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ABSTRACT

To close the abyssal overturning circulation, dense bottom water has to become lighter by mixing with

lighter water above. This diapycnal mixing is strongly enhanced over rough topography in abyssal mixing

layers, which span the bottom few hundred meters of the water column. In particular, mixing rates are en-

hanced over mid-ocean ridge systems, which extend for thousands of kilometers in the global ocean and are

thought to be key contributors to the required abyssal water mass transformation. To examine how stratifi-

cation and thus diabatic transformation is maintained in such abyssal mixing layers, this study explores the

circulation driven by bottom-intensified mixing over mid-ocean ridge flanks and within ridge-flank canyons.

Idealized numerical experiments show that stratification over the ridge flanks is maintained by submesoscale

baroclinic eddies and that stratificationwithin ridge-flank canyons ismaintained bymixing-drivenmean flows.

These restratification processes affect how strong a diabatic buoyancy flux into the abyss can be maintained,

and they are essential for maintaining the dipole in water mass transformation that has emerged as the

hallmark of a diabatic circulation driven by bottom-intensified mixing.

1. Introduction

The abyssal ocean stores and exchanges vast amounts

of carbon and heat with the atmosphere and is thought

to regulate Earth’s climate on centennial to millennial

time scales (Sarmiento and Toggweiler 1984; Primeau

and Holzer 2006). In the present abyssal circulation,

bottom waters form around Antarctica, sink to the ocean

bottom, and spread into all ocean basins (Lumpkin and

Speer 2007; Talley 2013). The high-latitude sinking must

be balanced by upwelling across isopycnals, which is

enabled by small-scale turbulence that mixes the dense

bottom water with the lighter water above (e.g., Munk

1966; Ferrari 2014; MacKinnon et al. 2017).

Over the past 25 years, it has become increasingly

clear that the intensity of the small-scale turbulence that

allows flow across isopycnals is highly nonuniform in

space, implying that the pathways of Antarctic Bottom

Water (AABW) back toward the surface are much

more complicated than the uniform upwelling originally

envisioned by Stommel and Arons (1959). Where tidal

and subinertial flows pass over a rough sea floor, tur-

bulence is strongly enhanced in abyssal mixing layers

that span the bottom few hundred meters of the water

column (Polzin et al. 1997; Ledwell et al. 2000;Waterhouse

et al. 2014). Given the observed stratification, this bot-

tom intensification of mixing implies a dipole of dia-

pycnal velocities. Downwelling occurs where turbulent

buoyancy fluxes increase toward the bottom and thus

diverge; upwelling occurs where buoyancy fluxes

converge, typically within tens of meters of the sea

floor. This suggests that the net diapycnal upwelling

of AABW is a residual of larger but compensating

transports across isopycnals (Ferrari et al. 2016; de

Lavergne et al. 2016; Holmes et al. 2018). The up- and

downwelling dipole on the slopes of large-scale topo-

graphic features has been argued to shape the horizontal

circulation of the abyssal ocean (Callies and Ferrari

2018b) and the transport of tracers in abyssal mixing

layers (Holmes et al. 2019).

For small-scale turbulence to support a diapycnal

circulation, it must occur in stratified water (Garrett

1979, 1990). Bottom-intensified mixing on a large-scale

slope quickly erodes the stratification in abyssal mixing

layers if left unopposed (Thompson and Johnson 1996;

Callies 2018). The mean flows up and down the slope
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that develop in response to the mixing are too weak to

maintain realistic stratification. But the mixing gener-

ates potential energy and powers submesoscale baro-

clinic eddies, whose buoyancy fluxes restratify abyssal

mixing layers (Wenegrat et al. 2018; Callies 2018). A

realistically strong stratification, as compared with ob-

servations, can be maintained by a balance between the

homogenizing effect of the mixing and the restratifying

effect of submesoscale eddies. This restratification is

achieved through an adiabatic rearrangement similar to

that by mesoscale eddies in the thermocline (e.g., Gent

et al. 1995) or by submesoscale eddies in the surface

mixed layer (e.g., Fox-Kemper et al. 2008; Callies and

Ferrari 2018a).

Using idealized numerical simulations, we here study

the circulation driven by bottom-intensified mixing in

geometries that are more realistic than those considered

previously, and we explore whether stratification can be

maintained by other mechanisms than submesoscale

eddies. The calculations presented in Callies (2018)

considered the dynamics over a uniform slope, in a setup

pioneered by Phillips (1970) andWunsch (1970) in their

study of boundary layers of a rotating stratified fluid

adjacent to a sloping boundary. That setup precluded

any effects arising from changes in the topographic slope

on both large and small scales.

The geometries we consider in this study are meant to

idealize a mid-ocean ridge like the Mid-Atlantic Ridge

in the South Atlantic (Fig. 1). The western flank of the

Mid-Atlantic Ridge bounds the Brazil basin, whose

abyssal mixing and circulation has been studied with

extensive observational programs (e.g., Hogg et al. 1982;

Polzin et al. 1997; Hogg and Owens 1999; Ledwell et al.

2000; Thurnherr et al. 2005; Clément et al. 2017). In the

Brazil basin, an estimated 4 Sverdrups (Sv; 1 Sv [

106m3 s21) of AABWare consumed diabatically (Hogg

et al. 1982). Microstructure surveys have revealed that

the mixing is weak on the sedimented abyssal plains

and continental slopes in the west and is elevated and

bottom intensified over the rough ridge flank in the east

(Polzin et al. 1997). This strong mixing on the ridge

flank is generally thought to be produced by breaking

internal waves that are generated by tidal flows over

abyssal hill topography (Polzin et al. 1997; Ledwell

et al. 2000; Nikurashin and Legg 2011), although near-

inertial waves and mean flows may contribute as well

(Thurnherr et al. 2005; Toole 2007; Clément et al.

2017). Abyssal hills are of order 1–10 km in scale and

elongated in the direction of the ridge axis.

We here idealize the Mid-Atlantic Ridge geometry

into a sinusoidal large-scale ridge (Fig. 2a).We study the

subinertial response to prescribed bottom-intensified

mixing everywhere over this ridge. We do not explicitly

represent the abyssal hills that are responsible for

producing the mixing, because computational con-

straints prevent us from resolving the generation and

breaking of internal waves while considering the entire

mid-ocean ridge spanning thousands of kilometers. We

instead specify a bottom-intensified profile of diffu-

sivity that is consistent with microstructure profiles

from the Mid-Atlantic Ridge flank (Polzin et al. 1997;

St. Laurent et al. 2001). We neglect spatial variations of

mixing, that is, we focus on the ridge flanks with intense

mixing rather than the abyssal plains and continental

slopes with weak mixing. We specify strong bottom-

intensified mixing everywhere.

FIG. 1. The Mid-Atlantic Ridge bathymetry and ridge flank canyons. (a) Bathymetry in the South Atlantic from

the Smith and Sandwell dataset (Smith and Sandwell 1997; version 18.1). (b) Zoom-in to the red rectangle, showing

the fracture zone canyon bathymetry on the ridge flanks. Note that this dataset resolves abyssal hills only in a few

locations, where multibeam data are available.
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In contrast to a uniform slope, the full ridge consid-

ered here has cross-ridge variations in the slope and thus

allows for cross-ridge variations in the mixing-driven

flow. Such variations can drive mass convergence or

divergence and thus a so-called tertiary circulation (e.g.,

Garrett 1991; Dell and Pratt 2015; Holmes et al. 2018). It

is so far unclear whether this affects the mixing-layer

stratification and its maintenance in the face of bottom-

intensified mixing, which will be the first topic investi-

gated in this study. The simulations presented below

indicate that cross-slope mean flows in the ridge system

are even weaker than on a uniform slope, rendering

mean flow restratification of abyssal mixing layers even

weaker (section 3a). Like on a uniform slope (Callies

2018), submesoscale eddies emerge and maintain strat-

ification (section 3b).

Moreover, mid-ocean ridge flanks are typically inter-

rupted by deep fracture zone canyons (Fig. 1). Mooring

observations have revealed an up-ridgemean flow that is

greater than 0.01m s21 in a particularly deep canyon

(Thurnherr et al. 2005). This observed up-ridge mean

flow is much stronger than predicted by one-dimensional

theory on a uniform slope (Callies 2018). The second

topic of this study is thus to examine how fracture zone

canyons affect the equilibration of bottom-intensified

mixing. Can up-ridge mean flows within canyons be

strong enough to maintain stratification without the

need for restratification by submesoscale eddies? In

calculations with uniform mixing and an infinitely deep

rectangular canyon, Dell (2013) found mean flows par-

allel to the canyon axis that were indeed stronger than

predicted by one-dimensional theory, but these flows

were oriented largely along isopycnals and thus had

little effect on the stratification. We here extend Dell’s

calculations to the more realistic case with bottom-

intensified mixing and a canyon that has sloping walls

and is embedded in a ridge flank (Fig. 2b). We find that

mean flows in canyons can indeedmaintain stratification

there, but cross-canyon flows up and down the sloping

canyon walls appear to play a key role. On the ridge

flanks away from the canyons, submesoscale eddies re-

main important (section 4).

Finally, we discuss how the flow and restratification

mechanisms affect integrated buoyancy fluxes and water

mass transformation rates (section 5). We find that

submesoscale eddies and fracture zone canyons both

enhance buoyancy fluxes into the abyss and cause

modestly higher water mass transformation rates.

2. Numerical model configuration

All numerical experiments described below employ the

samebasicmodel configuration.Weuse theMassachusetts

Institute of Technology general circulation model

(MITgcm; Marshall et al. 1997) to solve the hydrostatic

Boussinesq equations:

FIG. 2. Topography and diffusivity/viscosity profiles used in the model simulations. (a) Model topography for the

three-dimensional simulation without a canyon. (b) Model topography for the three-dimensional simulation with a

canyon. (c) Diffusivity and viscosity profile as a function of height above the bottom.
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Here, u 5 ux 1 yy1 wz is the velocity vector, the

buoyancy anomaly b is defined as a perturbation from

the background buoyancy profile N2z, and p is the

pressure anomaly normalized by a constant reference

density. The subscripts t, x, y, and z denote differentia-

tion. Biharmonic horizontal diffusion with coefficients

n4 5 k4 5 3 3 104m4 s21 is included to absorb gridscale

fluctuations. In the x direction, the model domain is

Lx 5 1000km wide, and the grid spacing is Dx5 0.8 km.

In the y direction, if present, the domain is Ly 5 100 km

wide, and the grid spacing is Dy 5 0.8 km as well. The

vertical grid spacing isDz5 2m. Themodel is integrated

with a time step of 320 s. The vertical diffusivity k and

viscosity n are prescribed as profiles depending on the

local height above the bottom, which is located at

z 5 2H(x, y):

n5 k5 k
0
1k

1
e2(z1H)/h . (6)

The values k05 63 1025m2 s21, k15 23 1023m2 s21,

and h 5 200m are similar to those obtained by fitting

this functional form to the observed bottom-enhanced

diffusivity profile observed in the Brazil basin (Fig. 2c;

Polzin et al. 1997; Callies 2018). The turbulent Prandtl

number is set to Pr5 n/k5 1. All these values are fixed

throughout the numerical experiments, along with the

inertial frequency f 5 25.5 3 1025 s21 for a central

latitude of the Brazil basin. The background buoyancy

frequency is N 5 1023 s21. Insulating boundary con-

ditions are applied at both the bottom and the top of

the model domain. No-slip and free-slip conditions

are used at the bottom and top, respectively. Periodic

boundary conditions are imposed in both horizontal

directions.
Our model simulations all start from rest and a uni-

form background stratification, that is, u 5 y 5 b 5 0.

The flow emerges in response to the bottom-intensified

mixing, which tilts isopycnals and thus produces pres-

sure gradient forces. The generation of potential energy

by the mixing is the only energy source of the system.

In all simulations, we add small random perturbations

to the initial buoyancy field (drawn from a normal dis-

tribution with standard deviation 1025ms22) to break

the along-ridge symmetry (if present).

All our model solutions are transient. The long-term

equilibrium they would eventually reach is an unrealistic

homogeneous ocean with no flow because there is no

inflow of bottom water or outflow of upwelled water in

our setup. Our transient simulations can shed light on

the mixing-layer dynamics, however, because these dy-

namics equilibrate much more rapidly than the time

needed to homogenize the entire water column. Quasi-

equilibrated mixing-layer dynamics thus emerge on top

of a slowly drifting background state.

3. Mean flows and submesoscale eddies over

mid-ocean ridge flanks

Boundary layer theory describes how a stratified and

rotating fluid adjacent to a sloping boundary responds to

small-scale mixing (Phillips 1970; Wunsch 1970; Thorpe

1987; Garrett et al. 1993). Boundary layer solutions de-

scribe the near-bottom tilting of isopycnals by the mix-

ing and the along- and cross-slope flows that develop

in response. These solutions are one-dimensional, that

is, they depend on the slope-normal direction only. All

variations in the plane of the slope are neglected.

The dynamics in a coordinate system aligned with the

slope are (e.g., Garrett et al. 1993)

ú
t
2 f�y cosu 5 b sinu1 (nú

�z
)
�z
, (7)

�y
t
1 fú cosu 5 (n�y

�z
)
�z
, and (8)

b
t
1 úN2 sinu 5 [k(N2 cosu1 b

�z
)]

�z
, (9)

where �z is the slope-normal coordinate, ú is the cross-

slope flow, �y is the along-slope flow, and u is the angle

between the uniform slope and the horizontal. The

diffusive buoyancy flux in the slope-normal direction

is F �z
b 52k(N2 cosu1 b�z).

Solutions to these one-dimensional equations capture

the physics of how mixing on slopes can be equilibrated

by mean flows. With a bottom-intensified diffusivity,

buoyancy flux divergence (2›F �z
b /›�z, 0) in an outer

layer with a thickness of order 1000m is balanced by

downslope flow that advects light water from above, and

buoyancy flux convergence (2›F �z
b /›�z. 0) in an inner

layer with a thickness of order 10m is balanced by

up-slope flow that advects dense water from below

(Garrett 1990, 1991; Callies 2018). Isopycnals tilt over

the entire outer layer, and the associated lateral

buoyancy gradient is in thermal wind balance with the

along-slope flow, which is much stronger than the

cross-slope flow.

The one-dimensional solutions thus qualitatively cap-

ture the expected up- and downwelling dipole inferred

from observations. But the stratification predicted by
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these solutions is much weaker than what is observed

(Callies 2018). If the homogenizing tendency of bottom-

intensified mixing was opposed only by the cross-slope

mean flows predicted by one-dimensional theory,

the stratification in abyssal mixing layers would

quickly erode.

As discussed in Wenegrat et al. (2018) and Callies

(2018), this mismatch should not come as a surprise

because the steady one-dimensional solution is unstable

to submesoscale baroclinic instability. Submesoscale

eddies develop in response to this instability and re-

stratify the mixing layer. The observed stratification can

arise as an equilibrium between the homogenizing ten-

dency of the mixing and the restratifying tendency of

submesoscale eddies.

In this section, we substantiate the proposal that

submesoscale eddies are required by ruling out that

large-scale slope variations can produce a better match

with observations without the need to appeal to sub-

mesoscale dynamics. Boundary layer theory neglects

any variations of the flow in the plane of the slope. Such

variations can arise if the far-field stratification is not

constant (e.g., Phillips et al. 1986), if the mixing is in-

homogeneous in the plane of the slope (e.g., McDougall

1989), and if there are variations in the slope itself (e.g.,

Dell and Pratt 2015; Holmes et al. 2018). We here focus

on the latter case, considering a full mid-ocean ridge

(Fig. 2a) and comparing the dynamics on the ridge flanks

to those emerging on uniform slopes. We show that in

two-dimensional dynamics, which capture the slope

variations yet still disallow baroclinic instability, cross-

slope mean flows are even weaker and mixing-layer

stratification is eroded even more rapidly than in the

one-dimensional case (section 3a). In three-dimensional

dynamics, mixing-layer stratification is again restored by

submesoscale baroclinic eddies (section 3b). The con-

clusion of this section is thus that submesoscale eddies

appear crucial for maintaining mixing-layer stratifica-

tion, not only on uniform slopes but also on the flanks of

an idealized mid-ocean ridge.

a. The two-dimensional simulation

We consider a ridge of sinusoidal shape, a wavelength

of 1000km, an amplitude of 400m, and a mean depth of

1000m (Fig. 2a). Our ridge is narrower and less tall than

the Mid-Atlantic Ridge, which saves us computational

cost yet keeps the slopes of the ridge flanks in a realistic

range. We expect the smaller size of the ridge to have

no qualitative effect on the dynamics. The setup is as

described in section 2, except that no y dependence

is allowed in this two-dimensional case. Given that

the system is rotating, there is of course still flow in

the unresolved along-ridge direction. In this section, we

use ‘‘cross-ridge’’ and ‘‘cross-slope’’ interchangeably to

refer to the x direction; ‘‘along-ridge’’ and ‘‘along-slope’’

refer to the y direction.

As the initially flat isopycnals are tilted down into

the ridge flanks by the prescribed mixing, buoyancy

forces accelerate the water in the cross-ridge direction.

In a thin inner layer near the bottom, an up-ridge flow of

order 1024ms21 develops (Fig. 3a). A weaker down-

welling emerges in a broader outer layer above (Fig. 3a).

Because of Earth’s rotation, an along-ridge flow of order

0.01m s21 develops (Fig. 3b). Its shear is in thermal wind

balance in the downwelling layer, and it is nearly depth

independent above. The mixing-layer stratification is

strongly reduced after a few hundred days—isopycnals

are practically vertical (Fig. 3).

The flow and stratification on the ridge flanks pro-

duced by two-dimensional dynamics thus qualitatively

match those predicted by one-dimensional dynamics.

To compare the dynamics more quantitatively, we

obtain a transient one-dimensional solution for the

slope at the center of the ridge flank (x 5 0), where

u5 2.5 3 1023. We use Dedalus (Burns et al. 2019) to

integrate these equations, projecting the slope-normal

direction onto 256 Chebyshev modes. The domain

height is 2500m, which is tall enough not to affect the

solution in the mixing layer. Time stepping is per-

formed with an implicit third-order Runge–Kutta

scheme and a time step of 3 h.

Quantitative differences emerge between the flows in

the one- and two-dimensional systems (Figs. 4a–d). The

cross-slope flow in the inner layer is nearly 10 times

greater in the one-dimensional solution than the two-

dimensional solution, whereas the downslope flow in

the outer layer is comparable. The along-slope flow has

similar shear in the two solutions, but the flow magni-

tude is of order 0.01m s21 at the outer edge of the inner

layer (around �z5 20m) in the one-dimensional solution,

whereas it is close to zero at the same height in the two-

dimensional solution. In the two-dimensional solution,

the along-ridge flow equilibrates more quickly in the

outer layer and changes more rapidly in the far field,

that is, outside of the abyssal mixing layer. We offer an

explanation for these differences below.

Since the cross-ridge flow is weaker in the two-

dimensional system than in the one-dimensional uniform-

slope case (Figs. 4a,b), the cross-slope buoyancy ad-

vection and thus the associated mean flow restratification

are also weaker. As a result, mixing erodes the stratifi-

cation in the mixing layer even more rapidly than in

the one-dimensional case (Figs. 4e,f and 5a,b). Like in

the one-dimensional case, stratification becomes un-

realistically weak throughout the outer layer, indicating

that the two-dimensional setup also does not capture
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the physics required to maintain realistic mixing-layer

stratification.1

The weak cross-ridge inner-layer flow in the two-

dimensional solution goes hand in hand with a weak

along-ridge flow at the outer edge of the inner layer

(Figs. 4b,d). For the small slope Burger numbers typical

of the abyssal ocean (here the slope Burger number is

S 5 N2 tan2u/f2 5 2 3 1023), the flow in the inner layer

follows Ekman layer dynamics (Wunsch 1970; Garrett

et al. 1993; Callies 2018). The cross-ridge flow in the

inner layer is thus part of the Ekman adjustment

of the along-ridge flow to the no-slip boundary con-

dition. To understand why the cross-ridge flow is

weaker in the two-dimensional solution than in the

one-dimensional solution, we must therefore under-

stand why the along-ridge flow at the outer edge of the

inner layer is weaker.

The tilting of isopycnals in the outer layer is similar

between the one- and two-dimensional solutions and

thus produces similar thermal-wind shear there. This

along-slope shear is southward on the western flank of

the ridge and northward on the eastern flank. A state

with small near-bottom along-slope flow thus requires

a far-field along-ridge flow that is southward on the

western flank and northward on the eastern flank. The

two-dimensional solution produces such far-field flow

(Figs. 3b and 4d)—the one-dimensional solution does

not (Fig. 4c).

The difference in the along-slope flow between the

one-dimensional and two-dimensional solutions arises

because the up-slope Ekman transport must be returned

in the two-dimensional system, whereas no such con-

straint exists in the one-dimensional system. In the two-

dimensional system, continuity and the symmetry of the

geometry imply that

ð0

2H

u dz5 0 for all x and t . (10)

Any up-slope Ekman transport must thus be returned

above. That return flow produces a Coriolis force that

accelerates the along-slope flow in a way that reduces

the near-bottom along-slope flow. There is thus a neg-

ative feedback on the strength of the near-bottom along-

slope flow and associated up-slope Ekman transport.

As a result, the far-field along-slope flow adjusts such

that the thermal-wind shear produces near-zero flow at

the outer edge of the inner layer (Fig. 4d). This negative

feedback is absent in the one-dimensional system.

More formally, the vertical integral of the along-ridge

momentum equation (8) of the one-dimensional system

yields

›

›t

ð

‘

0

�y d�z52f cosu

ð

‘

0

ú d�z2n�y
�z
j
�z50

, (11)

where the bottom is at �z 5 0. Except for a short ini-

tial adjustment, the dominant balance is between the

two terms on the right: the bottom stress balances

the Coriolis force on the integrated up-slope transport

FIG. 3. Flow in the two-dimensional simulation at day 1000. (a) Cross-ridge flow showing strong bottom-trapped

upwelling and a weaker return flow in the mixing layer above. (b) Along-ridge flow showing thermal wind shear in

the weakly stratified layer and nearly depth-independent flow above. The gray contours show isopycnals. The cross-

ridge velocity structure near the bottom can be seen more clearly in Fig. 4b.

1The discrepancies in the stratification near the top boundary of

the two-dimensional domain are due to the insulating boundary

condition there, which is not present in the one-dimensional solu-

tion. At the times considered here, the one-dimensional solution

behaves as if the domain was semi-infinite.
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(cf. Fig. 4c). In contrast, the balance in the two-

dimensional system is

›

›t

ð0

2H

y dz52ny
z
j
z52H

, (12)

because the integrated cross-ridge transport vanishes.

The only way for the two-dimensional system to pro-

duce a slow drift in the along-ridge flow is to adjust to a

state with reduced bottom stress (cf. Fig. 4d).

b. The three-dimensional simulation

We now allow for flow variations in the along-ridge

direction y, but we retain a smooth ridge flank (Fig. 2a).

Like in the uniform-slope case discussed in Callies

(2018), we expect submesoscale baroclinic eddies to

develop, laterally slide dense water under light water,

and maintain stratification in abyssal mixing layers.

In the same transient experiment started from a state

of rest and a uniform stratification, we again see iso-

pycnals tilt down into the slope, producing available

potential energy. Once potential energy has built up,

initially small perturbations grow into baroclinically

unstable modes and subsequently into finite-amplitude

submesoscale baroclinic eddies. The eddies have a typ-

ical size of 10 km and are strongest in the mixing layers

over the ridge flanks (Fig. 6a). We characterize these

FIG. 4. Comparison between (left) the transient one-dimensional uniform-slope solution and (right) the

two-dimensional model solution at the center of the ridge flank (x5 0). (a),(b) Cross-slope velocity profiles ú and u

(the velocity structures extending to 1000m are shown in the insets), (c),(d) along-slope velocity profiles �y and y,

and (e),(f) stratification profilesN2 cosu1 b�z andN
2
1 bz. The times after initialization are noted in the legend. For

the one-dimensional solution, we also show the steady state (black lines). Note that we ignore the small slope angle

between the horizontal and cross-slope direction in the two-dimensional model solution.Also note the difference in

the velocity axis between (a) and (b).
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eddies as ‘‘submesoscale’’ to emphasize their small spatial

scale relative to mesoscale thermocline eddies, without

necessarily implying strongly ageostrophic dynamics.

As a result of the buoyancy fluxes achieved by these

eddies, the mixing layers remain more stratified than in

the two-dimensional case (Figs. 5c,d and 7a,d). The

sharp difference in the stratification emerges after day

200, when the baroclinic eddies first reach appreciable

amplitude. The restratification is less strong over the

ridge crest, where the lateral buoyancy gradients are

weaker (Fig. 7d).

We thus confirm that submesoscale baroclinic

eddies play an important role in maintaining the

stratification over the flanks of a smooth three-

dimensional mid-ocean ridge. The phenomenology on

the ridge flanks is consistent with the vigorous restra-

tification by submesoscale eddies found on uniform

slopes (Callies 2018).

4. Circulation and restratification in ridge flank

canyons

We now turn to discussing how the presence of a

fracture zone canyon modifies the flow and stratification

on mid-ocean ridge flanks. We find that—in contrast to

the smooth ridge flanks in the previous case—strong

FIG. 5. Submesoscale eddies maintain stratification over the ridge flanks, canyon flows maintain stratification in

the canyon. The evolution of stratification at the center of the ridge flank (x 5 0) is shown for (a) the two-

dimensional simulation, (c) the three-dimensional simulation without a canyon, averaged over the along-ridge

direction, and (e) the three-dimensional simulation with a canyon in the center of the canyon (y 5 50 km, not

averaged). (b),(d),(f) The stratification profiles averaged over the last 1000 days.
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mean flows emerge within the canyon and maintain

stratification there.

We add to our large-scale ridge bathymetry a fracture

zone canyon that runs across the flanks of the ridge

(Fig. 2b). We insert at y 5 50 km one deep canyon

oriented along the x direction. As the domain is periodic

and 100 km wide in the along-ridge direction, the setup

can be thought of as having a canyon running across the

ridge flank every 100 km. The canyon has the shape of a

Gaussian and is 400m deep and about 20 km wide:

FIG. 6. Submesoscale baroclinic eddies over the mid-ocean ridge flank in the three-dimensional simulations.

Shown is the vertical component of relative vorticity z5 yx2 uy, normalized by the inertial frequency f, at z5 800m

on day 1000 for (a) the simulation without a canyon and (b) the simulation with a canyon.

FIG. 7. Comparison between the two-dimensional and three-dimensional simulations without a canyon. (a) Stratification in the

two-dimensional simulation, (b) resulting vertical buoyancy flux Fz
b 5Fb � z52k(N2

1 bz), and (c) its divergence ›F
z
b /›z; (d) stratification

in the three-dimensional simulation, (e) resulting vertical buoyancy flux, and (f) its divergence. All fields are shown for day 6000.

The three-dimensional fields are averaged over the along-ridge dimension. The black contours are isopycnals. Four buoyancy levels

are labeled in (a) and (d) (given in 1024m s22).
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, (13)

with H0 5 400m, y0 5 50km, s 5 4.5 km.

The model bathymetry is an idealization of the real

bathymetry of theMid-Atlantic Ridge (Fig. 1b). Fracture

zone canyons are spaced at about the same along-ridge

distance of order 100km. The ridge flanks between

canyons have abyssal hill topography but no coherent

incisions running across the ridge flank. Our canyon setup

captures only the most prominent features of the bathy-

metry—abyssal hills are included again only indirectly

through their effect on mixing, which we continue to

parameterize as a bottom-enhanced diffusivity profile.

Furthermore, real canyons can be interrupted by abyssal

hill topography and typically have pronounced topogra-

phy along their thalweg, whereas our simplified canyon

runs uninterrupted from the base of the ridge to its crest

and has a smooth bottom.Ourmodel canyon is somewhat

shallow compared to the canyon sites studied in theBrazil

Basin Tracer Release Experiment (Thurnherr et al. 2005;

Toole 2007) and the Dynamics of Mid-Ocean Ridge

Experiment (Clément et al. 2017), where the canyon is

more than 1000m deep. Despite these differences, we

posit that our model bathymetry captures the essential

response of the subinertial flow to the presence of ridge

flank canyons. By comparing this idealized simulation to

observations, one can furthermore infer the importance

of processes that are not included here.

We perform the same transient mixing-driven experi-

ment started froma state of rest and uniform stratification

as above. As before, the flow reaches a quasi-equilibrium

in which the stratification at the ridge base and crest drift,

but the flow and stratification on the ridge flanks change

relatively little.

Like in the case without a canyon, submesoscale

eddies develop on the ridge flanks (Fig. 6b). The eddies

here develop earlier than in the case without a canyon

because the along-ridge flow is perturbed by the canyon

topography. This is analogous to idealized Southern

Ocean simulation with and without topography (e.g.,

Abernathey and Cessi 2014). The eddy field is stronger

here than in the simulation without a canyon (the kinetic

energy is about 40% larger), and the stratification in

the mixing layers on the ridge flanks remains slightly

stronger.

The most conspicuous feature of this simulation,

however, is that the stratification within the canyon re-

mains very strong (Figs. 5e,f and 8a), retaining a value

close to that of the interior and thus much higher than in

the mixing layers on the ridge flank. This strong strati-

fication within the canyon can largely be explained with

the cross-canyon flows on the sloping canyon walls. The

bottom slope of the canyon walls is much larger than the

gentle slope of the ridge flank: uc 5 H0/s 5 0.09, as

opposed to u 5 2.5 3 1023. This elevates the slope

Burger number from S 5 2 3 1023 to Sc 5 2.6, which is

not small anymore. One-dimensional boundary layer

theory predicts that in this regime the stratification in

the outer layer remains of the same order as in the far

field (Callies 2018; Fig. 9 here). This effect can also be

seen in the two-dimensional simulation described in the

appendix (Fig. A1). Flows up the canyon walls in an

inner layer and down the canyon walls in an outer layer

thus effectively maintain stratification in the canyon.

The total diffusive buoyancy flux into the canyon,

however, still lightens the water there. To prevent the

canyon from homogenizing from the bottom up, this

tendency must be balanced by a flow advecting dense

water up the large-scale ridge. But instead of unidirec-

tional up-ridge flow at the base of the canyon, that is,

along its thalweg, the along-canyon flow exhibits a bi-

directional structure (Fig. 8a). On the western ridge

flank, the up-ridge component of the along-canyon flow

is banked slightly against the northern canyon wall, and

the return flow is banked slightly against the southern

canyon wall. (The banking is reversed on the eastern

ridge flank.) This banking is opposite to that expected

from simple Coriolis deflection of along-canyon flow.

Following Dell (2013), we instead interpret these along-

canyon flows as arising as the in- and outflow of cross-

canyon flow that emerges in response to the sloping

ridge flank and that is blocked by the canyon walls.

While the along-canyon flows are largely along isopycnals

and therefore have a reduced effect on restratification,

they do have a sufficiently strong cross-isopycnal

component to advect dense water from the base of

the ridge to balance the net diffusive buoyancy flux

convergence in the canyon. The strong canyon strat-

ification is therefore the result of the stratifying ten-

dency of a combination of cross- and along-canyon

mean flows.

The along-canyon flow has a magnitude of order

0.01m s21 and is thus much greater than any cross-ridge

mean flow in the simulation without a canyon. This

magnitude is consistent with Dell’s argument for the

emergence of these flows because it matches the mag-

nitude of the along-ridge flow in the one-dimensional

solution (Fig. 4c), which is turned into cross-ridge flow.

The magnitude is also similar to the mean flow observed

in a deep canyon on the western flank of theMid-Atlantic

Ridge near 228S in the Brazil Basin Tracer Release

Experiment (Thurnherr et al. 2005; Toole 2007), al-

though these observations do not show a down-ridge

return flow. In the appendix, we further substantiate the
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interpretation of the along-canyon flows as arising due

to the mechanism proposed by Dell (2013). We show

there that these along-canyon flows are reversed if the

large-scale ridge is removed, suggesting they are not

generated directly by the sloping canyon walls. We also

show that these flows’ existence does not depend on the

flow on the ridge flanks away from the canyon, sug-

gesting the canyon flows can be understood in isolation

as in Dell (2013).

A major difference between our idealized simulation

and observations from real ridge flank canyons is the

stratification structure (Fig. 8c). The simulated strat-

ification in the bottom 300m is similar to that in the

far field and stronger than what is observed (e.g.,

St. Laurent et al. 2001; Thurnherr and Speer 2003).

Furthermore, the simulations exhibit weak stratification

in a layer around the canyon crest, leading to a staircase

structure in the isopycnals—in contrast to observations,

which typically show isopycnals that monotonically

steepen with depth. One possible explanation for this

mismatch is that our hyperviscosity damps out baroclinic

instability that would otherwise develop in the weakly

stratified layer overlying the canyon.2 The baroclinic

eddies that would emerge at even smaller scales than

FIG. 8. The structure of the cross-ridge flow in the canyon. All pw the cross-ridge, i.e., along-canyon, flow in the

three-dimensional simulation with a canyon, averaged over days 1000–2000. (a) Along-ridge section at the center

of the ridge flank (x5 0) and (b) vertical profiles as functions of height above the bottom at the locationsmarked by

the black and magenta dots in (a). The dashed lines mark the canyon crest. (c) Cross-ridge section at the center of

the canyon (y 5 50 km). The gray contours in (a) and (c) show isopycnals.

2The Richardson number in the weakly stratified layer is about

Ri 5 10. The growth rate of a baroclinic instability in this layer

would thus be of order s 5 [(5/54)/(Ri 1 1)]1/2jfj 5 5 3 1026 s21

(Stone 1966). The maximum growth would occur around

k 5 [(5/2)/(Ri 1 1)]1/2jf j/DU 5 2.6 3 1023m for an estimated

shear across the layer of DU 5 1 cm s21. The hyperviscous

damping rate at that scale is n4k
4
5 1.4 3 1026 s21, which is of

the same order as the growth rate. Such an instability would

thus be artificially damped by the hyperviscosity.
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those resolved in our simulation would straighten out

isopycnals, increasing the stratification in the low-

stratification layer and decreasing it around it (cf.

Garner et al. 1992). That would bring the simulated

stratification closer to what is observed. Other possible

explanations for the mismatch are that our canyon walls

are too steep, that the mixing field in the canyon is

not well represented by our profile that is a function of

height above the bottom only (cf. St. Laurent et al.

2001), that the along-canyon flows importantly interact

with other topographic features such as sills or rugged

canyon walls (cf. Clément et al. 2017), or that sub-

inertial flows interact nontrivially with the tidal flow in

the canyon. These possibilities should be explored in

future work.

We also note that the laterally offset cross-ridge

return flow found in the simulation (Fig. 8a) has not

been observed in the real ocean. Available observations

instead show a strong up-canyon current as the only

conspicuous feature of the mean flow (e.g., Thurnherr

et al. 2005). It is clear that a more realistic stratification

in our simulation would also modify the buoyancy flux

convergence and divergence and rearrange the along-

canyon mean flow. In addition, the mean flow could be

affected by lateral turbulent momentum fluxes missing

from the simulation or by differences in the width of the

canyon in relation to the local deformation radius.

Again, further study is needed to understand what in-

gredients in addition to what is included in our idealized

simulation are required. It is of course also possible that

the sparse observations have so far missed a down-ridge

return flow.

5. Integrated diabatic fluxes and water mass

transformation

The impact of diapycnal fluxes on the abyssal over-

turning circulation is often diagnosed in buoyancy co-

ordinates. We here follow this tradition and consider

two such diagnostics: the diapycnal flux integrated over

isopycnals and the water mass transformation (WMT).

The diapycnal flux integrated over an isopycnal is

F(b, t)5

ðð

S(b,t)

F
b
� n dS, (14)

where S(b, t) is the isopycnal surface defined by the

target buoyancy b at time t, n is a normal unit vector

of that surface (pointing to larger buoyancy), and

Fb 5 2k(N2
1 bz)z is the diabatic buoyancy flux (we

FIG. 9. Maintenance of stratification in mixing layers on the canyon walls. Shown are the

analytical solutions to the steady one-dimensional dynamics from Callies (2018) for the ridge

slope u5 2.53 1023 and for the canyon slope u5H0/s5 0.09, i.e., for slope Burger numbers

S 5 2 3 1023 and Sc 5 2.6. (a) The stratification (background plus perturbation) is strongly

reduced in the ridge solution, whereas it remains close to the far-field value of 1026 s22 in the

canyon solution. (b) The cross-slope flow ú in the inner layer is of similar magnitude in the

two solutions, but the outer-layer flow is stronger in the canyon solution.
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neglect small contributions from hyperdiffusion). In the

real ocean and in a long-term equilibrium, Fmust balance

the buoyancy flux that the volume of water bounded by S

receives at the sea surface. Our transient simulations do not

reach such an equilibrium because there are no surface

buoyancy fluxes that could balance F. We still deem it

useful to diagnoseF in our simulations, however, because it

elucidates the way the different restratification processes

affect how strong a diapycnal flux can be sustained. How

strong a flux F can be sustained for a given distribution of

mixing affects what configuration the abyssal water masses

and circulation would assume in equilibrium.

The WMT is defined as the convergence of F in

buoyancy space:

T(b, t)52
›F

›b
. (15)

As shown by Walin (1982), the WMT matches the

volume transport across the isopycnal defined by b. It is

defined such that a positive T corresponds to an upward

volume transport. In the real ocean and in a long-term

equilibrium, this transformation rate is the same as

the overturning circulation across that isopycnal surface.

In our simulations, T describes the rate at which the

volume of water bounded by S shrinks. While our sim-

ulations do not reach a steady configuration with an

overturning circulation, diagnosing the WMT allows us

to elucidate how the different restratification processes

affect the rate at which dense water is consumed.

That the integrated buoyancy flux F and the WMT T

differ between our three simulations can be anticipated

from the differences in stratification and buoyancy flux.

For example, the stratification in the mixing layers is

much weaker in the two-dimensional simulation than

in the three-dimensional simulation without a canyon

(Figs. 7a,d). The enhanced stratification produced by

submesoscale eddies in the three-dimensional case en-

hances the buoyancy flux 2kbz in the mixing layers

(Figs. 7b,e). This leads to an enhanced integrated

buoyancy flux F in the three-dimensional case. It should

be noted, however, that around 800m off the bottom

the stratification is somewhat reduced in the three-

dimensional case, leading to a reduction of F. This re-

duction in stratification is likely due to an eddy exchange

between the mixing layer and the layer above, which

in addition to the restratification of the mixing layer

causes a destratification of the layer above (cf. Garner

et al. 1992; Lapeyre et al. 2006).

Not captured by the integral quantity T are the com-

pensating contributions to it by buoyancy fluxes that

are convergent and divergent in different parts of the

domain. The differences in stratification causes drastically

different patterns of buoyancy flux convergence and

divergence: the enhanced mixing-layer stratification in

the three-dimensional simulation causes a strong dipole

of convergence and divergence, whereas that dipole is

weak in the two-dimensional case (Figs. 7c,f). In our

diagnosis of WMT, we therefore split the total into

contributions from buoyancy convergence and diver-

gence (cf. Ferrari et al. 2016; Callies and Ferrari 2018b).

a. Diabatic fluxes integrated over isopycnals

We diagnose the integrated buoyancy flux from the

simulations as

F(b, t)52

ðð

A(b,t)

k(N2
1 b

z
) dx dy , (16)

where A is the area of the surface S projected onto the

x–y plane. In the two-dimensional simulation, we assume

the domain to extend Ly 5 100km in the along-ridge di-

rection to enable comparison with the three-dimensional

simulations. We focus our discussion on t 5 6000 days,

when themixing-layer dynamics reach quasi-equilibrium,

but we also consider aspects of the evolution over time.

To further elucidate the differences between the three

cases, we split F into contributions from the uniform

background diffusivity k0 and the bottom-enhancement

k1e
2(z1H)/h. These interior and boundary contributions

FI and FB linearly add up to the full flux: F 5 FI 1 FB.

In all simulations, the integrated buoyancy flux F

peaks around b 5 25 3 1024ms22, corresponding to

isopycnals that incrop on the upper part of the ridge

flanks (Fig. 10a). The peak flux magnitude increases

from 5.1m4 s23 in the two-dimensional simulation to

5.9m4 s23 in the three-dimensional simulation without a

canyon and to 7.2m4 s23 in the three-dimensional simu-

lationwith a canyon. This increase in the peak flux reflects

the increased stratification in the three-dimensional sim-

ulations and the added water with strong stratification

in the case with a canyon. As expected, stronger re-

stratification enables a larger integrated buoyancy flux.

The interior contributions FI are very similar between

the three cases (Fig. 10a). This is expected because this

interior contribution is dominated by fluxes away from

the mixing layer, where the stratification is close to the

initial stratification and the differences between the

three cases are small (Figs. 7a,d). For isopycnals that

incrop on the centers of the ridge flanks, the interior

contribution is approximately FI ’ 2k0N
2LxLy/2 5

23m4 s23FI ’2k0N
2LxLy/2523m4s23, where LxLy/2

is roughly the area of isopycnals in the interior. For

isopycnals that incrop on the ridge flanks, the interior

contribution depends roughly linearly on buoyancy

because the area covered by the isopycnals depends

roughly linearly on depth and thus on buoyancy.
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This effect is thus governed by the ridge’s hypsometry

(e.g., McDougall 1989; Holmes et al. 2018).

The boundary contribution FB is where almost all

of the differences between the simulations originate

(Fig. 10a). In all three cases, FB is largely constant over

the buoyancy range corresponding to isopycnals that

incrop on the ridge flanks. The flux magnitude increases

from 2.2m4 s23 in the two-dimensional case to 3.1m4 s23

in the three-dimensional case without a canyon and

4.2m4 s23 in the case with a canyon.

These differences between the three cases are ex-

pected because the boundary contribution FB depends

sensitively on the stratification in mixing layers

(Garrett 1990, 2001). As isopycnals tilt more strongly

toward the bottom and the mixing-layer stratification

weakens, not only does this weaken the local buoyancy

flux, it also reduces the horizontal area covered by

isopycnal surfaces. Neglecting buoyancy anomaly var-

iations in the plane of the slope, the boundary contri-

bution to the integrated buoyancy flux can be written in

terms of an integral in the slope-normal direction:

F
B
52L

y

ð

‘

0

k
1
e2z�/hcosuN2

2

4sin2
u

1

 

N2 cosu1 b
�z

N2 cosu

!2

cos2u

3

5

d�z

sinu
, (17)

where the integration over a finite isopycnal was replaced

by an integration into the far field, which incurs only a

small error because the integrand decays rapidly with

height. We here again assume an along-slope domain

width of Ly 5 100 km. For the small abyssal slope

angles u, the first term in square brackets is generally

negligible. This equation shows that the integrated

buoyancy flux depends on the square of the mixing-layer

stratification—reflecting the dependence of the inte-

grated flux on both the stratification and the area cov-

ered by the isopycnal surface.

Garrett (1990, 2001) defined the efficiency of bound-

ary mixing I as the ratio between FB and the value FB

would assume if the stratification were constant all the

way to the boundary (our initial conditions). Setting

b�z 5 0 in (17) yields the constant-stratification reference

value FB 5 2Lyk1N
2h cotu 5 216m4 s23. We take the

reference FB in our two- and three-dimensional simu-

lations to be twice this value for isopycnals incropping

on the ridge flanks because these isopycnals encounter

two mixing layers. With this definition of the efficiency,

we obtain I5 7% for the two-dimensional case, I5 10%

for the three-dimensional case without a canyon, and

I 5 13% for the three-dimensional case with a canyon,

all evaluated at t 5 6000 days and for isopycnals in-

cropping on the ridge flanks (b 5 26.2 3 1024m2 s21).

The difference between the two-dimensional case and

the three-dimensional case without a canyon is smaller

FIG. 10. The integrated buoyancy flux F and its evolution in the three simulations. (a) The integrated buoyancy

fluxes F (total) and their decomposition into interior and boundary contributions FB and FI at day 6000. (b) Evolution

of the boundary contribution FB for an isopycnal incropping on the ridge flanks (b 5 26.2 3 1024ms22).
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than what might be expected from the marked differ-

ence in mixing-layer stratification (Figs. 7a,d) and the

sensitive dependence of FB on that stratification sug-

gested by (17). The difference stemming from the mix-

ing layer that is more strongly stratified in the presence

of eddies is partially compensated by contributions from

around 800m off the bottom, where the stratification is

stronger without the eddies. The result is a relatively

modest difference between the two cases at this time.

The difference between these two cases, however,

increases over time (Fig. 10b). One might expect the

two-dimensional simulation to tend toward the steady

one-dimensional solution, which has an efficiency I5 3%.

The eddy restratification in the three-dimensional case

should prevent a decrease to such a small value, and one

might expect the difference between the two cases to

further increase as time goes on.

The efficiency substantially increases as we add a

canyon to the three-dimensional simulation. This in-

crease arises because isopycnals flatten out within the

canyon and thus provide strong stratification and a large

area onwhich bottom-enhancedmixing can act (Fig. 8c).

This is a remarkable increase in the integrated flux,

considering the canyon covers only about a fifth of the

ridge flank area. The increase arises primarily from

contributions in the canyon—the flux is also modestly

increased over the ridge flanks away from the canyon,

but the contribution is minor. As noted above, however,

the stratification within the canyon is unrealistically

strong, so the increase in efficiency diagnosed from the

simulation with a canyon is likely an overestimate.

To further put these efficiencies into context, we cal-

culate the efficiency of the stratification profile observed

in the Brazil basin. We use the one-dimensional outer-

layer solution

N2 cosu1 b
�z
5N2 cosu

 

k
0

k
0
1 k

1
e2z�/hcosu

1
k
1
e2z�/hcosu

k
0
1 k

1
e2z�/hcosu

SPr

11 SPr

!

, (18)

which Callies (2018) fit to observations considering

SPr/(1 1 SPr) a free parameter. The best fit to the ob-

served profile was obtained for SPr/(1 1 SPr) 5 0.35.

When plugged into (17), this yields I 5 18%. This

number is larger than the efficiencies obtained in any

of our simulations. Possible explanations are that the

simulated eddies are artificially damped by insufficient

resolution and excessive hyperviscosity, that interior

and large-scale processes neglected here (e.g., the plan-

etary potential vorticity gradient or a nonconstant in-

terior stratification) play a role in setting mixing-layer

stratification, or that the neglected small-scale abyssal

hill topography importantly modifies the subinertial

circulation on ridge flanks. These possibilities should be

explored in future work.

b. Water mass transformation

To examine the volume transport across different

isopycnals, we now turn to the WMT rate T. Since

T 5 2›F/›b, changes in the integrated flux F with

buoyancy translate into WMT (Fig. 11a). The WMT is

positive at low buoyancy, that is, in the trough of the

ridge system, and it is negative at high buoyancy, that is,

near the surface and ridge crest. The integral of the

WMT over all buoyancy classes is zero because there is

no buoyancy flux across the domain boundaries.

It is clear from the above discussion of the integrated

flux F that the peak positive WMT arises from the

bottom-intensified part of the mixing, which contributes

almost all of the flux gradient in the near-bottom

buoyancy classes (Fig. 10a). The WMT at intermediate

buoyancy classes arises primarily from the interior part

of the mixing and the associated hypsometric effect. The

negative WMT near the top of the domain has compa-

rable contributions from the two components.

The differences in the integrated flux F between the

three simulations translate into differences in WMT

(Fig. 11a). The near-bottom WMT, that is, the rate of

dense bottom water consumption, is lowest in the two-

dimensional case, intermediate in the three-dimensional

casewithout a canyon, and largest in the three-dimensional

case with a canyon. Yet, the differences between the

three cases are modest: the peakWMT is 2.63 104m3 s21

in the two-dimensional case and 3.2 3 104m3 s21 in the

three-dimensional case with a canyon.

Qualitative differences between the three cases arise

when considering the contributions to WMT from con-

vergences and divergences of buoyancy fluxes. This de-

composition of the net T(b, t) is defined as

T6(b, t)52
›

›b

ððð

V6(b,t)

= � F
b
dx dy dz, (19)

where V6(b, t) are the volumes of water below the iso-

pycnal surface S(b, t) restricted to places with positive

or negative buoyancy flux convergence, respectively

(Figs. 7c,f; cf. Ferrari et al. 2016; Callies and Ferrari

2018b). Below the surface layers, there is very little

buoyancy flux divergence in the two-dimensional simula-

tion, whereas the positive net WMT in the two three-

dimensional simulations arises as a residual between pos-

itive and negative contributions (Fig. 11b). This WMT

dipole, a hallmark of bottom-intensifiedmixing, arises only

if the stratification in mixing layers is maintained.
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Separating the WMT in the three-dimensional simu-

lation with a canyon into contributions from inside and

outside the canyon, we find that the additional contri-

bution from inside the canyon is of similar magnitude

as the difference between the simulations with and

without a canyon (Fig. 11c). Here we define ‘‘inside the

canyon’’ as the volume of water below the ridge, that is,

as the volume of water added to the domain when

adding the canyon topography in (13).

Another way to quantify the contribution from the

canyon is to compare the WMT in a 20-km-wide band

above the canyon with the WMT in a 20-km-wide band

away from the canyon (Fig. 11d). We define the canyon

band as 40 km , y , 60km and choose the reference

band as far away from the canyon as possible: y, 10km

and y . 90km. The net WMT is comparable but some-

what stronger over the canyon. A qualitative difference

again emerges only when considering the positive and

negative contributions to WMT separately. The strong

stratification and the resulting dipole in buoyancy flux

convergence and divergence causes the compensating

positive and negative contributions to the WMT to be

much larger over the canyon than away from it. As dis-

cussed above, however, the stratification in the canyon is

unrealistically strong, so the diagnosed strength of the

WMT dipole over the canyon is likely an overestimate.

Finally, we note that the simulated peak WMT of

0.035 Sv (100 km)21 along-ridge distance appears to be

too weak to close the abyssal water mass budget of the

Brazil basin. Dividing our WMT in half because the

real Brazil basin is bounded by only one ridge flank,

assuming an along-ridge distance of 3000km, and ig-

noring changes in the ridge geometry, mixing rates, in-

ertial frequency, etc., we arrive at a total WMT of 0.5 Sv.

FIG. 11. Comparison of water mass transformation rates between the three simulations at day 6000. (a) The net

WMT T(b). (b) Decomposition of the net WMT into contributions from buoyancy flux convergences and diver-

gences T6(b). (c) Contributions to the net WMT from inside and outside of the canyon, diagnosed from the

simulation with a canyon. (d) Comparison of the WMT from bands over and away from the canyon (solid lines),

both diagnosed from the simulation with a canyon, as well as the decomposition into contributions from buoyancy

flux convergences and divergences (dashed lines).
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This is substantially less than the 4 Sv of AABW up-

welling estimated by Hogg et al. (1982). We do not ex-

pect this estimate to be affected by the unrealistic

narrowness of our ridge because the net WMT is set by

the divergence of the boundary contribution FB, which

does not scale with the width of the ridge.

In summary, the net WMT in our simulations shows

relatively little sensitivity to the strength of mixing-layer

restratification, and the WMT diagnosed from the sim-

ulations is weak compared to observations. It thus ap-

pears that effects neglected here—such as nonconstant

interior stratification, deviations from the simple ridge

geometry, and the geography of mixing—may play an

important role in setting the net WMT. It is clear,

however, that bottom-intensified mixing produces a

WMT dipole only if stratification is maintained in

mixing layers.

6. Discussion

The simulations demonstrate that submesoscale bar-

oclinic eddies and mean flow advection can maintain

stratification over the ridge flanks and inside the ridge-

flank canyons, which is crucial for the effective con-

sumption of dense bottom waters in such mid-ocean

ridge systems. Several assumptions and idealizations

have been made in this study that need to be considered

in interpreting the results presented above.

First, due to the limitation of computing power, the

grid spacing employed in the numerical model is not

able to resolve all the submesoscale baroclinic eddies.

The underresolved submesoscale eddies not only fail

to smooth out the stratification inside the canyon

(section 5) but may also render the restratification

over the broader ridge flanks too weak. The corre-

sponding buoyancy flux and WMT rates with refined

grid resolution need to be examined in more detail in

order to more accurately extrapolate to the larger mid-

ocean ridge system.

Second, the abyssal hill topography is not explicitly

resolved in the model. Its role in facilitating the near-

bottom turbulent mixing has been simply represented in

the bottom-intensified mixing profile. These small-scale

topographic features may also support local boundary

layer systems and steer the restratifying mean flows, in

addition to the relatively large-scale dynamics caused by

the parameterized bottom-intensifiedmixing considered

here. It remains unclear what effect such more convo-

luted flow paths would have on the stratification in

mixing layers. It should further be noted that abyssal

hills are typically aligned with the ridge axis, so theymay

also hinder rather than enable cross-ridge flow and at-

tendant restratification.

Third, the current model simulations do not allow the

mixing profile to vary by location. Location-dependent

processes may change the magnitude and functional

form of this mixing profile. As pointed out in previous

studies, subinertial up-canyon flows, as simulated here,

may influence the propagation and breaking of internal

waves inside the canyon (Toole 2007; Clément and

Thurnherr 2018). This could potentially create strong

mixing in themiddle of the water column andmodify the

mixing profile. Moreover, hydraulically controlled mix-

ing events have been reported in observations: sub-

inertial currents flow over sills in the canyon and create

locally enhanced mixing (e.g., Clément et al. 2017).

More realistic mixing profiles that could reflect local

dynamics such as those discussed above or even the

resolution of such dynamics withmuch finer grid spacing

are needed in future studies.

Fourth, both nonuniform interior stratification and

meridional variations in the inertial frequency have

been neglected. Both effects introduce lateral variations

in the mixing-layer properties and can thus cause cou-

pling between the mixing layer and the interior. How

that affects the mixing-layer stratification remains un-

explored. Preliminary work suggests that nonuniform

interior stratification indeed affects mixing-layer

flow and the net WMT (H. Drake 2019, personal

communication).

7. Conclusions

Bottom-intensified turbulence in abyssal mixing layers

erodes stratification, so stratification must be maintained

in order to sustain diabatic fluxes into the abyss. The three

numerical simulations presented in this study elucidate

different restratification mechanisms in mid-ocean ridge

systems, which likely play a key role in the consumption

ofAABW.A two-dimensional simulation of a large-scale

ridge isolates cross-ridge mean flow restratification, a

three-dimensional simulation of a large-scale ridge addi-

tionally allows restratification by submesoscale baroclinic

eddies, and a three-dimensional simulation of a large-

scale ridge with an idealized fracture zone canyon addi-

tionally allows restratification by mean flows induced by

the canyon topography.

The flanks of a two-dimensional ridge behave like a

uniform slope: cross-ridge mean flows are weak because

rotation turns these flows into geostrophically balanced

along-ridge flow. Consequently, these mean flows can-

not advect enough dense water up the slope and light

water down the slope to balance the diffusive buoyancy

tendencies.Mixing-layer stratification erodes rapidly, and

buoyancy fluxes into the abyss become weak. Compared

to the one-dimensional uniform-slope case, cross-slope
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mean flows are even weaker over the flanks of a two-

dimensional ridge because the along-ridge flow in the far

field adjusts more readily. This causes weaker cross-

ridge Ekman transport and further weakens the restra-

tification of mixing layers.

A third dimension allows restratification by sub-

mesoscale baroclinic eddies, again like on uniform

slopes. In response to the erosion of mixing-layer strat-

ification and the buildup of available potential energy on

the ridge flanks, baroclinic instability ensues and the

resulting eddies laterally slide dense under light water

(Callies 2018; Wenegrat et al. 2018). This submesoscale

restratification allows the maintenance of both a

larger buoyancy flux into the abyss and a strong di-

pole in WMT.

Finally, the walls of a fracture zone canyon have slope

Burger numbers of order unity, which allows cross-

canyon mean flows to maintain stratification on the

sloping canyon walls. In addition, strong mean flows

running along the thalweg of the canyon advect dense

water up the canyon, balancing the buoyancy flux con-

vergence there. The flow along the canyon axis has a

large along-isopycnal component, however, and it has

bidirectional structure with a laterally offset return flow

(cf. Dell 2013). Together, the cross- and along-canyon

mean flowsmaintain strong stratification throughout the

canyon and allow bottom-enhanced mixing to produce a

strong dipole of WMT there. In our idealized simula-

tion, the canyon contributes significantly to the total

buoyancy flux into the abyss, but the canyon contri-

bution is likely overestimated as the stratification in

the canyon is unrealistically strong. Fracture zone

canyons only cover a small portion of the area of ridge

flanks—whether they make an outsized contribution

to the consumption of AABW remains open and

warrants further investigation.

The importance of submesoscale eddies and possibly

canyon topography in maintaining the boundary con-

tribution to the buoyancy flux into the abyss and the

associated dipole in WMT suggests that their effect

should be incorporated into large-scale models of the

abyssal circulation. Submesoscale restratification of abyssal

mixing layers could be parameterized in coarse-resolution

models, similar to how submesoscale restratification of

FIG. A1. Flows in a two-dimensional canyon without the large-scale ridge. (a) Cross-canyon flow at day 69,

(b) along-canyon flow at day 69, (c) cross-canyon flow at day 579, and (d) along-canyon flow at day 579. The shading

shows velocities, and black contours are isopycnals.
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the surface mixed layer is parameterized (Fox-Kemper

et al. 2011). Parameterizations of subgrid canyon flow

are also conceivable. Including these processes may be

crucial for accurately capturing the patterns and rates of

AABW consumption.
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APPENDIX

Extra Simulations for the Lateral Dipole of

Cross-Ridge Flow in a Fracture Zone Canyon

Here we substantiate the interpretation that the lateral

dipole of cross-ridge flow in a fracture zone canyon is

produced by the mechanism described by Dell (2013)

(Fig. 8 here).We present two additional simulations (i) to

exclude the possibility that the dipolar flow is the result of

boundary layer flow induced by the canyon walls and

(ii) to confirm that the cross-ridge flow is produced within

the canyon and is not the result of interaction with the

flow on the ridge flank outside of the canyon.

To ascertain that the cross-ridge flow in the canyon

is due to the large-scale ridge, we consider a two-

dimensional simulation with the large-scale ridge re-

moved. The two-dimensional domain is a slice through

the three-dimensional domain in the center of thewestern

ridge flank (x5 0), yet without the slope of the ridge flank

(Fig. 2b). We perform the same experiment started from

uniform stratification and rest. The bottom-enhanced

mixing produces isopycnals that tilt over the sloping

canyon walls, and cross- and along-canyon flow develops

(Fig. A1). The flow is antisymmetric with respect to

the canyon axis. The along-canyon flow resembles the

cross-ridge flow in the three-dimensional simulation

above the crest of the canyon (Fig. 8). In the canyon,

dipolar along-canyon flow does emerge, but it has the

opposite sign of flow in the three-dimensional solu-

tion. This suggests that it is not the boundary layer

flows produced by sloping canyon walls that give rise

to the cross-ridge mean flow in the three-dimensional

system.

The three-dimensional setup considered in the main

text allows along-ridge flow over the ridge flanks to flow

into the canyon and interact with the up-ridge flow there.

Horizontal convergence upstream of the ridge and di-

vergence downstream of the ridge could tilt isopycnals

and thus lead to a cross-canyon dipole of up-ridge

flow. To exclude this possibility, we consider an ad-

ditional three-dimensional simulation that isolates

the processes inside the canyon. We extend the can-

yon walls all the way up to the top of the domain, that

is, we eliminate the ridge flanks entirely (Fig. A2a).

We replace the Gaussian canyon in (13) with a par-

abolic canyon:

H
p
(y)5H

0
[12A(y2 y

0
)2] , (A1)

with A 5 1.7 3 1028m22 and y0 5 50km. In the same

transient setup as above, we recover the lateral dipole of

cross-ridge flow at the base of the canyon, with the

banking as in the simulation discussed in the main text

(Fig. A2b). This confirms that the ridge flank flow has

FIG. A2. Simulation without the ridge flanks, which isolates the canyon effects. (a) Model topography, showing the

isolated deep canyon. (b) Cross-ridge flow at day 35 (shading) and isopycnals (black contours).
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no leading-order effect on the up-ridge flow inside the

canyon.
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