize the results, and the Appendix
is devoted to some technical details concerning the for-
malisrn.

A related topic is that the mixing between ordinary
and exotic neutrinos can induce total lepton-number
violation and individual lepton-Aavor violation in the or-
dinary neutrino sector, even if the ordinary v's are mass-
less. ' ' The phenomenological implications will be dis-
cussed separately. '

II. FORMALISM

0 ( 0 0 . . . 0 )Tu 2L [n+m)L ~

and similarly for uR, di, dR, eE, and eR . In (5) we as-
sume there are n ordinary and m exotic uL fields. The su-
perscript zero refers to the weak-interaction basis —i.e.,
the original fields in the Lagrangian with definite
SU(2) X U(1) transformation properties. Rather than
treating u, d, and e separately or adding an extra in-
dex, we will introduce the generic vectors fz and 1(tR,
which can represent either ui R, di R, or ei R. gi R can0 0 —0 0

be decomposed into ordinary and exotic sectors by

0
NOR

0
4R 0

PER

0
POL

0
o4EI.

In (6), gi is a column vector consisting of ni ordinary
[SU(2)-doublet] fields, while JEST consists of mi exotic
[SU(2)-singlet] fields. Similarly, foR consists of nR ordi-
nary [SU(2)-singlet] states, and pER consists of mR exotic
[SU(2)-doublet] states. n and m may be different for u, d,
and e, but one must of course have nL ——nL and
mz ——mz. The additional physical requirement that one

Let us first treat the quarks and charged leptons (neu-
trinos are considered separately below). The inost gen-
eral SU(2) X U(1) assignments not involving exotic
charges or colors are shown in Table I. We will classify
all fermions as either ordinary or exotic according to
their SU(2) transformation properties. In particular, we
define all left-handed particles occurring in doublets to be
"ordinary" (independent of whether the doublets are as-
sociated with known or sequential families, or with vec-
tor doublets), and all left-handed SU(2) singlets (mirror
families or vector singlets) to be "exotic." Similarly, we
define right-handed singlets (known, sequential, or vector
singlet) to be "ordinary" and right-handed doublets (mir-
ror or vector doublets) to be "exotic."

It is convenient to arrange all of the left-handed charge

3 quark fields in the theory into a column vector
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PR =(AIR P(n+m)R }

We assume that gL (and QR }can be decomposed as

PIL AIR

QL= q s PR=

where QIL is a vector of nL "light"-mass eigenstates, ghL
represents mL "heavy"-mass eigenstates, and similarly
for QIR, phR. The interpretation of this ansatz is that we

expect that there will be n light states composed mainly
of the n ordinary weak eigenstates ltI(3, and m heavy

states consisting mainly of the m exotic states It)E, with

relatively little mixing between the two sectors. In fact,
since we have included such things as sequential and vec-
tor doublets into gL (and similarly for (){oR},it is not
clear that the mass eigenstates will always cleanly
separate into two sectors of very different masses. The la-
bels "light" and "heavy" should, therefore, be considered
suggestive only. The decomposition in (7) will be defined
more precisely below [see Eq. (18)].

The weak and mass eigenstates are related by

gL ——UL PL, QR ——UR fR,0 (8}

where UL and UR are the (n+m)X(n+m)-dimensional
unitary matrices (U, U, = U, U,t =I, a =L,R) which diag-
onalize the fermion mass matrix. (When necessary, we

will add a superscript to distinguish the unitary transfor-
mations for u, d, and e .) One can write UL and UR in

block form as

have massive Dirac quarks and charged leptons requires

L+ L nR+mR, I =u, d, e.
In each sector there will also be nl +mL mass-

eigenstate fields, which can be arranged in column vec-
tors

4L= (4—)L ''' 0(.+ )L)
T

and

A, A, +F F,=I,

—,
' Jg =QLY4(Pzt3 sin e—WIq )gL

+qRY (Pzt3 »n —eWiq)qR

0 PLY 34OL+(t ER3 34ER (9W

(12}

where

I 0 „00
pL pR (13)

are projection operators onto the subspaces of ordinary L
fields and exotic R fields, respectively,

1+2
t3= ' (14)

is the T3 eigenvalue of the gL and QER, q= —', (u),
——,'(d), —1(e} is the charge, and J", is the (flavor-

diagonal) electromagnetic current. Since we are consider-
ing mixing between doublets and singlets (i.e., Jg involves
PzL'" rather than the identity), there is no Glashow-
Iliopoulos-Maiani (GIM) mechanism, ' and there will be
FCNC's, in general. Rewriting Jg in terms of mass
eigenstates using (10), one obtains

with similar relations for 6, . We anticipate that all of
the components of F, and E, will be small, so that the
deviation of A, from unitarity is of second order in
light-heavy mixing. Many of the physical effects of mix-
ing with exotic fermions are associated with the nonuni-
tarity of A, .

The part of the weak neutral current involving uo, do,
or e is

A, E,
U, =

so that

a=L,R, (9)

PILY t3 AL ALSIL +PIR Y t3FRFR PIR
p

+DAILY

I 3 ALELQhL +QIR'Y"t 3FRGRfhRp

+WhL Y 3EL AL OIL +OhRY 3 R R PIR
p

+khL3 3EL+LfhL+fhR Y 3 RGRPhRp

COL

GAEL

POR

PER
0

PILAL EI
FI GL PhL

ER 1 IR

GR 1 hR

(10)

In (9) and (10), A is an (n, Xn, )-dimensional matrix re-
lating the ordinary weak states and the light-mass eigen-
states, while 6, is an (m, X m, }-dimensional matrix relat-
ing the exotic and heavy states. E, and F„which are
(n, X m, )- and (m, X n, )-dimensional, respectively, de-
scribe the mixing between the two sectors. We will refer
to E, and F, as the "light-heavy" mixing matrices. The
matrices A, and 6, are not unitary. Rather, from the
unitarity of U„one has

—sin HwJ4 (15)

The last (J", ) term is flavor diagonal, since all fields
which mix have the same electric charge. The second
and third lines represent Aavor-changing neutral-current
transitions between light- and heavy-mass eigenstates.
Such transitions are phenomenologically harmless, ' al-
though they would be of great importance for the pro-
duction and decay of the heavy fermions.

Much more dangerous are the first two terms in Jg.
The first is the normal t3 part of the neutral current,
modified by AL AL&I. In addition to changing the
strength of the diagonal terms (AL AL);;=1 (FLFL);;—
& 1, one generally expects FCNC transitions p;L Y4$JL Z„

between the light fermions g; and f~, with strength
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A,
L =(AL AL );,= (—FLFL }~i, i&j

i.e., of second order in light-heavy mixing. Similarly, the
second term in Jg is an induced right-handed component
of the neutral current, with off-diagonal (and diagonal)
transitions of strength

TABLE III. Limits on Aavor-changing neutral-current pa-
rameters A.;, dined in (16) and (17). We have used the limits on
the coeacients of effective operators (derived for an entirely
different purpose) given in Ref. 19, as well as new experimental
results for leptonic transitions and B~l+I X reviewed in Refs.
20-22. The limit on A,b, is from searches for B~l+I X. There
are no constraints from B,—B, mixing, which is expected to be
nearly maximal in the standard model.

which is again second order in light-heavy mixing. It is
possible that )1,;' vanish for i~j, but there is no a priori
reason to expect them to do so.

Limits'9 2~ on A, ,j'" are extremely stringent for sd, cu,
bd, bs, and pe, and non-negligible far ~p, and re, as can be
seen in Table III. We will, therefare, take it as a physical
assumption that there are no FCNC's invalving the light
fermians, i.e.,

Quantity Upper limit

3x 10-4

6X10-'
5X10-'
4X 10-4
3x10-'
4X10 '
1y10-'

Source

bmj((.' gL S

KL ~P P
D —D

p~3e
~+ 31
B+ I+I X

)i,,j=)1,";, =0 for i+j

AL AL ——

(c')
(c2 )2

0

This ansatz is, of course, not directly tested for A, ,„, A,„,
or transitions involving sequential fermions, L-vector
doublets, or R-vector singlets. However, it seems to us
unlikely that deviations from (18) in such cases will cause
much trouble. For example, limits on the mixing be-
tween dL and a heavy vector singlet are unlikely to be
greatly affected by the presence of a small FCNC between
dL and a heavy fourth family DL .

The absence of FCNC's assumed in (18) allaws an
enormous simplification. In particular, the matrices
A J AL and FaF& are diaganal, and from the unitarity re-
lations (11) it is easy to show that 0&(AL AL );; & 1 and
0&(F&Fz );; &1. Hence, one can write

Ag ——A, c, = A,
n

c~

(21)

where A, is unitary ( A, A, = A, A, =I).
That is, assuming the absence of FCNC's, A, can be

factorized into a unitary matrix Q„which describes nor-
mal intergenerational mixing, and a diagonal matrix of
cosa'„where 8', is the light-heavy mixing angle for f,,
The proof is given in the Appendix.

Theorem 2. F„a=L,R, can be written as

1
Sg

to distinct pairs of states, i.e., each light state mixes with
its own heavy state (which need not be a mass eigenstate),
with mixing angle O'L or Oz. This is made more precise
in the following three theorems and in the Appendix.

Theorem 1. A„a =L,R, can be written as

1
cg

($1 )2

(s„}

(19) F, =J',$. =F.
n

Sg

(22)

FgFg ——

$ s)2

c, =diag(c,' c, c, ' },
s, =diag(s, ' s, . s, '), a=L,R, (20}

so that [using (11)] ANAL, =cL. Az Az.=ca FL.FL =$L.
and F~Fg ——sg.2

A rough interpretation of (19) is that there are no
FCNC s if and only if the light-heavy mixing is restricted

where cL =cosO& and sz —=sin8z, where O'L and 0& will

be interpreted as light-heavy mixing angles.
It is convenient to de6ne the diagonal matrices

P, is unitary in the special case n, =m, .
Again, there is a factorization into an intergenerational

term and a diagonal matrix of light-heavy mixing angles.
The proof and a discussion of the m, &n, case are given
in the Appendix.

Theorem 3. One can choose a weak-eigenstate basis
such that A, =I and (for n, =m, )P, =I.

That is, one can always pick the original weak eigen-
states so that each corresponds to a unique light-mass
eigenstate. In the following we will always choose
A; =I, P; =I. One can also choose the quark weak
basis so that, for example, A L

——I or A L
——I but, in gen-

eral, not both simultaneously. The proof and a discussion
of the n, &m, case are given in the Appendix.

From (15) and (19), the neutral current for the light
quarks and charged leptons is
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2 2+ PiRy ( 3 R ~W'0 )O'R 1 (23)
~ 2

where we have dropped the subscript I. The cL term
represents a nonuniversal reduction of the strength of the
normal neutral current, due to mixing with L singlets,
and the sR is an induced right-handed current. The
latter is more important than the analogous induced
right-handed charged current because it can interfere
with the existing right-handed current (in J", ) in deep-
inelastic processes.

Similarly, the part of the hadronic weak charged
current involving light-mass eigenstates is

2Jg,'=uty V, d, +uRy VRdR, (24)

where uL and dL are n-component column vectors of the
1ight-mass eigenstate left-handed quarks of charge —', and
——,', respectively, and similarly for uR, dR. In (24)

VL ——AL AL (25)

is the apparent Kobayashi-Maskawa-Cabibbo (KMC)
quark mixing matrix, which is nonunitary in the pres-
ence of mixing with exotic fermions. Using (21),

VL ——CLA L ~ LCL —CL rLeL,u utQ d d uA d (26)

where O'L ——A L A L is the true (unitary) KMC mixing
matrix. We always use the term true to refer to underly-
ing quantities {in this case, the unitary intergeneration
mixing matrix}, and apparent to refer to the directly mea-
sured quantities. The two, which are represented by sym-
bols with and without a caret, respectively, differ by
light-heavy mixing effects. From (26}, the effects of
light-heavy mixing are represented by a nonuniversal

reduction in strength (i.e., VL
——cL'cz'f'L ), while the

lJ IJ

effects of extra sequential families (or quark-vector dou-
blets) are manifested by an apparent nonunitarity in f'L

when the effects of the extra doublets are not taken into
consideration.

The second term in Jg~ is the induced right-handed
current, described by the matrix

0 0+
noL

0- o'
eL noR

(29)

related by CP to R doublets involving positrons. There
are two kinds of exotic neutrinos. The nEL are related by
CP to exotic R doublets:

p+
eL

0
nEL

pC

nER

0 ) (30)

while

o o'
SL SR (31)

represent any SU(2) singlets. In the general Majorana
case all three kinds can mix. In the Dirac case there is no
mixing between no& and nEz, and the nzz divide into two
sectors with lepton numbers + 1 and —1; these can mix
with noL and nEL, respectively.

In analogy to (6) we arrange all of the weak-eigenstate
neutrinos into a vector

0
noL

oc
noR

nR ——C(nL )

~here C is the charge-conjugation matrix de6ned by
Cy„C '= —y„. Under a CP transformation, nt(x, t)
~y nR ( x, t—), so that nt and nR are essentially CP con-
jugates. For the usual neutrinos, nL and n& are what are
commonly referred to as left-handed neutrinos and right-
handed antineutrinos, respectively. More generally, how-
ever, the superscript c simply means that nL and n& are
CP conjugates. It does not imply that the nz are all lep-
tons and the nR are antileptons. There is no real distinc-
tion between them for Majorana neutrinos, and for the
special case of Dirac neutrinos nL refers to both left-
handed neutrinos and left-handed antineutrinos.

Assuming that there are no exotic electric charges,
there are three possibilities for the weak-eigenstate L neu-
trinos, which we denote by nt3t. , nzL, and nzz Th.e ttoz
are the ordinary L doublets

uf d u&ut&d d uA d
VR —FR FR —sRr R r RsR =sR vRsR (27) 0 0

nL = nEL
o' o'

"ER (32)

V„ is of second order in light-heavy mixing, since both
the u; and d must mix into the R doublet. The right-
handed term is important for processes such as p and It. I3

decay, since it has a vector component. However, it is
unimportant for deep-inelastic scattering because there
are no standard model right-handed currents to interfere
with (i.e., it only contributes to order sR in cross sec-
tions). The matrix f'R I' R F R is unitary " ——for

u d u
nR ——nR ——mR.

The neutrinos must be treated separately because of
the possibility of Majorana masses and because there are
no experimental constraints on possible FCNC's.

In dealing with Majorana neutrinos it is convenient to
denote all left-handed neutrinos by nL and all right-
handed neutrinos by nR. The two are not independent
but are related by

0
nSL

pC
nsR

nL— C

nI
(33)

where the nIL are q "massless" neutrinos and the n&L are
r heavy neutrinos. In (33), the mass eigenstates are as-

where noL, nEL, and nSL are n -, I -, and p-0 0 0 v v V

dimensional vectors, respectively. Of course, one must
have n =nL and m =mR.

We assume that the mass-eigenstate neutrinos are all
either "massless" (i.e., with masses too small to be
kinematically relevant) or heavy. As argued in Sec. I,
this is a conservative assumption for deriving upper lim-
its on mixings. We write

C

IL
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sumed to be Majorana two-component neutrinos. Dirac
neutrinos are obtained by combining pairs of degenerate
Majorana v's (Ref. 14).

The two bases are related by a unitary transformation

,'—Jg =nLy"AL CLeL+rl gy"Fg sped

e —C P vt ~a=g[n;I y"(AL );,cL'e,L +n ;'z y"(Fz );,sz'e, z ] .

0 0 c
nL ——UL nL, nR ——UR n„, (34) (38)

where' '
UL

——UR. UL can be written in block form

AL EL

UL —— FL, GL

Hl J~
L

(35)

where AL, FL, and HL are (n Xq)-, (m Xq)-, and

(p Xq )-dimensional matrices describing the overlap of the
massless v's with ordinary (noL) doublets, exotic (nzL)
doublets, and singlets (nzz), respectively. Similarly, EL,
GL, and JL are (n Xr), (m Xr), and (p Xr) dimensional.
Unlike the quarks and charged leptons we do not neces-
sarily assume that n =q. One could imagine the ex-
istence of sequential families or vector doublets involving
heavy v's (n & q), for example. Similarly, there could be
singlets or mirror families with massless neutrinos
(n &q). In the former case some of the components of
AL would describe mixing between massless and heavy
states (though they are both "ordinary"), while in the
latter case some of the components of FL or HL could be
large. In practice, however, we will usually be concerned
with two special cases. (a) The light neutrinos are all
mainly ordinary noL states, so that FL and HL are small
light-heavy mixings. (b) The light neutrinos are Dirac,
consisting of ordinary noL states and their SU(2)-singlet
partners (i.e., what would normally be called the right-
handed neutrino and left-handed antineutrino). The light
singlets, which decouple in the absence of mass and mix-
ing effects, correspond to large components of Hl, while

FL and any remaining HI components are light-heavy
mixings.

The unitarity of UL implies

In (38), F„"=F&', and we have chosen the weak basis for
eL R so that A L =I and F z I (——Ref. 28). In the left-
handed part of Jg the e,L n;L-coupling is reduced in

strength by the factors cos8L' and (AL" );, which differ
from unity due to electron and neutrino light-heavy mix-
ing, respectively.

The second term in Jg, is the induced right-handed
current, which can be rewritten

n Ry"FR sReR ———e Ly"sRFLnL, (39)

where eL =Ce R is the vector of antileptons (eL+,pi+, rz+, ,
etc). We will usually (i.e., except for one model con-
sidered in Sec. IV) assume that the light neutrinos are
mainly the ordinary noL states (or nsL singlets for Dirac
neutrinos), so that FL are small light-heavy mixings.
Then the current in (39) is of second order in light-heavy
mixing.

Let us write I'(e, ~n; ) to represent any weak decay in-
volving the e, ~n; transition (e.g., K+~e,'n, }. From
(38), the decay rate is changed relative to the normal rate
I 0 by a factor

Ql (e, ~n, )=(cL') (ALAI' )„+(s„')(FRF„")„
i

=(ci' ) (cl ' ) + (sz' ) (sz' ) (40)

where we have summed over the flavor of the final neutri-
no. (There may be additional mixing corrections associ-
ated with the other particles in the decay. ) In (40) we
have introduced the effective neutrino mixing angles

(CL ) =cos HL =(AL AL )«=g I (AL, );, I

(41)
Aq Al +FLFL+HLHL I, AI. AL +——EL EL I . (36)—— (&g } sin t)g =(F/' )« =g I (Fw'~(a

There is no evidence to justify assuming that AL AL is di-
agonal. However, one can accomplish much the same
purpose by summing over the flavors of unobserved final
neutrinos in weak processes.

The weak neutral current for the charged leptons (re-
peated for convenience) and the light neutrinos is

—,'Jg=eLy"[ ,'(ci } +»n e—w—]eL

+ez y"[——,
' (sz ) + sin 8~ ]ez

+ ,'ni y"( AL A—L FL FL)nl. , — (37)

where ei R are column vectors of the mass-eigenstate
charged leptons, and we have dropped the subscript I.
The AL AL and FLFL terms are the neutral currents of
noL and nFL, respectively.

The leptonic charged current is

[(cL'}2 and (sa')~ are restricted to the range 0—1 by the
unitarity of UL.] The first term in (40) is the usual left-
handed current, reduced in strength by e and v mixing.
The second is the induced right-handed current (RHC).

%"e will henceforth work to second order in light-heavy
mixing in rates and cross sections (with a few exceptions
involving muon, ~, and P decay}. We can, therefore, drop
the 0(s ) RHC term in (40}. It is also important that
neutrinos are produced with the normal helicity, i.e., the
RHC term in (40), which produces the opposite helicity
from normal, is negligibly small. (Furthermore, in many
cases the cross sections for the subsequent rescattering of
the wrong helicity neutrinos are also suppressed by light-
heavy mixing. )

The normalized state produced in (40) is

n

(42)
V

Cg
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i.e., a coherent superposition of the states
~

n,i ). Since
the n,L are degenerate (massless) this state does not
change in time except for an irrelevant overall phase. '

We can now consider the cross section for the state n,I
produced in (40) to subsequently rescatter in a target.
From (38) and (42) the cross section for charged-current
scattering into the "right'* lepton e,L is

a(n, L, ~e, ) =(CL') (ci.')
0'o

(43)

where Oo is the normal cross section in the absence of
mixing. Again, the interpretation is that the weak-
interaction strength is reduced by mixing of the e and v
with noninteracting exotic leptons. In (43) and the other
cross sections below there may be additional mixing
corrections associated with the target particles.

An interesting consequence of the mixing between light
and heavy neutrinos is that the efFective states

~
n, L ) and

~ nbr ) associated with e,L and ebL in weak decays need
not be orthogonal. ' (This is manifested in the nonunitar-
ity of AL. ) This leads to lepton-flavor and total lepton-
number violation even if the light neutrinos are exactly
massless. For example, the state n,L can rescatter to pro-
duce the wrong charged lepton eb, with relative cross sec-
tion

Op

(CL')'
I

( AI". A L') ba I

cr(n, L ~eb)=
(cL')

(44)

(45)

(Target corrections must also be included. ) From (36}
and (45) it is clear that the cross section depends not only
on the mixing angle, but on whether the mixing is with
exotic doublets (FL"AL' &0; this is a bL =+2 mixing that
occurs for Majorana neutrinos only), with exotic singlets
(HL AL &0; this can occur for both Dirac and Majorana
neutrinos), with heavy sequential neutrinos (or vector
doublets), or with all of these.

Fortunately, to second order in light-heavy mixing,
(45) simplifies greatly. It is shown in the Appendix that

1 go( , n~Ln )~L1 —A, (sL ) +O(s ),v 2 4

where A, is an auxiliary parameter that can vary between

Reaction (44) would inimic the effects of neutrino oscilla-
tions in many appearance experiments, ' even though no
oscillations actually occur' (i.e., the rate would be in-
dependent of energy and distance). The phenomenologi-
cal implications of lepton-number violation induced by
nonorthogonal neutrinos for neutrino-appearance experi-
rnents, prey, neutrinoless double-beta decay, and muon
decay will be discussed elsewhere. '

From (37) and (42) the cross section for neutral-current
rescattering of the n, L, summed over the unobserved final
neutrino flavor, is

[AL(A~ AL Fr" FL) AL' ]„—
a n, i ~nL ——

oo,.
C ~)2

III. EXPERIMENTAL CONSTRAINTS

In this section we describe the experimental constraints
on mixing. True (underlying) quantities are denoted with
a caret, while apparent (measured) quantities, which
differ by mixing effects, are uncareted. %'e work to
second order in light-heavy mixing except where other-
wise stated. Theoretical expressions are given in Table
IV and experimental numbers in Table V.

A. Mw, Mz

The 8'and Z masses provide an absolute prediction of
the strength of the weak interactions in the absence of ex-
otic mixings. One has

M~ ——
~o

Mz —— , (48)
M~

sin8w(1 b, r )'~ — cos8w

where sin 8w—:1 —Mw/Mz is the renormalized weak
angle (using the Sirlin definition ), Ao ——(m'a/&26„)'
and G„ is the (true) Fermi constant. It differs from the
value G„=1.166 37)(10 GeV measured in muon de-

cay by

G~ ='C~cL cL cgcL (49)

because the effective four-fermion interaction is reduced
in strength by the factors cL [induced right-handed
currents only affect the relation between G„and G„ to
O(s )]. Hence, Ao is reduced from its canonical value of
Ao ——(ma/&2G„)' =37.281 GeV to

e +e +IM 1/2A Q
= Ao(CLCI. 'cgci.") (50)

In (48) b, r is a radiative correction parameter predict-
ed to be 0.0713+0.0013 for m, =45 GeV and mH ——100
GeV (m, and mH are the r-quark and Higgs-boson
masses, respectively), while b, r ~0 for m, -245 GeV.

We use the correlated average of the UA1 (Ref. 33) and
UA2 (Ref. 34) values for Mw and Mz given in Table V,
along with the theoretical expressions in Table IV, ob-
tained by expanding (48) and (50) to O(s }. sin 8w is
determined by fitting to the data simultaneously with the
mixing angles.

0 and 4, depending on the particles involved in the mix-
ing. In the special case of mixing with only one type of
heavy neutrino one has

0 heavy sequential (or vector doublet) in nol

A, = ~ 2 singlet in n&z, (47)

4 exotic doublet (bL =+2) in nFL .

As expected, the neutral current is unaffected by mixing
with a heavy sequential or vector doublet neutrino.

In the next section we will incorporate the effects of
mixing on the target particles and on subsidiary parame-
ters needed to interpret cross-section measurements.
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TABLE IV. Experimental quantities and their theoretical expressions to lowest nontrivial order in s . F(s ) is defined by

F(s2)=(C„/G„)'~ =1+-'[(SL ) +(st') +(sg) +(sg) +(st") ]. The quantities x„x„,z„and z„are defined as x, =(sa) (sa'),
x„—= ( g)'( g)', z, —=(SP'

I (AtFL)„, I', and z„:—(sg)'I (AtFJ),„I', respecti e y.

Quantity Expression Source

Mz

1 —X I V. I'

R (expt)1—
R „(theory)

R&(expt)1—
Rz (theory)

'2

1— G„
G,„

1— G,„
G~

1 —-p4
3

1 451—
3 3

—,'(1 f)—
1 —P1 $5

2 "p

4
3~~~8
4

1 —3P,
3

1 —X I V. I'

, zz [2—F(s')]
sin8~(1 —hr )'

Mg

cos8~
tl

{SL)' —(sg)' —(SL")'+g I V„,
I

'
t=4

+ I V.d I l(SL) 2Re{K d)]

+
I V„, I

2[(st ) —2Re(K„, )]

(sL) +(st')' —(sg)' —(st")

(st') +(s t') (sf—)' (st—")

(st') +(s 't) (sf—) (SL"—)

V V

(sl'. )'+ (sL') —(sL ) —(sL' )

X8+X~+Z8+ZP

XP —X8 +ZP —Ze

X~ +Z~

2x, +2z, —z„

=(ss )'(ss')'+(ss )'
I
{At. Fi')„,

I

'

=(ss) (s„')'+(ss) I(AtFL)«I'

=&
I v- I

'+
I vd I

'){st'. )'

Universality

~ lifetime

Electron spectrum

Energy dependence of e asymmetry

e helicity

e asymmetry near end point

e asymmetry

e helicity in P decay

~ decay spectrum

Universality

eR(i)

gv

+
I

V.* I'&SL )'+&
I V. I'

i=4

F,{S,K)[t3{c )' —sin H~q']

F)(S,K)[t3(s„' ) —sin'H~q']

F2(s') [——,
' (ct' )' —

z
{s„')'+ 2 sin'8~]

Deep-inelastic scattering;

"(S,"~)2
2F)(s2,~)=

1 —(sg)' —(st")2—Re(K„d )

Low-energy v„e:

F,(s ')[—t (cL )'+ —,
' (s„' )'] F,(s') —=

Ap v
1 — (sL")

2

1 —(sg )' —(st")

gv F&{s2,K)[ —z(ct') ——'{ss ) +2sin 8~]
F&(s', K)[ ,'(ct'. )'+-,'(s& )']-—
F(s )jt', [(ct ) +(ss) ]—2sin H~q'I

F{s')[t',[(ct )' —(s„')']j

High-energy v„e

Weak-electromagnetic interference
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TABLE V. Experimental quantities. The stated errors include both experimental and theoretical uncertainties. The standard-
model (SM) expectations are for the global best St value sin~e~ ——0.23.

Quantity

M~ (GeV)
Mz (GeV)

3

1 —g ~
V„;

~

' (universality)
i=1

R (expt)1—
R (theory)

1—R~(expt)

Rz(theory)
1 —(G„/G,„)2
1 —(G,„/G~ )

1 ——p
4

. 3

451—
3 3

—,'(1—f')
5

~ (1 P„g)—
)

3 P&~P
41 —3P~ e

Nonleptonic K 3/K 2.
Kua

Kus

vd, s ~p c:

Kcs

1 —g ~
V„~ ' (universality)

i=1
(sL )~(vs~@ c)
Deep inelastic:

g,' =e.', (u)+~', (d)
g~ =a()+&~(d)
HL, ——arctan[eL, (u)/eL, (d)]
ea ——arctan[ea (u)/ea(d)]
(sq ) (deep inelastic)
Low-energy v„e:
gv

High-energy v„e:
gv

Atomic and eD:
C1u

Cld
C2u —

2 Cu1

pC:
b (GeV-')
E„=200 GeV,

~

A,
~

=0.81
b (GeV 2)

E„=120 GeV, ~)L,
~

=0.66
e+e asymmetries:
A'A"
A'A'
A'A'

+0.04

+0.05

Experimental value

80.9+1.4
91.5+1.7

0.0021+0.0021

0.009%0.018

0.022+0.044

0.0058+0.017t%0.022
0.062+0.016~+0.028

—0.002 67+0.0036

0.000 62+0.0017

0.001+0.021

0.001 05%0.000 44

—0.001420.0042
—0.0005+0.0040

0.13+0.12
—0.12%0.15

0+0.0037
0+0.0037

&0.39 (90% C.L.)
&0.37 (90% C.L.)

0.07%0.23

&0.6 (90% C.L.)

0.2994+0.0046
0.0307+0.0040
2.470+0.046
4.71+0.52

&0.7 (90% C.L.)

—0.080+0.062
—0.488+0.044

—0.051+0.063
—0.496+0.050

—0.249+0.071
0.381+0.064
0.194+0.373

—0.147+0.044

—0.174+0.080

0.272+0.015
0.232+0.026

—0.330+0.075
0.270+0.073

SM Value

80.7
91.9

0.301
0.029
2.46
5.18
0

—0.045
—0.503

—0.045
—0.503

—0.191
0.340

—0.039

—0.144

—0.145

0.25
0.25

—0.25
0.25

Correlation

0.75

1.0 for 4 component
(from 8, „)

—0.19
—0.27 0.27
—0.002 0.01 —0.005

0.19

—0.48

—0.983
—0.88 O. SS
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B. Charged-current universality

I V„, I
=0.220+0.002,

0.002&
I V„b I

&0.012 .

(51}

I V„d I
is determined from superallowed P decay and

I V„, I
from K(3 (mainly K,3) and the vector parts of

hyperon decay. Hence, they depend only on hadronic
vector currents, which are largely free of theoretical un-
certainties. (We do not use constraints that depend on
exclusive hadronic axial-vector matrix elements, because
the hadronic couplings such as g„are not known in-

dependently to sufficient accuracy to disentangle the
eff'ects of exotic mixings. ) The range for

I V„b I
[from

B~ppm's and limits on I (b~ulv)/I (b~clv)] suff'ers

from considerable theoretical uncertainty, but for all
reasonable values

I V„b I
is too small to be of relevance

for universality.
From (51),

I V„d +
I V„, I + I V„b I

=0.9979+0.0021, (52)

in excellent agreement with the prediction of unity for
three-family universality.

V„d is extracted from the P-decay data by dividing the
measured coefficient G„V„d of the vector current by 6„
from p decay. However, in the presence of mixing the
actual coefficient of the (hadronic) vector part of the
four-Fermi interaction is

G„V,d CI„CLCL (——PL„gcLCL+ Pg„dSIISII ) r (53)

where the second term is the induced RHC from (24).
Using (49) one finds the relation

u d & u d
L„dCI CL + ~ x gdSs Ss

V„d ——

CgCL

(54)

Similarly, the apparent and true values of V„, are related
by

Universality tests constrain the relative strengths of
weak amplitudes and, therefore, the relative sizes of left-

handed mixing angles.
The apparent KMC mixing angles V„; (we suppress the

subscript L) are

I V„„ I
=0.9744+0.0010,

Kij SR S$
LlJ

(57)

The universality constraint is extremely stringent. Un-
like the 8'and Z masses, however, the mixing terms do
not all have the same sign so there is a possibility of can-

cellations. sL and SI' do not enter because p, K,3, hype-
ron, and p decay are all modified in the same way by CL

and cL'.

C. e-p, -w universality

The ratio R—:I'(n~ev)/I'(n~pv) has been mea-

sured very precisely. 3s' The experimental value relative
to the standard-model theoretical prediction is

R (expt}
=0.991+0.018

R theory

(c ')'(c')'+(s„')'(s' )'

(cL"}(cg) +(sn") (sg)
(58)

(the pion decay constant from the hadronic matrix ele-
ment cancels in the ratio). The theoretical expression for
1 —R~(expt)/R (theory), expanded to O(s2), and the ex-
perimental values are given in Tables IU and V, along
with the (less precise} values of the analogous quantity
RK —=I'(K -+ev) /I'(K ~pv).

The relative branching ratios ' for v~evv and v~pvv
determine the ratio of effective Fermi couplings G„and
G,„and provide yet another constraint on p-e universali-
ty. Finally, the v decay rate '

I'(r~pvv), „, =0.938+0.016+0.028
P(r~pvv)th

(59)

D. Induced leptonic right-handed currents

(the two errors are from the r~@branching ratio and to-
tal lifetime, respectively) tests r-e universality and con-
strains the effective Fermi coupling constant G,„. The
decay rate is about 20 below expectations (in the direc-
tion that could be accounted for by r or v, mixings), but
we do not consider the effect to be statistically compel-
ling.

VQS

PL„~CLCI + Pn„~Sg Sg

C CL"
(55)

There are a number of very precise measurements in
muon decay that are sensitive to induced RHC (Ref. 38).
The relevant quantities are

Combining (52), (54), (55), and the unitarity relation

(56)

one obtains the unitarity constraint on 1 —g3,
I V„, I

given in Tables IV and V. In Table IV we have replaced
VL,j with the measured V," in the coefficients of O(s )

terms, allowed for possible mixings with extra sequential
or vector doublets, ignored the negligible modifications to
V„b and V„;, i )4, due to exotic mixing, and introduced
the symbol

I g I
'=(CL)'(cg)'(cL')'(CL")',

I

g""
I

=(sP (sg) (sII') (sg")

I g
'"

I
'=(CL )'(sÃ }'PcL' }'(s~")'+

I
( ALFL },„I

'l
(60)

I

g"'
I
'=(s~ )'(cf )'I:(s~')'(CL"}'+

I
( ALFL }„I

'l

where g' is the coefficient of the four-Fermi interaction
involving an a-handed electron and b-handed muon, and
(ALFL),.~ is a possible hL =+2 (NoL Nz~L)-induced mix--
ing between v,I and v„'I or v', L and v„L. (A general dis-
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cussion of muon decay involving neutrino mixing and
other sources of lepton-number violation will be present-
ed elsewhere. ' ) The observables relevant for RHC, in-

volving polarizations, asymmetries, and the electron
spectrum, are all of 0 (s ) and are listed in Tables IU and
V.

The electron helicity from P decay and the spectrum
parameter from leptonic ~ decay ' are also presented.

E. Induced hadronic right-handed currents

Donoghue and Holstein have argued that the
standard-model PCAC (partial conservation of axial-
vector currents) predictions for nonleptonic K 3 ampli-
tudes (relative to K 2 amplitudes) are successful at the
10% level, and that sets surprisingly stringent limits on
hadronic RHC (the new operators associated with the
RHC have matrix elements that are enhanced by the
EI= , rule). —Interpreting their limits on uzdn and u„s„
currents as lo errors, we obtain the limits on a„d and K„,
[Eq. (57)] in Table V. Re(a„z) and Re(~„, ) are also
stringently constrained by universality (Tables IV and V).

These limits are much more stringent than those deriv-
able from P and hyperon decay, which depend on poorly
known axial-vector matrix elements. For example, g„(0)
is obtained by dividing the observed axial-vector
coeScient

Gp Vqggg(0) ='CpcL cL ( PLgdcI cL —Pg„dsgsg )gg(0)

(61)

by G„V„d from (53},so that g„ /gz -1—2~„d. If one as-
sumes that the theoretical predictions of g„(e.g. , from
the Adler-Weisberger or Goldberger-Treiman relations)
are accurate to 5%, then one has a limit of only =0.025
on

~
a„d ~

. Similarly, the CERN-Dortmond-Heidelberg-
Saclay (CDHS) group ' has used the y distributions in
deep inelastic vN~p X at large x (at small x it is
difficult to disentangle RHC from the antiquark content
of the nucleon) to set a limit on RHC. They obtain, in
our notation,

~
v„d

~

&0.095 [90%%uo C.L. (confidence lim-

it)].
The CDHS Collaboration ' has also measured v- and

v-induced dimuon production, due to vd, vs~@ c and
vd, vs~p+c. From the measured y distributions they
have derived limits on induced d ~c or s ~c RHC, given
in Table V.

The lepton spectra in semileptonic b and c decays are
in excellent agreement with the standard model, and
could in principle constrain K b, K„,etc. We have not at-
tempted to do so quantitatively, however, because of
complications from bound state, QCD end point, and
other effects.

F. Limits on sL, and V„., i & 3

The mixing of the sL quark is constrained by universal-

ity [(sL ) &0.10], but that limit can be evaded by cancel-
lations. The best quantitative limit that cannot be fine-

tuned away is from the semileptonic decay rate"

I {D K e+v )=(7.7+1.0+1.1)X 10' s '. For
reasonable assumptions concerning the vector form fac-
tor this implies V„=0.94+0. 12, where

e s& C S
cs CLCL r Lcs+SRSR VRcs (62)

Similarly,
~

V,d [ =
~
cL f'L,d ~

=0.207+0.024 from '
vd ~cX. (In V„and V,& it is justified to neglect the mix-
ings of v„, p, and the first-family fermions. ) Combining
this with the negligibly small

~
V,b ~

=0.043+0.008 and
using the unitarity of f z, one obtains the constraint on
1 —g3,

~
V„( in Tables IV and V. (In Table IV we

have neglected a„because of the vs ~p c y-
distributions ' and neglected exotic mixings for V„,
i &3.} This leads to the very weak 90%-C.L. limit
(sL) &0.5.

An independent limit is obtained from the measured
rate ' for vs~cp, , which is dominated by the left-
handed current (because of the y distribution). In the
three-family standard model (for which V„-cos8c) one
obtains ' S/U=0. 46+0.08, where S=fgs(x)dx is the
integrated moment of the s quark in the nucleon. Allow-
ing for exotic mixing and sequential doublets, this be-
comes

——0 46+0 08
cos 8c C

(63)

Since (cL } and
~ tL„~ &1, the reasonable assumption

S/U&1 implies a rather conservative lower bound of
-0.4 on (cL ), so that (sL ) &0.6. Surprisingly, these and
the even weaker limit on (sx ) discussed below, are con-
siderably less stringent than those on c, b, and ~ mixing.

1. Deep-inelastic neutrino scattering

The most precise measurements of the neutrino-quark
interaction are from the ratios

0 vN~vXvN vX

a ' o.
vN~p X vN~p+X

measured for (approximately) isoscalar targets and for
proton targets. Exotic mixings affect not only the ha-

(64)

G. Neutral-current constraints

The charged-current constraints are quite stringent,
but they only restrict the sL and the ~; . Also, they allow
fine-tuned cancellations between different mixings. Fur-
ther constraints are provided by the fiavor-diagonal weak
neutral current, including deep-inelastic neutrino scatter-
ing ( vN ~vX ), elastic v„e —+ve, atomic parity violation,
polarization and mixed asymmetries in eD~eX and
pC~pX, respectively, and forward-backward asym-
metries in e+e ~p+p, ~+~, cc, and bb. In particu-
lar, the neutral-current couplings of the u, d, e, and p
{both left and right handed) have been extracted from the
data in a model-independent way, so that both sL and SR

are constrained. Furthermore, the axial-vector couplings
of the r, c, and b have been determined, constraining
(sl ) +(sz) for these particles. There is even a weak
constraint on {s~} .
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dronic and leptonic neutral and charged currents [Eqs.
(23), (24), (43), and (46)], but also the determination of
subsidiary quantities such as the quark distribution func-
tions, the charm threshold (important in the charged-
current denominator), and the KMC matrix elements (for
the charged current) needed for the theoretical expres-
sions for R and R . Fortunately, for isoscalar targets
R „and R are insensitive to the details of the quark dis-

tributions: to first approximation they depend only on
the ratio Q/Q of antiquarks to quarks in the nucleon,
where Q =Igq(x)dx. It can be shown that, to an excel-

lent approximation, the effects of exotic mixing cancel in
the experiments which determine this ratio and the other
ratios (e.g., S/U and D/U) needed for refined treatments
of R„„.Similarly, the charm threshold effects are essen-

tially taken from experiment ' and are not affected.
However, the effects on the KMC elements are impor-

tant. Fortunately, the charged-current cross sections are
dominated by u~d transitions. It is an adequate approx-
imation to replace the expression for charged-current
cross sections by

2. ¹utrino electron scattering

The effective v„e interaction in the standard model is

V

vL Y vLer (gv+g' )e (68)

with the numerical constraints in Table V. It is apparent
that the excellent agreement between the data and the
standard-model prediction do not leave much room for
exotic mixings.

Unlike the c and b quarks, theie are no significant
neutral-current constraints on the s quark. As we have
seen, charged-current universality implies reasonably
small values for (sL ) (unless there are fine-tuned cancella-
tions). From the known s-quark fraction of the nucleon
[Eq. (63}] one can set the extremely weak limit

(sz ) & 0.7 (90% C.L.) [i.e., complete mixing, (cn ) =0, is
excluded]. Otherwise the sn neutral current would be
significant and would lead to observable shifts in R„and
especially R „.

1 g g d 2 I LMd
cr(v N~p, X)=(ct") (ct') (ct") (ct )

where

g~= ——,+2 sin en, g'„= ——, , (69)

=(cL") (cg) —2Re(K„d), (65)

where

sL (i)=t3 sin Hn, q', e—tt(i)= sin en,q' . — (67)

The experimental values of g,:—s, (u)+e, (d} and of
8, :—arctan[e, (u)/s, (d)], a =1.or R, are shown in Table
V, along with the standard-model predictions for the glo-
bal best-fit value sin On, ——0.230. [The values of the
deep-inelastic and other neutral-current parameters in
Table V incorporate small but non-negligible radiative
corrections, as described in Ref. 2. %e have not
displayed these corrections in (67) or Table IV for simpli-
city, but include them in our numerical fits.]

The effects of exotic mixing (in both the neutral- and
charged-current cross sections) can be incorporated by
comparing the effective eL „(i) parameters in Table IV

where 00 is the canonical charged-current cross section
computed in terms of the measured apparent KMC an-
gles (we do not have to distinguish between C„and G„
because these cancel in R„„).The cL factors in the first

ex ression are the direct effects of mixing, while the
/

I V„d I
factor is the indirect effect due to the

KMC angle. In the second expression, obtained from Eq.
(54), K„d is not the direct effect of induced RHC in the
cross section [these are of O(K }], but rather enters
through

I ~L d I /I v.d I.
The neutral-current cross section is modified from the

canonical form by the direct mixing eff'ects in (23} and
(46).

In the absence of mixing, the effective Lagrangian for
neutrino-quark interactions is

4
vL r"vL g g s, (i)q ', r„q,', (66)

2 a=L, R i=u, d, . . .

up to radiative corrections. Mixing effects modify g„„
according to (37) and (46).

A complication is that the v„e cross sections are mea-
sured relative to a charged-current reaction used for nor-
malization and these cross sections are also affected by
mixing. The low-energy BNL experiment E734 normal-
izes to quasielastic v„n ~p p, while the higher-energy
Fermilab and CERN experiments normalize mainly to
deep-inelastic v„N~p X. The appropriate efFective pa-
rameters which incorporate these normalization effects
are given in Table IV, and separate low- and high-energy
values for gv „ in Table V.

9. Weak electroma-gnetic interference

(70)

where in the standard model (up to radiative corrections}

Ci; ——2A 'V', C2; ——2V'A ',
where

V'=t3 —2sin H~q',

(71)

(72)

are the axial-vector and vector neutral-current couplings
of fermion i, respectively. Including mixing, (71) still

A number of experiments measure weak-electro-
magnetic interference effects. These are only modified by
the relation between G„and 6„, and by.direct neutral-
current mixing eff'ects [(23} and (46)], since electromag-
netic amplitudes are not affected by mixing.

The atomic parity violation and polarized eD asym-
metry experiments measure the parity-violating cou-
plings C„,C2,. in Table V, defined by

6F—X«i;er„r 'eq 'r"q'+ C2; er„eq 'r"r'q'»
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b=K(A" —
i

A,
i

V")(A —2A"), (73)

holds provided A ' and V' are modified as shown in Table
IV.

The Bologna-CERN-Dubna-Munich-Saclay (BCDMS)
Collaboration measured the asymmetry between
p+( —

~

A,
~

)C and p (+
~

I,
~

)C deep-inelastic scattering
where +

~

A.
~

is the muon polarization. They measured a
quantity b, proportional to the asymmetry, given by

(S,')

0 G02

~ ~~ ~ ~ ~ ~ ~
4Q 2

Q2 individual

joint

0.04 0.06 0.08 0 &0 032

P=Q
' 8=4 a=2

02
~ I I
~ ~

0.14

where E is a constant and the A' and V' are given in
Table IV. The asymmetry is especially important for
constraining V".

The forward-backward asymmetries ' ' in e+e
~p+p, w+~, cc, and bb determine the product of
axial-vector couplings A 'A ', i =IJ,, ~, e, b. Since
A ' ~ [ I —(sL )' —(s„' ) ] the experimental results constrain
both (sL) and (s„'), i.e., because of the positivity of s
there is no possibility of cancellation.

IV. RESULTS

(SL) ~ ~ ~ ~

0 4 2
I 9 +

Q 2+~~~~~ «+«p»»
(S )L » ~ ~ ~ » ~ « ~ $

P 4 2~~~~~»»+»
(SL ~ ~ ~ ~ ~

0 24
+f

(SL)
«t~ ~ ~ ~ ~ ~ ~ ~ « ~ « ~ ~ ~ )

6
m]rror

There are enough constraints in Tables IV and V to
simultaneously determine sin Hs„ to constrain the mix-
ings (sL a ) of all of the known L and R fermions, to limit
the mixings

~
V„;

~

and
~ V„~ with sequential or vector

doublets, and to limit all leptonic- and hadronic-induced
right-handed charged currents except b++c, u. In partic-
ular, (a} the universality constraints (and M&z) restrict
(sL ) for i =v„v„, e, p, u, and d, (b) the neutral-current

limits (sl"),(sr' z ) for i =iu, e, u, and d, and the heavy-
fermion mixings, (c) !M and P decay severely bound in-
duced leptonic RHC, and (d) current-algebra results for
nonleptonic K 3 decay and the y distributions for
vd, vs ~pc constrain hadronic RHC. In this section we
describe the results of (a} allowing only one parameter to
vary, (b) allowing all parameters to vary simultaneously,
and (c) specific models [which generally lead to limits be-
tween those of (a) and (b)].

We determine limits on mixings using a least-squares
procedure for the data in Table V. One complication is
the positivity constraint (sL s ) &0 on mixings. This ac-
tually leads to much stronger limits than would otherwise
exist, since in many cases it precludes the possibility of
cancellations. However, it also confuses the relation be-
tween the X and the confidence level for a given set of
parameters. We have therefore adopted the following
procedure: (a) For each variable x; we determine a g~

distribution using the data in Table V. For each value of
x;, X (x; ) is minimized with respect to all of the other pa-
rameters as they vary over their allowed ranges. (b) We
assume a probability distribution

—x (x,. )/2
P(x;)dx; =c;e ' dx; (74)

for each x;, with c, chosen so that P(x; } is properly nor-
malized over the allowed range of x;. (c) 90%-C.L. upper
limits on mixings are determined from P(x, ).

Throughout we use m, =45 GeV and mH ——100 GeV in
the radiative corrections to neutral-current processes and
to M~ z. Larger values of m, shift the central value of
sin 0~ downwards but have no significant effects on the

V
0 2 P 2 4

IV ! — --———--—————t—wUI '
l=4

I I I I

0 O.Q2 0.04 0.06 0.08 0 &0 0.&2

I I I I (

240

(S")
R

(S")
R ~ ~ ~ ~ ~ ~ ~

042
(S )R «o~ ~ ~ ~ ~ « ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ )

individual

joint

mirror
Vl

R

S 'S'„
~ ~ ~ ~ ~ ~

R

Ix„gl .~

FIG. 2. 90%-C.L. upper limits on mixings for light right-
handed fermions.

FIG. 1. 90%-C.L. upper limits on mixings for the light left-
handed fermions, for individual fits (heavy solid lines), joint fits
to all mixings (dashed lines), E6 models (solid lines), and the
Hermitian mirror model (dotted-dashed line). The values of A„
are indicated.
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limits on exotic mixings. Tlfe mH dependence is negligi-
ble. The only neutrino neutral-current data that we use is
for the v„. For the parameter A„ in (46}, which ranges
from 0 to 4, we consider the representative special cases
A„=O, 2, and 4 [see (47)].

The results are shown in Tables VI and VII and Figs.
1 —3. The extremely stringent individual limits on (si ),
(sg), (sz), (sL), and on the mixing g"; 4 I V„; I

with
extra l. doublets are from the universality relation (52},
while the much weaker limits on (sL') and (sL ) are from
R „(58).

In the joint fits the universality constraints can be par-
tially evaded by cancellations. However, the combined
effect of the neutral current and universality is to restrict

(sL'), (si"), (sL „),i =e, )u, u, d, and X"=4
I

l
I

to
the few percent level.

The value sin 0~=0.230+0.005 obtained from the
neutral-current data and M~z in the standard model is
hardly affected by exotic mixings: one obtains
sin 0~=0.224+0.006, 0.229+0.005, and 0.224+0.005,
for A„=2, 0, and 4, respectively. It is especially remark-
able that the uncertainty in sin 0~ is not significantly in-

creased, despite the large number of free parameters.
This is a consequence of the number of precision experi-
ments.

There is little correlation between the limits on (sL }~

and (sz ), as is apparent from the fact that the (sz ) lim-
its are almost the same in the individual and joint fits.

TABLE VI. (a) 90%-C.L. limits on the mixing angles for the cases in which each angle is fit separate-

ly, and in which all parameters are fit simultaneously. Absent entries imply that the best fit does not

vary significantly with A. (b) Limits on the mixing angles for three particular models: E6; mirror fer-

mions with a Hermitian mass matrix; massless R-doublet neutrinos.

(a)

(S e)2

($,'&)'

(Se )2

(si )'

(sL )
(sd )2

(SR )

(sg )

(sR )

(sd )2
V

SR SR
V

sR 4

Individual

0.029

0.0024
0.026
0.0021
0.0049
0.0054

0.005

0.055
0.054
0.038
0.027

0.042

0.039
0.0025
0.006

A„=2
(singlets)

0.098

0.069
0.051
0.036
0.053
0.061

0.078

0.052
0.055
0.034
0.047

Joint fit

A„=O
(sequential)

0.044

0.031
0.032
0.028
0.020
0.028

0.014

0.054
0.052
0.035
0.041

0.042

0.039
0.006
0.006

A„=4
(bL =+2)

0.088

0.030
0.043
0.060
0.040
0.063

0.088

0.050
0.051
0.036
0.045

(sq')

(s,'&)'

(Se )2

(sg )'
su)2

(sd )2

X I
l'. ; I'

r=4
(sR )

(sg )

(sk )2

(Sd )2
V

SR SR
V

sR 4

0.050
0.030

0.033

0.050
0.055

E6
A„=O

0.045

0.029

0.032

0.053
0.055

0.042

0.039

(b)

0.037
0.013

0.015

0.052
0.054

Mirror

0.047

0.027
0.025
0.023
0.027
0.047

0.025
0.023
0.027
0.047

0.042

0.039
0.006
0.006

sR =1

0.0018
0.0015

0.042

0.039
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0 0.2 0.4 0.6 0.8

(S,')

(S')
: individual

: -~ joint

(SR)

(SL' )

(SL)

(SR)

i=L

RSR

FIG. 3. 90%-C.L. limits on mixings for the s, b, c, and ~.

TABLE VII. 90%-C.L. limits on v„r, s, c, and b mixings.
The values are insensitive to A.

There is, however, a strong correlation between the (sL ),
especially for i =v„, p, u, and d, because they must con-
spire to evade the universality constraint.

The limit on the hadronic RHC parameter
~
a„z

~

is
controlled by universality in the individual fit, and by
K 3 in the joint fit. The limits on the leptonic RHC,
szsz' and sgsz", are mainly from p decay. No individual

limits on sR' or sz" can be derived because sz and sg are

consistent with zero. For Dirac neutrinos s& describes
the mixing of the light SU(2}-singlet right-handed

partners of the ordinary neutrinos into exotic R doublets.

For Majorana neutrinos, sz' could also be generated by
the hL =+2 mixing of the ordinary vz into R doublets.
(In the latter case one would also expect neutrinoless
double-beta decay at some level. '

) One could also have
models in which there are neither light singlets nor
AL =+2 mixings. Then sz' ——0 automatically. Yet
another possibility is discussed below.

Table VII and Fig. 3 contain the limits on the s, c, b,
and v mixings and induced RHC. These limits are much
weaker than and largely decoupled from those in Table
VI.

The results for three specific models are also shown in
Table VI. These are the following. (a} The E6 model with
all fermions assigned to 27-plets, as shown in Table II.
No assumption is made concerning the Higgs structure,
so all three kinds of neutrino mixing are possible. How-
ever, not all kinds of quark and charged-lepton exotics
are present, so one obtains somewhat more stringent lim-
its than in the general case. (b) Mirror fermions with a
Hermitian mass matrix and Dirac neutrinos. (We consid-
er A =2 only. ) In this case the fermion mass matrices are
diagonalized by the same unitary matrices for L and R so
that sL

——sz for neutrinos, charged leptons, and quarks.
As expected, the limits on the sz are somewhat better
than for the general case in which sz and sL are unrelat-
ed. (c) A model in which there are exotic R doublets in-
volving massless neutrinos. This could come about in a
mirror model in which the neutrinos are massless in both
the ordinary and mirror sectors, for example. In this case
we will use only the constraints from muon and P decay
on leptonic RHC with sz" "——1; i.e., the R-doublet neu-
trinos are already massless, so no neutrino mixings are re-
quired. We do not use the other constraints because in
many cases they were derived using the (no longer valid)

assumption sz' « l. In this case one obtains very
stringent limits on (sz ) and (sg ) .

From Tables VI and VII the limits on mixings are fair-
ly stringent, at least for the v„v„,e, p„u, and d. Howev-
er, the corresponding constraints on the masses of the
heavy neutrinos are rather weak. There is no rigorous
model-independent relation between the mixings s and
the mass M of the heavy exotic fermions. However, two
typical relations are

'2

Individual Joint
sin 8- (quadratic seesaw) (75}

(sL ')
(Sr )2

(s„)'
(SL „)
(SL,~ )
ss )2

(
5 )2

X I
V„ I'

V

SR SR

0.10
0.10
0.22
0.33
0.43
0.10
0.7

0.42

0.42
0.39
0.37

0.13
0.13
0.22
0.33
0.43
0.48

0.42

0.42
0.39
0.37

and

sin 8- (linear seesaw), (76}

where m and M are the physical mass eigenvalues of the
light and heavy fermions, respectively. (A large class of
models will fall in the general range bounded by these
two relations. )

The quadratic seesaw comes about, for example, if the
fermion mass term (for one light and one heavy particle),
is of the form



PAUL LANGACKER AND DAVID LONDON 38

TABLE VIII. Relation between the mixings sI & and the heavy-mass eigenvalue M (in GeV) for
quadratic (s -m /M ) and linear (s -m/M) seesaw models. The light-fermion eigenvalue m is taken
to be 10 MeV, 100 MeV, and 1 GeV, which is appropriate for the first, second, and third families, re-
spectively.

$2
M =m /s (quadratic seesaw)

m =10 MeV 100 MeV 1 GeV
M =m /s ' (linear seesaw)

m =10 MeV 100 MeV 1 GeV

0.001
0.002
0.005
0.01
0.02
0.05
0.1

0.2
0.5

0.32
0.22
0.14
0.10

3.2
2.2
1.4
1.0
0.71
0.45
0.32
0.22
0.14

32
22
14
10
7.1

4.5
3.2
2.2
1.4

10
5

2
1

0.5
0.2
0.1

100
50
20
10

5

2
1

0.5
0.2

1000
500
200
100
50
20
10

5

2

e M

where m is generated by the ordinary Higgs mechanism
and e=m is a mixing mass of the same order of magni-
tude. Then the mass eigenvalues are -m and M, and the
mixing is sz x -e /M -m /M . The linear seesaw for-
mula follows for a mass matrix of the form

0 e

e M

i.e., if for some reason there is no direct mass term for the
light fermions. Then the lighter eigenvalue m -e /M is
induced by mixing, and sz x -e /M -m/M. In Table
VIII are shown the heavy-mass eigenvalues correspond-
ing to various mixing angles for the two cases. For the
light eigenvalues we use m =10 MeV, 100 MeV, and 1

GeV, which are typical values appropriate to the first,
second, and third families, respectively. Comparing
Tables VI-VIII, the mass range probed by exotic mixings
is very small —even compared to the direct limits in
(3)—if the quadratic seesaw is correct. For the linear
seesaw, on the other hand, there is sensitivity up to -50
GeV.

V. DISCUSSION

Many extensions of the standard model predict the ex-
istence of new fermions, often with exotic SU(2) X U(1) as-
signments. If one assumes there are no exotic electric
charges or colors, then the only possibilities for the
quarks and charged leptons are ordinary (L-doublet, R-
singlet) and exotic (L-singlet, R-doublet) fermions,
though some of the"ordinary" particles may be associat-
ed with new sequential families or new vector doublets or
singlets. For the left-handed neutrinos (and their right-
handed CP conjugates), there are three possibilities [Eq.
(4)], all of which can mix if there are Majorana mass
terms.

We have considered the indirect manifestations of ex-
otic heavy fermions via their mixings with ordinary fer-
mions. The most stringent limits are on the induced
FCNC's between light particles (Table III). These are

very strong but can be evaded for special forms of the
mixing transformations. We have been mainly concerned
with these special directions in parameter space. We
showed that the absence of FCNC's between the light
quarks and charged leptons allows an enormous
simplification: it implies that each ordinary left- and
right-handed particle can only mix with one unique
heavy particle or linear combination of heavy
particles —i.e., there is only one mixing angle per light
degree of freedom. There is no evidence for the absence
of FCNC between the neutrinos. However, it turns out
that because one must sum over the unobserved flavors of
the final neutrinos in weak processes one can again
parametrize mixing efFects by one effective mixing angle
per neutrino, plus a bounded auxiliary parameter that de-
scribes the SU(2) XU(1) representation of the state with
which the v mixes. Exotic neutrino mixings can also gen-
erate lepton-flavor or total lepton-number violation.
These will be discussed elsewhere. '

There are enough constraints from M~z, charged-
current universality, limits on right-handed currents, and
flavor-diagonal neutral currents to limit the possible mix-
ings of all of the known fermions, even when all are al-
lowed to mix simultaneously. The constraints are shown
in Tables IV and V, and the 90%-C.L. limits are shown
in Tables VI and VII and Figs. 1 —3. The limits on the
mixings of the v„r, pr, ur, and dz with exotic (or heavy
doublet) fermions are very stringent (s & 0.002 —0.005) if
only one particle is allowed to mix at a time, and weaker
by an order of magnitude if all of the particles are al-
lowed to mix simultaneously. Limits on the mixings of
the v,l, el „,p„, u„, and d~ are in the range 0.02—0.06,
while those for the v~ r, s, c, and b are much weaker (the
weakest limits are for the s quark). Slightly stronger lim-
its are found in specific models. Limits are also given on
possible induced hadronic and leptonic RHC. We have
considered a very general class of models with exotic fer-
mions. There remains the logical possibility that mixing
effects could be compensated by other types of new phys-
ics, such as additional gauge bosons. However, given the
large number of constraints in Tables IV and V, it seems
highly unlikely that such effects could significantly alter
the results.

The corresponding constraints on the masses of the
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APPENDIX

(In this appendix the subscript a =I. or R is
suppressed. )

Proof of Theorem 1 [FAt. (21)]

Since A is an n )(n matrix, it can be written as

A =(y, (Al)

where y;={(y;), (y;}„} is an n-component com-
plex vector [i.e., (y; )

—= A;.]. But A A =c implies

(AtA) 1 =y, .y =5,i(c'} (A2)

heavy exotic fermions, shown in Table VIII, are rather
weak: depending on the relation between the mixing an-
gles and heavy particle mass the range of sensitivity
varies from -50 GeV to values below the direct produc-
tion limits in (3). One can of course find models in which
the heavy masses fall outside the range in Table VIII by a
moderate factor. However, it is clear that despite the
large number of high-precision weak-interaction experi-
ments there is still considerable room for fairly light egot-
ic fermions.

There have been many studies ' of the phenomeno-
logical implications of heavy fermions. However, a sys-
tematic analysis of the present and possible future direct
detection limits, as well as of indirect limits from I'z and
I'ir/I'z, for all of the possibilities in Table I, would be
useful.

We have presented limits on all hadronic RHC transi-
tions except b ~c,u. It should be possible to derive
quantitative limits on these (and on c -+s) from the lepton
spectra in semileptonic decays, which agree very well
with standard-model predictions, but we have not at-
tempted to do so.

One anticipated improvement is in the Z mass. If Mz
is measured to +20 MeV at CERN LEP and the Stanford
Linear Collider (SLC), and sin Hn, to +0.0004 (from po-
larization asymmetries), then (assuming that m, has been
directly determined) the major uncertainty is the Higgs-
boson mass dependence in hr (+0.006). This would im-

ply a sensitivity of order 0.01 for (sz') +(sL ) +(sL")2
+(sg) . This would still be less stringent than the
present sensitivity from universality, but would not allow
any fine-tuned cancellations.

x; xj =5;.j &J
(A3)

The x; form a set of n orthonormal vectors in an n-
dimensional complex vector space. Hence, they are com-
plete, i.e.,

Xk i Xk j ij
k

(A4)

One then has A =Ac, where 2=(x, . x ). Theun-
itarity of 2 follows from orthonormality [2 2 =I, Eq.
(A3)) and completeness [2Q =I, Eq. (A4)]. If one or
more of the c' vanish, one can (i) define x; —=y;/c' for the
nonzero c' and (ii} construct the remaining x; (corre-
sponding to the vanishing c ) using the Gram-Schmidt
procedure. The rest of the proof follows as above.

w) Ft
If (A5)

where the w; are complex m component vectors. From
FtF =sz one has

(FtF);, =w; w, =5;,(s'} (A6)

For m =n one can define a complete orthonormal set
of vectors z; =w; /s' (if any of the s ' should vanish the
corresponding z; can be constructed via the Gram-
Schmidt procedure). Then F=Ps, with
P=(zi z„}unitary, in analogy with Theorem l.

For m &n it follows from (A6) that at least n —m of
the w; (and corresponding s'} must vanish, because there
can be at most m independent vectors in an m-
dimensional space. The interpretation is that the absence
of FCNC's requires that each ordinary state mix with a
unique exotic state. If there are m & n exotic states, then
only m of the ordinary states can mix. One can define
z; =w;/s' for the nonzero vectors, so that F=Ps, where

-(z z 0 0)1 Nl

(we have assumed w +i . w„=0 for notational con-
venience}. Then it is easy to see that P P is the projec-
tion operator onto the m-dimensional subspace (of the n
ordinary states} which have nonzero light-heavy mixing,
while PP t=I.

For m & n one can again write F=Ps, where
P=(z, . z„),z;=w;/s'. In this case P J'=I, while
PP is the projection operator onto the n-dimensional
subspace {of the m exotic states} which actually partici-
pate in the mixing.

Proof of Theorem 3

From (10) and Theorems 1 and 2, one has

Proof of Theorem 2 [Eq. (22)]

F is an (m X n)-dimensional matrix, which can be writ-
ten as

Let us first assume that all of the (c') are nonzero. Then
one can define x; =—y;/c', i =1, . . . , n, so that

U=
c E

(A7)
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where A is unitary. However, since the n ordinary states
all have the same SU(2) XU(1) transformation properties
(and similarly for the I exotic states), one can rewrite the
theory in terms of a new weak basis

4o
qO'

4E

&o o Wo

0 Bg (A8)

Interpretation

where Bo and BE are unitary n Xn and m)(m matrices.
In the new basis one has

Bo 0
(A9)

Choosing Bo——A one obtains A '=I. Similarly, for
m =n one can choose BE——z so that ~ '=I. It is easy

At

to show (using the forms for P dis layed above) that for
m (n one can choose BE so that ' is the identity when
restricted to the m-dimensional subspace of ordinary
states which mix, and that for m )n, P ' is the identity
when restricted to the n-dimensional subspace of exotic
states which mix.

A(
A=

h
(A12)

where AI is a square (p Xp)-dimensional matrix relating
the p massless neutrinos to the first p ordinary doublets
and Al, is [(n —p) Xp]-dimensional, describing the small
[O(s)] mixing of the p massless v's into the n —p heavy
sequential or vector doublets. Of course, one can have
n —p =0. One has

and

AtA = A(~A(+ AI1AI, (A13}

(AA ),g ——(AiAI )„=cL' (A14)

g2
A( ——I—

2
(A15)

where X is a Hermitian matrix (by an appropriate choice
of basis) with components of O(s ) [by (36)]. Hence, to
O(s ),

for a&1, . . . ,p.
In the absence of mixing, A( is unitary and one can

choose a basis in the space of massless eigenstates for
which Ai I. Incl—uding mixing, one has [to O(s )]

U=

T

A 0 c —s I 0

p P s c p g (Alp)

From the unitarity relation (11) and Theorems 1 —3, it
is straightforward to display the necessary and suScient
condition for the absence of FCNC's. For the n =m case
the general unitary matrix U reduces to the form

A(A( ——A( A( ——I—X

so that (X )„=(sL') .
Define the matrix 5 by

I+5=A A —F F,
so that, from (36),

(A16)

(A17)

where P is unitary. The first factor involves intergenera-
tional mixing within the ordinary and exotic sectors. The
middle term implies that light-heavy mixing is restricted
to pairs of ordinary and exotic states. In the weak basis
for which A =P=I, for example, the ordinary and exotic
states f;o and lt(;z are just a rotation

f;o ——cos8'g I
—sin8'( P fh );,

P,E sin8'f,
& +cos——8'( E'Pz );,

(Al 1)

Proof of the neutral-current cross-section
formula (46) to O{s~}

We will give the proof for the case that all massless
neutrinos coincide with ordinary doublets noL in the ab-
sence of mixing [so that the components of F and H are
all of O(s}]. The proof is easily generalized to allow
massless exotic doublets (nEL ) and singlets (nsL ).

The matrix A can then be written as

of light-tnass eigenstate g, i and a combination P;i'~ of
heavy-mass eigenstates. A similar interpretation applies
to the n&m case, provided one restricts attention to the
appropriate subspaces of light or heavy states which par-
ticipate in the mixing.

6= —2FF—HH. (A18)

(A19)

to O(sz}, where a El, . . . ,p (the range for which the
theorem applies). The special cases in (47) follow im-
mediately from (A18) and (A19) and the unitarity formu-
la (36). More generally, from (36), (A13), (A14), and the
positivity of (F F}„,etc. , one has

(FtF)„=A,F(sL')

(H H)„=A,H(sL')

and

(Ai Al }„=A,'„(sL')

where 0&A. & 1 and A, '„+A,++A,H ——1. The theorem then
follows from (A18) and (A19), with

A, =4AF+2AH . (A20)

Each component of 6 is, therefore, of 0 (s ). From (41),
(45}, (A12},and (A15),

[A(I+26, )A ]„
naL ~niL =1+25„a'o; (AA )„
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