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 Abstract 

 Memories  affect  nearly  every  aspect  of  our  mental  life.  They  allow  us  to  both  resolve  uncertainty 
 in  the  present  and  to  construct  plans  for  the  future.  Recently,  renewed  interest  in  the  role 
 memory  plays  in  adaptive  behavior  has  led  to  new  theoretical  advances  and  empirical 
 observations.  We  review  key  findings,  with  particular  emphasis  on  how  the  retrieval  of  many 
 kinds  of  memories  affect  deliberative  action  selection.  These  results  are  interpreted  in  a 
 sequential  inference  framework,  in  which  reinstatements  from  memory  serve  as  “samples”  of 
 potential  action  outcomes.  The  resulting  model  suggests  a  central  role  for  the  dynamics  of 
 memory  reactivation  in  determining  the  influence  of  different  kinds  of  memory  in  decisions.  We 
 propose  that  representation-specific  dynamics  can  implement  a  bottom-up  “product  of  experts” 
 rule  that  integrates  multiple  sets  of  action-outcome  predictions  weighted  on  the  basis  of  their 
 uncertainty. We close by reviewing related findings  and identifying areas for further research. 

 Introduction 

 Most  decisions  involve  some  form  of  memory.  Decades  of  research  has  focused  on 
 understanding  how  one  kind  of  memory,  about  the  summary  statistics  of  a  task  or  environment, 
 are  employed  in  the  service  of  evaluating  choice  options,  either  through  incremental  learning  of 
 stimulus-outcome  associations,  or  via  extracting  regularities  present  in  the  structure  of  the 
 environment  (Balleine,  2007;  Daw  et  al.,  2011;  Dayan,  1993;  Gläscher  et  al.,  2010;  Tolman, 
 1948)  .  These  types  of  memories  are  differentiated  by  their  distinct  representational  properties 
 and  divergent  neural  substrates  (Dolan  &  Dayan,  2013;  Poldrack  &  Packard,  2003;  Yin  & 
 Knowlton,  2006)  .  Critically,  however,  they  share  in  common  a  reliance  on  extensive  experience 
 —  often  measured  within  a  narrowly  controlled,  highly  repetitive  laboratory  task  —  in  order  to 
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 learn  usable  statistics  (Behrens  et  al.,  2007;  Daw  et  al.,  2011)  .  This  leaves  open  the  question  of 
 how  decisions  are  made  on  the  basis  of  little  direct  experience  (Lengyel  &  Dayan,  2008)  ,  or  in 
 complex  environments  from  which  it  may  be  intractable  to  extract  sufficiently  detailed 
 regularities  (Kaelbling  et  al.,  1998;  Silver  &  Veness,  2010)  —  as  in  many  real-world  decisions 
 faced by humans and animals  (Lake et al., 2015; Lien  & Cheng, 2000; Niv et al., 2015)  . 

 Humans  and  animals  constantly  draw  on  memories  of  the  past  to  inform  decisions  about 
 the  future  (Redish,  2016;  Schacter  et  al.,  2017)  .  An  emerging  framework  describes  this 
 phenomenon  as  a  simulation-driven  estimation  process,  in  which  decision-makers  examine 
 what  might  result  from  each  available  action  by  consulting  memories  of  similar  previous 
 settings.  This  approach,  generally  referred  to  as  memory  sampling  (Bordalo  et  al.,  2020; 
 Gershman  &  Daw,  2017;  Kuwabara  &  Pillemer,  2010;  Lengyel  &  Dayan,  2008;  Lieder  et  al., 
 2018;  Ritter  et  al.,  2018;  Shadlen  &  Shohamy,  2016;  Zhao  et  al.,  2019)  ,  can  approximate  the 
 sorts  of  option  value  estimates  that  would  be  learned  across  repeated  experience  by,  e.g., 
 temporal-difference  reinforcement  learning  (TDRL;  Bornstein  et  al.,  2017;  Gershman  &  Daw, 
 2017;  Lengyel  &  Dayan,  2008)  ,  while  retaining  the  flexibility  to  diverge  from  long-run  averages 
 when  doing  so  may  be  adaptive.  At  one  extreme,  drawing  on  individual  memories  in  this  way 
 allows  one  to  effectively  tackle  choice  problems  even  in  the  low-data  limit  (e.g.,  in  novel 
 environments),  where  processes  that  rely  on  abstraction  over  multiple  experiences  are 
 unreliable  (Lengyel & Dayan, 2008)  . 

 Examining  memory  retrieval  from  the  perspective  of  reinforcement  learning 
 complements  the  use  of  RL  to  study  representation  formation  --  e.g.  of  cached  values  (Barto  et 
 al.,  1995)  ,  motor  sequences  (Botvinick  et  al.,  2009;  Keramati  et  al.,  2016;  Miller  et  al.,  2018, 
 2019)  ,  or  environmental  structure  (Dayan,  1993;  Gershman,  2018;  Wilson  et  al.,  2014)  . 
 Therefore,  we  begin  this  review  by  describing  the  RL  formulation  of  the  computational  problem 
 of  optimal  action  selection  among  immediately  available  options.  We  continue  with  a  review  of 
 how  known  cognitive  and  neurobiological  properties  of  long-  and  short-term  memory  retrieval  in 
 humans  and  animals  suggest  an  implementation  of  one  form  of  approximate  solution  to  this 
 problem,  the  stochastic  sampling  of  past  experiences.  Then,  we  briefly  introduce  the 
 mathematical  framework  that  describes  the  optimal  solution  to  two-alternative  forced  choice  on 
 the  basis  of  unreliable  evidence  —  the  drift-diffusion  model  (DDM)  —  with  emphasis  on  what  is 
 known  about  how  organisms  approach  the  special  case  of  evidence  in  the  form  of 
 internally-generated signals. 

 We  next  review  theoretical  frameworks  and  key  empirical  studies  that  describe  how 
 various  kinds  of  memory,  ranging  from  action  sequences  to  “cognitive  maps”  to  long-term 
 autobiographical  memories,  can  provide  these  internally-generated  signals  for  action  selection. 
 We  focus  especially  on  a  representative  selection  of  studies  that  have  shown  that  episodic 
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 features  mediate  the  selection  of  which  memories  are  retrieved  during  decision  deliberation; 1

 these constitute an informative limiting case of the  memory sampling framework. 
 Next,  we  examine  how  these  properties  of  memory  retrieval  during  action  selection 

 constrain  the  process  of  accumulating  evidence  from  memory.  We  focus  on  areas  in  which  the 
 properties  of  memory  sampling  contrast  with  those  of  sensory  evidence  accumulation,  such  as 
 the  relationship  between  representational  properties  and  retrieval  dynamics,  and  the  sequential 
 structure of retrieval. 

 We  close  with  a  synthesis  of  the  reviewed  findings,  and  suggest  that  action  selection 
 based  on  memory  retrieval  can  be  best  described  by  a  time-varying  evidence  accumulation 
 process,  in  which  the  momentary  rate  of  accumulation  is  determined  by  several  cognitive  and 
 neural  factors.  The  resulting  model  approximates  a  “product  of  experts”  rule  for  integrating 
 action  tendencies  from  multiple  control  processes  —  in  this  case,  memory  representations  with 
 different  associative  content,  relational  structure,  and  history-dependence.  It  follows  directly  that 
 the  involvement  of  different  forms  of  memory  in  action  selection  depends  on  the  temporal 
 dynamics  of  these  factors,  via  their  influence  on  the  effective  rate  of  production  of  evidence 
 samples,  which  can  implement  the  principle  of  uncertainty-weighted  arbitration  between  different 
 decision  systems  (Daw  et  al.,  2005;  Keramati  et  al.,  2011)  .  We  close  with  a  brief  review  of 
 existing  empirical  evidence  in  support  of  this  model,  and  suggest  potential  directions  for  further 
 research. 

 I. The view from Reinforcement Learning 

 We  begin  by  detailing  key  aspects  of  the  predominant  framework  for  value-based  decisions, 
 Reinforcement  Learning  (RL;  Sutton  &  Barto,  2018)  .  We  begin  here  because  memory  sampling 
 shares  with  RL  the  use  of  primitives  such  as  states  ,  actions,  and  rewards  --  but,  crucially,  it 
 operates  on  these  elements  with  a  different  computational  form  that  provides  a  distinct  set  of 
 guarantees  about  efficiency  and  optimality.  Understanding  these  provides  the  basis  for 
 understanding  why  each  approach  makes  different  empirical  predictions  in  certain  settings. 
 Importantly,  RL  provides  a  formal  understanding  of  the  value  estimation  problem,  and  thus  for 
 evaluating  different  kinds  of  estimates.  This  framework  will  be  crucial  for  understanding  our  later 
 description of how and why multiple memory systems  can contribute to decisions. 

 RL  examines  the  problem  of  learning  how  to  best  navigate  an  uncertain  environment 
 guided  primarily  by  feedback,  in  the  form  of  reward  or  punishment,  obtained  after  taking  actions 
 within  that  environment.  While  the  framework  allows  for  a  wide  range  of  possible  approaches, 
 its  primary  applications  in  neuroscience  research  to  date  have  followed  a  particular  form 

 1  We  use  the  term  “memories  with  episodic  features”  to  refer  to  representations  of  past  experience  that 
 exhibit  dense,  multi-sensory  associations,  formed  during  a  single  experience,  which  potentially  include 
 attributes  incidental  to  goals  at  the  time  of  that  experience  (Allen  &  Fortin,  2013;  Bornstein  &  Pickard, 
 2020  Box  1)  .  Though  “episodic  memory”  has  variously  been  defined  by  its  relationship  to  conscious, 
 declarative  recall,  these  properties  may  not  be  functionally  necessary  to  an  influence  on  choices,  and  so 
 we sidestep the question of awareness in the present  review. 
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 involving  incremental  learning  of  a  value  function  relating  states  and  actions  to  the  long-term, 2

 discounted  rewards  that  can  be  expected  to  result  (Eqn.  1).  When  fitting  human  behavior,  a 
 common  practice  (Daw  et  al.,  2011)  is  to  specify  an  action  selection  function  that  translates 
 these  values  into  a  likelihood  of  taking  each  available  action  (Eqn.  2).  We  next  describe 
 particular instances of these equations and the key  features relevant to the current review: 

 (1)  𝑄 ( 𝑎 ,  𝑠 )   ←     𝑄 ( 𝑎 ,  𝑠 )   +    α[ 𝑅 + γ 𝑚𝑎  𝑥  𝑎  '  𝑄 ( 𝑎  ' ,  𝑠  ' ) −  𝑄 ( 𝑎 ,  𝑠 )]
 (2)  𝑃 ( 𝑎 * ==  𝐴 )   ∝ exp[β 𝑄 ( 𝐴 , 𝑠 )]

 𝑎  ' ∑exp[β 𝑄 ( 𝑎  ' , 𝑠 )]
 The  first  equation  describes  the  incremental,  experience-driven  learning  of  value 

 expectations  (the  value  function,  Q  ).  The  quantity  specified  by  the  value  function  is  an  estimate 
 of  the  total  future  reward  expected  after  taking  action  a  in  state  s  (and  continuing  to  act  optimally 
 thereafter).  This  future  reward  is  the  sum  of  the  reward  directly  obtained  by  taking  the  action 
 (  R  ),  plus  the  total  future  reward  to  be  obtained  by  taking  the  best  action  in  the  ensuing  state  s’  . 
 (Future  rewards  are,  throughout,  treated  as  less  important  to  momentary  action  selection  than 
 immediate  rewards,  so  they  are  discounted  according  to  a  constant  0  <  ò  <  1.)  The  expectation 
 is  updated  by  the  difference  between  this  sum  and  the  previous  value  of  the  expectation,  after 
 scaling  by  a  learning  rate  (0  <  α  <  1)  in  order  to  regularize  the  estimate.  The  second  equation 
 specifies  the  probability  of  choosing  a  given  action  (  A  )  as  the  relative  profitability  of  that  action, 
 versus  all  candidate  actions.  The  sensitivity  of  this  likelihood  to  the  value  difference  is  specified 
 by the  temperature  parameter, ñ. 

 Importantly,  the  first  equation  is  an  approximation  to  the  full  value  computation  (Eqn.  3), 
 which  incorporates  knowledge  about  the  transition  structure  of  the  world  —  the  likelihood  that 
 taking  a  given  action  a  in  state  s  is  going  to  lead  to  a  particular  state  s’  .  The  true  discounted 
 future  reward  thus  integrates  over  transition  probabilities  to  all  possible  successor  states.  An 
 agent  with  knowledge  of  this  transition  structure  may  be  able  to  make  better  decisions  than  one 
 who  just  learns  reward  values,  but  representing  and  working  with  this  structure  can  be  quite 
 costly. 

 (3)  𝑄 ( 𝑎 ,  𝑠 )   =     𝑠  ' ∑  𝑇 ( 𝑠 ,  𝑎 ,  𝑠  ' ) 𝑉 ( 𝑠  ' )
 Note that the future return of the target states,  , is recursively defined:  𝑉 ( 𝑠  ' )

 (4)  𝑉 ( 𝑠  ' )   =     𝑅 ( 𝑠  ' )   +    γ 𝑉 ( 𝑠  '' )
 Unrolling the recursion gives a converging sum of  (discounted) rewards: 

 2  Multiple  variants  of  each  equation  achieve  similar  goals  under  different  settings.  For  more  in-depth 
 treatment,  see  Sutton  &  Barto  (2018)  ;  for  a  review  of  the  neural  instantiation  of  these  variables,  see 
 (Glimcher, 2011)  . 
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 (5)  𝑉 ( 𝑠  ' )   =     𝑅 ( 𝑠  ' )   +    γ 𝑅 ( 𝑠  '' )   +    γ 2  𝑅 ( 𝑠  ''' )   +    ...
 where  future  states  after  are  denoted  by  ,  ,  and  so  on.  Computing  this  (recursive)  𝑠  '  𝑠  ''  𝑠  ''' 
 expectation  is  difficult  in  practice,  especially  with  limited  experience  of  the  transition  structure. 
 Therefore,  approximate  computations  may  be  employed,  either  the  incremental  approach  of 
 Equation  1  above,  which  marginalizes  over  transitions,  or  via  methods  that  directly  estimate  the 
 transition  structure  (Daw  et  al.,  2005)  .  More  broadly,  however,  the  computational  goal  — 
 choosing on the basis of total discounted future reward  — can be achieved in multiple ways. 

 One  approach,  called  memory  sampling  ,  avoids  the  dependence  on  extensive 
 experience  by  simply  consulting  the  values  obtained  directly,  “remembering”  individual 
 experiences  with  the  current  (and  potential  future)  state(s).  Formally,  rather  than  computing  this 
 estimate  by  updating  a  cached  value  function  with  each  experience  (Eqn.  1),  the  alternative 
 computes  it  dynamically,  possibly  even  on-demand  (Eldar  et  al.,  2020)  ,  by  sampling  past 
 encounters  with  the  states  of  interest  (and,  potentially,  generalizing  from  similar  states)  and 
 averaging  the  resulting  values.  This  approach  can  be  used  to  estimate  both  the  reward  to  be 
 received  from  the  current  action  (Bornstein  et  al.,  2017)  ,  and  also  that  of  states  that  follow  from 
 each  action  (Bornstein  &  Norman,  2017;  Gershman  &  Daw,  2017;  Vikbladh  et  al.,  2017)  .  When 
 multiple  relevant  experiences  exist,  they  can  be  selected  from  according  to  a  sample-selection 
 function  (Fig.  1;  Equation  6a,  function  S  ),  that  specifies  some  probability  distribution  over 
 rewards  for  each  action  given  by  the  distance  between  current  state  s  and  given  sample  state  s’ 
 in  a  probability  space  defined  over  their  shared  features  (Eqn.  6b).  While  in  practice  this 
 distance  incorporates  any  set  of  features  relevant  to  the  current  comparison  (Fig.  1),  in 
 laboratory  experiments  task  states  are  usually  distinguishable  along  only  a  small  number  of 
 well-controlled  dimensions.  For  example,  samples  could  be  weighted  by  their  proximity  in  time 
 to  the  current  moment  (Eqn.  6c)  —  capturing  the  intuition  that  the  remembered  states  most  like 
 the  state  I  am  currently  in  are  the  states  I  have  most  recently  visited.  In  this  formulation, 
 samples  at  time  t  are  most  likely  to  be  drawn  from  the  most  recent  trial  (  i=t  -1),  and  exponentially 
 less  likely  to  be  drawn  from  preceding  trials  i  (i.e.  where  i=t  -2,  t  -3,  t  -4,  …),  with  decay  specified 
 by  the  parameter  α.  Because  the  value  of  α  is  between  0  and  1,  exponentiating  this  value  by  t  -  i 
 will  result  in  progressively  smaller  probabilities  for  trials  further  in  the  past  (greater  i  ).  Values 
 estimated  by  this  approach  have  the  same  form  of  dependence  on  recent  experience  as  do 
 those learned by TDRL  (Bornstein et al., 2017)  . 

 (6a) ( 𝑠  ' ,     𝑟  ' )   ←  𝑆 ( 𝑠 ,     𝑎 )
 (6b)  𝑃 ( 𝑄 ( 𝑎 ,  𝑠 )   ==  𝑅 ( 𝑠  ' ))   ∝  ||  𝑠 −  𝑠  '|| 
 (6c)  𝑃 ( 𝑄 ( 𝑎 ,  𝑠 )   ==  𝑅  𝑖 )   = α( 1 − α) 𝑡 − 𝑖 
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 Figure  1.  Relevance-based  retrieval  of  memories.  The  memory  sampling  framework  (Eqn.  6)  involves 
 the  probabilistic  retrieval  of  memories  according  to  their  relevance  to  the  current  state.  This  relevance 
 may  be  assessed  across  any  number  of  dimensions  or  attributes,  depending  on  the  task  at  hand.  In  the 
 illustrated  example,  the  decision-maker  is  examining  a  pair  of  eyeglasses  and  deciding  whether  they  are 
 useful  for  her  current  goal  (e.g.  watching  a  play).  In  doing  so,  she  retrieves  memories  of  past  experiences 
 with  similar  items.  The  most  likely  item  to  remember  is  the  one  most  relevant  to  the  current  state.  Other 
 items,  of  decreasing  relevance,  may  also  be  retrieved,  though  are  progressively  less  likely  according  to 
 their usefulness for viewing events at various distances. 

 Sampling  from  past  experiences  can  also  in  principle  approximate  the  extended  sum  of 
 Equation  5,  by  leveraging  the  sequential  structure  of  memory  retrieval  (Weidemann  et  al.,  2019) 
 to  serially  sample  experiences  from  successive  states  (rather  than  a  single  state,  as  presented 
 in  Equation  6)  and  integrate  them  (Bornstein  &  Norman,  2017;  Gershman  &  Daw,  2017)  . 3

 Though  this  process  is  less  resource-efficient  than  TDRL,  it  is  more  flexible:  Specifically,  it  can 
 generate  reliable  estimates  even  after  just  a  few  experiences  in  an  environment  (Lengyel  & 
 Dayan,  2008)  ,  can  dynamically  adjust  to  momentary  goals  (Bornstein  &  Daw,  2013)  ,  and  can 
 smoothly  incorporate  newly  available  information  about  transition  or  value  functions  (Vikbladh  et 
 al.,  2017)  .  These  features  arise  when  the  sample  selection  process  admits  many  possible 
 Monte  Carlo  approximations  to  —  in  other  words,  by  sampling  from  multiple  memory  𝑄 ( 𝑎 ,  𝑠 )
 stores  that  represent  experiences  in  different  forms  (Bornstein  &  Daw,  2013)  .  Depending  on 
 which  representation  is  being  sampled  from,  these  approximations  can  be  wholly 

 3  The  full  equation  describing  sample-averaging  is  an  expansion  of  Equation  6,  and  is  omitted  here  for 
 space  reasons.  See  the  supplemental  materials  of  (Bornstein  et  al.,  2017;  Bornstein  &  Norman,  2017)  for 
 the expanded form. 
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 nonparametric,  in  the  limit  of  individual  samples  with  episodic  features  that  also  carry  direct 
 reward  signals  (Bornstein  et  al.,  2017)  ,  or  it  can  include  sequences  of  actions  (Smith  &  Graybiel, 
 2013)  or  states  (Fortin  et  al.,  2002;  Pezzulo  et  al.,  2014)  bound  together  across  repeated 
 experience  and  terminating  in  a  given  outcome  (Keramati  et  al.,  2016)  .  Sequences  sampled  in 
 this  way  can  be  probabilistic  in  nature,  for  instance  in  “map-like”  representations  of  the  history  of 
 transition  experience  that  have  abstracted  away  reward,  allowing  them  to  be  combined  with 
 local  reward  information  (Dayan,  1993;  Gershman,  2018)  .  Evidence  supports  the  existence  of 
 multiple  such  maps,  connecting  states  at  different  levels  of  resolution  reflecting  different 
 histories  of  integration  (Bornstein  &  Daw,  2012;  Brunec  et  al.,  2018;  Collin  et  al.,  2015;  Jiang  et 
 al., 2015; Madarasz & Behrens, 2019; Samejima & Doya,  2007)  . 

 Finally,  it  is  important  to  note  that  although  the  above  formulation  is  written  in  terms  of 
 reward  values,  the  end  result  of  the  process  is  to  select  actions  .  If  we  assume  that  action 4

 probabilities  are  proportional  to  (relative)  action  values  (Eqn.  2),  and  because  we  are  describing 
 the  two-alternative  case  ,  then  each  memory  sample,  by  contributing  to  the  estimate  of 5

 P(choose  A),  also  updates  the  (relative)  likelihood  of  a  given  action  being  preferred  (i.e. 
 .  Understanding  memory  sampling  as  sequential  inference  of  the  “best”  action  to  take log  𝑃  1 − 𝑃 )

 connects  it  to  the  Sequential  Probability  Ratio  Test  (SPRT:  Laming,  1968  ;  the  correspondence 
 between  online  planning  and  sequential  inference  was  also  noted  by  Solway  &  Botvinick,  2012) 
 and,  by  extension,  to  the  canonical  evidence  accumulation  algorithm,  the  drift-diffusion  model 
 (DDM;  Bogacz et al., 2006; Busemeyer & Diederich,  2010; Ratcliff & Smith, 2004)  . 

 II. Memory in action 

 Extensive  recent  findings  support  the  idea  that  action  selection  is  influenced  by  memories  -- 
 even  of  individual  experiences  --  retrieved  at  the  point  of  decision.  One  example  is  found  in  a 
 series  of  studies  by  Ludvig,  Madan,  and  Spetch  (Ludvig  et  al.,  2015;  Madan  et  al.,  2014,  2015) 
 who  showed  that  individual  choices  between  risky  lotteries  are  influenced  by  reminders  of  past 
 choices  (and  their  outcomes),  guiding  individuals  towards  riskier  options  when  they  were 
 reminded  of  choices  on  which  they  had  been  “lucky”  in  the  past.  These  effects  were  observed 
 within  a  single  lab  session,  but  Wimmer  &  Poldrack  (2018)  demonstrated  that  the  sense  of 
 “luckiness”  associated  with  reward-associated  memoranda  was  detectable  in  explicit  elicitation 
 at least three weeks later. 

 5  Though a similar procedure can apply to the multialternative  scenario  (Baum & Veeravalli, 1994)  . 

 4  Indeed,  several  frameworks  propose  that  memory  retrieval  plays  a  direct  role  in  action  selection,  rather 
 than  being  mediated  by  value  estimation  (Henson  &  Gagnepain,  2010;  Pezzulo  et  al.,  2019;  Wang  et  al., 
 2015)  .  Recent  evidence  supports  the  general  idea  that  decisions  for  reward  are  actually  deliberated  in 
 action  space,  rather  than  with  values  intermediating  (Koechlin,  2019)  ,  and  that  the  effect  of  memory  on 
 subsequent  preferences  is  only  present  when  the  memory  evokes  a  choice,  rather  than  an  item  presented 
 in  the  absence  of  choice  (DuBrow  et  al.,  2019)  .  The  distinction  between  deliberating  in  terms  of  values 
 and  deliberating  in  terms  of  actions  is  important,  with  consequences  both  in  the  shape  of  behavioral 
 variability  and  the  understanding  of  the  substance  of  neural  representations;  though  outside  the  scope  of 
 this review, we refer the reader to  (Hayden & Niv,  2020)  for an excellent discussion of the implications. 
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 A  different  study  examined  participants  as  they  learned  the  values  of  trial-unique  lotteries 
 and  performed  a  decision-making  task  between  learned  and  novel  lotteries  (Murty  et  al.,  2016)  . 
 They  found  that  participants  were  more  likely  to  re-engage  with  learned  lotteries  that  had 
 previously  resulted  in  higher  rewards,  but  only  for  lotteries  whose  values  were  correctly 
 identified  in  a  subsequent  recognition  memory  test.  These  results  suggest  that  memories  about 
 specific  rewarding  events  are  successfully  encoded  and  then  subsequently  reactivated  upon  a 
 second  encounter,  consistent  with  the  idea  of  evidence  arising  from  discrete  packets,  and  with 
 an  evaluation  function  that  is  predicated  on  the  value  experienced  in  that  previous  episode, 
 rather  than  one  computed  anew.  However,  these  data  could  also  be  consistent  with  separate 
 effects  of  positive  reward  prediction  errors  on  choice  and  memory  (Jang  et  al.,  2019;  Rouhani  & 
 Niv,  2021)  .  The  question  of  whether  memory  sampling  requires  explicit  recollection  at  the  time  of 
 choice remains an area of active interest. 

 In  another  study,  participants  learned  the  value  of  repeated  options  through  choice  and 
 feedback,  which  was  presented  alongside  trial-unique  images  of  everyday  objects  (referred  to 
 as  “tickets”;  Bornstein  et  al.,  2017)  .  Choice  trials  were  interspersed  with  recognition  memory 
 probes  that  implicitly  reminded  participants  of  selected  past  choices.  Tracking  the  average  value 
 of  each  option  via  incremental  learning  is  a  profitable  approach  to  performing  the  choice  task. 
 However,  when  choices  were  preceded  by  memory  probes,  participants’  decisions  were  biased 
 by  the  action  taken  and  the  value  received  on  the  trial  where  the  images  were  first  introduced. 
 This  result  was  captured  by  a  memory  sampling  model  which  treated  the  probed  experiences  as 
 more  recent  than  they  would  otherwise  have  been  (Eqn.  6c).  This  matched  previous  work 
 suggesting  that  decisions  which  appeared  to  be  a  running  average  of  recent  rewards  could 
 instead  be  better  captured  by  an  algorithm  that  relies  on  single  samples  of  past  trials  (Biele  et 
 al., 2009)  , and extended the idea by linking the samples  to episodic memories. 

 Bornstein  and  colleagues  (  2017)  also  used  the  same  model  to  reanalyze  previously 
 collected  data  from  a  four-choice  decision  task  (Daw  et  al.,  2006)  ,  which  further  revealed  that  in 
 addition  to  participants’  choices,  neural  decision  variables  measured  in  fMRI  were  better 
 explained  by  a  memory  sampling  model  than  by  TDRL.  Although  forming  and  retrieving 
 individual  memories  is  thought  to  be  more  cognitively  demanding  than  maintaining  summary 
 statistics  of  a  task  (or  a  semanticized  model;  Daw  et  al.,  2005)  ,  these  results  indicate  that 
 individual  memories  of  past  rewards  influence  choice  even  under  the  circumstances  where  they 
 may not be locally relevant to task performance. 

 The  idea  that  sampling  draws  on  episodic  representations  implies  that  the  sampling 
 process  should  reactivate  richly  associative  information,  which  could  also  guide  both  action 
 selection,  and  also  the  content  of  successive  samples.  A  critical  feature  of  episodic  memory,  as 
 originally  defined  (Donaldson  &  Tulving,  1972)  ,  is  that  it  is  situated  within  time  and  place,  bound 
 up  with  other  events  that  occurred  in  a  contiguous  associative  mental  context.  Critically,  this 
 context  need  not  be  explicitly  temporal:  the  associative  nature  of  mental  context  is  not  identical 
 to  the  sequence  of  experiences,  but  may  be  instead  or  also  sculpted  by  latent  or  semantic 
 associations,  a  point  we  return  to  below.  Supporting  the  idea  that  sample  selection  changes  as 
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 a  result  of  memory  reactivation,  recent  computational,  behavioral,  and  neural  work  has  shown 
 that  encoding  context  affects  the  sequential  structure  of  memory  retrieval:  when  we  recall  an 
 event  from  a  context,  the  next  memory  to  be  recalled  is  likely  to  be  one  from  the  same  context 
 (Folkerts  et  al.,  2018;  Howard  &  Kahana,  2002;  Socher  et  al.,  2009)  .  In  terms  of  Equation  6a, 
 recent  memory  reactivations  are  a  component  of  s  .  Crucially  for  the  process  of  action  selection, 
 sequential  memory  retrieval  can  proceed  along  dimensions  that  may  be  informative  about  a 
 range  of  option  values  (e.g.  multiple  flavors  of  ice  cream  tried  at  the  same  shop).  This  means 
 that,  rather  than  simply  serving  as  repeated  samples  of  the  same  reward,  successively  recalled 
 events may have different, even opposing, action and  reward implications. 

 This  sort  of  context-guided  memory  sampling  was  demonstrated  using  a  variant  of  the 
 “ticket”  bandit  task  previously  discussed,  altered  such  that  memories  with  shared  associative 
 content  (“context”,  indicated  by  photographs  of  scenes)  sharply  differed  in  which  action  was 
 most  likely  to  be  rewarded  (Bornstein  &  Norman,  2017)  .  This  allowed  a  dissociation  of  the 
 influence  on  choice  of  individual  event  reinstatement  from  that  of  ensuing  reinstatement  of 
 events  sharing  that  context.  When  probed  with  a  cue  reminding  them  of  a  particular  choice 
 event,  participants’  subsequent  choices  were  influenced  by  the  properties  of  other  decisions 
 made  in  the  same  context  as  the  reminded  one;  critically,  this  effect  was  mediated  by 
 neuroimaging  markers  of  whether  --  and  which  --  visual  context  was  retrieved  at  the  time  of  the 
 decision,  even  if  that  retrieved  context  was  not  the  one  actually  experienced,  supporting  the 
 hypothesis  that  the  value  estimate  is  constructed  at  retrieval  time,  rather  than  being  imbued  in 
 the  reminder  cue.  The  correlation  between  this  behavioral  effect  and  the  specific,  momentary 
 content  of  memory  retrieval  suggests  that  factors  that  modulate  memory  reactivation  also 
 influence  choice,  and  thus  that  these  reinstatements  are  used  to  estimate  values  at  the  time  of 
 decision.  The  memory  modulation  effect  has  also  been  widely  observed  in  other  studies,  where 
 results  indicate  that  decisions  made  in  familiar  contexts  are  more  likely  to  be  influenced  by  past 
 events  than  decisions  in  novel  contexts  (Duncan  &  Shohamy,  2016)  ,  consistent  with  the  notion 
 that  context  is  part  of  the  input  to  the  selection  function;  that  remembered  options  are  more 
 likely  to  be  chosen  as  compared  to  forgotten  ones  despite  the  fact  that  the  chosen  options  are 
 comparatively  unattractive  (Gluth  et  al.,  2015;  Mechera-Ostrovsky  &  Gluth,  2018)  ;  that  the 
 opposite  pattern  holds  when  both  options  are  in  the  loss  domain  (Weilbächer  et  al.,  2020)  , 
 consistent  with  the  idea  that  memory  samples  reduce  uncertainty  in  the  value  estimate;  and  that 
 inducing  imagination  of  episodically  rich  future  scenarios  alter  impulsivity  and  risk-taking 
 behavior,  suggesting  that  reactivating  episodic  memory  may  be  a  shared  mechanism  during 
 both  decisions  from  experience  and  those  that  involve  simulating  potential  future  events  on  the 
 basis of past experience  (Peters & Büchel, 2010; St-Amand  et al., 2018)  . 

 In  addition  to  decisions  that  involve  re-engaging  with  previously  experienced  options, 
 pattern  completion  (see  Section  IV,  below)  allows  memory  reactivation  to  also  support  decisions 
 about  never  before  seen  options.  For  example,  Barron  and  colleagues  (  2013)  asked  participants 
 to  choose  between  novel  food  items  that  are  combinations  of  two  familiar  food  types  that  had 
 not  been  previously  tested  together  (Barron  et  al.,  2013)  .  They  found  that  the  prospective  values 
 of  the  novel  items  are  constructed  at  choice  time  through  simultaneously  re-activating  memories 
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 of  its  constitutive  parts  in  the  hippocampus  and  medial  prefrontal  cortex.  This  finding  resonates 
 with  proposals  that  representations  in  these  regions  are  predictive  in  nature  (Bornstein  &  Daw, 
 2012,  2013;  Gershman,  2018;  Hamm  &  Mattfeld,  2019;  Morton  et  al.,  2017,  2020;  Schacter  et 
 al.,  2012;  Shohamy  &  Wagner,  2008;  Stachenfeld  et  al.,  2017;  Zeithamova  et  al.,  2012)  .  A  key 
 property  of  these  representations  is  that  they  can  be  formed  in  the  absence  of  explicit  goals.  For 
 instance,  a  seminal  study  by  Wimmer  and  Shohamy  (  2012)  found  that,  in  the  absence  of 
 conscious  awareness,  value  learning  through  repetition  also  recruited  hippocampus,  and  that 
 this  hippocampal  activity  supports  the  transfer,  or  “spread”,  of  value  between  paired  stimuli.  This 
 idea  has  been  extended  to  networks  of  rewards  and  stimuli  related  via  complex,  latent 
 associative structures  (Wu et al., 2018)  . 

 Supporting  the  idea  that  these  learned  regularities  support  sensory  and  motor 
 predictions,  studies  using  sequential  stimulus  identification  tasks  have  shown  that  hippocampal 
 activity  increases  with  the  uncertainty  over  possible  successor  stimuli  (Bornstein  &  Daw,  2012; 
 Harrison  et  al.,  2006;  Hindy  et  al.,  2016;  Kok  &  Turk-Browne,  2018;  Strange  et  al.,  2005)  .  Taking 
 into  account  the  spatial  and  temporal  resolution  of  fMRI  (Mayes  et  al.,  2019)  ,  these  findings  are 
 consistent  with  observations  in  rodent  electrophysiology  studies  that  hippocampus  is  continually 
 “prefetching”  possible  next-step  stimuli  in  order  to  inform  action  preparation,  and  that  more 
 prefetching  occurs  in  times  of  higher  uncertainty  about  the  next  element  in  the  sequence 
 (Johnson  &  Redish,  2007;  Redish,  2016)  .  Indeed,  this  appears  to  be  true  even  in  simple 
 sequential  responding,  of  the  sort  traditionally  linked  to  striatal  representations.  For  example, 
 Bornstein  &  Daw  (  2012,  2013)  demonstrated  that  forward-looking  activity  in  both  hippocampus 
 and  striatum  contribute  to  such  learning,  with  distinct  quantitative  signatures  of  the  timescale 
 across  which  they  integrate  stimulus  history  to  generate  predictions.  Maintaining  multiple 
 representations  with  different  history  dependence  may  be  adaptive  in  environments  of  unknown 
 or  changing  volatility  (Iigaya  et  al.,  2019;  Yu,  2007)  ,  and  concords  with  extensive  empirical  work 
 supporting  a  diversity  of  integration  timescales  across  brain  regions  (Brunec  et  al.,  2018; 
 Gläscher  &  Büchel,  2005;  Meder  et  al.,  2017;  Murray  et  al.,  2014;  Onoda  et  al.,  2011)  and 
 expressed in behavior  (Corrado et al., 2005; Staddon  & Davis, 1990)  . 

 Taken  together,  the  above  findings  outline  a  clear  role  for  mnemonic  and  relational 
 reactivation  during  decisions  about  the  past  and  future.  This  reactivation  process  is  stochastic, 
 is  influenced  by  multiple  aspects  of  the  memory  representation,  supports  both  novel  and 
 repeated  decisions,  and  adaptively  selects  memories  on  the  basis  of  their  predictive  value  to  the 
 decision at hand. We now turn to the question of how  this information is transformed into action. 

 III. Evidence from memory 

 We  briefly  review  the  standard  model  of  single-trial  action  selection,  sequential  evidence 
 accumulation  (Bogacz  et  al.,  2006;  Ratcliff,  1978)  .  Though  questions  remain  about  its  exact 
 instantiation  in  neural  circuits  (Brody  &  Hanks,  2016;  Gold  &  Shadlen,  2007)  ,  there  is 
 widespread  support  for  the  idea  that  a  sequence  of  neural  structures  are  involved  in 
 successively  signaling  momentary  sensory  evidence  in  favor  of  candidate  actions,  integrating 
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 this  evidence  across  time  and  heterogeneous  neural  populations,  and  transforming  the  resulting 
 timeseries  into  motor  responses,  and  that  the  evolution  of  this  time-integrated  signal  is  strikingly 
 well-matched  by  a  biased  random  walk,  approximated  in  the  continuum  limit  as  Brownian 
 motion along a gradient  (Ratcliff & McKoon, 2008)  . 

 Experiments  using  this  framework  are  generally  constrained  such  that  action-relevant 
 evidence  is  available  only  in  a  single  sensory  modality  (e.g.  visual  or  auditory  input).  These 
 unimodal  evidence  signals  have  multiple  downstream  effects:  neural  firing  patterns  in  several 
 successive  regions  reflect  the  accumulation  of  sensory  input.  These  structures  carry  out  distinct 
 transformations  of  the  input,  or  combine  it  with  other  signals  (Akrami  et  al.,  2018;  Erlich  et  al., 
 2015;  Hanks  et  al.,  2015;  Scott  et  al.,  2017;  Yartsev  et  al.,  2018)  .  It  remains  an  open  question 
 what  is  the  precise  contribution  of  each  of  these  multiple  components.  Importantly,  even  in  these 
 tightly  controlled  settings,  neural  firing  has  been  shown  to  reflect  changing  internal 
 representations  of  the  inferred,  latent  structure  of  the  environment  (Hanks  et  al.,  2011;  Yang  & 
 Shadlen,  2007)  .  This  is  likely  a  special  case  of  a  more  general  property.  Namely,  when  all  of  the 
 information  necessary  to  make  a  decision  is  not  actively  present  in  the  sensorium  or  the  current 
 mental  context  —  which  is  arguably  the  case  for  nearly  every  decision  made  outside  of 
 laboratories,  as  well  as  many  inside  of  them  —  the  brain  must,  by  definition,  rely  on  reactivation 
 of  representations  formed  during  past  experiences.  Despite  this,  and  despite  the  fact  that  early 
 applications  of  the  canonical  form  of  the  model  were  to  recognition  memory  (Ratcliff,  1978)  ,  the 
 lion's  share  of  experimental  applications  over  the  past  four  decades  have  focused  on  other 
 kinds  of  decisions.  However,  findings  about  the  neural  architecture  of  evidence  integration  in 
 these  other  modalities  are  likely  to  apply  to  the  study  of  memory-guided  decisions,  especially 
 when  studies  employ  stimuli  whose  predictiveness  is  estimated  via  associations  that  emerge 
 across  experience  (Yang  &  Shadlen,  2007)  .  As  reactivations  of  those  previous  experiences 
 echo  both  previous  sensory  inputs  and  also  latent,  non-sensory  information,  such  as  the 
 inferred  contingency  structure  of  the  environment  and  the  value  of  rewards  available  at  the  time, 
 all  of  these  lead  to  the  subsequent  reactivation  of  the  same  sorts  of  action-tendency  or  value 
 associations  as  does  sensory  input.  In  other  words,  stimuli  may  trigger  action-related  evidence 
 directly  as  well  as  via  associations  with  other  stimuli  which  themselves  may  trigger 
 action-related  evidence  (Bornstein  &  Norman,  2017)  (though  the  latter  signals  may  be 
 integrated  into  the  decision  calculation  at  a  later  time,  a  point  we  return  to  below).  A  potential 
 synthesis  of  this  necessary  corollary  with  the  existing  data  is  that  accumulation-reflecting  activity 
 downstream  from  early  sensory  regions  actually  represents  the  integration  of  multiple  inputs, 
 including memories  (Bakkour et al., 2019; Mainen &  Pouget, 2019)  . 

 Mathematical models of sequential inference: Gaussian  and “Jump” diffusion. 
 We  now  turn  to  the  model  itself,  which  has  been  a  rich  area  of  investigation  for  over  four 
 decades.  Here  we  will  only  cover  a  few  key  points  relevant  to  the  review,  and  refer  the  reader  to 
 several  excellent  treatments  for  further  details  (Bogacz  et  al.,  2006;  Gold  &  Shadlen,  2001; 
 Ratcliff, 1978; Ratcliff & Rouder, 1998)  . 
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 In  canonical  form,  the  DDM  is  specified  as  a  one-dimensional  biased  random  walk  in 
 continuous  time,  where  a  decision  variable  (  x  )  is  incremented  at  each  time  point  by  a  step  of 
 average  size  Adt  ,  corrupted  by  some  zero-centered  gaussian  white  noise  with  standard 
 deviation  c  (c  dW  ), as in Equation 7. 

 (7)  𝑑𝑥    =     𝐴𝑑𝑡    +     𝑐𝑑𝑊 
 Integrating  these  steps  over  time,  the  walk  continues  until  it  arrives  at  one  of  two 

 absorbing  thresholds.  At  this  point,  the  walk  terminates  and  the  action  is  selected  according  to 
 which  threshold  was  reached.  Thus,  the  model  specifies  both  the  choice  made  and  the  time 
 needed  to  make  the  decision.  This  procedure  is  the  continuous-time  limit  of  the  Sequential 
 Probability  Ratio  Test  (SPRT),  a  simple  arithmetic  procedure  for  determining  which  of  two 
 hypotheses  are  supported  by  a  stream  of  noisy  evidence.  This  equivalence  is  important 
 because  Wald  &  Wolfowitz  (1948)  proved  that,  given  a  fixed  error  rate,  the  SPRT  determines  the 
 solution  after  the  fewest  number  of  samples.  Thus,  the  DDM  describes  the  optimal  procedure 
 for weighing evidence in two alternative forced choice,  under reasonably broad assumptions  . 6

 The  SPRT  operates  by  examining  whether  the  likelihood  ratio  (Eqn.  8a),  the  conditional 
 probability  of  each  hypothesized  stimulus  (  s  1  and  s  2  )  given  the  evidence  (  e  )  observed,  reaches  a 
 predetermined  threshold  that  corresponds  to  the  desired  level  of  accuracy.  When  multiple 
 samples  (  e  1  ...  e  n  )  are  observed,  the  gross  likelihood  ratio  is  simply  the  product  of  these 
 individual  terms  (Eqn.  8b).  Gold  and  Shadlen  (2001)  proposed  that  neural  circuits  could 
 implement  evidence  accumulation  by  computing  this  product  in  log  space.  Representing  this 
 quantity  in  logarithmic  form  allows  it  to  be  implemented  as  a  successive  summation  (Eqn.  8c), 
 which  can  naturally  be  implemented  by  neurons  (up  to  normalization  constraints,  see  (Keung  et 
 al., 2020)  . 

 (8a)  𝐿  𝑅  1 , 2|  𝑒 =     𝑃 ( 𝑒  |  𝑠  1 ) 𝑃 ( 𝑒  |  𝑠  2 )
 (8b)  𝐿  𝑅  1 , 2|  𝑒  1 .. 𝑛 =     𝑃 ( 𝑒  1  |  𝑠  1 ) 𝑃 ( 𝑒  1  |  𝑠  2 )    ×  𝑃 ( 𝑒  2  |  𝑠  1 ) 𝑃 ( 𝑒  2  |  𝑠  2 )    ×  𝑃 ( 𝑒  3  |  𝑠  1 ) 𝑃 ( 𝑒  3  |  𝑠  2 )    ×  𝑃 ( 𝑒  4  |  𝑠  1 ) 𝑃 ( 𝑒  4  |  𝑠  2 )    ×  𝑃 ( 𝑒  5  |  𝑠  1 ) 𝑃 ( 𝑒  5  |  𝑠  2 )    ×    ...
 (8c)  𝑙𝑜𝑔𝐿  𝑅  1 , 2|  𝑒  1 .. 𝑛 =  𝑙𝑜𝑔  𝑃 ( 𝑒  1  |  𝑠  1 ) 𝑃 ( 𝑒  1  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  2  |  𝑠  1 ) 𝑃 ( 𝑒  2  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  3  |  𝑠  1 ) 𝑃 ( 𝑒  3  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  4  |  𝑠  1 ) 𝑃 ( 𝑒  4  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  5  |  𝑠  1 ) 𝑃 ( 𝑒  5  |  𝑠  2 ) +    ...

 Bogacz  et  al  (2006)  rearranged  these  terms  to  denote  the  logLR  as  integrated  evidence  (  I  t  )  and 
 show  that  the  summation  is  a  recursion  which  takes  the  form  of  a  discrete  random  walk  (with 
 stochasticity inherent in the densities given by the  evidences  e  t  ): 

 (8d)  𝐼  𝑡 =  𝐼  𝑡 − 1 +     𝑙𝑜𝑔  𝑃 ( 𝑒  𝑡  |  𝑠  1 ) 𝑃 ( 𝑒  𝑡  |  𝑠  2 )
 Gold  and  Shadlen  further  noted  that  one  benefit  of  forming  decisions  in  this  way  is  that  it 

 provides  a  “common  currency”  in  which  to  represent  multiple  kinds  of  evidence  besides  just 

 6  Again,  a  similar  form,  though  with  important  differences,  results  when  solving  for  the  optimal  policy  in  the 
 multialternative case  (Tajima et al., 2019  ;  Baum &  Veeravalli, 1994)  . 
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 sensory  input,  such  as  prior  probabilities.  However,  in  the  DDM  the  drift  rate  term  specifies  the 
 average  net  instantaneous  direction  of  the  evidence  summation  series.  That  is,  it  averages  out 
 any  ephemeral  fluctuations  in  the  relative  weighting.  This  is  a  valuable  approximation  for  tasks 
 with  stationary  evidence  consistency,  but  breaks  down  in  cases  where  the  properties  of  arriving 
 evidence  fluctuate  over  time  (Wong  et  al.,  2007)  .  Outside  of  tightly  controlled  perceptual 
 experiments,  evidence  may  be  more  like  these  latter  cases.  For  instance,  consumption 
 decisions  implicitly  aggregate  multiple  sources  of  evidence,  including  sensory  input,  internal 
 state  (e.g.  cravings  for  a  particular  flavor),  and  history-dependent  representations  of  the 
 stimulus,  each  of  which  may  have  different  properties  that  could,  when  those  options  are 
 examined,  alter  the  momentary  drift  rate.  As  a  result,  the  static  vector  specified  by  the  drift  rate 
 may obscure underlying heterogeneity in net direction  of evidence. 

 Along  these  lines,  a  variety  of  alternatives  to  the  “pure”  DDM  have  been  proposed. 
 These  include  time-dependent  drift  rates,  time-dependent  thresholds,  and  non-Gaussian  noise 
 (Ratcliff  &  McKoon,  2008;  Srivastava  et  al.,  2017;  Voss  et  al.,  2019;  Wieschen  et  al.,  2020)  . 
 These  alternatives  sacrifice  the  analytical  tractability  and  theoretical  connection  to  the  optimal 
 SPRT  in  favor  of  better  modeling  the  underlying  stochastic  dynamics  that  give  rise  to  response 
 times.  One  especially  promising  approach  for  modeling  the  arrival  of  evidence  samples  from 
 different  distributions,  called  Lévy  Flight  models  (Fig.  2),  considers  a  variety  of  intermittent 
 “jumps”  that  augment  and  alter  the  Brownian  motion  of  Equation  7.  Recent  work  on  these 
 “jump-diffusion”  models  suggest  that  they  provide  a  superior  fit  to  two  alternative  forced  choice 
 data  in  situations  where  evidence  sources  are  of  varying  reliability,  are  mixed  with  prior 
 probabilities,  and/or  differ  in  the  distribution  of  their  arrival  times  (Voss  et  al.,  2019;  Wieschen  et 
 al.,  2020)  .  In  the  next  section,  we  review  features  of  memory  representations  that  suggest  that 
 these conditions are likely to hold in general when  sampling from memory. 

 Figure  2.  Lévy  Flight  models  add  discontinuous  jumps  to  standard  diffusion  models.  Evidence 
 accumulation  models  describe  the  integration  of  evidence  samples  across  time  by  their  average  net 
 direction  and  magnitude  of  accumulation  (green  arrows),  which  dictate  the  rate  at  which  evidence  tends  to 
 reach  a  fixed  threshold  (dashed  black  lines).  This  average  obscures  considerably  heterogeneity  both 
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 across  time  within  a  single  decision  and  also  across  multiple  trials  examining  related  decisions  (gray 
 lines).  Recent  work  examines  the  proper  distribution  model  for  describing  the  variability  of  these 
 accumulation  timeseries.  Standard/Continuous  models  of  evidence  sampling  (Left)  and  Lévy  or  Jump 
 models  (Right)  both  have  a  noisy,  continuous  component  for  infinitesimal  sampling  (blue  lines),  however, 
 Jump  models  add  the  option  for  sampling  discrete  shocks  from  an  alternative  evidence  distribution  (red 
 lines).  It  has  been  shown  that  response  times  in  a  general  class  of  deliberative  decision  tasks  are  better  fit 
 when  these  jumps  are  added  to  the  standard  evidence  accumulation  timeseries  (Voss  et  al.,  2019; 
 Wieschen  et  al.,  2020)  .  An  open  question  is  what  mechanisms  produce  these  jumps.  Here,  we  propose 
 that  one  mechanism  by  which  such  jumps  arise  is  via  parallel  sampling  from  multiple  internal  evidence 
 sources which produce evidence at different latencies  and frequencies. 

 IV. Mechanisms of memory encoding and retrieval 

 In  this  section,  we  outline  the  features  of  content  and  process  (Zhao  et  al.,  2019)  that  mediate 
 the  impacts  of  memories  on  decisions.  Specifically,  we  describe  multiple  kinds  of  memory 
 representations,  how  they  differently  represent  aspects  of  past  experience,  and  how  they  lend 
 themselves to different retrieval and transformation  dynamics that later affect decision-making. 

 Content 

 Significant  ongoing  work  addresses  the  question  of  what  representations  are  supported  by  the 
 hippocampal  memory  system,  and  how  these  representations  adapt  over  the  course  of 
 experience  and  rest  (Kumaran  et  al.,  2016;  Schapiro  et  al.,  2017;  Stachenfeld  et  al.,  2017; 
 Yonelinas  et  al.,  2019)  .  A  consensus  is  emerging  that  multiple  representations  in  the 
 hippocampal  formation  and  adjoining  cortical  regions  are  progressively  tuned  to  support 
 adaptive  reward-seeking  behavior,  and  that  these  representations  restructure  experiences  to 
 create  “maps”  that  organize  even  abstract  concepts  according  to  spatial-like  codes  (Behrens  et 
 al.,  2018;  Bellmund  et  al.,  2018;  Vikbladh  et  al.,  2019)  .  Such  representations  are 
 computationally  desirable  because  they  allow  complex  planning  behaviors  to  be  quickly 
 approximated  via  operations  akin  to  vector  products  (Gershman,  2018)  .  However,  biological 
 agents  are  likely  never  truly  certain  of  their  current  “state”,  and  so  some  degree  of  uncertainty 
 carries  forward  through  all  operations  (Courville  et  al.,  2006;  Dayan  et  al.,  2000;  Geerts  et  al., 
 2019;  Soltani  &  Izquierdo,  2019)  .  With  its  ability  to  extract  sparse  codes  from  sensory  inputs, 
 hippocampus  is  implicated  in  the  learning  of  uncertain  states  by  representing  the  latent  contexts 
 that  give  rise  to  observations  (Gershman  et  al.,  2010;  Sanders  et  al.,  2020)  .  Such 
 representations  may  enable  inference  about  which  memory  samples  should  be  drawn  with 
 partial  information  about  the  structure  of  the  environment  (Gershman  et  al.,  2015)  .  We  now 
 review  in  detail  what  is  known  about  the  content  of  representations  supported  by  the 
 hippocampus (  relational  or  latent  ). 

 Stimulus-stimulus relational representations 

https://paperpile.com/c/yHaE41/4ztw+6f6Y
https://paperpile.com/c/yHaE41/4ztw+6f6Y
https://paperpile.com/c/yHaE41/RoPm
https://paperpile.com/c/yHaE41/tY1G+sK1N+MG7y+d9Kr
https://paperpile.com/c/yHaE41/tY1G+sK1N+MG7y+d9Kr
https://paperpile.com/c/yHaE41/uaPy+iIEm+a6wC
https://paperpile.com/c/yHaE41/uaPy+iIEm+a6wC
https://paperpile.com/c/yHaE41/lYSv
https://paperpile.com/c/yHaE41/XUyq+k1Qk+kUrB+9sph
https://paperpile.com/c/yHaE41/XUyq+k1Qk+kUrB+9sph
https://paperpile.com/c/yHaE41/I7p8+yzEl
https://paperpile.com/c/yHaE41/ApFc


 The  influential  cognitive  map  theory  proposed  that  animals  encode  a  mental  representation  of 
 the  environment  that  reflects  the  relative  locations  of  objects  within  it  (Tolman,  1948)  .  The  theory 
 has  particularly  influenced  the  study  of  spatial  navigation,  which  shows  that  neurons  in  the 
 hippocampus  are  tuned  to  encode  the  relations  between  different  locations  (O’Keefe  &  Nadel, 
 1978)  .  Subsequent  work  demonstrates  that  different  routes  coded  in  the  animal’s  hippocampus 
 are  reactivated  and  evaluated  before  an  animal  enters  the  same  environment  (Johnson  & 
 Redish,  2007)  ,  and  can  sometimes  reflect  novel  routes  that  have  not  actually  yet  been 
 experienced  (Gupta  et  al.,  2010)  .  Recent  evidence  suggests  that  similar  neural  representations, 
 both  in  the  hippocampus  and  in  adjoining  medial  temporal  cortical  regions,  could  also  be 
 involved  in  encoding  the  relationships  between  non-spatial  objects.  Across  several  recording 
 modalities  and  model  organisms,  such  flexible  yet  structured  relational  codes  have  been 
 observed  in  domains  as  varied  as  temporal  relations  (Garvert  et  al.,  2017;  MacDonald  et  al., 
 2011)  ,  sound  frequencies  (Aronov  et  al.,  2017)  ,  conceptual  features  (Constantinescu  et  al., 
 2016;  Theves  et  al.,  2019)  ,  social  relations  (Park  et  al.,  2020;  Tavares  et  al.,  2015)  and 
 sequential  planning  (Bornstein  &  Daw,  2013;  Doll  et  al.,  2015;  Vikbladh  et  al.,  2019)  .  While 
 these  codes  are  observed  in  distinct  (though  adjoining)  regions  and  reflect  different  types  of 
 relational  coordinate  systems,  it  is  widely  thought  that  they  serve  complementary  roles  in  a 
 general  relational  network  centered  on  the  hippocampus  that  together  reflect  the  associative 
 structure  between  events  (Eichenbaum  &  Cohen,  2014;  Preston  et  al.,  2004;  Shohamy  & 
 Wagner,  2008;  Zeithamova  et  al.,  2012)  .  Such  representations  support  inferences  that 
 necessitate  integrating  over  multiple  distant  episodes.  For  instance,  one  study  asked 
 participants  to  make  novel  decisions  that  require  integration  across  episodes  with  overlapping 
 elements,  and  found  that  the  activation  patterns  in  the  hippocampus  during  learning  predict  how 
 well  experiences  were  integrated  in  support  of  novel  decisions  (Shohamy  &  Wagner,  2008)  . 
 These  studies  point  to  a  role  of  hippocampus  in  coding  relational  representations  between 
 observations, be it spatial locations or discrete  events  (Schlichting & Preston, 2017)  . 

 Recent  advances  in  the  field  of  reinforcement  learning  provide  a  theoretical  account  of 
 these  various  relational  representations  (Gershman,  2018;  Stachenfeld  et  al.,  2017)  ,  which  can 
 potentially  unify  the  above-described  theoretical  frameworks  and  empirical  findings.  Specifically, 
 it  is  suggested  that  the  place  cells  in  the  hippocampus  encode  the  expected  occupancy  of  future 
 states  (or  locations)  following  the  current  state,  generally  termed  as  encoding  a  “successor 
 representation”  (  Dayan,  1993)  .  The  key  insight  of  the  theory  is  that  rather  than  encoding  place 
 in  an  absolute  sense,  the  place  cells  encode  a  predictive  representation  of  future  states  that 
 reflects  the  relational  structure  between  them  (Stachenfeld  et  al.,  2017)  .  As  a  result,  two  states 
 that  predict  similar  future  states  will  have  similar  representations,  regardless  of  their  physical 
 adjacency.  This  idea  allows  the  theory  to  account  for  not  only  a  wide  range  of 
 neurophysiological  phenomena  in  rodent  spatial  tasks,  but  also  findings  that  are  built  on 
 discrete, abstract relational knowledge. 

 Finally,  it  has  been  shown  that  the  relational  representations  coded  by  the  hippocampus 
 can  be  used  to  drive  adaptive  behavior  when  combined  with  reward  information,  whether 
 learned  by  experience  or  instructed  (Bornstein  &  Daw,  2013;  Doll  et  al.,  2015;  Wimmer  & 
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 Shohamy,  2012)  .  For  example,  in  the  Wimmer  &  Shohamy  (  2012)  study  mentioned  above, 
 participants  first  learned  a  series  of  arbitrary  associations  between  stimulus  sets  A  and  B,  and 
 then  learned  that  some  of  the  stimuli  in  B  led  to  monetary  reward  (B+)  while  others  did  not  (B-). 
 When  asked  to  choose  between  two  A  stimuli,  participants  showed  preferences  for  the  A  stimuli 
 that  had  been  paired  with  B+  over  the  other  stimuli  that  had  been  paired  with  B-,  though  neither 
 stimulus  had  been  directly  paired  with  reward.  This  decision  bias  was  predicted  by  greater 
 reactivation  of  prior  related  experience  (A->B)  in  the  hippocampus  during  the  encoding  of  new 
 reward  information  (B->+),  suggesting  that  hippocampal  memory  representations  support  the 
 spread  of  monetary  value  across  related  experiences.  Other  studies  show  that  rewards  newly 
 introduced  at  the  time  of  decision  can  be  combined  with  state  representations  to  influence 
 choice  (Bornstein  &  Daw,  2013)  .  Taken  together,  these  findings  are  consistent  with  the  idea  that 
 the  hippocampus  supports  adaptive  behavior  by  coding  relational  representations  that  connect 
 distinct states (e.g., spatial locations and discrete  events). 

 Stimulus-context latent representation 

 Although  much  of  the  work  in  memory-guided  decisions  focuses  on  how  relational 
 representations  are  constructed  during  encoding,  or  “retrospective  integration”,  recent  research 
 has  begun  to  understand  how  individual  memories  are  integrated  at  the  time  of  decision  through 
 retrieval  mechanisms,  a  form  of  “prospective  integration”  (Doll  et  al.,  2015;  Koster  et  al.,  2018)  . 
 For  example,  in  one  study  Doll  and  colleagues  designed  a  multi-step  reward  learning  task 
 assessing  the  extent  to  which  participants  integrated  information  about  rewards  received  during 
 other  interleaved  trials  (Doll  et  al.,  2015)  .  Using  category-specific  images  at  different  decision 
 stages,  Doll  and  colleagues  decoded  the  neural  representations  that  simulate  the  prospective 
 paths  in  the  hippocampus.  The  activity  patterns  were  correlated  with  the  degree  to  which 
 choices  reflected  successful  integration,  indicating  that  the  hippocampus  supports  prospective 
 value computation by supplying information about the  sequential relations between actions. 

 Several  key  factors  that  mediate  prospective  integration  have  been  identified,  with 
 context  information  being  the  most  important  one.  For  example,  it  has  been  shown  that  items 
 are  more  likely  to  be  retrieved  together  if  they  are  experienced  closer  in  time  (Howard  & 
 Kahana,  2002;  Sederberg  et  al.,  2008,  2011)  .  The  link  between  stimuli  and  their  context  is 
 distinguished  from  links  between  stimuli  within  a  context  in  that  the  context  serves  as  a 
 mediating,  latent  ,  representation  among  many  events,  and  represents  another  scale  at  which 
 relational  associations  may  be  formed  --  and,  critically,  navigated  (Shin  &  DuBrow,  2021)  .  This 
 phenomenon  was  exemplified  by  the  Temporal  Context  Model  (TCM),  which  posits  that  during 
 encoding  individual  items  are  bound  to  a  slowly  drifting  “context  vector”  in  memory.  At  test, 
 retrieval  of  an  item  leads  to  the  reinstatement  of  the  context  that  the  item  was  bound  to,  which 
 biases  subsequent  retrieval  towards  items  that  were  bound  to  a  similar  temporal  context  as  the 
 item  that  was  just  retrieved.  Several  studies  have  since  shown  that  when  individual  memories 
 are  bound  to  the  (temporal)  context  in  which  they  are  encoded,  decisions  are  influenced  by 
 information  indirectly  related  to  the  present  problem  through  these  contextual  links  (Bornstein  & 
 Norman, 2017; Hoskin et al., 2019; Morton et al.,  2020)  . 
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 In  sum,  experience  creates  multiple  forms  of  memory  representations  that  variously 
 encode  predictive  statistics  about  both  observed,  stimulus-stimulus  associations,  as  well  as 
 inferred  links  between  abstract  states.  These  representations  serve  a  common  purpose  of 
 allowing  humans  and  animals  to  more  quickly  act  on  regularities  in  the  environment.  We  next 
 examine the process by which this information is used  to enact decisions. 

 Process: Within-trial dynamics of pattern completion 

 This  section  reviews  what  is  known  about  the  ways  in  which  these  multiple  representations  are 
 accessed  in  the  service  of  behavior;  in  other  words,  whereas  the  previous  section  examined 
 how  representations  reflect  the  dynamics  of  memory-guided  decision-making  across 
 experiences,  this  section  illustrates  the  dynamics  of  memory-guided  decisions  within  a  single 
 choice. 

 The  core  idea  of  memory  sampling  is  that  memory  retrieval  is  a  form  of  Monte  Carlo 
 estimation,  leveraging  these  representations  to  estimate  possible  future  states  and  rewards, 
 given  the  current  state  and  a  candidate  action  (Eqn.  6).  This  sort  of  memory-based  simulator 
 has  been  shown  to  be  useful  for  effective  planning  in  large,  partially  observable  environments 
 (Silver  &  Veness,  2010)  ,  such  as  are  likely  predominant  in  naturalistic  settings.  However,  it  is 
 unknown  to  what  degree  these  properties  correspond  to  biological  organisms.  Here,  we  discuss 
 what  is  known  about  the  ability  of  the  hippocampal  memory  system  to  reinstate  past  experience 
 on the basis of partial inputs, a process known as  pattern completion  (Marr, 1971)  . 

 Pattern  completion  during  episodic  recall  is  known  to  depend  on  the  hippocampus 
 (Horner  et  al.,  2015)  .  The  CA3  region  of  hippocampus  is  thought  to  be  instrumental  to  pattern 
 completion  (Guzman  et  al.,  2016;  Neunuebel  &  Knierim,  2014;  van  Dijk  &  Fenton,  2018)  .  This 
 area  has  the  multiply-recurrent  circuitry  and  convergent  direct  external  inputs  necessary  to 
 perform  autoassociative  computations  that  can  resuscitate  stored  patterns  on  the  basis  of  partial 
 input  (Koster  et  al.,  2018;  Marr,  1971;  McNaughton  &  Morris,  1987;  Schapiro  et  al.,  2017)  . 
 These  critical  architectonic  features  may  allow  CA3  to  integrate  coincident  inputs  across  both 
 time  and  sensory  modality,  supporting  a  form  of  fuzzy  coincidence  detection  that  can  apply  to 
 sequences  as  well  as  sets  (Lisman  &  Grace,  2005)  .  It  is  known  that  pattern  completion  is 
 ongoing  throughout  behavior,  during  awake  rest,  and  even  during  sleep  (Antony  et  al.,  2012)  . 
 The  frequency  of  pattern  completion  may  be  reduced  during  periods  of  repeated  novel 
 experience  (Duncan  et  al.,  2012;  Hasselmo,  2006)  ,  or  quieted  by  cholinergic  release  (Prince  et 
 al., 2017)  that encourages the formation of new context  representations  (Gold, 2003)  . 

 By  definition,  pattern  completion  reinstates  many  of  the  same  neural  ensembles  that 
 were  co-active  during  experience,  or  which  have  been  attached  via  offline  processing.  These 
 reinstated  patterns  can  influence  processing  downstream  of  the  regions  where  patterns  are 
 being  reinstated,  just  as  does  the  original  external  sensory  input  (Hoskin  et  al.,  2019)  .  It  thus 
 follows  that  ongoing  decision  processes  should  be  influenced  by  this  reactivation,  suggesting  an 
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 avenue  for  goal-directed  deployment  of  this  function.  Indeed,  pattern  completion  has  been 
 shown  to  be  deployed  when  needed  to  inform  uncertain  inference  (Hindy  et  al.,  2016)  .  The 
 interaction  between  internally-generated  sequences  and  the  properties  of  external  input  is  a 
 critical  feature  of  computational  work  on  state  inference  ,  a  necessary  function  for  online 
 planning  in  environments  with  uncertain  latent  contingency  structure  (Kaelbling  et  al.,  1998; 
 Rao, 2010)  . 

 Pattern  completion  may  be  especially  useful  to  decision-making  because  it  allows  past 
 choices  and  outcomes  to  come  to  mind  in  situations  that  are  similar  to,  but  not  exactly  the  same 
 as,  past  encounters.  This  supports  a  form  of  generalization  ,  permitting  biological  agents  to 
 navigate  new  environments  or  take  on  new  tasks  with  little  previous  direct  experience  (Leutgeb 
 &  Leutgeb,  2007)  .  An  open  question  is  whether,  or  in  which  situations,  do  completed  patterns 
 serve  as  a  rigid  template  for  subsequent  action  (Lengyel  &  Dayan,  2008)  or  something  more 
 akin  to  a  proposal  for  action,  to  be  evaluated  in  the  context  of  other  information  available  at  the 
 time of the current choice  (Vikbladh et al., 2017)  . 

 Where does the time go? 

 The  dynamics  of  memory  retrieval  may  play  an  important  role  in  decisions  in  biological 
 organisms.  If  decisions  were  based  on  the  reactivation  of  single  episodes,  they  might  be 
 expected  to  execute  more  or  less  instantly;  unlike  sensory  decisions,  which  rely  on 
 fundamentally  incremental  input,  memory-guided  decisions  could  in  theory  have  immediate 
 access  to  the  internal  representations  that  serve  as  evidence.  But  elongated  decision  times  are 
 not  only  widely  observed,  they  closely  track  characteristics  of  the  decision  variable  (Yang  & 
 Shadlen,  2007)  ,  and  so  models  that  take  account  of  response  time  can  improve  the 
 out-of-sample  prediction  of  choices  (Clithero,  2018)  .  In  an  insightful  evaluation  of  this  question, 
 Shohamy  and  Shadlen  (  2016)  propose  that  one  reason  memory-guided  decisions  take  time, 
 rather  than  acting  instantly  on  internally-available  information,  is  because  a  limited-bandwidth 
 thalamocortical  pipeline  enforces  serial  processing.  They  then  assert  that  retrieval  time  itself 
 does  not  play  a  role  in  the  sequential  nature  of  memory  sampling,  because  sharp-wave  ripples 
 (SWR:  one,  though  not  the  only,  putative  substrate  of  memory  retrieval;  Joo  &  Frank,  2018)  , 
 operate  in  short,  high-frequency  bursts,  much  faster  than  the  variability  observed  in  decision 
 times, and so, they argue, couldn’t possibly be a  rate-limiting factor in decision-making. 

 However,  several  features  of  memory  reactivation  (encompassing  both  SWRs  and  also 
 theta  sequences,  which  are  lower  frequency  and  more  regular)  suggest  that  retrieval  dynamics 
 may  play  a  part  in  the  availability  of  information.  First,  though  SWRs  do  indeed  unfold  over  very 
 short  timescales,  their  onset  time  is  highly  irregular  (Buzsáki  &  Tingley,  2018)  ,  perhaps  reflecting 
 other  rate-limiting  processes  that  precede  any  decision-relevant  SWR  events  (e.g.  memory 
 search).  Memory  search  has  often  been  fruitfully  modeled  as  a  biased  random  walk  along  a 
 graph  constructed  from  experience  (Collins  &  Quillian,  1969;  Jun  et  al.,  2015)  .  Distinct  —  even 
 conflicting  —  action  tendency  signals  may  be  generated  at  different  steps  along  the  walk. 
 Supporting  the  idea  that  memory  retrievals’  influence  on  decision  unfolds  over  time  is  the 
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 observation  that  longer  delays  before  choice  lead  to  greater  memory  influence  on  decisions 
 (Foerde  &  Shohamy,  2011)  --  and,  in  particular,  greater  influence  of  extended  retrievals  from 
 memory  (Bakkour  et  al.,  2019;  Eldar  et  al.,  2020;  Gordon  et  al.,  2014)  .  Second,  the 
 behaviorally-relevant  features  of  SWRs  are  highly  variable,  both  across  instances  and  the 
 population  of  cells  participating,  and  depend  on  contextual  factors  such  as  cognitive  states  and 
 vigilance,  consistent  with  the  idea  that  these  events  provide  information  in  service  of  current 
 behavioral  and  cognitive  demands  (  Hussin  et  al.,  2020)  .  As  a  result,  there  may  not  be  a  simple 
 relationship  between  individual  ripple  events  and  subsequent  decisions.  Third,  the  content  of 
 memory  retrieval  that  serves  as  the  “common  currency”  relevant  to  decisions  —  whether  value 
 representations  or  action  tendencies  —  is  likely  not  encoded  directly  in  hippocampus,  but 
 instead  by  populations  one  or  more  synaptic  connections  downstream.  Suprathreshold 
 activation  of  these  representations  may  require  converging  input  or  preceding  innervation  from 
 other  areas,  such  as  vmPFC  (Gluth  et  al.,  2015;  Schmidt  et  al.,  2019;  Spalding  et  al.,  2018; 
 Weilbächer  &  Gluth,  2016)  ,  or  be  mediated  by  intermediate  abstract  representations,  for 
 instance  in  retrosplenial  (Chrastil  et  al.,  2015;  Mao  et  al.,  2017,  2018)  or  inferior  temporal  cortex 
 (Bornstein  &  Norman,  2017;  Hoskin  et  al.,  2019;  Mack  &  Preston,  2016)  .  Fourth,  the  influence  of 
 value  from  past  decisions  may  depend  on  a  more  elaborative  retrieval  (“source”;  Murty  et  al., 
 2015)  ,  which  computational  models  posit  requires  additional  activation  that  may  stretch  across 
 multiple  cycles  of  hippocampal  retrieval  (Kerrén  et  al.,  2018)  .  These  elaborated  representations 
 may  develop  relatively  slowly  during  retrieval  in  part  because  they  depend,  especially  early  on  in 
 experience,  on  “big-loop”  recurrence,  multisynaptic  bridges  between  medial  temporal  lobe 
 structures  and  other  areas  of  cortex  (Koster  et  al.,  2018;  Kumaran  &  McClelland,  2012)  .  Finally, 
 a  recent  study  examined  serial  decisions  that  were  initiated  by  a  single  composite  stimulus,  and 
 found  that  sensory  evidence  is  accumulated  in  parallel  before  an  integration  bottleneck  occurs 
 somewhere  downstream;  evidence  that  applies  to  later  decisions  is  “buffered”,  apparently 
 losslessly  (Kang  et  al.,  2020)  .  This  finding  supports  the  idea  that  the  time  it  takes  to  act  on 
 information  retrieved  from  memory  can  vary  greatly  across  decisions,  and  that  this  information 
 can  be  sampled  near-simultaneously  from  multiple  sources.  This  last  point  is  relevant  because 
 we  don’t  fundamentally  know  how  many  compound  decisions  are  contained  within  a  single 
 experimental  trial  response  in  standard  lab  tasks  --  this  is  likely  at  least  as  true  in  rodents,  in 
 whom  most  work  on  these  neural  substrates  has  been  performed,  as  it  is  in  humans  (for 
 instance,  a  rodent’s  decision  to  enter  an  arm  of  a  maze  may  be  preceded  by  several 
 intermediate  decisions  e.g.  to  change  head  direction  or  to  serially  not  enter  other  arms  of  the 
 maze).  Some  of  these  decisions  may  not  be  deliberated  for  enough  time  to  depend  on  memory 
 retrieval,  especially  after  extensive  practice  on  the  task,  as  is  common  in  rodent  experiments. 
 Additional  work  is  necessary  to  understand  what  is  the  effective  time  required  to  transmit 
 decision-relevant  information  from  memory  retrievals  downstream,  and  how  it  depends  on 
 attributes of the current decision problem. 

 Such  investigations  will  need  to  pay  special  attention  to  retrieval  during  early  learning, 
 which  may  be  dramatically  different  in  dynamics  and  content  from  the  kind  of  online  reactivation 
 that  occurs  after  many  experiences  with  a  task  or  learning  set  (Redish,  2016)  ,  and  especially 
 when  divorced  from  spatial  navigation,  the  pace  of  which  can  confound  investigations  of  the 
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 frequency  of  retrieval  of  related  place  field  representations.  Along  these  lines,  one  important 
 recent  study  examined  these  dynamics  in  a  non-spatial  setting,  examining  “lookahead”  during 
 sequences  of  odors  in  well-trained  rodents  (Shahbaba  et  al.,  2019)  .  Using  a  novel  combination 
 of  decoding  methods  to  identify  odor  identity  representations  in  dorsal  CA1,  the  authors  found 
 that  they  were  able  to  decode  anticipatory  sequence  reactivations  on  the  scale  of  a  few  100s  of 
 milliseconds,  consistent  with  the  theta-band  rhythms  observed  in  spatial  navigation  studies. 
 Critically,  however,  they  also  observed  faster  sequence  reactivations  within  an  individual  theta 
 cycle,  with  power  that  varied  with  distance  from  the  current  odor,  suggestive  of  either 
 simultaneous  reactivation  at  multiple  temporal  scales  or  an  underlying  substrate  for  the 
 sequences  decoded  at  lower  frequencies.  Further  investigation  is  necessary  to  understand 
 whether  sub-theta  sequence  reactivation  is  alongside,  or  constituent  of,  the  more  well-known 
 theta sequences. 

 More  broadly,  however,  the  dynamics  of  pattern  completion  are  still  poorly  understood 
 (Knierim  &  Neunuebel,  2016)  .  The  decoded  content  of  these  sequences  can  shift  categorically 
 between  individual  periods  of  the  theta  cycle.  This  shifting  may  reflect  reactivation  on  the  basis 
 of  uncertain  sensory  or  latent  inputs,  but  “flickering”  or  “fast  remapping”  has  been  observed 
 even  in  the  case  of  spatial  representations,  in  which  it  is  difficult  to  induce  fundamental 
 uncertainty  (Jezek  et  al.,  2011)  .  A  separate  line  of  research  has  identified  “chunking”  of  theta 
 sequences;  these  imply  that  only  partial  trajectories  may  be  reactivated  in  a  single  theta  cycle. 
 Elongated  trajectories  may  therefore  take  multiple  theta  cycles  to  reactivate  (Gupta  et  al.,  2012; 
 Tang  et  al.,  2020)  .  Consistent  with  this  idea,  and  supporting  the  proposal  that  these  sequences 
 drive  behavior,  rather  than  reflect  it,  disrupting  mPFC  during  deliberation  impairs  both  lookahead 
 theta sequences and associated “vicarious trial and  error” behavior  (Schmidt et al., 2019)  . 

 Finally,  though  the  decoding  approach  to  investigating  properties  of  reactivated  place  cell 
 sequences  has  revealed  profoundly  important  structure,  trajectory  dynamics  are  not  necessarily 
 ballistic.  It  has  recently  been  observed  that  population-wide  activity,  much  of  which  is  likely 
 obscured  by  modal  decoding,  more  closely  matches  Brownian  diffusion  along  a  gradient  (Stella 
 et  al.,  2019)  .  This  is  consistent  with  the  idea  that  each  reactivated  trajectory  provides  only  partial 
 information  about  the  overall  content  of  lookahead,  necessitating  integration  across  multiple 
 reactivations,  and  suggests  that  behavior  may  be  sensitive  to  dynamics  obscured  by  extant 
 decoding  approaches.  Intriguingly,  the  same  study  showed  that  behavior  is  “superdiffusive”, 
 reflecting  occasional  “jumps”  in  diffusion,  as  would  result  from  Brownian  motion  convolved  with 
 stochastic  perturbations  in  the  direction  of  the  gradient.  Such  jumps  may  have  adaptive  value  in 
 navigating  ecologically  normative  environments  (Viswanathan  et  al.,  2011)  ,  but  the  ultimate 
 source of their neural instantiation remains unclear. 

 Taken  together,  the  above  findings  support  the  idea  that  multiple  memory 
 representations  are  created  during  experience,  that  each  is  tuned  towards  different  aspects  of 
 experience,  including  history-dependence,  and  that  the  dynamics  of  reactivation  are  variable 
 and  linked  to  the  associative  structure  of  memories  and  memory  sequences.  The  next  section 
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 synthesizes  these  representation-dependent  properties  of  memory  reactivation  with  the 
 accumulation framework and reinforcement learning  problem described above. 

 V. Random walks together 

 In  the  previous  sections  we  reviewed  evidence  that  experience  produces  multiple  associative 
 representations  (sequences)  that  vary  in  the  length  of  history  they  incorporate,  the  dimensions 
 or  features  of  experience  that  they  represent  (e.g.  motor  sequences,  sensory  features,  latent 
 states),  the  scale  at  which  their  constituent  parts  are  recorded  (coarse  to  fine),  and  the  degree 
 of  determinism  in  their  connection  (high  or  low  entropy).  Each  of  these  representations  has, 
 separately,  been  empirically  shown  to  be  reactivated  in  response  to  internal  or  external  stimulus 
 -  and,  when  reinstated,  to  serve  as  predictions  of  future  outcomes  that  guide  ongoing  action 
 selection. 

 This  proliferation  of  predictions  presents  its  own  puzzle:  Which  one  should  be  used  to 
 guide  behavior  in  any  given  situation?  In  other  words:  How  do  we  decide  how  to  decide?  A 
 seminal  proposal  in  this  area  is  that  each  representation  constitutes  a  “controller”,  whose 
 predictions  are  arbitrated  among  on  the  basis  of  their  uncertainty  (Daw  et  al.,  2005;  Keramati  et 
 al.,  2011;  Simon  &  Daw,  2011)  .  This  principle,  originally  proposed  to  explain  the  apparent  trade 
 off  between  pairs  of  flexible  and  inflexible  representations  (e.g.  as  encoded  in  dorsomedial  and 
 dorsolateral  striatal  circuits  (Yin  et  al.,  2004,  2005)  ,  has  been  extended  to  encompass  episodic 
 memory  as  well  (Lengyel  &  Dayan,  2008)  ,  with  each  system  predominant  after  different  degrees 
 of  experience  in  a  given  environment.  However,  it  is  as  yet  unclear  how  this  principle  is 
 instantiated  in  neural  circuits.  One  candidate,  that  representations  “compete”  for  modal  control 
 (Poldrack  et  al.,  2001)  ,  is  a  reasonable  explanation  of  data  in  tasks  with  stationary  probabilistic 
 structure,  but  seems  not  to  anticipate  the  ongoing  contribution  of  multiple  systems  that  is 
 observed  when  examining  non-stationary  tasks  (Bornstein  &  Daw,  2012)  .  Related  work  explores 
 the  idea  that  top-down  or  other  control  mechanisms  guide  this  process  (Lee  et  al.,  2014)  , 
 however  it  is  unclear  exactly  how  these  signals  propagate  across  such  a  multitude  of 
 representations. 

 Our  review  of  the  relationship  between  the  representational  properties  listed  above  and 
 the  dynamics  of  reactivation,  viewed  through  the  framework  of  sequential  sampling,  points  to  a 
 potential  unifying  mechanism  that  is  consistent  with  each  of  these  proposals,  without  requiring 
 top-down  arbitration.  Specifically,  if  we  write  out  the  log  odds  summation  from  Equation  8  with 
 multiple  sources  of  evidence,  such  as  arriving  from  multiple  internal  memory  representations 
 (Fig.  3  and  Eqn.  9a  -  here,  c  for  context  and  i  for  item),  each  arriving  at  different  latencies  (time 
 to  arrival  of  first  sample)  and  continuing  at  different  frequencies  (rate  at  which  subsequent 
 samples  arrive),  we  see  that  the  resulting  mixture  of  evidence  implements  a  time-varying 
 weighting across the different source representations  (Eqn. 9b). 
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 Figure  3.  Simultaneous  sampling  from  multiple  internal  representations  implements  a  “product  of 
 experts”  via  a  jump-diffusion  process.  In  this  example,  a  person  may  draw  on  multiple  forms  of  internal 
 representation  when  deciding  which  ice  cream  shop  to  visit.  For  instance,  she  may  have  a  well-traveled 
 route  from  her  apartment  to  an  often-visited  shop  (motor  sequence),  while  also  drawing  on  an  allocentric 
 representation  of  the  location  of  each  shop  (cognitive  map).  These  can  be  combined  with  memories  of  her 
 more  recent  experiences  with  different  shops,  including  the  day  and  surroundings  of  a  previous 
 experience  (episodic  context)  as  well  as  a  particular  individual  experience  (episodic  item).  Each  of  these 
 is  sampled  at  different  latencies,  and  with  different  frequencies,  and  their  product  results  in  a 
 “jump-diffusion”  timeseries  of  accumulated  evidence.  The  resulting  decision  -  which  boundary  is  crossed, 
 and at what time - is thus a weighted mixture of the  contributing factors. 

 (9a)  𝑙𝑜𝑔𝐿  𝑅  1 , 2    ≈  𝑙𝑜𝑔  𝑃 ( 𝑒  𝑐 , 1  |  𝑠  1 ) 𝑃 ( 𝑒  𝑐 , 1  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  𝑐 , 2  |  𝑠  1 ) 𝑃 ( 𝑒  𝑐 , 2  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  𝑖 , 1  |  𝑠  1 ) 𝑃 ( 𝑒  𝑖 , 1  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  𝑐 , 3  |  𝑠  1 ) 𝑃 ( 𝑒  𝑐 , 3  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  𝑐 , 4  |  𝑠  1 ) 𝑃 ( 𝑒  𝑐 , 4  |  𝑠  2 ) +  𝑙𝑜𝑔  𝑃 ( 𝑒  𝑖 , 2  |  𝑠  1 ) 𝑃 ( 𝑒  𝑖 , 2  |  𝑠  2 ) +...
 (9b) ≈  𝑗 = 1 

 𝑁 ∑  𝑙𝑜𝑔  𝑃 ( 𝑒  𝑐 , 𝑗  |  𝑠  1 ) 𝑃 ( 𝑒  𝑐 , 𝑗  |  𝑠  2 )    +  𝑘 = 1 
 𝑁  2 ∑  𝑙𝑜𝑔  𝑃 ( 𝑒  𝑖 , 𝑘  |  𝑠  1 ) 𝑃 ( 𝑒  𝑖 , 𝑘  |  𝑠  2 )    

 Note  that  the  form  of  the  weighting  may  not  be  monotonic  in  time,  as  different 
 representations  may  take  longer  to  generate  their  first  sample  (e.g.  memory  sequences),  or  may 
 appear  to  “pause”  in  generating  samples  (e.g.  at  boundaries  identified  between  adjacent 
 memories  whose  reward  statistics  differ  —  and  which  thus  imply  distinct  action  tendencies; 
 Rouhani  et  al.,  2020)  .  The  resulting  continuous-time  form  would  be  that  of  the  “jump-diffusion” 
 model previously discussed. 

 No  matter  the  form  that  the  sample  arrival  dynamics  take,  the  instantaneous  weighting 
 implied  by  Equation  9  implements  an  organizing  principle  akin  to  the  “value  of  information”  (Bera 
 et  al.,  2020;  Callaway  et  al.,  2018)  in  which  representations  with  less-precise  predictions  or 
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 less-immediately  available  evidence  are  slower  to  influence  choice,  which  can  allow  information 
 that  tends  to  be  more  precise  or  immediate  to  dominate  the  accumulated  evidence  calculation. 
 Critically,  though  this  time-varying  weighting  requires  no  “top-down”  or  other  bias  signal,  it  can 
 naturally  incorporate  them.  For  instance,  eye  gaze  has  been  shown  to  modulate  the 
 accumulation  rate  of  the  attended  option  in  simple  choice  tasks  (Krajbich  &  Rangel,  2011)  ;  in  the 
 current  framework  that  modulation  may  be  implemented  by  the  arrival  of  stimulus-triggered 
 evidence  samples  from  memory  (Constantino  &  Daw,  2010)  ,  or  by  a  gain  modulation  of  signals 
 arriving from ongoing reactivations  (Aston-Jones &  Cohen, 2005)  . 

 Whether  or  not  additional  signals  enter  into  the  calculation,  a  relationship  between  the 
 informational  characteristics  of  the  representation  and  its  sample  dynamics  in  the  form  of 
 Equation  9  is  also  equivalent  to  a  suite  of  tools  from  machine  learning  for  online  mixing  of 
 classifiers  with  varying  “expertise”  (reliability)  across  data  domains,  known  as  “product  of 
 experts”  (Hinton,  1999)  ,  one  instance  of  “ensemble  learning”  (Polikar,  2012)  .  One  approach 
 involves  multiplying  the  action  tendencies  (summing  the  log  likelihoods)  produced  by  each 
 component  —  exactly  the  procedure  given  by  the  series  above.  While  the  field  currently  lacks 
 analytical  results  on  general  optimality  guarantees  for  this  method,  simulations  support  its 
 efficacy  in  navigating  partially  observable  environments  (“Boltzmann  Multiplication”;  Wiering  & 
 van  Hasselt,  2008)  .  More  sophisticated  “ensemble  fusion”  approaches  learn  adaptive  weighting 
 for  each  component  —  predictive  Hebbian  learning  mechanisms  may  be  sufficient  to  develop 
 these  with  use  by  altering  sequence-specific  dynamics  (see  Future  Directions  ,  below).  Further 
 research is necessary to understand how learning is  tuned to support adaptive fusion. 

 This  computational  approach  could  guide  further  research  in  the  neurobiology  of  the 
 differential  dynamics  of  memory  reactivation  across  representations.  One  question  raised  by  this 
 framework  is  whether  the  temporal  dynamics  of  memory  reactivation  are  fundamental,  adapt  to 
 the  time  available,  or  are  modulated  by  the  content  of  representation  or  computations  being 
 performed.  Intrinsic  differences  in  reactivation  dynamics  for  different  representations  could  be 
 one  form  of  rational  “inductive  bias”  (Griffiths  et  al.,  2010)  for  fast,  flexible  decision-making  using 
 multiple  sources  of  evidence  -  memory,  sensory,  motor  -  allowing  decision  weights  to  adaptively 
 adjust  to  the  expected  temporal  trajectory  of  the  current  decision,  conditional  on  it  not  having  yet 
 completed  —  e.g.  fast  motor  sequences  should  guide  short  decisions,  but  memory  sequences 
 may  play  a  more  dominant  role  if  the  action  remains  unresolved  .  Several  recent  empirical 7

 7  Importantly,  this  is  not  to  say  that  memory  reactivation  only  affects  decisions  that  are  not  fully  resolved 
 by  motor  sequences.  Empirical  findings  support  the  idea  of  continuous  flow  of  information  to  the  effectors, 
 that  “late-arriving”  evidence  samples  can  play  a  decisive  role  not  only  in  choice,  but  can  even  change 
 decisions  for  which  motor  execution  has  already  begun  (Resulaj  et  al.,  2009)  .  The  same  principle  may 
 explain  how  sequential  samples  implement  the  discount  factors  in  the  unrolled  value  computation  of 
 Equation  5:  the  discount  factor  here  describes  the  average  influence  of  later  evidence  samples  across 
 choices,  which  have  a  monotonically  increasing  probability  of  terminating  before  the  arrival  of  the  n  th 
 sample  —  they  are  unlikely  to  affect  decisions  in  the  aggregate,  but  have  profound  influence  when 
 reactivated.  This  suggestion  is  consistent  with  observations  that  memory  accessibility,  including  as 
 modified  by  pre-trial  “cues”,  can  affect  temporal  discount  rates  (Gabaix  &  Laibson,  2017;  Palombo  et  al., 
 2015;  Peters  &  Büchel,  2010;  Weber  et  al.,  2007)  ,  and  parallels  the  way  in  which  memory  cues  can 
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 observations  are  consistent  with  this  proposal  (Hardwick  et  al.,  2019;  McDougle  &  Taylor,  2019)  ; 
 further  research  is  needed  to  understand  how  the  time-varying  mixture  of  learned 
 representations in memory retrieval reflects its adaptive  use in decisions. 

 Consistent  with  the  proposal  that  sample  rate  tracks  the  history  of  experience  embedded 
 in  the  sample,  evidence  supports  the  idea  that  semantic  memories  are  accessed  at  a  faster  rate 
 than  are  episodes,  following  classical  spreading  activation  theories  of  neural  processing  (Collins 
 &  Loftus,  1975;  Corbett  &  Wickelgren,  1978)  .  Supporting  the  idea  that  such  information  is 
 accessed  simultaneously,  despite  different  delays  to  peak  efficacy,  responses  are  further 
 speeded  when  semantic  information  is  congruent  with  episodic  (McKoon  et  al.,  1985)  ; 
 conversely,  the  availability  of  congruent  semantic  information  influences  the  content  of  ongoing 
 episodic  retrieval  (Manning  et  al.,  2012)  .  Taken  together,  neurobiological  dynamics, 
 process-rational  cognitive  models,  and  dynamical  systems  considerations  support  the  notion 
 that memory-inflected evidence accumulation is both  continuous and irregular. 

 We  have  seen  that  multiple  memory  representations  are  learned  and  transformed  on  an 
 ongoing  basis,  reflecting  experience  integrated  across  multiple  scales,  and  that  these 
 representations  are  accessed  by  a  pattern  completion  process  whose  effective  dynamics 
 depend  on  neural  circuit  properties  and  coherence  of  the  representations  in  question.  Taken 
 together,  it  follows  that  choices  under  time  pressure  will  be  biased  towards  options  for  which  this 
 combination  of  factors  results  in  a  faster  sample  onset  and  lower  latency  between  successive 
 samples,  and  that  response  times  will  be  shaped  by  the  difference  between  options  on  these 
 factors  (in  addition  to,  for  instance,  desirability  (Fine  et  al.,  2020)  .  In  other  words,  the  influence 
 of  associative  distance  on  decisions  should  be  mediated  via  its  influence  on  evidence  dynamics. 
 Further  investigation  is  necessary  to  understand  how  the  temporal  dynamics  of  associative 
 memory retrieval dictate the type of information that  guides decisions. 

 Future directions 
 A  primary  direction  of  future  research  is  understanding  how  various  factors  influence  the 

 temporal  dynamics  of  memory  retrieval.  Evidence  suggests  the  influence  of  at  least  the 
 following  terms:  1.  semantic  distance  (e.g.  as  estimated  using  word  embeddings;  Chadwick  et 
 al.,  2016)  ,  2.  episodic  distance  (Polyn  et  al.,  2009)  ,  and  3.  the  spread  of  probability  mass  across 
 associations  at  each  kind  of  distance  (Socher  et  al.,  2009)  .  Dimov  and  Link  (2017)  examined 
 how  decisions  were  made  on  the  basis  of  cues  that  varied  in  each  of  these  factors 
 (operationalized  as  retrieval  fluency  and  cue  validity).  They  found  that,  for  most  participants, 
 retrieval  fluency  was  predominant  over  cue  validity.  However,  the  range  of  inferred  cue  validities 
 in  the  experiment  was  narrow,  which  may  have  limited  its  usefulness  in  decisions.  Importantly, 
 they  observed  that  subjects’  response  times  varied  strongly  with  the  number  of  cues  retrieved 
 for  each  decision,  regardless  of  what  was  the  dominant  factor  (fluency  or  validity)  for  that 

 overcome  effective  “discounting”  of  probabilistic  transitions  in  sequential  decisions  (  Bornstein  et  al.,  2017; 
 Vikbladh  et  al.,  2017)  .  Further  work  is  needed  to  understand  how  within-trial  dynamics  affect  the 
 integration of information about potential future  states  . 
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 subject.  The  proposal  that  multiple  forms  of  decisions  depend  on  retrieval  dynamics  that  vary  as 
 a  function  of  associative  distance  may  explain  why  choices  and  response  times  appear  to 
 covary  between  tasks  that  examine  how  subjects  weigh  options  across  many  kinds  of  such 
 distances,  for  instance  in  intertemporal  choice,  patch  foraging,  and  model-based  planning  (Kane 
 et  al.,  2019;  Shenhav  et  al.,  2014)  ,  each  of  which  have  been  independently  shown  to  depend  on 
 long-term  memory  representations  (Palombo  et  al.,  2015;  Peters  &  Büchel,  2010;  Schmidt  et  al., 
 2019; Vikbladh et al., 2019)  . 

 Finally,  though  we  have  focused  here  on  memory  sampling's  involvement  in 
 two-alternative  forced  choice,  the  mechanism  we  describe  has  been  observed  or  shown  to  be 
 useful  in  a  wide  array  of  functions.  Specifically,  some  form  of  time-dependent  successive 
 sampling  from  rich,  autobiographical  memories  with  episodic  features  has  been  proposed  in  the 
 following  domains:  as  a  mechanism  for  equilibrium  strategy  discovery  in  repeated  multiplayer 
 economic  games  (Gonçalves,  2020)  ;  to  augment  the  learning  trajectories  of  artificial  agents  via 
 a  form  of  'memoization'  of  partial  inferences  about  environmental  contingencies  (Ritter  et  al., 
 2018)  ;  to  explain  the  trajectory  of  symptom  development  in  anxiety  disorders,  via  biased 
 sampling  of  threatening  stimuli  (Sharp  et  al.,  2020)  ;  to  explain  the  decision  to  use  substances  of 
 abuse  after  years  of  abstinence  (Bornstein  &  Pickard,  2020)  ;  and  to  support  working  memory 
 maintenance  (Hoskin  et  al.,  2019)  .  This  ubiquity  of  functional  impacts  aligns  with  observations  of 
 widespread  hippocampal  involvement  in  cognition  and  perception  (Shohamy  &  Turk-Browne, 
 2013)  ,  and  more  broadly  concords  with  the  centrality  of  this  form  of  memory  in  everyday 
 experience  (Bergson,  1913)  .  Much  work  remains  to  understand  how  these  persistent  records  of 
 past experience -- and their near-constant reactivation  -- shape our thoughts and actions. 

 Box 1: Open questions 

 -  To  what  extent  does  memory  sampling  require  conscious  awareness  of  recollection,  at 
 the  time  of  decision,  or  even  explicit  recall  of  the  same  memoranda,  as  measured  at  a 
 later time? 

 -  What  are  the  neural  substrates  of  memory  samples?  Is  it  the  case  that  sharp-wave 
 ripples  (SWRs)  indicate  “offline”  samples,  and  theta  sequences  support  decision-time 
 sampling, or is there a more complex interplay? 

 -  What  factors  -  at  encoding,  retrieval,  and  during  intervening  memory  transformations  - 
 determine how samples are prioritized during decision-making? 

 -  Is  memory  organized  in  such  a  way  as  to  match  the  retrieval  time  of  information  to  its 
 use  in  deliberative  decisions?  For  instance,  are  more  temporally  or  associatively  remote 
 memories more slowly sampled? 
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