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Mixing for Some Non-Uniformly Hyperbolic
Systems

Carlangelo Liverani and Dalia Terhesiu

Abstract. In this work, we present an abstract framework that allows
to obtain mixing (and in some cases sharp mixing) rates for a reasonable
large class of invertible systems preserving an infinite measure. The exam-
ples explicitly considered are the invertible analogue of both Markov and
non-Markov unit interval maps. For these examples, in addition to opti-
mal results on mixing and rates of mixing in the infinite case, we obtain
results on the decay of correlation in the finite case of invertible non-
Markov maps, which, to our knowledge, were not previously addressed.
The proposed method consists of a combination of the framework of op-
erator renewal theory, as introduced in the context of dynamical systems
by Sarig (Invent Math 150:629–653, 2002), with the framework of func-
tion spaces of distributions developed in the recent years along the lines
of Blank et al. (Nonlinearity 15:1905–1973, 2001).

1. Introduction

At present there exist well developed theories that provide subexponential de-
cay of correlation for non-uniformly expanding maps, culminating with the
work of Sarig [41]. For systems with subexponential decay of correlations, pre-
vious approaches to [41] for estimating decay of correlations provided only
upper bounds. These previous approaches include the coupling method of
Young [45] (developed upon [44]), Birkhoff cones techniques adapted to gen-
eral Young towers by Maume-Deschamps [35] and the method of stochastic
perturbation developed by Liverani et al. [32]. Optimal results on the correla-
tion decay for the class of systems considered in [32] were proved later on by
Hu [30].

Among other statistical properties, the method of [45] provides poly-
nomial decay of correlation for non-uniformly expanding maps that can be
modeled by Young towers with polynomially decaying return time tails. The
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estimates obtained in [45] were shown to be optimal via the method of opera-
tor renewal theory introduced in [41] to obtain precise asymptotics and thus,
sharp mixing rates. The latter mentioned method is an extension of scalar
renewal theory from probability theory to dynamical systems. Later on, the
method of operator renewal theory was substantially extended and refined by
Gouëzel [21,22].

In recent work, Melbourne and Terhesiu [37] developed an operator re-
newal theory framework that recovers the classical notion of mixing for a very
large class of (non-invertible) dynamical systems with infinite measure. We re-
call that the notion of “mixing” for infinite measure preserving systems is very
delicate. In general, given a conservative ergodic infinite measure preserving
transformation (X, f, μ) with transfer operator L, we have

∫
Lnv dμ → 0, as

n → ∞, for all v ∈ L1(μ). Thus, to recover the classical notion of mixing, one
needs to find a sequence cn and a reasonably large class of functions v (within
L1) such that cn

∫
Lnv dμ → C

∫
v dμ for some C > 0.

In short, the framework of operator renewal theory has been cast (at least
implicitly) in a rather general Banach space setting (see, e.g. [21–23,37,41])
and has been successfully employed to study the statistical properties of both
finite and infinite measure preserving, non-invertible (eventually expanding)
systems. Our aim in this work is to carry out the method of operator renewal
theory, in the case of (finite and infinite measure preserving, but focusing on
the later) invertible systems. In such a case one would need Banach spaces
that allow a direct study of the spectral properties of the transfer operator
eliminating altogether, at least in the case of uniformly hyperbolic first return
map, the need of coding the system. While until recently it was unclear if
such Banach spaces existed at all, the last decade, starting with Blank et al.
[9], and reaching maturity with [4–7,11–14,17,20,24,25,34], has produced an
abundance of such spaces. Yet, all such Banach spaces are necessarily Banach
spaces of distributions, hence the need to explicitly cast all the renewal theory
arguments in a completely abstract form (for example, one must avoid implicit
assumptions like the Banach space being a subset of some Lp). In this work,
we provide a set of abstract conditions on dynamical systems (including the
non-invertible ones) and develop a corresponding renewal theory framework;
this set of hypotheses/conditions includes the existence of Banach spaces with
certain good properties. Moreover, we provide some examples to show that the
above-mentioned hypotheses are indeed checkable in non-trivial cases. Let us
explain the situation in more detail.

1.1. Operator Renewal Theory for Invertible Systems: The Need for New
Functions Spaces

Given a conservative (finite or infinite) measure preserving transformation
(X, f, μ), renewal theory is an efficient tool for the study of the long term be-
havior of the transfer operator L : L1(X) → L1(X). Fix Y ⊂ X with μ(Y ) ∈
(0,∞). Let ϕ : Y → Z

+ be the first return time ϕ(y) = inf{n ≥ 1 : fny ∈ Y }
(finite almost everywhere by conservativity). Let L : L1(X) → L1(X) denote
the transfer operator for f and define
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Tn = 1Y Ln1Y , n ≥ 0, Rn = 1Y Ln1{ϕ=n}, n ≥ 1. (1.1)

Thus Tn corresponds to general returns to Y and Rn corresponds to first re-
turns to Y . The relationship Tn =

∑n
j=1 Tn−jRj generalizes the notion of

scalar renewal sequences (see [8,18] and references therein). The rough idea
behind operator renewal theory is that the asymptotic behavior of the se-
quence Tn can be obtained via a good understanding of the sequence Rn. A
priori assumptions needed to deal with the sequence Rn include the uniform
hyperbolicity of the first return map F , along with good spectral properties of
the associated transfer operator.

In short, to carry out the method of operator renewal theory for invertible
maps f , we need to establish the required spectral results for the transfer oper-
ator associated with the uniformly hyperbolic first return map F . In particular,
a spectral gap is needed. Since it is well known that the transfer operators for
invertible systems do not have a spectral gap on any of the usual spaces (such
as Lp,W p,q or BV ), unconventional Banach spaces are necessary.

In Sect. 2 we will specify exactly which conditions are needed to develop
our theory and in the following sections we obtain several results under such
conditions. In Sect. 6 we provide examples for which the above conditions are
satisfied (which we prove in Sects. 7 and 8).

Notation. We use “big O” and � notation interchangeably, writing an = O(bn)
or an � bn as n → ∞ if there is a constant C > 0 such that an ≤ Cbn for all
n ≥ 1.

1.2. Mixing for Non-Invertible Infinite Measure Preserving Systems

The techniques in [37] are very different from the ones developed for the frame-
work of operator renewal sequences associated with finite measure [21,22,41].

In the infinite measure setting a crucial ingredient for the asymptotics of
renewal sequences is that μ(y ∈ Y : ϕ(y) > n) = �(n)n−β where � is slowly
varying1 and β ∈ (0, 1] (see Garsia and Lamperti [19] and Erickson [15] for
the setting of scalar renewal sequences). Under suitable assumptions on the
first return map Tϕ, [37] shows that for a (“sufficiently regular”) function v
supported on Y and a constant d0 = 1

π sin βπ = [Γ(β)Γ(1−β)]−1, the following
hold: (i) when β ∈ (1

2 , 1] then limn→∞ �(n)n1−βTnv = d0

∫
Y

v dμ, uniformly
on Y ; (ii) if β ∈ (0, 1

2 ] and v ≥ 0 then lim infn→∞ �(n)n1−βTnv = d0

∫
Y

v dμ,
pointwise on Y and (iii) if β ∈ (0, 1

2 ) then Tnv = O(�(n)n−β) uniformly on
Y . As shown in [37], the above results on Tn extend to similar results on Ln

associated with a large class of non-uniformly expanding systems preserving
an infinite measure.

The results for the case β < 1/2 are optimal under the general assumption
μ(ϕ > n) = �(n)n−β (see [19]). Under the additional assumption μ(ϕ = n) =
O(�(n)n−(β+1)), Gouëzel [23] obtains first order asymptotic for Ln for all β ∈
(0, 1).

1 We recall that a measurable function � : (0, ∞) → (0, ∞) is slowly varying if

limx→∞ �(λx)/�(x) = 1 for all λ > 0. Good examples of slowly varying functions are the
asymptotically constant functions and the logarithm.
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A typical example considered for the study of mixing/mixing rates via
renewal operator theory associated with, both, finite and infinite measure pre-
serving systems is the family of Pomeau–Manneville intermittency maps [40].
To fix notation, we recall the version studied by Liverani et al. [32]:

f0(x) =

{
x(1 + 2αxα), 0 ≤ x ≤ 1

2

2x − 1, 1
2 < x ≤ 1.

(1.2)

It is well known that the statistical properties for f0 can be studied by induc-
ing on a ‘good’ set Y inside (0, 1], such as the standard set Y = [1/2, 1]. In
particular, we recall that the inducing method can be used to show that there
exists a unique (up to scaling) σ-finite, absolutely continuous invariant mea-
sure μ0: finite if α < 1 and infinite if α ≥ 1 ; equivalently, writing β := 1/α, μ
is finite if β > 1 and infinite if β ≤ 1.

Let ϕ0 be the return time function to Y , rescale the f0 invariant measure
μ such that μ(Y ) = 1 and set Yj = {ϕ0 = j}. We recall that μ(Yj) ≤ Cj−(β+1)

and |(f j
0 )′(yj)|−1 ≤ Cj−(β+1), for all yj ∈ Yj (see [32]). Hence, μ(ϕ0 = n) =

O(n−(β+1)) and the assumption in Gouëzel [23] is satisfied, providing first
order asymptotic for Ln for all β ∈ (0, 1).

Apart from the above Markov example, the results in [23,37] apply also
to the class of non-Markovian interval maps, with indifferent fixed points stud-
ied in Zweimüller [46,47]. For simplicity, consider the following example that
satisfies the above-mentioned additional assumption in Gouëzel [23].

Define a map f0 : [0, 1] → [0, 1] that on [0, 1
2 ] agrees with the map defined

by (1.2). On (1/2, 1], we assume that there exists a finite partition into open
intervals Ip, p ≥ 1 such that f0 is C2 and strictly monotone in each Ip with
|f ′

0| > 2. Moreover, assume that f0 is topologically mixing. Obviously, the new
(not necessarily Markov) map f0 shares many of the properties of the map
defined by (1.2). In particular, there exists a unique (up to scaling) σ-finite,
absolutely continuous invariant measure μ: finite if α < 1 and infinite if α ≥ 1
; equivalently, writing β := 1/α, μ is finite if β > 1 and infinite if β ≤ 1.
Moreover, given that Y = [1/2, 1] , ϕ0 is the return time function of f0 to
Y and Yj = {ϕ0 = j}, one can easily see that |f ′

0(yj)|−1 ≤ Cj−(β+1), for all
yj ∈ Yj and that μ(ϕ0 = n) = O(n−(β+1)).

For more general classes of mixing (in the sense described above) of non-
invertible infinite measure preserving systems (including parabolic maps of
the complex plane) we refer to [37]. At present it is not entirely clear how to
deal with the infinite measure preserving setting of higher dimensional non-
uniformly expanding maps considered by Hu and Vaienti [31].

1.3. Mixing Rates in the Non-Invertible Case

For results on decay of correlation in the finite case of (1.2) we refer to [21,41]
and [30]. For the infinite case, the method developed in [37] yields mixing
rates and higher order asymptotics of Ln. The results in this work suggest
that mixing rates in the infinite case can be regarded as the analogue of the
decay of correlation in the finite case.
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As shown in [37], mixing rates in the infinite measure setting of f0 can be
obtained by exploiting a good enough expansion of the tail behavior μ0(ϕ0 >
n), where ϕ0 is the return time function to a ‘good’ set Y inside (0, 1], such as
the standard set Y = [1/2, 1].

Exploiting a modest expansion of the tail behavior μ0(ϕ0 > n) and good
properties of the induced map F0, [37] shows that for any Hölder or bounded
variation observable v : [0, 1] → R with v supported on some compact subset
of (0, 1), we have Lnv = d0n

β−1
∫

vdμ0 + O(n−(β−1/2)), uniformly on Y . As
noted in [37], this rate is optimal for β ≥ 3/4. Exploiting more properties of
the return function ϕ0 and of the induced map F0, improved mixing rates are
obtained in [43]. The higher order asymptotic of Ln in [37,43] is obtained via
the study of associated operator renewal sequences Tn : B → B, where B is
the space of Hölder or bounded variation functions.

1.4. Previous Results on Mixing/Mixing Rates for Invertible Systems

Adapting Bowen’s technique (see [10]), Melbourne [36] generalizes the results
on mixing in [37] to infinite measure preserving systems of the form (6.1)
described in Sect. 6. The method in [36] covers the class of diffeomorphisms
that can be modeled by Young towers, where it is explicitly assumed the
quotient of the first return map has a Gibbs–Markov structure. The results
on mixing in [36] could, in principle, be obtained from Theorem 1.1. However,
we limit ourselves to treating explicitly only two classes of examples: (i) one
covered in [36] [the example (6.5) described in Sect. 6]; (ii) one not covered
in [36] [the example (6.1) described in Sect. 6].

Under the additional assumption of exponential contraction along the
stable manifold, [36] generalizes the results on mixing rates in [37,43]. As men-
tioned in [36], without this further assumption, the employed method does not
provide satisfactory results on mixing rates. On the contrary, our Theorem 6.3
below provides optimal mixing rates for the infinite case of (6.1), where such
uniform contraction along the stable manifold is not required.

Results on (upper bounds for) the decay of correlation in the finite case
of (6.1) can be found in [39, Appendix B].

To our knowledge, there is no result in the literature that deals with
mixing/mixing rates in either the finite or infinite case for example (6.5).

1.5. Main Results and Outline of the Paper

In Sect. 2, we describe an abstract framework for operator renewal sequences
associated with non-uniformly hyperbolic systems based on the abstract hy-
pothesis (H1)–(H5), under which results on mixing and mixing rates hold. Our
result on mixing and mixing rates in this abstract framework are stated and
proved in Sect. 4 (see Theorem 4.3) and Sect. 5 (see Theorem 5.1). These
two results establish first and higher order asymptotics of the operator Tn un-
der the weak assumption (H4)(ii) on the operator Rn [with Tn, Rn as defined
in (1.1)]. This sort of assumption has not been exploited in previous renewal
theory frameworks. Equally important, the above-mentioned abstract results
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are obtained under a weak assumption (H2), which, we believe, can be verified
for interesting hyperbolic transformation (see Remark 2.1).

Unfortunately, to state exactly Theorem 4.3 and Theorem 5.1 requires to
establish a bit of notations. Yet, they imply immediately the following easily
stated results. Theorem 1.1 follows from Theorem 4.3 and Lemma 4.5, while
Theorem 1.2 follows from Theorem 5.1.

Theorem 1.1. Let M be a manifold and let f : M → M be a non-singular
transformation w.r.t Lebesgue (Riemannian) measure m. Suppose that there
exists there exists Y ⊂ M such that the first return map F = fϕ to Y is
uniformly hyperbolic (possibly with singularities).

Assume that F satisfies the functional analytic assumptions (H1), (H2)
(with �β > ε0), (H3), (H4)(ii) with β ∈ (1/2, 1) or (H4)(iii) with β ∈ (0, 1),
and (H5) stated in Sect. 2. For convenience we assume m(Y ) = 1.2 Let μ
be the invariant measure given by (H1)(iv) and d0 = [Γ(1 − β)Γ(β)]−1. If
v, w : M → R are Cα [with α as in (H1)(i)] observables supported on Y , then

lim
n→∞ �(n)n1−β

∫

M

v w ◦ fn dμ = d0

∫

M

v dμ

∫

M

w dμ.

Theorem 1.2. Assume that f and F = fϕ are defined as in Theorem 1.1.
Assume that F satisfies the functional analytic assumptions (H1), (H4)(ii) and
(H5) stated in Sect. 2. Let μ be the invariant measure given by (H1)(iv). Let
v, w : M → R be Cα [with α as in (H1)(i)] observables supported on Y . Then
the following hold for any ε2 > ε1 > ε0 [where ε0 is defined as in (H4)(ii)].

(i) Assume (H2) with � = 1. Suppose that μ(ϕ > n) = cn−β + H(n) for
some c > 0 and H(n) = O(n−2β). Then, there exists constants d1, . . . , dq

that depend only on the map f such that
∫

M

v w ◦ fn dμ

= (d0n
β−1+d1n

2β−2 + · · · + dqn
(q+1)(β−1))

∫

M

v dμ

∫

M

w dμ+En, (1.3)

where En = O(max{n−(β−ε2), n−(1−β+ε1)/2).
(ii) Assume (H2) with � = 1. Let β > 1/2 and suppose that μ(ϕ > n) =

cn−β + b(n) + H(n), for some c > 0, some function b such that nb(n)
has bounded variation and b(n) = O(n−2β), and some function H such
that H(n) = O(n−γ) with γ > 2. Then (1.3) holds with the improved rate
En = O(n−(β−ε1)).

(iii) Assume (H2) with �β > ε0. Suppose that μ(ϕ > n) = cn−β + H(n)
for some c > 0 and H(n) = O(n−2β). Then (1.3) holds with rate En =
O(max{n−(�β−ε2), n−(1−�β+ε1)/2}).

Given a specific map, the task of checking the hypothesis (H1–H5) is a
non-trivial one and, alone, can constitute the content of a paper. Nonetheless,
we claim that these hypotheses are reasonable and can be checked in a man-
ifold of relevant examples. To illustrate how to proceed and to convince the

2 This can always be achieved by rescaling the Riemannian metric.
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reader that the above claim has some substance, in Sects. 7 and 8 we prove that
the abstract hypothesis (H1)–(H5) are satisfied by systems of the form (6.1)
and (6.5) described in Sect. 6. The advantage of focusing on these examples is
that the technicalities are reduced to a bare minimum, which leads to simpler
arguments for the verification of (H1–H5). We believe that the arguments used
in Sects. 7 and 8 can be followed also by a reader unfamiliar with the theory
(still in part under construction) of Banach spaces adapted to hyperbolic dy-
namical systems. The price to pay for such a choice is that we do not exploit
the full force of (H4)(ii) under the weak form of (H2) (i.e. when � < 1). We
believe the latter to be necessary in investigating more complex systems, yet
further work is needed to substantiate such a claim (see also Remark 2.1).

Apart from the strong property of mixing for invertible infinite measure
preserving systems (along with mixing rates), the present framework allows us
to deal with the property of weak pointwise dual ergodicity under some weak
conditions (under which mixing cannot be proved). For this type of result we
refer to Sect. 4.4. The property of weak p.d.e. has been recently exploited by
Aaronson and Zweimüller [3]). As shown in this work, weak p.d.e. along with
regular variation of the first return time allows one to establish limit theorems
(such as Darling Kac) for infinite measure preserving systems that are not
pointwise dual ergodic (see Sect. 4.4 for details).

2. Operator Renewal Sequences for Non-Uniformly Hyperbolic
Systems

In this section, we present an abstract framework that suffices for concrete
results on mixing [for maps such as (6.1) and (6.5)], but general enough to
accommodate a large class of dynamical systems. In particular, it extends the
framework of [21,41] and respectively [37] for operator renewal sequences as-
sociated with non-uniformly expanding maps to the non-uniformly hyperbolic
context (see the explanatory Remark 2.5).

Let M be a manifold and f : M → M be a non-singular transforma-
tion w.r.t. Lebesgue (Riemannian) measure m. We require that there exists
Y ⊂ M such that the first return map F = fϕ to Y is uniformly hyperbolic
(possibly with singularities) and satisfies the functional analytic assumptions
listed below. For convenience we assume m(Y ) = 1, note that this can always
be achieved by rescaling the Riemannian metric.

Recall that the transfer operator R : L1(m) → L1(m) for the first return
map F : Y → Y is defined by duality on L1(m) via the formula

∫
Y

Rv w dm =∫
Y

v w ◦ F dm for all bounded and measurable w. See Remark 2.6 for a more
explicit description of the transfer operator R. We assume that there exist two
Banach spaces of distributions B, Bw supported on Y and some α, γ > 0 such
that
(H1) (i) Cα ⊂ B ⊂ Bw ⊂ (Cγ)′, where Cα = Cα(M,C) and (Cγ)′ is the dual

of Cγ(M,C).3

3 We will use systematically a “prime” to denote the topological dual.
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(ii) There exists C > 0 such that for all h ∈ B and φ ∈ Cα, hφ ∈ B and
‖hφ‖B ≤ C‖h‖B‖φ‖Cα .

(iii) The transfer operator R associated with F admits a continuous ex-
tension to B, which we still call R.

(iv) The operator R : B → B has a simple eigenvalue at 1 and the rest of
the spectrum is contained in a disk of radius less than 1.

We note that (H1)(i) should be understood in terms of the usual con-
vention (see, for instance, [13,24]) which we follow thereon: there exists con-
tinuous injective linear maps πi such that π1(Cα) ⊂ B, π2(B) ⊂ Bw and
π3(Bw) ⊂ (Cγ)′. We will often leave such maps implicit, unless this might
create confusion. In particular, we assume that π = π3 ◦ π2 ◦ π1 is the usual
embedding, i.e. for each h ∈ Cα and φ ∈ Cγ

(*) 〈π(h), φ〉 =
∫

Y
hφ dm.

Note that, via such identification, the Lebesgue measure m can be iden-
tified with the constant function one both in (Cγ)′ and in B [i.e. π(1) = m].
Also, by (H1)(i), B′ ⊂ (Cα)′, hence also the dual space can be naturally viewed
as a space of distributions. Next, note that B′ ⊃ (Cγ)′′ ⊃ Cγ � 1, thus we
have m ∈ B′ as well. Moreover, since m ∈ B and 〈1, φ〉 = 〈φ, 1〉 =

∫
φ dm, m

can be viewed as the element 1 of both spaces B and (Cγ)′.
By (H1), the spectral projection P associated with the eigenvalue 1 is

defined by P = limn→∞ Rn. Note that for each φ ∈ Cα,

〈Pφ, 1〉 = m(Pφ) = lim
n→∞ m(1 · Rnφ) = m(φ) = 〈φ, 1〉.

By (H1)(iv), there exits a unique μ ∈ B such that Rμ = μ and 〈μ, 1〉 = 1.
Thus, Pφ = μ〈φ, 1〉. Also R′m = m where R′ is dual operator acting on B′.
Note that for any φ ∈ Cγ ,

|〈μ, φ〉| = |〈P1, φ〉| =
∣
∣
∣ lim
n→∞ Rnm(φ)

∣
∣
∣ = lim

n→∞ |m(φ ◦ Fn)| ≤ |φ|∞.

That is, |〈μ, φ〉)| ≤ C|φ|∞, hence μ is a measure. Since, for each φ ≥ 0,

〈P1, φ〉 = lim
n→∞〈R1, φ〉 = lim

n→∞〈1, φ ◦ Fn〉 ≥ 0.

It follows that μ is a probability measure.
Summarizing the above, the eigenfunction associated with the eigenvalue

1 is an invariant probability measure for F and we can write P1 = μ.
Recall that ϕ : Y → N is the first return time to Y . Throughout, we

assume that
(H2) there exists C > 0, � ∈ (0, 1] such that, setting Yn = ϕ−1(n), for any

n ∈ N and h ∈ B we have 1Yn
h ∈ Bw and

|〈1Yn
h, 1〉| ≤ C‖h‖B μ(Yn)�.

Given that μ is the physical probability invariant measure for F , a finite
or σ finite measure μ0 for f can be obtained by the standard push forward
method4 (that goes back to [27]).

4 For any set A in the σ-algebra A, μ0(A) =
∑∞

n=0 μ({ϕ > n} ∩ f−nA).
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Remark 2.1. In this paper we will only discuss examples where � = 1. Nev-
ertheless, in view of [13] and [14], we expect the case � < 1, together with
hypothesis (H4)(ii), to be relevant for more general examples, e.g. symplectic
maps with discontinuities (at least in the case when Yn consists of a uniformly
bounded number of connected components).

In the infinite setting we require that
(H3) μ(y ∈ Y : ϕ(y) > n) = �(n)n−β where � is slowly varying and β ∈ [0, 1].

Remark 2.2. In this paper, we do not treat explicitly the finite measure case,
that is μ(y ∈ Y : ϕ(y) > n) = O(n−β), β > 1, but just notice that [21,
41, Theorem 1] formulated in terms of abstract Banach spaces holds in this
framework under (H4)(iii) below: see Sect. 4.3.

Let D = {z ∈ C : |z| < 1} and D̄ = {z ∈ C : |z| ≤ 1}. Given z ∈ D̄,
we define the perturbed transfer operator R(z) (acting on B,Bw) by R(z)v =
R(zϕv). Also, for each n ≥ 1, we define Rn (acting on B,Bw) by Rnv =
R(1{ϕ=n}v). We assume that at least one version of (H4) below holds:
(H4) (i) Rn : B → B are bounded operators satisfying

∑∞
n=1 ‖Rn‖B→B < ∞.

(ii) ‖Rn‖B→Bw
� cn, where

∑
j>n cn � n−(β−ε0) with β ∈ (1/2, 1) and

ε0 < max{2β − 1, 1 − β}.
(iii) ‖Rn‖B � n−(β+1).

Remark 2.3. Assumption (H4)(i) is not sufficient for obtaining mixing rates
in neither the finite nor the infinite measure case. In this paper we use (H4)(i)
along with the present abstract set up to establish weak pointwise dual er-
godicity for infinite measure preserving non-uniformly hyperbolic systems (see
Sect. 4.4).

Assumptions of the type (H4)(ii) have not been used in previous renewal
theory abstract frameworks. In this work we use this to obtain mixing rates
for infinite measure preserving systems satisfying (H3) (see Sects. 4 and 5).
We believe that a version of [21,41, Theorem 1] can be proved under the
weaker condition (H4)(ii) above (formulated as appropriate for the finite case).
However, the arguments are very different from the ones used in this paper
to deal with the infinite measure case. We postpone this problem to a future
note.

Assumption (H4)(iii) is standard in previous renewal theory frameworks
(see Remark 2.5).

Assumption (H4)(i) [or (H4)(ii)] ensures that R(z) =
∑∞

n=1 Rnzn is a
well-defined family of operators from B to B (or from B to Bw). Also, we
notice that (H1) and (H4)(i) [or (H4)(ii)] ensure that z �→ R(z), z ∈ D̄, is a
continuous family of bounded operators (analytic on D) from B to B (or from
B to Bw). Throughout we assume:
(H5) (i) There exist C > 0 and λ > 1 such that for all z ∈ D̄ and for all h ∈ B,

n ≥ 0,

‖R(z)nh‖Bw
≤ C|z|n‖h‖Bw

, ‖R(z)nh‖B ≤ Cλ−n|z|n‖h‖B + C|z|n‖h‖Bw
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(ii) For z ∈ D̄ \ {1}, the spectrum of R(z) : B → B does not contain 1.
In particular, we note that (H1), (H4)(i) (or (H4)(ii)) and (H5)(i) implies

that for z ∈ D, z �→ (I − R(z))−1 is an analytic family of bounded linear
operators from B to B (or from B to Bw).5 Define Tn : B → B for n ≥ 0 and
T (z) : B → B for z ∈ D̄ by setting T0 = I and

Tnv =
∞∑

k=1

∑

i1+···+ik=n

Ri1 . . . Rik
v, n ≥ 1; T (z) =

∞∑

n=0

Tnzn.

By a standard computation we have that T (z) = I + R(z)T (z) for all
z ∈ D. Since by (H5)(i), the spectrum of R(z) does not contain 1, for all
z ∈ D, we have the renewal equation

T (z) = (I − R(z))−1, z ∈ D.

By (H5)(ii), T (z) extends continuously to D̄\{1}. Moreover, on D, z → T (z) =∑∞
n=0 Tnzn is an analytic family of bounded linear operators from B to B (or

from B to Bw).

Remark 2.4. We notice that if L : L1(m) → L1(m) is the transfer operator
of the original transformation f : M → M , then the sequences of operators
Rn, Tn defined in this section coincide with the sequences of operators defined
in (1.1). For Rn this is simply the bare definition, while for Tn, it follows by
decomposing the itinerary of f : Y → Y into consecutive returns to Y (see,
for instance, [21]).

Remark 2.5. In the context of non-uniformly expanding maps preserving a fi-
nite invariant measure μ, the functional analytic assumption on F summarizes
as follows. It is assumed that there exists a Banach space B (for non-uniformly
expanding interval maps B is Hölder or BV) such that H1(ii) and (H5)(ii) hold
for R(1) and R(z), respectively, as operators on B. Moreover, one requires that
(H4)(ii) holds under the strong norm ‖.‖ on B for some β > 1 (see [21,41]). We
also refer to [39], where (H4)(ii) reduces to

∑∞
n=1

∑
j>n ‖Rj‖ < ∞. In the case

of non-uniformly expanding maps preserving an infinite invariant measure μ,
the assumption (H3) is crucial (see [37]).

Remark 2.6. Note that, using convention (*), one has the following. Identifying
a measure h that is absolutely continuous w.r.t m with its density (which will
be again called h), the space of measures absolutely continuous w.r.t. m can
be canonically identified with L1(Y,R,m). Restricting to L1(Y ) ⊂ (Cγ)′ and
writing DF := |detF |, we have Rh = h◦F−1|DF ◦F−1|−1. Thus, our operator
R on B is a extension of the usual transfer operator.

Remark 2.7. Recall that a measure ν is physical if there exists a measurable
set A, m(A) > 0, such that, for each continuous function φ, lim

n→∞
1
n

∑n−1
k=0 φ ◦

F k(x) = ν(φ), for each x ∈ A. In the present case, by hypotheses (H1)(iii)–(iv),

5 Indeed note, by (H5)(i), the spectral radii of R(z), z ∈ D, are strictly smaller than one and

that (I − R(z0))−1 − (I − R(z1))−1 = (z0 − z1)
∑∞

n=1

∑n
k=0 zk

0 zn−k−1
1 (I − R(z))−1Rn(I −

R(z))−1 which implies complex differentiability in D with respect to the relevant topologies.
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we have that limn→∞ 1
n

∑n−1
k=0 φ ◦ F k(x) = μ(φ) for m-almost all x. It follows

that μ is the unique physical measure of F . Indeed, suppose there exists B ⊂ Y
for which the last limit is larger than μ(φ) + ε, for some ε > 0 (the case of
the limit being smaller being treated similarly). Then, by Lusin theorem with
respect to m there exists a C1 function hε such that ‖1B −hε‖L1(m) < εm(B)

4|φ|∞ .
But then

μ(φ)m(hε) = lim
n→∞

1
n

n−1∑

k=0

m(hεφ ◦ F k) ≥ lim
n→∞

1
n

n−1∑

k=0

m(1Bφ ◦ F k) − εm(B)
4

≥ m(B)μ(φ) +
3εm(B)

4
≥ m(hε)μ(φ) +

εm(B)
2

which is a contradiction.

3. Asymptotics of T (z)

3.1. Asymptotic Results Under (H1), (H2) with � = 1, (H3), (H4)(i) and
(H5)(i)

Our aim in this section is to estimate ‖T (z)‖B, z ∈ D as z → 1 under the weak
hypothesis (H4)(i) and (H5)(i). Recall that (H5)(i) implies that the spectrum
of R(z) does not contain 1, for all z ∈ D.

As in the framework of [37,38], the asymptotics of T (z), z ∈ D̄ depends
essentially on the asymptotics of the eigenvalue λ(z) of R(z) defined in a
neighborhood of 1. (and Lemma 4.5)

Hypothesis (H1)(iv), (H4)(i) and (H5)(i) plus standard perturbation the-
ory imply that, for z in a neighbourhood of one, R(z) has a simple maximal
eigenvalue, hence a spectral decomposition of the type R(z) = λ(z)P (z)+Q̃(z)
where ‖Q̃(z)n‖B ≤ Cσn for all n ∈ N and some fixed C > 0 and σ < 1. More-
over, P (z) is a family of rank one projectors which, by (H4)(i) depend con-
tinuously on z. We can then write P (z) = m(z) ⊗ v(z), with m(z)(v(z)) = 1,
where m(1) is the Lebesgue measure and v(1) = μ is the invariant probability
measure. For z close enough to 1 we can normalize v(z) so that 〈v(z), 1〉 = 1,
hence

λ(z) = 〈R(z)v(z), 1〉. (3.1)

For z ∈ D̄ ∩ Bδ(1), R(z) = λ(z)P (z) + Q̃(z) = λ(z)P (z) + R(z)Q(z),
where Q(z) = I − P (z). Hence, for z ∈ D̄ ∩ Bδ(1), z �= 1,

T (z) = (1 − λ(z))−1P + (1 − λ(z))−1(P (z) − P ) + (I − R(z))−1Q(z). (3.2)

By (H1)(iv) and (H5)(i), there exists δ, C > 0 such that ‖(I−R(z))−1Q(z)
‖B ≤ C for z ∈ D̄∩Bδ(1), z �= 1. By (3.2), it remains to obtain the asymptotics
of (1−λ(z))−1 and (1−λ(z))−1(P (z)−P ). First, we note that (H4)(i), together
with standard perturbation theory, implies that as z → 1,

‖R(z) − R‖B → 0, ‖P (z) − P‖B → 0, |λ(z) − 1| → 0.
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The next result provides more precise information on the asymptotics of
λ(z)−1, generalizing the known result of [2] (see also [38, Lemma A.4]) to the
present abstract framework.

Lemma 3.1. Assume (H1), (H2) with � = 1, (H3), (H4)(i) and (H5)(i). Then
as u, θ → 0,

1 − λ(e−(u+iθ)) = Γ(1 − β)�(1/|u − iθ|)(u − iθ)β(1 + o(1)).

Proof. By (3.1), λ(z)v(z) = R(z)v(z), with λ(1) = 1 and v(1) = μ. Recalling
that Yn = {ϕ = n}, we can write

λ(z) = 〈R(z)v(z), 1〉 =
∑

n

zn〈R [1Yn
v(z)] , 1〉 =

∑

n

zn〈1Yn
v(z), 1〉

=
∑

n

zn〈1Yn
[v(z) − v(1)], 1〉 + μ(zϕ),

which yields

1 − λ(z) = μ(1 − zϕ) +
∑

n

(zn − 1)〈1Yn
[v(1) − v(z)], 1〉. (3.3)

As shown in [38, Proof of Lemma A.4], under (H3), the precise asymptotic
of μ(1− zϕ) on D̄ , a generalization of the more standard result for the precise
asymptotic of Ψ(z) on the unit circle (see for instance [19]), is given by

μ(1−e−(u+iθ)ϕ) = Γ(1−β)�(1/|u−iθ|)(u−iθ)β(1+o(1)), as u, θ → 0. (3.4)

On the other hand, by (H2) with � = 1, and Lemma 3.3,
∣
∣
∣
∣
∣

∑

n

(zn − 1)〈1Yn
[v(1) − v(z)], 1〉

∣
∣
∣
∣
∣
≤ C

∑

n

|zn − 1|μ(1Yn
)‖v(1) − v(z)‖B

= o(μ(|1 − zϕ|)).
�

Corollary 3.2. Assume the setting of Lemma 3.1. Then

T (e−u+iθ) = Γ(1 − β)−1�(1/|u − iθ|)−1(u − iθ)−βP + E, as u, θ → 0,

where ‖E‖B = o(�(1/|u − iθ|)−1|u − iθ|−β).

Proof. Recall ‖P (z) − P‖B → 0. Also, by (H1)(iv) and (H5)(i), there exists
δ, C > 0 such that ‖(I − R(z))−1Q(z)‖B ≤ C for z ∈ D̄ ∩ Bδ(1), z �= 1.

The conclusion follows from this together with (3.2) and Lemma 3.1. �

The result below was used in the proof of Lemma 3.1 and will be further
used in the next sections.

Lemma 3.3. Assume (H3). For each ε > 0, there exists C > 0 such that, for
all � ∈ (0, 1], for all u ≥ 0 and all θ ∈ (−π, π], we have

∑

k

|1 − e−k(u−iθ)|μ(Yk)� ≤ C|u − iθ|�β−(1−�)ε�(|u − iθ|−1).
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Moreover, for all h ≤ min{u, |θ|},
∑

k

|e−k(u−i(θ+h)) − e−k(u−iθ)|μ(Yk)� ≤ Ch�β−(1−�)ε�(1/h).

Proof. Let G(x) = μ(ϕ ≥ x). By (H3), we have, for each ε > 0,6
∑

k

|1 − e−k(u−iθ)|μ(Yk)� ≤
∑

k

|1 − e−k(u−iθ)|{G(k) − G(k + 1)}�

≤ C0

∑

k

min{1, k|u − iθ|}G(k)�−1[G(k) − G(k + 1)]

≤ C0 lim
L→∞

∫ L

0

min{1, �x�|u − iθ|}�x�(1−�)(β+ε)dG(x)

≤ C1|u − iθ| + C1 lim
L→∞

∫ L

0

min{1, x|u − iθ|}x(1−�)(β+ε)dG(x)

= C1|u − iθ|
∫ |u−iθ|−1

0

x−�β+(1−�)ε�(x)dx + C1|u − iθ|

+ C2 lim
L→∞

∫ L

|u−iθ|−1
x−�β−1+(1−�)ε�(x)dx + L(1−�)(β+ε)G(L)

≤ C1|u − iθ|�β−(1−�)ε�(|u − iθ|−1)
∫ 1

0

x−�β+(1−�)ε �(x|u − iθ|−1)
�(|u − iθ|−1)

dx

+ C2|u − iθ|�β−(1−�)ε�(|u − iθ|−1)
∫ ∞

1

x−�β−1+(1−�)ε �(x|u − iθ|−1)
�(|u − iθ|−1)

dx

+ C1|u − iθ|.
Note that, by Potter’s bound [8, Theorem 1.5.6], the integrand in both integral
are uniformly integrable, hence, by Lebesgue Dominate Convergence Theorem,

∑

k

|1 − e−k(u−iθ)|μ(Yk)� ≤ C|u − iθ|�β−(1−�)ε�(|u − iθ|−1).

The second part of the conclusion follows by a similar calculation. �

3.2. Asymptotic Under (H1), (H2), (H3), (H5) and (H4)(ii)

In this section, we obtain the asymptotic, along with explicit bounds on the
continuity, for ‖T (z)‖B→Bw

, for z in a neighborhood of 1 (see Corollary 3.6
and Proposition 3.8) under (H2) with � ≤ 1 and (H4)(ii). To complete the
picture of the asymptotic of T (z), z ∈ D we then estimate the derivative of
T (z) for z outside a neighborhood of 1 (see Corollary 3.11); for this estimate
the full force of (H5)(ii) is required.

Reasoning as in [29, Remark 4], we note that (H1)(iv), (H4)(ii) and
(H5)(i) imply that, for z in a neighborhood of 1, the spectrum of R(z) has
a maximal simple isolated eigenvalue λ(z) with λ(1) = 1. We have the follow-
ing analogue of Lemma 3.1.

6 By �x� we designate the integer part of x.



192 C. Liverani and D. Terhesiu Ann. Henri Poincaré

Lemma 3.4. Assume (H1), (H3), (H4)(ii) and (H5)(i). Assume (H2) with �β >
ε0. Then for any and ε1 ∈ (ε0, 1) the following holds as u, θ → 0:

1 − λ(e−(u+iθ))

= Γ(1 − β)�(1/|u − iθ|)(u − iθ)β + O(|u − iθ|β+�β−ε1�(1/|u − iθ|)).
Reasoning as in the proof of Lemma 3.1, the conclusion of Lemma 3.4 will

follow once we estimate the second term of (3.3). Since this estimate requires
dealing with ‖v(z) − v(1)‖B→Bw

we need the following result from [29].

Lemma 3.5. Assume (H1), (H4)(ii) and (H5)(i). Then there exists δ0 > 0 such
that the following holds for each η ∈ (0, 1) for all e−u+iθ ∈ Bδ0(1) , for all
h ≤ min{|θ|, u} and for some Cη > 0

‖P (e−u+iθ) − P‖B→Bw
≤ Cη|u − iθ|η(β−ε0),

‖P (e−u+iθ)) − P (e−u+i(θ−h))‖B→Bw
≤ Cηhη(β−ε0).

Moreover, the same estimates hold for the families Q(z) and v(z).

Proof. By (H4)(ii) and arguing as in the proof of Lemma 3.3, we have

‖R(e−u+iθ) − R(1)‖B→Bw

≤
∑

k

|1 − e−k(u−iθ)|‖Rk‖B→Bw

≤ C

∫ |u−iθ|−1

0

x−(β−ε0)dx + C|u − iθ|β−ε0 ≤ C1|u − iθ|β−ε0 . (3.5)

We can then apply [29, Corollary 1]. Indeed, (H5)(i) correspond to hypotheses
(2,3) in [29]. The above estimate yields hypothesis (5) in [29], while hypothesis
(4) in [29] is redundant in the present case as explained by [29, Remark 6].

By [29, Corollary 1], there exists δ0 > 0 such that for each η ∈ (0, 1) and
for all e−u+iθ ∈ Bδ0(1),7

‖P (e−u+iθ) − P‖B→Bw
≤ Cη|u − iθ|η(β−ε0).

The estimate for ‖P (e−u+iθ)) − P (e−u+i(θ−h))‖B→Bw
follows similarly. The

estimates for the family Q(z) are an immediate consequence. For completeness,
we provide the argument for estimating ‖v(e−u+iθ)−v(1)‖B→Bw

. The estimate
for ‖v(e−u+iθ)) − v(e−u+i(θ−h))‖B→Bw

follows similarly. Note that

|m(e−u+iθ)(1) − m(1)(1)| = |〈P (e−u+iθ)1 − P (1)1, 1〉| ≤ Cη|u − iθ|η(β−ε0).

Thus,
‖v(e−u+iθ) − v(1)‖Bw

=
∥
∥
∥
∥

1
m(e−u+iθ)(1)

P (e−u+iθ)1 − 1
m(1)(1)

P (1)1
∥
∥
∥
∥

Bw

≤ Cη|u − iθ|η(β−ε0).

�
7 In fact, working a bit more (see [29, Remark 5]) one has

‖P (e−u+iθ) − P‖B→Bw ≤ C|u − iθ|β−ε0 ln |u − iθ|−1.
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We can now complete

Proof of Lemma 3.4. By Eq. (3.3),

1 − λ(e−u+iθ) =
∑

n

zn〈1Yn
[v(e−u+iθ) − v(1)], 1〉 + μ(1 − e(−u+iθ)ϕ).

By Lemma 3.5, for all u, |θ| < δ0 we have ‖v(e−u+iθ) − v(1)‖B→Bw
≤ Cη|u −

iθ|η(β−ε0) for any η ∈ (0, 1). By (H2),
∑

n zn〈1Yn
[v(e−u+iθ) − v(1)], 1〉 ≤

C‖v(e−u+iθ)−v(1)‖B→Bw

∑
k |1−e−k(u−iθ)|μ(Yk)�. By assumption, �β > ε0.

By Lemma 3.3,
∑

k |1 − e−k(u−iθ)|μ(Yk)� ≤ C|u − iθ|�β−(1−�)ε�(|u − iθ|−1).
Putting these together, we obtain that as u, θ → 0, 1 − λ(e−u+iθ) =

d0�(1/|u − iθ|)(u − iθ)β + O(|u − iθ|η(β−ε0)+�β−(1−�)ε�(1/|u − iθ|)). The con-
clusion follows by taking η close to 1, ε small enough and recalling ε1 > ε0.

�
The result below is an analogue of Corollary 3.2 under (H4)(ii).

Corollary 3.6. Assume the setting of Lemma 3.4. Choose δ0 > 0 such that
Lemma 3.5 holds. Then, for all u, |θ| < δ0, for any � such that �β > ε0 and
for any ε1 > ε0,

T (e−u+iθ) = Γ(1 − β)−1�(1/|u − iθ|)−1(u − iθ)−βP + E,

where E is an bounded operator in B such that ‖E‖B→Bw
= O(|u − iθ

|−(1−�)β−ε1).

Proof. Recall (3.2). By Lemma 3.5, ‖P (e−u+iθ) − P‖B→Bw
= O(|u − iθ|β−ε1),

for any ε1 > ε0. Also, by (H1)(iv) and (H5)(i), there exists C > 0 such that
‖ (I − R(z))Q(z))−1 ‖B ≤ C for z ∈ D̄∩Bδ(1), where δ > 0 is such that λ(z) is
simple for z ∈ D̄∩Bδ(1). The conclusion follows from these estimates together
with (3.2) and Lemma 3.4. �

Remark 3.7. From the above short proof, we also have that under (H1), (H2),
(H3), (H4)(ii) and (H5)(i), ‖T (e−u+iθ)‖B � �(1/|u − iθ|)−1(u − iθ)−β , for all
u, |θ| < δ, where δ > 0 is such that λ(e−u+iθ) is well defined for e−u+iθ ∈
D̄ ∩ Bδ(1).

The next result provides explicit bounds on the continuity of T (z), for z
a neighborhood of 1.

Proposition 3.8. Assume (H1), (H3), (H4)(ii) and (H5)(i). Assume (H2) with
�β > ε0. Choose δ0 > 0 such that Lemma 3.5 holds. Then the following hold
for any ε1 > ε0, for all u, |θ| < δ0 and for all h ≤ min{|θ|, u}.

(i) |λ(e−u+iθ) − λ(e−u+i(θ−h))| � hβ�(1/h) + h�β−ε1 |u − iθ|β�(1/|u − iθ).
(ii) Also,

‖T (e−u+iθ) − T (e−u+i(θ−h))‖B→Bw

� �(1/|u − iθ|)−2�(1/h)hβ |u − iθ|−2β

+ �(1/|u − iθ|)−1h�β−ε1 |u − iθ|−β .
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Proof. (i) Put Δλ = λ(e−u+iθ) − λ(e−u+i(θ−h)). By (3.3),

Δλ = μ(e(−u+iθ)ϕ − e(−u+i(θ−h))ϕ)

+
∑

n

(e(−u+iθ)n − 1)〈1Yn
[v(e−u+iθ) − v(e−u+i(θ−h))], 1〉

+
∑

n

(e(−u+iθ)n − e(−u+i(θ−h))n)〈1Yn
[v(e−u+i(θ−h)) − v(1)], 1〉.

Note that μ(e(−u+iθ)ϕ − e(−u+i(θ−h))ϕ) =
∫ ∞
0

e−(u−iθ)x(eihx − 1)dG(x),
where G(x) = μ(ϕ ≤ x). Under (H3), the estimate | ∫ ∞

0
e−(u−iθ)x(eihx −

1)dG(x)| � hβ�(1/h) follows by the argument used in the proof of [19, Lemma
3.3.2].

Next, by the argument used in the proof of Lemma 3.4, which relies
on Lemma 3.5 and Lemma 3.3 with �β > ε0, and using the fact that h ≤
min{|θ|, u}, we obtain that for any ε1 > ε0,

∣
∣
∣
∣
∣

∑

n

(e(−u+iθ)n − 1)〈1Yn
[v(e−u+iθ) − v(e−u+i(θ−h))], 1〉

∣
∣
∣
∣
∣

� hβ−ε1 |u − iθ|�β−ε1�(1/|u − iθ|)
� h�β−ε1 |u − iθ|β−ε1�(1/|u − iθ|).

Proceeding similarly,
∣
∣
∣
∣
∣

∑

n

(e(−u+iθ)n − e(−u+i(θ−h))n)〈1Yn
[v(e−u+i(θ−h)) − v(1)], 1〉

∣
∣
∣
∣
∣

� h�β−ε1�(1/h)|u − iθ|β−ε1 .

Since ε1 > ε0 is arbitrary, item (i) follows by putting together the above
estimates.

(ii) In the first part, we proceed as in the proof of [43, Corollary 6.2] and
adapt the last part of the mentioned proof to deal with the complication that
here we require estimates in ‖.‖B→Bw

.
Let ΔT = T (eueiθ) − T (e−uei(θ−h)). Set

Δλ,P = (1 − λ(e−ueiθ))−1P (e−ueiθ) − (1 − λ(e−uei(θ−h)))−1P (e−uei(θ−h))

and

ΔQ = (I − R(e−ueiθ)Q(e−ueiθ))−1Q(e−ueiθ)

−(I − R(e−uei(θ−h))Q(e−uei(θ−h)))−1Q(e−uei(θ−h)).

By (3.2) and the fact that (I − R(z))−1Q(z) = (I − R(z)Q(z))−1Q(z), ΔT =
Δλ,P + ΔQ. Next,

‖Δλ,P ‖B→Bw
� ‖(1 − λ(e−ueiθ))−1(P (e−ueiθ) − P (e−uei(θ−h)))‖B→Bw

+‖P (e−uei(θ−h))
(
(1 − λ(e−ueiθ))−1 − (1 − λ(e−uei(θ−h)))−1

)
‖B→Bw

.

By Lemma 3.4, for u, |θ| < δ0 we have |(1−λ(e−u+iθ))−1| � �(1/|u−iθ|)−1|u−
iθ|−β . This together with Lemma 3.5 yields ‖(1 − λ(e−ueiθ))−1(P (e−ueiθ) −
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P (e−uei(θ−h)))‖B→Bw
� �(1/|u − iθ|)−1hβ−ε1 |u − iθ|−β . By (i) of the present

Proposition and Lemma 3.4,
∥
∥
∥
∥

P (e−uei(θ−h))(λ(e−uei(θ−h)) − λ(e−ueiθ))
((1 − λ(e−ueiθ))(1 − λ(e−uei(θ−h))

∥
∥
∥
∥

B→Bw

� �(1/|u − iθ|)−2�(1/h)hβ |u − iθ|−2β

+ �(1/|u − iθ|)−1h�β−ε1 |u − iθ|−β .

Thus,

‖Δλ,P ‖B→Bw

� �(1/|u − iθ|)−1h�β−ε1 |u − iθ|−β + �(1/|u − iθ|)−2�(1/h)hβ |u − iθ|−2β .

To estimate ‖ΔQ‖B→Bw
, we compute that

‖ΔQ‖B→Bw
� ‖D(u, θ, h)‖B→Bw

+ ‖E(u, θ, h)‖B→Bw

where D(u, θ, h) = (I − R(e−ueiθ)Q(e−ueiθ))−1F (u, θ, h) and E(u, θ, h) =
(I − R(e−ueiθ)Q(e−ueiθ))−1G(u, θ, h) with

F (u, θ, h) = (Q(e−ueiθ) − Q(e−uei(θ−h)))

= (Q(e−ueiθ) − Q(e−uei(θ−h)))(Q(e−ueiθ) + Q(e−uei(θ−h))).

and

G(u, θ, h) = [(RQ)(e−ueiθ) − (RQ)(e−ueiθ−h)]

×(I − R(e−uei(θ−h))Q(e−uei(θ−h)))−1Q(e−uei(θ−h))

By (H1)(iv) and (H5)(i), there exists C > 0 such that for z ∈ D̄ \ Bδ0(1),
‖(I − R(z)Q(z))−1‖B ≤ C. So, max{‖F (u, θ, h)‖B, ‖G(u, θ, h)‖B} ≤ C for
some constant C > 0. This together with Lemma 3.5 implies that for any
ε1 > ε0, there exists Cε1 > 0 such that

max{‖F (u, θ, h)‖Bw
, ‖G(u, θ, h)‖Bw

} ≤ Cε1h
β−ε1 (3.6)

Recall that ‖(R(z)Q(z))n‖B ≤ Cσn and ‖(R(z)Q(z))n‖Bw
≤ C. Let A(z),

z ∈ D̄∩ Bδ0(1) be a family of operators well defined in both spaces B and Bw.
Using arguments in smiler to the ones in [29], these inequalities imply that for
any v ∈ B,

‖(I − R(z)Q(z))−1A(z)v‖Bw
≤

n−1∑

k=0

‖(R(z)Q(z))kA(z)v‖Bw

+ ‖(R(z)Q(z))n(I − R(z)Q(z))−1A(z)v‖B
≤ nC‖A(z)v‖Bw

+ Cσn‖A(z)v‖B, (3.7)

Taking n = [(β − ε0) log(h) log(1/σ)] (so σn � hβ−ε0 and n � log(1/h)),
applying the above inequality to A = F, G and using (3.6), we obtain that for
any ε1 > ε0

‖ΔQ‖B→Bw
� hβ−ε0 log(1/h) � hβ−ε1 .
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Item ii) follows by putting together the estimates for ‖Δλ,P ‖B→Bw
and ‖ΔQ

‖B→Bw
. �

Remark 3.9. In the case β = 1, the scheme above can also be combined with
the arguments in [37], providing the desired asymptotics of T (z), z ∈ S1 and
as such, first and higher order theory for the coefficients Tn of T (z), z ∈ D̄. To
simplify the exposition in what follows we omit the case β = 1.

The bounds provided by Proposition 3.8 do not allow one to apply di-
rectly the argument of [37] to estimate of the coefficients of T (z), z ∈ D̄: the
arguments in [37] require that ‖T (e−u+iθ) − T (e−u+i(θ−h))‖B→Bw

� �(1/|u −
iθ|)−2�(1/h)hβ |u − iθ|−2β . However, as explained in Sect. 4, the modified ver-
sion of these arguments in [43] applies. In this sense, we note that

Proposition 3.10. Assume (H4)(ii). Write z = e−(u+iθ). Then for all u > 0,
∥
∥
∥
∥

d
dθ

(R(z))
∥
∥
∥
∥

B→Bw

� uβ−ε0−1.

Proof. The result follows by the argument used in the proof of [43, Proposition
4.6]. �

As a consequence we have

Corollary 3.11. Assume (H1), (H3), (H4)(ii) and (H5). Write z = e−(u+iθ).
Choose δ0 such that Lemma 3.5 holds. Let θ such that |θ| > δ0. Then for all
u > 0,

∥
∥
∥
∥

d
dθ

(I − R(e−ueiθ))−1

∥
∥
∥
∥

B→Bw

� uβ−ε0−1 log(1/u).

Proof. By (H5) there exists δ > 0 and some constant C > 0 such that ‖(I −
R(e−ueiθ))−1‖B ≤ C, for all u > 0 and |θ| > δ. This together with Remark 3.7
ensures that ‖(I − R(e−ueiθ))−1‖B ≤ C, for all u > 0 and |θ| > δ0.

Note that d
dθ (I −R(z))−1 = (I −R(z))−1 d

dθR(z)(I −R(z))−1. Let h ∈ B.
Proceeding as in (3.7) and using (H5) (i), we obtain that there exists some
constant C > 0 such that

∥
∥
∥
∥

d
dθ

(I − R(z))−1h

∥
∥
∥
∥

Bw

≤ nC

∥
∥
∥
∥

d
dθ

R(z)(I − R(z))−1h

∥
∥
∥
∥

Bw

+ Cλ−n

∥
∥
∥
∥

d
dθ

R(z)(I − R(z))−1h

∥
∥
∥
∥

B
.

Using the fact that ‖Rn‖B ≤ C, for all n ≥ 1 and some constant C > 0, it is
easy to check that

∥
∥ d

dθ (R(z))
∥
∥

B→Bw
� u−2. Take n = [3 log(u) log(1/λ)−1];

with this choice so λ−n � u3 and n � log(1/u). Hence, λ−n‖ d
dθR(z)(I −

R(z))−1h‖B � u and by Proposition 3.10, ‖ d
dθ R(z)(I − R(z))−1h‖Bw

�
uβ−ε0−1 log(1/u). The conclusion follows from these estimates and the last
displayed inequality. �
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4. First Order Asymptotic of Tn: Mixing

Given the asymptotic behaviors of T (z) : B → Bw for z ∈ D̄ ∩ Bδ(1) and of
d
dθ (T (z)) for z ∈ D̄ \ Bδ(1) described in Sect. 3, the arguments used in [43]
(a modified version of [37]) for estimating the coefficients Tn of T (z), z ∈ D̄

apply. We briefly recall the main steps.
By, for instance, the argument of [37, Corollary 4.2],

Lemma 4.1. Let A(z) be a function from D̄ to some Banach space B̃, continuous
on D̄\{1} and analytic on D. For u ≥ 0, θ ∈ [−π, π), write z = e−u+iθ. Assume
that as z → 1,

|A(e−u+iθ)| � |A(eiθ)| � |θ|−γ ,

for some γ ∈ (0, 1). Then the Fourier coefficients An coincide with the Taylor
coefficients Ân, that is

An = Ân =
1
2π

∫ π

−π

A(eiθ)e−inθ dθ

Corollary 4.2. Assume (H1), (H2), (H3), (H4)(ii) and (H5). Then, the Taylor
coefficients of T (z) : B → Bw, z ∈ D coincide with the Fourier coefficients of
T (z) : B → Bw, z ∈ S1.

Proof. This is an immediate consequence of Lemma 4.1 and Corollary 3.6. �

By Corollary 4.2, first and higher order of Tn can be obtained by esti-
mating either the Fourier or Taylor coefficients of T (z), z ∈ D̄.

4.1. Mixing Under (H4)(ii)

Theorem 4.3. Assume (H1), (H3), (H4)(ii) and (H5). Assume (H2) with �β >
ε0 and β ∈ (1/2, 1). Let d0 = [Γ(1 − β)Γ(β)]−1. Then, as n → ∞,

sup
v∈B,‖v‖B=1

‖�(n)n1−βTnv − d0Pv‖Bw
→ 0.

Remark 4.4. The above result generalizes [37, Theorem 2.1] to the abstract
class of transformations described in Sect. 2.

Proof. We argue as in [43, Proof of Theorem 3.3].
Let Γ1/u = {e−ueiθ : −π ≤ θ < π} with e−u = e−1/n, n ≥ 1. Let

b ∈ (0, δ0n), with δ0 as in Lemma 3.5. Let A = [−π,−δ0] ∪ [δ0, π].
With the above specified, we proceed to estimate Tn.
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Tn =
1
2π

∫

Γn

T (z)
zn+1

dz =
e

2π

∫ π

−π

T (e−1/neiθ)e−inθdθ

=
e

2π

(∫ b/n

−b/n

T (e−1/neiθ)e−inθdθ

+
∫ −b/n

−δ0

T (e−1/neiθ)e−inθdθ

+
∫ δ0

b/n

T (e−1/neiθ)e−inθdθ +
∫

A

T (e−1/neiθ)e−inθdθ
)

=
e

2π

∫ b/n

−b/n

T (e−1/neiθ)e−inθdθ +
e

2π
(Iδ0 + I−δ0 + IA). (4.1)

By [43, Proposition 4.6],

lim
b→∞

lim
n→∞ n1−β�(n)Γ(1 − β)

∫ b/n

−b/n

T (e−1/neiθ)e−inθ dθ =
2π

e

1
Γ(β)

P.

Hence, the conclusion will follow once we show that n1−β�(n)IA = o(1) and
limb→∞ limn→∞ n1−β�(n)(Iδ0 + I−δ0) = 0.

We first estimate IA. Compute that

IA =
i

n

∫

A

T (e−1/neiθ)
d
dθ

(e−inθ) dθ =
1
in

∫

A

d
dθ

(T (e−1/neiθ))e−inθdθ + E(n),

where E(n) � n−1(‖T (e−1/neiεb/n)‖B→Bw
+ ‖T (e−1/neiπ)‖B→Bw

). By Corol-
lary 3.6 and (H5), ‖T (e−1/neiθ)‖B→Bw

= O(1) for all θ ∈ A. Hence E(n) =
O(n−1). Note that for θ ∈ A, |θ| > δ0 and thus Corollary 3.11 applies. It
follows that ‖ d

dθ (T (z))‖B→Bw
� n1−β+ε0 log n. Putting these together,

|IA| � n−(β−ε0) log n + n−1 � n−(β−ε0) log n. (4.2)

Since ε0 < β∗ , where β∗ < max{2β − 1, 1 − β}, we have n1−β�(n)|IA| �
n−(2β−1−ε0)�(n) log n = o(1).

Next, we estimate Iδ0 . The estimate for I−δ0 follows by a similar argu-
ment. Recall b ∈ (0, nδ0). Proceeding as in the proof of [37, Lemma 5.1] (see
also [19]), we write

Iδ0 =
∫ δ0

b/n

T (e−1/neiθ)e−inθ dθ = −
∫ δ0+π/n

(b+π)/n

T (e−1/nei(θ−π/n))e−inθ dθ.

Hence

2Iδ0 =
∫ δ0

b/n

T (e−1/neiθ)e−inθ dθ −
∫ δ0+π/n

(b+π)/n

T (e−1/nei(θ−π/n))e−inθ dθ

= I1 + I2 + I3,
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where

I1 =
∫ δ0+π/n

δ0

T (e−1/nei(θ−π/n))e−inθ dθ,

I2 =
∫ (b+π)/n

b/n

T (e−1/nei(θ−π/n))e−inθ dθ,

I3 =
∫ δ0

(b+π)/n

{T (e−1/neiθ) − T (e−1/nei(θ−π/n))}e−inθ dθ.

We already know ‖T (e−1/neiθ)‖B = O(1) for all |θ| > δ0. Thus, |I1| �
1/n. By Corollary 3.6, ‖T (e−ueiθ)‖B→Bw

� �(1/|u− iθ|)−1|u− iθ|−β . This to-
gether with standard calculations implies that |I2| � �(n)−1n−(1−β)b−(β−γ∗),
for any 0 < γ∗ < β. Putting the above together, n1−β�(n)Iδ = n1−β�(n)I3 +
O(b−(β−γ∗)).

Next, we estimate I3. By Proposition 3.8, for all θ ∈ ((b + π)/n, δ0) and
for any ε1 ∈ (ε0, 2β − 1), we have

‖T (e−1/neiθ) − T (e−1/nei(θ−π/n))‖B→Bw

� �(n)�(n/|1 − inθ|)−2n−β | 1
n

− iθ|−2β

+ �(n/|1 − inθ|)−1n−(�β−ε1)| 1
n

− iθ|−β .

Hence,

|I3| � n−β�(n)
∫ δ0

(b+π)/n

�(n/|1 − inθ|)−2θ−2β dθ

+ n−(�β−ε1)

∫ δ0

(b+π)/n

�(n/|1 − inθ|)−1θ−β dθ

� �(n)−1n−β

∫ δ0

(b+π)/n

θ−2β �(n)2

�(n/|1 − inθ|)2 dθ

+ �(n)−1n−(�β−ε1)

∫ δ0

(b+π)/n

θ−β �(n)
�(n/|1 − inθ|) dθ

= �(n)−1n−βI3,1 + �(n)−1n−(�β−ε1)I3,2. (4.3)

Using Potter’s bounds (see, for instance, [8]), for any δ1 > 0,

I3,1 = n2β−1

∫ nδ0

b+π

σ−2β �(n)2

�(n/|1 − iσ|)2 dσ � n(2β−1)

∫ nδ0

b+π

σ−(2β−δ1) dσ.

Taking 0 < δ1 < 2β − 1,

�(n)−1n−β |I3,1| � �(n)−1n−βn2β−1b2β−δ1−1 = �(n)−1nβ−1b−(2β−1−δ1).

Finally, we estimate I3,2. Using Potter’s bounds, we obtain that for any
δ2 > 0 and δ3 > 0,
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|I3,2| �
∫ δ0

(b+π)/n

θ−β
(
(θn)δ2 + (θn)−δ3

)
dθ � nδ2

∫ δ0

(b+π)/n

θ−(β+δ3) dθ.

Hence, �(n)−1n−(�β−ε1)|I3,2| � �(n)−1n−(�β−ε1−δ3) for arbitrary small δ2.
Putting together the estimates for I1, I2 and I3 (using (4.3) and the es-

timates for �(n)−1n−β |I3,1| and �(n)−1n−(�β−ε1)|I3,2|), we obtain that for ar-
bitrary small δ1, δ3,

|Iδ0 | � nβ−1�(n)−1b−(2β−1−δ1) + n−(�β−ε1−δ3)�(n)−1. (4.4)

Since �β > ε0 and ε0 < ε1 < β∗ with β∗ < max{2β − 1, 1 − β},

|Iδ0 | � nβ−1�(n)−1b−(2β−1−δ1).

Hence, n1−β�(n)|Iδ| � b−(2β−1−δ1) and thus, limb→∞ limn→∞ n1−β�(n)Iδ0 =
0. By a similar argument, limb→∞ limn→∞ n1−β�(n)|I−δ0 | = 0, ending the
proof. �

4.2. Mixing Under (H4)(iii) in the Infinite Case with β ∈ (0, 1)

We recall that under hypotheses (H1), (H2) with � = 1, (H3), (H4)(i) and
(H5)(i), Lemma 3.1 gives precise information about the asymptotic behavior of
1−λ(z). Repeating the argument used in the proof of Lemma 3.1 with (H4)(iii)
instead of (H4)(i) and (H2) with � ∈ (0, 1], we obtain that the conclusion of
Lemma 3.1 under (H4)(iii) and (H2) with � ∈ (0, 1]. Given this, the arguments
in [23] carry over with no modification, yielding

Lemma 4.5 (A consequence of [23, Theorem 1.4]). Assume that (H1), (H2) with
� ∈ (0, 1] and (H5) hold. Let β ∈ (0, 1) and suppose that (H3) and (H4)(iii)
hold. Then,

sup
v∈B,‖v‖B=1

‖�(n)n1−βTnv − d0Pv‖B → 0.

We can now complete

Proof of Theorem 1.1. If (H4)(ii) with β ∈ (1/2, 1) holds then the conclusion
follows from Theorem 4.3 and Remark 2.4. If (H4)(iii) holds with β ∈ (0, 1)
then the conclusion follows from Lemma 4.5. For completeness, we recall the
standard argument.

Recall P1 = h, P1 = μ and Pv = h〈v, 1〉. Assumption (H1)(ii) ensures
that for any Cα observable v : M → R, v supported on Y , we have P (vh) =
(
∫

M
v dμ)h. Also, by Theorem 4.3 and Lemma 4.5, ‖�(n)n1−β1Y Ln(vh) −

d0Pvh‖B→Bw
= o(1). Putting these together,

�(n)n1−β

∫

M

v w ◦ fn dμ = �(n)n1−β〈Ln(vh), w〉 = d0〈P (vh), w〉 + o(1)

= d0

(∫

M

v dμ
)
〈h,w〉dm + o(1)

= d0

∫

M

v dμ

∫

M

w dμ + o(1).

�
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4.3. Polynomial Decay of Correlation Under (H4)(iii) in the Finite Case
with β > 1

We note that in the present framework under (H1), (H4)(iii) with β > 1
and (H5), the abstract [21, Theorem 1] holds. As a consequence of this result
and using the argument used in the proof of Theorem 1.1 with Theorem 4.3
replaced by [21, Theorem 1], one has

Corollary 4.6 (A consequence of [21, Theorem 1]). Assume (H1) and (H5).
Suppose that μ(ϕ > n) = O(n−β) with β > 1 and assume that (H4)(iii) holds.
Let c0n

−(β+1) =
∑

k>n μ(ϕ = k). If v, w : M → R are Cα [with α as in
(H1)(i)] observables supported on Y , then

lim
n→∞ n1−β

∣
∣
∣

∫

M

v w ◦ fn dμ −
∫

M

v dμ

∫

M

w dμ
∣
∣
∣ = c0

∫

M

v dμ

∫

M

w dμ.

4.4. Weak Pointwise Dual Ergodicity Under Weak Assumptions

As mentioned in the introduction, the present framework allows us to deal
with the property of weak pointwise dual ergodicity (weak p.d.e.) under some
weak conditions (under which mixing cannot be proved). Below, we provide a
result that allows one to check weak p.d.e. in the framework of Sect. 2 without
assuming (H5) and only requiring (H4)(i) and (H5)(i).

We recall that a conservative ergodic measure preserving transforma-
tion (X,A, f, μ) is pointwise dual ergodic (p.d.e.) if there exists some positive
sequence an such that limn→∞ a−1

n

∑n
j=0 Ljv =

∫
X

v dμ, a.e. on X for all
v ∈ L1(μ). The property of weak p.d.e. has been recently exploited and de-
fined in [3]. As noted in [1], if f is invertible and μ(X) = ∞ then f cannot be
p.d.e., but it can be weak p.d.e.; that is, there exists some positive sequence
an such that

(i) a−1
n

∑n
j=0 Ljv →ν

∫
X

v dμ as n → ∞, for all v ∈ L1(μ). Here, →ν stands
for convergence in measure for any finite measure ν � μ.

(ii) lim supn→∞ a−1
n

∑n
j=0 Ljv =

∫
X

v dμ, a.e. on X for all v ∈ L1(μ).

As shown in [3, Proposition 3.1], weak p.d.e. for infinite c.e.m. p.t. can be
established as soon as items (i) and (ii) above are shown to hold for v = 1Y for
some Y ∈ A with 0 < μ(Y ) < ∞. Moreover, as noted elsewhere (see [3] and
reference therein), item (i) follows as soon as the above-mentioned convergence
in measure is established for μ|Y for some Y ∈ A with 0 < μ(Y ) < ∞.

In the framework of Sect. 2, the following holds result for original trans-
formations f with first return map F : Y → Y :

Proposition 4.7. Assume (H1), (H2), (H3), (H4)(i) and (H5)(i). Furthermore,
set an = �(n)n1−βd0 and suppose that supY a−1

n

∑n
j=0 Lj1Y → 1, mod μ, as

n → ∞. Then f is weak p.d.e.

Proof. Recall that under (H1), (H2), (H3) , (H4)(i) and (H5)(i), Eq. (3.2)
holds. By argument used in Corollary 3.2,

‖T (e−u) − d0�(1/|u)−1u−βP‖B → 0, as u → 0.
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Let ν be a σ-finite measure on M such that ν is supported on Y and ν|Y is a
probability measure in B. Recall P1 = μ and μ(Y ) = 1.

By assumption, supY �(n)n1−βd0

∑n
j=0 Lj1Y = O(1), as n → ∞. Thus,

the argument used in the proof of [38, Lemma 3.5]( a Karamata Tauberian
theorem for positive operators that generalizes Karamata Tauberian theorem
for scalar sequences [8, Proposition 4.2]) applies. It follows that

lim
n→∞ �(n)n1−β

n−1∑

j=0

Lj∗
ν(1Y ) = d0.

In particular, the above equation holds for ν = μ. So, �(n)n1−βd0

∑n−1
j=0 Lj∗

μ(1Y ) → 1, as n → ∞ and item (i) (in the definition of weak p.d.e.) for the
function 1Y follows. �

5. Higher Order Asymptotic of Tn: Mixing Rates

As already mentioned in the introduction, mixing rates for non-invertible infi-
nite measure preserving systems have been obtained in [37,43]. The results in
these works depend heavily on a higher order expansion of the tail probability
μ(ϕ > n). The arguments in [37,43] generalize to set up of Sect. 2 and (in an
obvious notation), we state

Theorem 5.1. Assume (H1), (H3), (H4)(ii) and (H5). Let q = max{j ≥ 0 :
(j + 1)β − j > 0}. Then there exist real constants d0, . . . , dq (depending only
on the map f),8 such that the following hold for any ε2 > ε1 > ε0:

(i) Assume (H2) with � = 1. Suppose that μ(ϕ > n) = cn−β + H(n) for
some c > 0 and H(n) = O(n−2β).

Then,

Tn = (d0n
β−1 + d1n

2β−2 + · · · + dqn
(q+1)(β−1))P + D,

where ‖D‖B→Bw
= O(max{n−(β−ε2), n−(1−β+ε1)/2}).

(ii) Assume (H2) with � = 1. Let β > 1/2 and suppose that μ(ϕ > n) =
cn−β + b(n) + H(n), for some c > 0, some function b such that nb(n)
has bounded variation and b(n) = O(n−2β), and some function H such
that H(n) = O(n−γ) with γ > 2. Then (i) holds with the improved rate
‖D‖B→Bw

= O(n−(β−ε1)).
(iii) Suppose that μ(ϕ > n) = cn−β + H(n) for some c > 0 and H(n) =

O(n−2β). Assume (H2) with �β > ε0. Then (i) holds with the rate
‖D‖B→Bw

= O(max{n−(�β−ε2), n−(1−�β+ε1)/2}).

Remark 5.2. We note that items (i), (ii) correspond to the results on mix-
ing rates for non-invertible systems provided by [37, Theorem 9.1] and [43,
Theorem 3.1], respectively. If instead of (H4)(ii) we assume (H4)(iii) in the
statement of Theorem 5.1 (with the rest of the assumptions unchanged) then
item (i) holds with the improved rate ‖D‖B→Bw

= O(n−(β−1/2)) and item (ii)

8 For the precise form of these constants we refer to in [37, Theoreme 9.1] and [43, Theoreme
1.1].
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holds with the improved rate ‖D‖B→Bw
= O(n−β). Under (H4)(iii), no proof

is required: the arguments used in the proofs of [37, Theorem 9.1] and [43,
Theorem 3.1] simply go through.

Proof. Below we provide the argument for item (iii). Item (i) is proved during
the proof for item (iii). Item (ii) follows by the argument used in the proof
of [43, Theoreme 1.1] (essentially, by [43, Remark 2.7] and the argument used
there); while the estimates obtained in the proof of [43, Theoreme 1.1] change
due to the present assumption (H4)(ii), the argument goes almost word by
word.

Choose δ0 such that Lemma 3.5 holds. Let b ∈ (0, δn), n ≥ 1. Also,
let IA, Iδ0 and I−δ0 be defined as in the proof of Theorem 4.3. Hence, equa-
tion (4.1) holds and we can write

Tn =
e

2π

∫ b/n

−b/n

T (e−1/neiθ)e−inθ dθ +
e

2π
(Iδ0 + I−δ0 + IA).

Let ε0 be as defined in assumption (H4)(ii). By Eq. (4.2), |IA| � n−(β−ε0)

log n.
By Eq. (4.4), for any δ1, δ3 > 0 and ε1 > ε0

|Iδ0 + I−δ0 | � nβ−1�(n)−1b−(2β−1−δ1) + n−(�β−ε1−δ3)�(n)−1.

Next, we estimate e
2π

∫ b/n

−b/n
T (e−1/neiθ)e−inθ dθ. Under (H2) with � ≤ 1

and (H4) (ii), Lemma 3.4 gives that |(1 − λ((e−1/neiθ))−1| � | 1
n − iθ|−β . This

together with Corollary 3.5 implies that for any ε1 > ε0,

‖(1 − λ(e−1/neiθ))−1(P (e−1/neiθ) − P )‖B→Bw
� | 1

n
− iθ|−(β−ε1).

Recall b ∈ (0, δ0n), n ≥ 1. By (H1) and (H5), ‖(I −R(e−1/neiθ))−1Q(e−1/neiθ)
‖B = O(1), for all |θ| < b/n. This together with the above displayed equation
and Eq. (3.2) yield

∣
∣
∣

∫ b/n

−b/n

(T (e−1/neiθ) − (1 − λ(e−1/neiθ))−1P )e−inθ dθ
∣
∣
∣

�
∫ b/n

0

| 1
n − iθ|−(β−ε1)

�(1/|1/n − iθ|) dθ

� nβ−ε1−1b1−ε1−β .

By equation (3.3) and Lemma 3.4,

(1 − λ(e−1/neiθ))−1 = μ(1 − e−(u+iθ)ϕ)−1 + O(| 1
n

− iθ|β�−ε1).

Recall q = max{j ≥ 0 : (j + 1)β − j > 0}. The above displayed equation
together with the argument used in the proof of [37, Proposition 9.5] [which
exploits exactly the same assumption on μ(ϕ > n) stated in item (i) of the
lemma],
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∫ b/n

−b/n

(1 − λ(e−1/neiθ))−1e−inθ dθ = d0n
β−1 + d1n

2β−2 + · · · + dqn
(q+1)(β−1)

+
∫ b/n

−b/n

(∣
∣
∣
∣
1
n

− iθ

∣
∣
∣
∣

β�−ε1
)

.

where d0, . . . , dq are real constants, depending only on the map f (again, for
the precise form of these constants we refer to [37, Theorem 9.1]).

Putting together the last two displayed equations,
∫ b/n

−b/n

T (e−1/neiθ)e−inθ dθ = d0n
β−1 + d1n

2β−2 + · · · + dqn
(q+1)(β−1)

+O(b(1−β�+ε1)n−(1−β�+ε1) + O(n(β−ε1−1)b1−ε1−β).

Recall ε1 > ε0. Take b = n1/2. So,
∫ b/n

−b/n

T (e−1/neiθ)e−inθ dθ

= d0n
β−1 + d1n

2β−2 + · · · + dqn
(q+1)(β−1) + O(n−(1−β�+ε1)/2).

To conclude, note that |Iδ0 + I−δ0 + IA| � n−1/2 + n−(�β−ε1−δ3)�(n)−1. �

At this end we note that Theorem 1.2 follows by the argument used in
the proof of Theorem 1.1 (with Theorem 4.3 replaced by Theorem 5.1) and
that:

Remark 5.3. Continuing on Remark 5.2, we note that if instead of (H4)(ii)
we assume (H4)(iii) in the statement of Theorem 5.1 (with the rest of the
assumptions unchanged) then En = O(n−(β−1/2)) if the assumption on μ(ϕ >
n) stated in Theorem 5.1, (i) holds and En = O(n−β) if the assumption on
μ(ϕ > n) stated in Theorem 5.1, (ii) holds.

6. The Abstract Framework Applied to Invertible Systems
(Markov and Non-Markov Examples)

In this section we present some simple, but non-trivial, examples to which our
abstract framework easily applies.

The examples considered are far from being the most general (see Remark
6.6 for details). Nevertheless, they are fairly representative for both classes of
invertible systems: (i) preserving and (ii) lacking a Markov structure. The
properties needed to apply the general theory are established in: (a) Sect. 7 in
the Markov case; (b) Sect. 8 in the non-Markov case.

Let f : X → X be an invertible map and F : Y → Y its first return map,
for some Y ⊂ X. As already mentioned we use ϕ to designate the return time
to Y and we set Yn = {x ∈ Y : ϕ(x) = n}.

The strongest restriction in our examples is given by the requirement that
there exists a globally smooth stable foliation. In principle, our methods could
be applied to more general cases, but this requires a case by case analysis that
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does not belong to the present paper. The requirement that f preserves a global
smooth foliation means that there exists a smooth map H(x, y) = (H(x, y), y),
which can be normalized so that H(x, 0) = x, such that

f ◦ H(x, y) = (H(f0(x), g(x, y)), g(x, y)) = H(f0(x), g(x, y)),

for some functions f0, g. Indeed, the fibre through the point (x, 0) can be seen
as the graph of the function H(x, ·) over the y axis and is mapped by f to the
fibre through the point (f0(x), 0). In other words, the map f is conjugated to
the skew product

H
−1 ◦ f ◦ H(x, y) = (f0(x), g(x, y)).

Accordingly, in the following, we will consider only maps of the latter form.

Example 1: a set of Markov maps. Consider f : [0, 1]2 → [0, 1]2,

f(x, y) = (f0(x), g(x, y)), (6.1)

where f0 is the map defined in (1.2). We require that g(x, [0, 1]) ⊂ [0, 1/2] for
x ∈ [0, 1/2) and g(x, [0, 1]) ⊂ [1/2, 1] for x ∈ (1/2, 1], also there exists σ > 0
such that |∂yg| > σ. This implies that f is an invertible map. Also we assume
that g is C2 when restricted to A1 = (0, 1/2)× [0, 1] and A2 = (1/2, 1)× [0, 1],
also we assume ‖∂xg‖L∞ < ∞. Setting Ri = f(Ai), it is possible that the
closure of R1 ∪ R2 is strictly smaller than [0, 1]2. However, f preserves the
Markov structure of the map f0. In particular, the preimage of a vertical
segment {x} × [0, 1] consists of two vertical segments of the same type.

Let Y = (1/2, 1] × [0, 1] and F be the first return map to such a set.
Obviously, it will have the form F (x, y) = (F0(x), G(x, y)) where F0 is the
return map of f0 to (1/2, 1]. Clearly ϕ(x, y) = ϕ0(x) where ϕ0 is the return
time of the map f0. We assume that, where defined,

|∂yG| ≤ λ−1 < 1. (6.2)

This implies that the stable foliation consists of the vertical segments. Also,
we require that there exists K0 > 0 such that

|∂xG|
|F ′

0|
≤ K0. (6.3)

This implies that the cone C = {(a, b) ∈ R
2 : |b| ≤ K|a|} is invariant for DF ,

provided K ≥ (1−λ−1)−1K0. This readily implies the existence of an unstable
foliation and that it is made by curves that are graphs over the x coordinate.

We note that condition (6.2) does not require that f is uniformly contract-
ing in the vertical direction. If, for example, |∂yg|∞ ≤ 1 and supx∈[1/2,1],y |∂y

g(x, y)| < 1, then one can easily check that (6.2) and (6.3) are satisfied.
Indeed, (6.2) follows trivially. As for condition (6.3), we note that setting

fn = (fn
0 , gn), we have that gn+1(x, y) = g(fn

0 (x), gn(x, y)). Hence, for all
(x, y) ∈ Y ,

∂xgn+1(x, y) = (∂xg)(xn, yn) · (fn
0 )′(x) + ∂yg(xn, yn) · ∂xgn(x, y)

= (fn
0 )′(x)

n∑

k=0

(∂xg)(xk, yk)
n∏

j=k+1

(∂yg)(xj , yj)
f ′
0(xj)

,
(6.4)
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where (xn, yn) = fn(x, y). The above displayed equation together with the
distortion properties of F0 = fϕ0

0 and the fact that |∂yg|∞ ≤ 1, yields

|∂xG(x, y)|
|F ′

0(x)| ≤ C

ϕ0(x)−1∑

k=0

ϕ0(x)−1∏

j=k+1

|(∂yg)(xj , yj)|
f ′
0(xj)

≤ C

ϕ0(x)−1∑

k=0

(ϕ0(x) − k)−1−β

ϕ0(x)−1∏

j=k+1

|(∂yg)(xk, yk)| ≤ C.

The above argument shows that there exists a large class of systems
satisfying hypotheses (6.2) and (6.3). For such systems the return map F is
uniformly hyperbolic, it has a Markov structure with countably many inter-
val of smoothness, but neither the derivative nor its inverse is, in general,
uniformly bounded. Moreover, any SRB invariant measure for f (i.e. any in-
variant measure absolutely continue with respect to Lebesgue once restricted
to the unstable direction) has a marginal in the x direction that is absolutely
continuous with respect to Lebesgue and must be an invariant measure of f0.
Hence, there exists a unique (up to scaling) σ-finite, absolutely continuous (on
the unstable direction) invariant measure μ: finite if α ≤ 1 and infinite if α ≥ 1
(equivalently, writing β := 1/α, μ is finite if β > 1 and infinite if β ≤ 1).

Example 2: a set of non-Markov maps. In this case we take f0 to be the one-
dimensional topologically mixing map described at the end of Sect. 1.2. We
recall that: (i) f0 agrees with the definition in the previous example in [0, 1

2 ];
(ii) there exists a finite partition of (1/2, 1] into open intervals Ip, p ≥ 1 such
that f0 is C2 and strictly monotone in each Ip; (iii) |f ′

0| > 2 in (1/2, 1]; iv) f0

is topologically mixing. Define f : [0, 1]2 → [0, 1]2,

f(x, y) = (f0(x), g(x, y)), (6.5)

where g ∈ C2 in (0, 1/2) × [0, 1] and in each Ip × [0, 1]. As in Example 1, we
ask 0 < σ ≤ |∂yg| ≤ 1 and that g is such that f is invertible.

Set Y = (1/2, 1] × [0, 1] and let F be the first return map to such a set.
So, we can write F (x, y) = (F0(x), G(x, y)) where F0 is the return map of f0

to (1/2, 1]. It turns out that, to treat this case, conditions of the type (6.2)
and (6.3), are not sufficient. Indeed, if the contraction in the stable direction
is much slower than the expansion, then it is unclear what is the reasonable
result one should expect. To make things simple, we ask that the contraction
overbeats the expansion. We assume that there exists C > 0 such that, for
almost all (x, y) ∈ [0, 1]2,

|∂yG(x, y)| ≤ Cϕ(x, y)−1|F ′
0|−1. (6.6)

Remark 6.1. We do not claim that condition (6.6) is optimal, yet it is not very
strong either. In particular, note that if we assume the rather strong condition
‖∂yg‖∞ ≤ λ−1 < 1, then the above condition reads λ−ϕ ≤ Cϕ−2−β which is
obviously satisfied.9

9 Recall that F ′
0 ∼ ϕ1+β .
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In the following we use (6.6) to obtain certain estimates that will be
needed in Sect. 8. In some sense these are the properties that are really needed
to apply our results, yet we find condition (6.6) more appealing to state and
simpler to check.

Note that, using the notation of Example 1, ∂yG(x, y) =
∏ϕ(x,y)−1

k=0

∂yg(xk, yk). It follows that

∂2
yG =

ϕ−1∑

k=0

∂2
yg(xk, yk)

∂yg(xk, yk)

k−1∏

j=0

∂yg(xj , yj)
ϕ−1∏

j=0

∂yg(xk, yk).

We cannot take much advantage of the first product, so we bound it by one.
The second product yields ∂yG and, using (6.6), we have

‖F ′
0∂yG‖∞ + ‖F ′

0∂
2
yG‖∞ ≤ C (6.7)

Moreover, differentiating (6.4), we have

∂y

(
∂xG

F ′
0

)

=
ϕ−1∑

k=0

∂y∂xg(xk, yk)∂yG

ϕ−1∏

j=k+1

f ′
0(xj)−1

+
ϕ−1∑

k=0

∂xg(xk, yk)
ϕ−1∑

l=k+1

∂2
yg(xl, yl)

∂yg(xl, yl)

ϕ−1∏

j=k+1

∂yg(xj , yj)
f ′
0(xj)

·
l−1∏

s=0

∂yg(xs, ys).

Recall that
∏ϕ−1

j=k+1[f
′
0(xj)]−1 ≤ C(ϕ − k)−1−β , while the products of the ∂yg

can be used to recover ∂yG. Using such facts in the above expression, we obtain

∥
∥
∥
∥F ′

0∂y
∂xG

F ′
0

(x, ·)
∥
∥
∥
∥

C0

≤ C. (6.8)

In Sects. 7 and 8 we verify hypothesis (H1–H5) for the above class of
examples. By Theorem 1.1 we have then the following result

Proposition 6.2. Assume the setting of maps f of the form (6.1) or (6.5)
described in Sect. 6 with β ∈ (0, 1). Let v, w : [0, 1]2 → R be C1+q, q ∈
( 1+β
2+β , 1], observables supported on Y . Then, there exists a positive constant d0

(depending only on the map f) such that

lim
n→∞ n1−β

∫

[0,1]2
v w ◦ fn dμ = d0

∫

[0,1]2
v dμ

∫

[0,1]2
w dμ.

As already mentioned in Sect. 1.3, mixing rates for maps of the form (1.2)
depend heavily on a good expansion of the tail behavior. A good tail expan-
sion for the invertible map f of the form (6.1) described in Sect. 6 follows
immediately from the tail expansion for the map (1.2) (see Sect. 7.8).
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On the other hand, we note that at present it is not clear how to obtain the
required tail expansion for the return time associated with non-uniformly ex-
panding, non-Markov maps10 such as the one described at the end of Sect. 1.2.
For precisely this reason [although all our hypotheses (H1)–(H5) are shown to
hold for the non-Markov map of the form (6.5) described in Sect. 6], the next
result provides mixing rates just for the case of (6.1). More precisely, by Re-
mark 5.3 we obtain

Proposition 6.3. Assume the setting of maps f of the form (6.1) described in
Sect. 6 with β ∈ (1/2, 1). Let v, w : [0, 1]2 → R be C1 observables supported on
Y . Set q = max{j ≥ 0 : (j + 1)β − j > 0}. Then, there exist real constants
d0, . . . , dq (depending only on the map f) such that

∫

[0,1]2
v w ◦ fn dμ = (d0n

β−1 + d1n
2β−2 + · · · + dqn

(q+1)(β−1))

×
∫

[0,1]2
v dμ

∫

[0,1]2
w dμ + O(n−β).

Remark 6.4. The above mixing rate is optimal and matches the results on
mixing rates in [37,43] for maps of the form (1.2).

In the finite measure setting we note that [21, Theorem 1.1] together with
the verification of our hypothesis (H1) and (H5) and (H4)(iii) (see Sect. 4.3),
yields

Proposition 6.5. Assume the setting of maps f of the form (6.1) or (6.5)
described in Sect. 6 with β > 1. Let v, w : [0, 1]2 → R be C1+q, q ∈ ( 1+β

2+β , 1],
observables supported on Y . Then

lim
n→∞ n1−β

∣
∣
∣
∣
∣

∫

[0,1]2
v w ◦ fn dμ −

∫

[0,1]2
v dμ

∫

[0,1]2
w dμ,dμ

∣
∣
∣
∣
∣

= c0

∫

[0,1]2
v dμ

∫

[0,1]2
w dμ

where c0n
−β+1 =

∑
k>n μ(Yk) for n large enough.

Remark 6.6. As already mentioned, the above classes of examples are not the
most general possible even in the present restrictive case in which a smooth
global stable foliation is present. They have been chosen as a reasonable com-
promise between generality and simplicity of exposition, with the aim of show-
ing how the general theory developed in the next section can be applied to
concrete examples. Yet, here is a word on more general possibilities. First of
all the case in which the global is only Hölder should be amenable to similar
treatment (only now one does not want to perform the change of variable to
obtain a skew product). Next, note that there is no reason why the contract-
ing direction should be one dimensional, maps with higher dimensional stable

10 In [37,43] tail expansions of the return time for the one-dimensional version of (6.1)
are obtained by exploiting the fact that the induced invariant density is C�, � > 0. In the
one-dimensional version of our example (6.5), we only know that the density is BV .
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manifolds can be treated in exactly the same manner. Also, one can consider
the case in which the expanding direction is higher dimensional. The Markov
case would be essentially identical. In the finite partition non-Markov case,
one could model the Banach space on higher dimensional bounded variation
functions or spaces of generalized variation (see [28,42]). Note however that, as
already mentioned, this poses non-trivial problems already in the expanding
case. Provided some appropriate technical condition on the image of the parti-
tion is satisfied, the case of (not necessarily Markov) countable partitions can
also be treated. But in the latter case, one would have to use the arguments
put forward in [33,42] to prove the relevant spectral properties for the return
map.

7. Banach Space Estimates in the Markov Case

To employ our general framework, we must introduce an appropriate Banach
space in which to analyze the transfer operators. This is the purpose of the
present section.

More precisely, let f : [0, 1]2 → [0, 1]2 be the map (6.1) described in
Sect. 6. Let Y0 = Y = (1/2, 1] × [0, 1] and let ϕ : Y → N be the return time to
Y . Let F = fϕ be the first return map. We show that F satisfies (H1–H5) for
some appropriate function spaces B,Bw constructed in analogy with [13]. We
start by describing the spaces B,Bw.

7.1. Notation and Definitions

It is convenient to introduce the notation Fn = (Fn
0 , Gn), for all n ∈ N. The

properties of F can be understood in terms of the map F0 = fϕ0
0 , where ϕ0 is

the first return time of f0 to X0 = (1/2, 1]. For j ≥ 1, set (xj−1, xj ] = Xj =
{ϕ0 = j}. For j ≥ 1 set Yj = Xj × [0, 1]. So, Yj = {ϕ = j}. For all j ≥ 1, let
f jYj = Y ′

j = {(x, y) ∈ X0 × [0, 1] : y ∈ Kj(x)} for some collection of intervals
Kj(x) ⊂ [0, 1]. Hence, we can write F = f j : Yj → Y ′

j .
For n ≥ 0, let Yn = {Yn,j} be the corresponding partition of Y associated

with (Y, Fn). Since F is invertible, we have F−n({Y ′
n,j}) = {Yn,j}. The map

Fn is smooth in the interior of each element of the partition Yn.

Admissible leaves: We start by introducing a set of admissible leaves Σ. Such
leaves consists of full vertical segments W . A full vertical segment W (x), based
at the point x ∈ [0, 1], is given by Gx(t) = (x, t), t ∈ [0, 1]. The definition of the
set of admissible leaves differs with the one in [13] and allows for a considerable
simplification of the arguments. Yet, it is possible only due to the (very special)
fact that the map is a skew product.

Uniform contraction/expansion, distortion properties: Given the simple struc-
ture of the stable leaves it is convenient to introduce the projection on the
second co-ordinate π : [0, 1]2 → [0, 1] defined by π(x, y) = y.

By hypothesis (6.2) we can chose λ > 1 such that:
• If x, y ∈ W , W ∈ Σ then |π(Fnx) − π(Fny)| ≤ Cλ−n.
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For any (x, y) ∈ Y ∈ Yn, |det(DFn(x, y))| = (Fn
0 )′(x) · ∂yGn(y).

It is well known that there exists C > 0 such that, for each (x, y), (x′, y′) ∈
Y0, ∣

∣
∣
|F ′

0(x)|
|F ′

0(x′)| − 1
∣
∣
∣ ≤ C|x − x′|. (7.1)

In fact, more is true,
∣
∣
∣

d
dx

(F ′
0(x))−1

∣
∣
∣ ≤ C|F ′

0(x)−1|. (7.2)

Test functions: In what follows, for W ∈ Σ and q ≤ 1 we denote by Cq(W,C)
the Banach space of complex valued functions on W with Hölder exponent q
and norm

|φ|Cq(W,C) = sup
z∈W

|ϕ(z)| + sup
z,w∈W

|ϕ(z) − ϕ(w)|
|z − w|q .

Note that Cq(W (x),C) is naturally isomorphic to Cq([0, 1],C) via the identifi-
cation of the domain given by t → (x, t). In the following we will use implicitly
such an identification, in particular for φ ∈ Cq([0, 1],C) we still call φ the
corresponding function in Cq(W (x),C) and we write

∫

W (x)

hφ dm =
∫ 1

0

h(x, t)φ(t)dt.

Remark 7.1. Note that we use m both for the one-dimensional and two-
dimensional Lebesgue measure. Also, in the following we will often suppress
dm as this does not create any confusion.

Definition of the norms: Given h ∈ C1(Y,C), define the weak norm by

‖h‖Bw
:= sup

W∈Σ
sup

|φ|C1(W,C)≤1

∫

W

hφ dm. (7.3)

Given q ∈ [0, 1) we define the strong stable norm by

‖h‖s := sup
W∈Σ

sup
|φ|Cq(W,C)≤1

∫

W

hφ dm. (7.4)

Finally, we define the strong unstable norm by

‖h‖u := C−1 sup
x,y∈[1/2,1]

sup
|φ|C1≤1

1
|x − y|

∣
∣
∣
∣
∣

∫

W (x)

hφ dm −
∫

W (y)

hφ dm

∣
∣
∣
∣
∣
. (7.5)

Finally, the strong norm is defined by ‖h‖B = ‖h‖s + ‖h‖u.

Definition of the Banach spaces: We will see briefly that ‖h‖Bw
+ ‖h‖B ≤

C‖h‖C1 . We then define B to be the completion of C1 in the strong norm and
Bw to be the completion in the weak norm.

The spaces B and Bw defined above are simplified versions of functional
space defined in [13] [adapted to the setting of (6.1)]. The main difference
in the present setting is the simpler definition of admissible leaves and the
absence of a control on short leaves. The latter is necessary and possible since
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the discontinuities do not satisfy any transversality condition while, instead,
they enjoy some form of Markov structure.

7.2. Embedding Properties: Verifying (H1)(i)

The next result shows that (H1)(i) holds for α = γ = 1 and B,Bw as described
above.

Lemma 7.2. For all q ∈ (0, 1) in definition (7.4) we have11

C1 ⊂ B ⊂ Bw ⊂ (C1)′.

Moreover, the unit ball of B is relatively compact in Bw.

Proof. By the definition of the norms it follows that ‖ · ‖Bw
≤ ‖ · ‖s ≤ ‖ · ‖B,

from this the inclusion B ⊂ Bw follows. For each h ∈ C1 we have
∣
∣
∣
∣
∣

∫

W (x)

hφ −
∫

W (y)

hφ

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

∫ 1

0

h(x, t)φ(t)dy −
∫ 1

0

h(y, t)φ(t)
∣
∣
∣
∣

≤ C‖h‖C1‖φ‖C0 |x − y|.
The above implies ‖h‖u ≤ C‖h‖C1 . Thus C1 ⊂ B.

The other inclusion is an immediate consequence of Proposition 7.3, an
analogue of [13, Lemma 3.3]. The injectivity follows from the injectivity of the
of the standard inclusion of C1 in (C1)′.

Finally, we want to show that the unit ball B1 of B has compact closure.
To this end it suffices to show that it is totally bounded, i.e. for each ε > 0, it
can be covered by finitely many ε-balls in the Bw norm.

For each ε > 0 let Nε = {xi = iε}ε−1

i=1 ⊂ [0, 1]. Hence, for each admissible
leaf W and test function φ there exists xi ∈ Nε such that

∣
∣
∣
∣
∣

∫

W

hφ −
∫

W (xi)

hφ

∣
∣
∣
∣
∣
≤ ε‖h‖u.

On the other hand, by Ascoli–Arzela, for each ε there exist finitely many
{φi}Mε

i=1 ⊂ C1([0, 1],C) which is Cq ε-dense in the unit ball of C1. Accordingly,
for each φ such that ‖φ‖C1 ≤ 1 we have that there exists φj such that

∣
∣
∣
∣
∣

∫

W

hφ −
∫

W (xi)

hφj

∣
∣
∣
∣
∣
≤ Cε‖h‖ ‖φ‖C1 . (7.6)

Let Kε : Bw → R
NεMε be defined by [Kε(h)]i,j =

∫
W (xi)

hφj . Clearly Kε is a
continuous map. Since the image of the unit ball B1 under Kε is contained in
{a ∈ R

NεMε : |aij | ≤ 1}, it has a compact closure hence there exists finitely
many ak ∈ R

NεMε such that the sets

Uk,ε =

{

h ∈ B :

∣
∣
∣
∣
∣

∫

W (xi)

hφj − ak
i,j

∣
∣
∣
∣
∣
≤ ε, ∀i, j

}

11 Here the inclusion is meant to signify a continuous embedding of Banach spaces.
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cover B1. To conclude note that if h1, h2 ∈ Uk,ε, then, by (7.6), there exists
i, j such that

∣
∣
∣
∣

∫

W

(h1 − h2)φ
∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣

∫

W (xi)

(h1 − h2)φj

∣
∣
∣
∣
∣
+ Cε‖h1 − h2‖B

≤
∣
∣
∣
∣
∣

∫

W (xi)

h1φj − ak
i,j

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

W (xi)

h2φj − ak
i,j

∣
∣
∣
∣
∣
+ 2Cε

≤ 2(C + 1)ε.

This means that each Uk,ε is contained in a 2(C + 1)ε-ball in the Bw norm,
hence the claim. �

Proposition 7.3. Let I be an interval, I ⊂ [0, 1] and set E = I × [0, 1]. Then
for all φ ∈ C1 and for all h ∈ Bw, we have 1Eh ∈ Bw and

|〈1Ehφ〉| ≤ ‖h‖Bw
‖φ‖C1m(E).

Proof. Let us start by considering h ∈ C1 and let g ∈ L∞ such that ∂yg = 0.
By Fubini theorem and the fact that the vertical segments are admissible
leaves, for each φ ∈ C1 we have

∣
∣
∣
∣

∫
hgφ

∣
∣
∣
∣ ≤

∫
dx|g(x)|

∣
∣
∣
∣

∫ 1

0

dyh(x, y)φ(x, y)
∣
∣
∣
∣ ≤ ‖h‖Bw

‖φ‖C1‖g‖L1 .

In particular, this implies that, choosing {gn} ⊂ C1 such that gn → 1E in L1,
‖1Eh − gnh‖∞ → 0, i.e. 1Eh ∈ Bw. Moreover,

|〈1Ehφ〉| ≤ ‖h‖Bw
‖φ‖C1m(E).

In other words, if we view the multiplications by 1E as an operator on C1 ⊂
Bw, then ‖1Eh‖Bw

≤ ‖h‖Bw
, that is 1E is a bounded operator. It can then

be extended uniquely to a bounded operator on Bw by the same norm (and
name). �

7.3. Transfer Operator: Definition

If h ∈ L1, then R : L1 → L1 acts on h by
∫

Rh · v =
∫

h · v ◦ F, v ∈ L∞.

By a change of variable we have

Rh = 1F (Y )h ◦ F−1 det(DF−1). (7.7)

Note that, in general, RC1 �⊂ C1, so it is not obvious that the operator R
has any chance of being well defined in B. The next Lemma addresses this
problem.

Lemma 7.4. With the above definition, R(C1) ⊂ B.
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Proof. Using the notation introduced at the beginning of Sect. 7.1, we have
F (Y ) = ∪jY

′
j . Moreover, both F−1 and det(DF−1) are C1 on each Y ′

j . For
each j ∈ N note that Y ′

j consists of an horizontal strip bounded by the curves
γ1(x) = G(gj(x), 1), γ0(x) = G(gj(x), 0) where gj : (1

2 , 1] → ( 1
2 , 1] is the

inverse branch of F0 corresponding to the return time j. Remark that, by
Eq. (6.3), it follows that |γ′

i|∞ ≤ K0, for i ∈ {0, 1}. We can then consider a
sequence of ψ̄n ∈ C1

0 (R, [0, 1]) that converges monotonically to 1[0,1] and define
ψ̃n(x, y) = ψ̄n(y). Next, we define the function ψn = ψ̃n ◦ F−1 · 1F (Y ). Note
that ψn is smooth and converges monotonically to 1F (Y ). We can then define

Hn = ψnh ◦ F−1 det(DF−1) ∈ C1.

Consider an admissible leaf W = W (x) and a test function φ. Note that
F−1W = ∪jWj where Wj = F−1W ∩Yj = W (gj(x)) are vertical leaves. Thus,
given h ∈ C1,12

∣
∣
∣
∣

∫

W

[Rh − Hn]φ
∣
∣
∣
∣ ≤

∑

j

∫

Wj

|h| |F ′
0|−1|φ ◦ F | |1 − ψ̃n|

≤ ‖h‖∞‖φ‖∞C
∑

j

|F ′
0(gj(x))|−1

∫ 1

0

|1 − ψ̄n(t)|dt

since det(DF−1) ◦ F = det(DF )−1 = (F ′
0 · ∂yG)−1 and where we have used

(7.1) in the second line. Also we have used, and will use in the following, a
harmless abuse of notation insofar we write φ◦Fn to mean φ◦π◦Fn. Since the
sum is convergent and the integral converge to zero, it follows that the right
hand side can be made arbitrarily small by taking n large enough. It follows
that Hn converges to Rh in Bw.

The above computation also shows that limn→∞ ‖Rh − Hn‖s = 0. Thus,
it remains to check the unstable norm. Let x, z ∈ [1/2, 1]. Let xj = gj(x),
(xj , 0) ∈ Yj , and zj = gj(z), (zj , 0) ∈ Yj . Then, for each φ, ‖φ‖C1 ≤ 1, we have

∣
∣
∣
∣
∣

∫

W (x)

[Rh − Hn]φ −
∫

W (z)

[Rh − Hn]φ

∣
∣
∣
∣
∣

≤
∑

j

∫ 1

0

∣
∣h(xj , t)F ′

0(xj)−1φ ◦ F (xj , t) − h(zj , t)F ′
0(zj)−1φ ◦ F (zj , t)

∣
∣

× ∣
∣1 − ψ̄n(t)

∣
∣ .

Since, by hypothesis and equations (6.3), (7.2),

| d
dx

[
h(·, t)(F0)′(·)−1φ ◦ F (·, t)] | ≤ C

for some fixed C > 0, we have
∣
∣
∣
∣
∣

∫

W (x)

[Rh − Hn]φ −
∫

W (x)

[Rh − Hn]φ

∣
∣
∣
∣
∣
≤ C

∑

j

|xj − zj |
∫ 1

0

∣
∣1 − ψ̄n(t)

∣
∣ .

12 Since Wj ⊂ Y , F (Wj) ⊂ F (Y ). Thus, 1F (Y ) ◦ F , restricted on Wj , equals one.



214 C. Liverani and D. Terhesiu Ann. Henri Poincaré

Finally, by Eq. (7.1), we have |xj − zj | ≤ C|F ′
0(xj)|−1|x − z| and again we can

conclude as above. �

7.4. Lasota–Yorke Inequality and Compactness: Verifying (H5)(i) and (H1)(ii)

The next Lemma is the basic result on which all the theory rests.

Proposition 7.5 (Lasota–Yorke inequality). For each z ∈ D, n ∈ N and h ∈
C1(Y,C) we have

‖R(z)nh‖Bw
≤ C|z|n‖h‖Bw

‖R(z)nh‖B ≤ λ−nq|z|n‖h‖B + C|z|n‖h‖Bw
.

Proof. Setting ϕn =
∑n−1

k=0 ϕ ◦ F k we have that R(z)nh = Rn(zϕnh). Remark
that ϕn is constant on the elements of Yn,j of Yn, moreover ϕn ≥ n, hence
|zϕn | ≤ |z|n.

Given W ∈ Σ, with base point x, we have F−n(W ) = ∪j∈NWj where
W = {Wj}j∈N ⊂ Σ is the collections of the maximal connected components.
Note that each Yn,j ∈ Yn contains precisely one Wj . Then, for |φ|C1(W,C) ≤ 1,
we have

∫

W

(R(z)nh)φ dm =
∫

W

zϕn1F n(Y )h ◦ F−n det(DF−n)φ.

By the invertibility of F , the connected components of W ∩Fn(Y ) are exactly
{FnW ′}W ′∈W . Notice that Fn(x, y) = (Fn

0 (x), Gn(x, y)), while F−n(x, y) has
the more general form (A(x, y), B(x, y)). Yet, the function A depends on y
only in a limited manner: A(x, y) = gj(x) for all (x, y) ∈ Fn(Yn,j). Also, it
is convenient to call Bj the function B restricted to Fn(Yn,j). If (xj , 0) ∈
Wj ∈ W, then Gn(xj , t) provides a parametrization for the little segment
FnWj ⊂ W . In addition, for (x, y) ∈ FnWj , F−n(x, y) = (xj ,Hn,j(y)) with
xj = gj(x) and Hn,j(y) = Bj(x, y). We can then write
∫

F nWj

h ◦ F−n det(DF−n)φ =
∫ Gn(xj ,1)

Gn(xj ,0)

h(xj ,Hn,j(t))
(Fn

0 )′(xj)∂Gn(xj ,Hn,j(t))
φ(t) dt

=
∫ 1

0

h(xj , t)
(Fn

0 )′(xj)
φ(Gn(xj , t)) dt.

By the above computation we have
∣
∣
∣
∣

∫

W

(R(z)nh)φ dm

∣
∣
∣
∣ ≤

∑

Wj∈W

∣
∣
∣
∣
∣

∫

Wj

zϕnh[(Fn
0 )′]−1φ ◦ Fn dm

∣
∣
∣
∣
∣

≤
∑

Yn,j∈Yn

‖h‖Bw

∣
∣
∣
∣
φ ◦ Fn

(Fn
0 )′

∣
∣
∣
∣
C1(Wj)

|z|n.

Note that (7.2) and (7.1) imply

‖[(Fn
0 )′]−1φ ◦ Fn‖C0(Wj) ≤ C sup

x∈Wj

[(Fn
0 )′]−1 ≤ 2Cm(Yn,j).
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w.r.t. the C1 norm, we have

‖[(Fn
0 )′]−1φ ◦ Fn‖C1(Wj) ≤ ‖[(Fn

0 )′]−1‖C1‖φ ◦ Fn‖C0

+‖[(Fn
0 )′]−1‖C0‖φ ◦ Fn‖C1 .

Recall that φ ◦ Fn stands for φ ◦ π ◦ Fn, thus13

‖φ ◦ Fn‖C1 ≤ |φ|∞ + sup
t

| d

dt
φ ◦ π ◦ Fn(xj , t)|

≤ |φ|∞ + |φ′ ◦ π ◦ Fn · ∂yGn(xj , ·)|∞
≤ |φ|∞ + |φ′|∞λ−n ≤ C‖φ‖C1 .

Thus
‖[(Fn

0 )′]−1φ ◦ Fn‖C1(Wj) ≤ Cm(Yn,j). (7.8)
Equation (7.8) allows to estimate the weak norm as follows

∣
∣
∣
∣

∫

W

(R(z)nh)φ dm

∣
∣
∣
∣ ≤ C‖h‖Bw

|z|n
∑

j

m(Yn,j) ≤ C‖h‖Bw
|z|n. (7.9)

The first inequality of the proposition follows. Let us discuss the strong stable
norm. Given |φ|Cq(W,C) ≤ 1, we have
∣
∣
∣
∣

∫

W

(R(z)nh)φ dm

∣
∣
∣
∣ ≤

∑

Wj∈W

∣
∣
∣
∣
∣

∫

Wj

h[(Fn)′]−1φ ◦ Fn dm

∣
∣
∣
∣
∣

|z|n

≤
∑

Wj∈W

∣
∣
∣
∣
∣

∫

Wj

hφ̂j dm

∣
∣
∣
∣
∣

|z|n +

∣
∣
∣
∣
∣

∫

Wj

h[(Fn)′]−1φ̄j dm

∣
∣
∣
∣
∣

|z|n,

where φ̄j = |Wj |−1
∫

Wj
φ ◦Fn and φ̂j = [(Fn)′]−1(φ ◦Fn − φ̄j). Let JWj

Fn be
the stable derivative on the fibre Wj (recall that |JWj

Fn| ≤ λ−n), then

|φ ◦ Fn − φ̄j | ≤ |JWj
Fn|q∞|Wj |q ≤ C|Fn(Wj)|q

sup
x,y∈Wj

|φ̂j(x) − φ̂j(y)|
‖x − y‖q

≤ C|(Fn)′|−1
L∞(Wj)

|JWj
Fn|q∞ ≤ C|Fn(Wj)|q

|(Fn)′|L∞(Wj)|Wj |q .

Hence,

‖φ̂j‖Cq(Wj ,C) ≤ C
|Fn(Wj)|q

|(Fn)′|L∞(Wj)
≤ Cm(Yn,j)λ−nq.

The above bound yields,
∣
∣
∣
∣

∫

W

(R(z)nh)φ dm

∣
∣
∣
∣ ≤ C‖h‖sλ

−nq |z|n + C‖h‖Bw
|z|n.

We are left with the strong unstable norm. Let ‖φ‖C1 ≤ 1, x, y ∈ [1/2, 1]. Let
W(x) be the set of pre images of W (x) under Fn and the same for W(y). Note
that to each element of Wj(x) it corresponds a unique element Wj(y) that
belongs to the same set Yn,j ∈ Yn. Let ξj , ηj ∈ [0, 1] be such that Wj(x) =
W (ξj) and Wj(y) = W (ηj). By the usual distortion estimates we have |ξj −
13 In the following we will implicitly use standard computations of this type.
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ηj | ≤ C|(Fn
0 )′(ξj)|−1|x − y|. We introduce the function Φn = |(Fn

0 )′|−1(ηj) ·
φ ◦ Fn|W (ηj), and write
∣
∣
∣
∣
∣

∫

W (x)

R(z)nhφ dm −
∫

W (y)

R(z)nhφ dm

∣
∣
∣
∣
∣
≤

∑

j

∣
∣
∣
∣
∣

∫

W (ξj)

hΦn dm −
∫

W (ηj)

hΦn dm

∣
∣
∣
∣
∣

|z|n

+
∑

j

∣
∣
∣
∣
∣

∫

W (ξj)

h
[ |(Fn

0 )′(ξj)|−1 − |(Fn
0 )′(ηj)|−1

]
φ ◦ Fn dm

∣
∣
∣
∣
∣

|z|n

≤
∑

j

λ−n|z|n|x − y| [‖h‖u + C‖h‖s] |(Fn
0 )′|−1

L∞(W (xj))

≤ Cλ−n|z|n|x − y|‖h‖, (7.10)

where we have used that φ◦Fn|W (ηj) = φ◦Fn|W (ξj). The Lemma follows then
by iterating the above formula. �

The above Proposition, together with Lemma 7.4, readily implies that
R(z) ∈ L(B,B), i.e. Hypothesis (H1)(ii) holds true. Note that Proposition 7.5
alone would not suffice, indeed the fact that a function has a bounded norm
does not imply that it belongs to B: for this, it is necessary to prove that it
can be approximate by C1 functions in the topology of the Banach space.

The proof of Lemma 7.4 holds essentially unchanged also for the operator
R(z), thus R(z) ∈ L(B,B). We can then extend, by density, the statement of
Proposition 7.5 to all h ∈ B, whereby proving hypothesis (H5)(i).

7.5. Verifying (H1)(iii) and (H5)(ii)

The following Lemma is an immediate consequence of Lemma 7.5 and the
compact embedding stated in Lemma 7.2 (e.g. see [26]).

Lemma 7.6. For each z ∈ D the operator R(z) is quasi-compact with spectral
radius bounded by |z| and essential spectral radius bounded by |z|λ−q.

Note that 1 belongs to the spectrum of R (since the composition with F
is the dual operator to R and 1◦F = 1). By the spectral decomposition of R it
follows that 1

n

∑n−1
i=0 Rn converges (in uniform topology) to the eigenprojector

Π associated to the eigenvalue 1. Let μ = Π1.

Remark 7.7. Note that, by construction, μ = μ0 × m where μ0 is the unique
SRB measure of f0 and m the Lebesgue measure.

The next step is the characterization of the peripheral spectrum.

Lemma 7.8. Let ν ∈ σ(R(z)) with |ν| = 1. Then any associated eigenvector h
is a complex measure. Moreover, such measures are all absolutely continuous
with respect to μ and have bounded Radon–Nikodym derivative.

Proof. Note that it must be |z| = 1 since the spectral radius of R(z) is smaller
or equal to |z|. Next, let h be an eigenvector with eigenvalue ν, then h ∈ Bw ⊂
(C1)′ and, for each φ ∈ C1, we have



Vol. 17 (2016) Mixing for Some Non-Uniformly Hyperbolic Systems 217

|h(φ)| =
∣
∣ν−nh(zϕnφ ◦ Fn)

∣
∣ ≤

∑

j

|h(zj1Yn,j
φ ◦ Fn)| ≤ ‖h‖Bw

‖φ ◦ Fn‖C1

where we have used Proposition 7.3. Since limn→∞ ‖φ ◦ Fn‖C1 = ‖φ‖C0 it
follows that h ∈ (C0)′, i.e. it is a measure. Since, by Lemma 7.6, the projector
Πν(z) on the eigenspace associated to ν can be obtained as

lim
n→∞

1
n

n−1∑

i=0

ν−iR(z)i

and since the range of Πν(z) is finite dimensional, there must exists ψ ∈ C1

such that h = Πν(z)ψ. Then, for each φ ∈ C1(Y,R+),
∣
∣
∣
∣
∣

∫
φ

1
n

n−1∑

i=0

ν−iR(z)iψ

∣
∣
∣
∣
∣
= |ψ|∞

∫
1
n

n−1∑

i=0

Ri1φ

which, taking the limit for n → ∞, implies |h(φ)| ≤ |ψ|∞μ(φ) and the Lemma.
�

Now suppose that Rh = eiθh. Then, by the above Lemma, there exists
v ∈ L∞(μ) such that h = vμ. Hence

μ(vφ) = h(φ) = e−iθh(φ ◦ F ) = e−iθμ(vφ ◦ F ) = e−iθμ(φv ◦ F−1)

implies v = eiθv ◦ F μ-almost surely. By similar arguments, if z = eiθ and
R(z)h = R(eiθϕh) = h, then there exists v ∈ L∞(μ) such that veiθϕ = v ◦ F
μ-almost surely.

Proposition 7.9. Hypotheses (H1)(iv) and (H5)(ii) hold true.

Proof. As the proof of the two hypotheses is essentially the same, we limit
ourselves to the proof of (H5)(ii). Let v : Y → C be a (non-identically zero)
measurable solution to the equation v ◦ F = eiθϕv a.e. on Y , with θ ∈ (0, 2π).
By Lusin’s theorem, v can be approximated in L1(μ) by a C0 function, which
in turn can be approximated by a C∞ function. Hence, there exists a sequence
ξn of C1 functions such that |ξn − v|L1(μ) → 0, as n → ∞. So, we can write

v = ξn + ρn,

where |ρn|L1(μ) → 0, as n → ∞.
Starting from v = e−iθϕv ◦ F and iterating forward m times (for some m

large enough to be specified later),

v = e−iθ
∑m−1

j=0 ϕ0◦F j
0 (ξn ◦ Fm + ρn ◦ Fm).

Clearly,

|e−iθ
∑m−1

j=0 ϕ0◦F j
0 ρn ◦ Fm|L1(μ) = |ρn ◦ Fm|L1(μ) = |ρn|L1(μ) → 0, (7.11)

as n → ∞.
Next, put An,m := e−iθ

∑m−1
j=0 ϕ0◦F j

0 ξn ◦ Fm and note that for all n and m

|∂yAn,m| ≤ |∂yξn|∞|∂yFm|.
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By condition (6.2), there exists 0 < τ < 1 such that |∂yF | = τ . Hence,
for any ε > 0 and any n ∈ N, there exists m ∈ N such that

|∂yAn,m|∞ < ε.

It is then convenient to use Eμ for the expectation with respect to μ and
Eμ(· | x) for the conditional expectation with respect to the σ-algebra gener-
ated by the set of admissible leaves. As a consequence, |An,m(x, y)−Eμ(An,m |
x)| ≤ ε. For arbitrary ψ ∈ L∞(μ), we can then write

E(ψv) = Eμ(ψAn,m) + O(ε) = Eμ(ψEμ(An,m | x)) + O(ε)
= Eμ(Eμ(ψ | x)An,m) + O(ε) = Eμ(ψEμ(v | x)) + O(ε). (7.12)

By the arbitrariness of ε and ψ it follows v = Eμ(v | x). But this implies that
v ◦ F0 = v ◦ F = eiθϕ0v, but this has only the trivial solution v = 0 (see [2,
Theorem 3.1]). �

7.6. Verifying (H4): Bounds for ‖Rn‖B
The next result shows that the strongest form of (H4), that is (H4)(iii), holds.

Lemma 7.10. For each n ∈ N we have the bound

‖Rn‖B ≤ Cn−β−1.

Proof. Note that ϕ is constant on Y1, hence there exists jn such that
ϕ|Yjn

= n. Thus for each ‖φ‖Cq ≤ 1 and W ∈ Σ,
∣
∣
∣
∣

∫

W

(Rnh)φ dm

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣

∫

Wjn

h|F ′
0|−1φ ◦ F dm

∣
∣
∣
∣
∣
≤ ‖h‖s |F ′

0|−1
Cq(Wjn ) ≤ Cn−β−1.

Next, let x, y ∈ [0, 1], |x − y| ≤ ε0, and φ ∈ C1. Setting Φn = |F ′
0|−1(ηj) · φ ◦

F |W (ηj),
∣
∣
∣
∣
∣

∫

W (x)

Rnhφ dm −
∫

W (y)

Rnhφ dm

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

∫

W (ξjn )

hΦn dm −
∫

W (ηjn )

hΦn dm

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

W (ξjn )

h
[ |F ′

0(ξjn
)|−1 − |F ′

0(ηjn
)|−1

]
φ ◦ F dm

∣
∣
∣
∣
∣

≤ |x − y| [λ−1‖h‖u + C‖h‖s

] |(fn
0 )′(ξjn

)|−1 ≤ Cn−β−1|x − y|‖h‖B,

where, in the last line, we have used (7.2). �

7.7. Verifying (H2)

We note that the connected components of ϕ−1(n) satisfy the assumption on
the set E in the statement of Proposition 7.3. Hence,

∣
∣
∣
∣

∫

E

h dm

∣
∣
∣
∣ ≤ ‖h‖Bw

m(E),

and (H2) (with � = 1) follows by Remark 7.7, since dm
dμ0

is known to be
bounded on Y .
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7.8. Verifying (H3)

To conclude we must verify (H3). Again the strategy is to reduce to the one-
dimensional map F0. Indeed, consider ψ such that ψ(x, y) = Eμ(ψ | x). Then

μ(ψ ◦ F0) = μ(ψ ◦ F ) = μ(ψ),

which implies that the marginal of μ is the invariant measure μ0 of the map
F0. Since ϕ does not depend on y, (H3) holds for F since it holds for F0 (see,
for instance, [32]).

The argument above together with the tail expansion of μ0(ϕ0 > n)
(associated with f0) obtained in [37,43] shows that the conditions on the tail
behavior μ(ϕ > n) (associated with the f ) stated in Theorem 5.1, (i)–(ii) are
satisfied.

8. Banach Spaces Estimates in the Non-Markov Setting

Let f : [0, 1]2 → [0, 1]2 be the non-Markov map (6.5) introduced in Sect. 6.
Let Y0 = Y = (1/2, 1] × [0, 1] and let ϕ : Y → Z

+ be the return time to Y .
Let F = fϕ be the first return map and write Fn = (Fn

0 , Gn), for all n ∈ N

and F0 = fϕ0
0 , where ϕ0 is the first return time of f0 to X0 = (1/2, 1]. In this

section we show that F satisfies (H1–H5) for some appropriate function spaces
B,Bw described below.

In what follows we use the notation introduced in Sect. 7 for the study of
the Markov example (6.1) keeping in mind the new definition of f0, f, F0, F .
Note that, for functions that depend only on x, the Banach space in the pre-
vious section was essentially reducing to the space of Lipschitz functions. Here
instead it will reduce to BV . This is natural, since BV is the standard Banach
space on which to analyze the spectrum of the transfer operator of a piecewise
expanding map.

8.1. Banach Spaces

Consider the set of test functions Dq = {φ ∈ L∞([0, 1]2,C) | ‖φ(x, ·)‖Cq ≤
1, for almost all x} and D0

q = Dq ∩ Lip.14 With this, given q ∈ ( 1+β
2+β , 1], for

all h ∈ BV we define the norms

‖h‖Bw
= sup

φ∈D1+q

∫

Y

h · φ

‖h‖0 = sup
φ∈Dq

∫

Y

h · φ

‖h‖1 = sup
φ∈D0

1+q

∫

Y

h · ∂xφ

and set ‖h‖B = ‖h‖1 + ‖h‖0.

Lemma 8.1. For each h ∈ BV we have

‖h‖Bw
≤ ‖h‖B ≤ ‖h‖BV .

14 By Lip we mean the set of Lipsichtz functions.



220 C. Liverani and D. Terhesiu Ann. Henri Poincaré

Proof. The first follows from ‖h‖Bw
≤ ‖h‖0, which is obvious since the sup

is taken on a larger set of functions. To see the second note that, on the one
hand, for each φ ∈ Dq

∣
∣
∣
∣

∫

Y

hφ

∣
∣
∣
∣ ≤ ‖h‖L1 ≤ ‖h‖BV .

While, on the other hand, for all φ ∈ D0
1+q, let Φ = (φ, 0) ∈ C0([0, 1]2,C2).

Then, for each h ∈ BV ,

‖h‖1 = sup
φ∈D0

1+q

∫
h∂xφ = sup

φ∈D0
1+q

∫
h div Φ ≤ sup

‖Ψ‖C0≤1

∫
h div Φ = ‖h‖BV ,

where, in the last equation, we have used the definition of the BV norm in
any dimension [16]. �

We can then define the Banach spaces Bw, B obtained, respectively, by
closing BV with respect to ‖ · ‖Bw

and ‖ · ‖B. Note that such a definition
(together with Lemma 8.1) implies BV ⊂ B ⊂ Bw. In fact, the next Lemma
gives a more stringent embedding property.

Lemma 8.2. The unit ball of B is relatively compact in Bw.

Proof. For each φ ∈ D0
1+q define Ψ(x, y) =

∫ x

1/2
φ(z, y)dz. Next, for each ε > 0

define ak = 1
2 + kε and consider the piecewise linear function

θ(x, y) =
∫ ak

1/2

φ(z, y) dy +
x − ak

ε

∫ ak+1

ak

φ(z, y) dz.

One can easily check that ε−1(Ψ−θ) ∈ D0
1+q. Thus, for each h ∈ BV belonging

to the unit ball of B, we have
∫

Y

hφ =
∫

Y

h∂xΨ =
∫

Y

h∂x(Ψ − θ) +
∫

Y

h∂xθ =
∫

Y

h∂xθ + O(ε).

Setting αk(y) = ε−1
∫ ak+1

ak
φ(z, y)dz we have ‖αk‖C1+q ≤ 1 and

∂xθ(x, y) =
∑

k

1[ak,ak+1](x)αk(y).

We can set bj = εj and define

�k(y) = αk(bj) +
αk(bj+1) − αk(bj)

ε
(y − bj) for all y ∈ [bj , bj+1]

�(y) =
∑

k

1[ak,ak+1](x)�k(y).

Note that ε−1[∂xθ − �] ∈ Dq, thus
∫

Y

hφ =
∫

Y

h� + O(ε).

To conclude note that, by construction, for each ε the functions � belong to a
uniformly bounded set in a finite dimensional space (hence are contained in a
compact set). The Lemma follows by the same arguments used at the end of
Lemma 7.2. �
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8.2. Lasota–Yorke Type Inequality

In the remaining of the paper, R stands for the transfer operator associated
with F defined by 7.7 (with the current definition of F ). With this specified
we state

Lemma 8.3. For each h ∈ BV and z ∈ D, we have

‖R(z)h‖Bw
≤ |z|‖h‖Bw

‖R(z)h‖B ≤ max{2λ−1, λ−q}|z|‖h‖B + C|z|‖h‖Bw
.

Proof. For each φ ∈ D1+q and h ∈ BV we have
∫

Y

R(z)h · φ =
∫

Y

hzϕφ ◦ F.

Note that, for almost all x ∈ (1/2, 1], ψx(·) = zϕ0(x)φ◦F (x, ·) is a C1+q function
by condition (6.8). Moreover, ‖ψx‖C1+q ≤ |z| by the stable contraction of F .
Hence, the first inequality follows.

If we have φ ∈ Dq
∫

Y

R(z)h · φ =
∫

Y

h(zϕφ ◦ F − θz) +
∫

Y

hθz,

where θz(x, y) = zϕ0(x)φ ◦ F (x, 0). Note that, for almost all x ∈ (1/2, 1],
‖zϕ(x,·)φ ◦ F (x, ·) − θz(x, ·)‖Cq ≤ λ−q|z|, while ‖θz‖C1+q ≤ |z|. Hence, λq|z|−1

[zϕφ ◦ F − θz] ∈ Dq and |z|−1θz ∈ D1+q. Accordingly,
∣
∣
∣
∣

∫

Y

R(z)h · φ

∣
∣
∣
∣ ≤ λ−q|z|‖h‖0 + C|z|‖h‖Bw

.

To conclude, let φ ∈ D0
1+q. Then

∫

Y

R(z)h · ∂xφ =
∑

j

∫

Yj

hzϕ(∂xφ) ◦ F.

Since F ∈ C2 in each Yj , we compute that

∂x
φ ◦ F

F ′
0

= [∂xφ)] ◦ F +
∂yφ ◦ F · ∂xG

F ′
0

+ φ ◦ F · ∂x(F ′
0)

−1. (8.1)

First of all, notice that there exists C > 0 such that C−1zϕφ ◦ F∂x(F ′
0)

−1 ∈
D1+q. Next, let θz(x, y) = zϕ0(x)∂yφ◦F (x,0)·∂xG(x,0)

F ′
0(x) . Notice that ‖θz‖C1+q ≤ |z|

and

|z|−1λq

[
zϕ∂yφ ◦ F · ∂xG

F ′
0

− θz

]

∈ Dq.

Putting the above together,15

∣
∣
∣
∣

∫

Y

R(z)h · ∂xφ

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣

∑

j

∫

Y j

h∂x

[

zϕ φ ◦ F

F ′
0

]
∣
∣
∣
∣
∣
∣
+ λ−q|z|‖h‖0 + C|z|‖h‖Bw

.

15 Note that ϕ is constant on each Yj and hence can be moved inside the derivative.
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Since Ψ := zϕ φ◦F
F ′

0
is discontinuous it does not belong to D0

1+q. To take care of
such a problem, we introduce appropriate counter terms.

Remark that each Yj is the union of, at most finitely many, connect sets
of the form Yj,m = [aj,m, bj,m]× [0, 1] for some aj,m, bj,m ∈ [0, 1]. On each Yj,m

we define the function

�j,m(x, y) = Ψ(aj,m, y) +
Ψ(bj,m, y) − Ψ(aj,m, y)

bj,m − aj,m
(x − aj,m),

and � =
∑

j,m 1Yj,m
�j,m. Note that I1

p = {x ∈ Ip : ϕ0(x) > 1} consist of one
single interval. Thus f0(I1

p) ⊂ [0, 1
2 ] is the union of intervals whose image will

eventually cover all (1
2 , 1] apart, at most, for two intervals at the boundary

of f0(I1
p). By the usual distortion estimates this implies that there exists a

constant C > 0 such that, for all but finitely many of the above-mentioned
intervals [aj,m, bj,m], have

|bj,m − aj,m| ≥ C|(F j
0 )′(aj,m)|−1.

But then the same estimates, possibly with a smaller C, for all intervals.
The above considerations together with condition (6.8) imply that λ

2|z|
(Ψ − �) ∈ D0

1+q while C−1∂x� ∈ D1+q. We can then conclude
∣
∣
∣
∣

∫

Y

R(z)h · ∂xφ

∣
∣
∣
∣ ≤ max{2λ−1, λ−q}|z|‖h‖B + C|z|‖h‖Bw

.

�

8.3. Checking Hypotheses (H1)–(H5)

In this section, we check the hypotheses needed to apply the abstract theory.
As many arguments are similar to the ones in Sect. 7 we will go over them
very quickly.

By Lemma 8.1 C1 ⊂ BV ⊂ B ⊂ Bw. Moreover, if h ∈ C1

∣
∣
∣
∣

∫
hφ

∣
∣
∣
∣ ≤ ‖h‖Bw

‖φ‖C1+q .

Hence, Bw ⊂ (C1+q)′ and (H1)(i) is satisfied with α = 1 and γ = 1 + q.
Next, let us discuss (H2). In fact, for later convenience, we will prove a

slightly stronger result. Note that the connect components of ϕ−1(Y ) have the
form E = (a, b) × [0, 1] for some (a, b) ⊂ (1/2, 1]. Hence, for all φ ∈ D0

1+q,
∫

E

hφ =
∫

Y

h∂x

∫ x

0

φ1E ≤ ‖h‖B

∥
∥
∥
∥

∫ 1

0

φ(t, ·)1E(t, ·)dt

∥
∥
∥
∥

C1+q

≤ ‖h‖B |b − a| = ‖h‖B m(E). (8.2)

To conclude, we use the relation between μ and m which is the same as in the
Markov case.

Hypothesis (H3) does not depend on the Banach space; it is rather an
assumption on the map, and is proven as in Sect. 7.

Next, we look at the hypotheses involving the transfer operator. Note
that, for h ∈ BV , R(z)h might fail to be in BV due to possible unbounded
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oscillations in the vertical direction. Thus, even though the B norm of R(z)h
is bounded by Lemma 8.3, the function R(z)h might fail to belong to B, since
the latter is defined as the objects that are approximated by BV function.
Note however that Rnh ∈ BV for each n ∈ N.16 Since

R(z)h =
∑

n

znRnh

it follows that (H4)(i) implies R(z)(BV ) ⊂ B, and hence (H1)(ii).
We proceed thus to prove the, stronger, (H4)(iii). Let φ ∈ Dq, then

∫
Rnhφ =

∫
h(φ ◦ F1Yn

− θ) +
∫

hθ,

where θ(x, y) = φ ◦ F (x, 0)1Yn
(x, 0). Note that, for almost all x, by (6.7),

‖φ ◦ F (x, ·)1Yn
(x, ·) − θ(x, ·)‖Cq ≤ ‖1Yn

∂yG‖q
∞ ≤ Cm(Yn),

where we have used the limitation on the possible values of q.17 Thus, since
Yn = [an, bn] × [0, 1], arguing as in (8.2),

∣
∣
∣
∣

∫
Rnhφ

∣
∣
∣
∣ ≤ ‖h‖0Cm(Yn) +

∫
h∂x

∫ x

0

θ ≤ C‖h‖Bm(Yn).

This takes care of ‖Rnh‖0. Next, let φ ∈ D0
1+q. Arguing like in the proof of

Lemma 8.3 we obtain
∣
∣
∣
∣

∫
Rnhφ

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∑

m

∫

Yn,m

h(∂xφ) ◦ F

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

m

∫

Yn,m

h

[

∂x

(
φ ◦ F

F ′
0

)

− ∂yφ ◦ F · ∂xG

F ′
0

− φ ◦ F∂x(F ′
0)

−1

]∣
∣
∣
∣
∣
.

Then, again as in Lemma 8.3, we introduce θm linear in x, so that the functions
1Yn,m

[
φ◦F
F ′

0
− θm

]
are continuous. Remembering (6.7) and (6.8) we readily

obtain ∣
∣
∣
∣

∫
Rnh · ∂xφ

∣
∣
∣
∣ ≤ Cm(Yn)‖h‖0 + Cm(Yn)‖h‖1

from which the hypothesis follows.
The proof of (H1)(iii) and (H5)(ii) goes more or less as in the Markov

case (with trivial changes due to the different norm) once one remembers the
topological mixing assumption of f . Lemma 8.3 proves (H5)(i).
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[22] Gouëzel, S.: Characterization of weak convergence of Birkhoff sums for Gibbs–
Markov maps. Isr. J. Math. 180, 1–41 (2010)
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