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Abstract

This paper focuses on the modelling of structures equipped with Macro Fiber Composite (MFC)

transducers. Based on the uniform field method under the plane stress assumption, we derive ana-

lytical mixing rules in order to evaluate equivalent properties for d31 and d33 MFC transducers. In

particular, mixing rules are derived for the longitudinal and transverse piezoelectric coefficients of

MFCs. These mixing rules are validated using finite element computations and experimental results

available from the literature.

1 Introduction

Piezoelectric actuators and sensors have been widely used in active vibration control appli-
cations. PZT ceramics are commonly used due to their good actuation capability and very
wide bandwidth. The major drawbacks of these ceramics are their brittle nature, and the
fact that they cannot be easily attached to curved structures. In order to overcome these
drawbacks, two techniques have been developed : (i) thick film deposition of PZT [1] which
requires that the part be heated at 900 � for sintering, and (ii) using packaged PZT com-
posites which can be glued on curved structures. This paper focuses on the second alternative.

A typical piezocomposite transducer is made of an active layer sandwiched between two
soft thin encapsulating layers. The packaging plays two different roles : (i) applying prestress
to the active layer in order to avoid cracks, and (ii) bringing the electric field to the active
layer through the use of a specific surface electrode pattern. The first piezocomposite was
developed at MIT [2]. It consisted of an active layer made of round PZT fibers surrounded
by an epoxy matrix, actuated in the d31 mode (Figure 1a). A major problem with this kind
of configuration comes from the very large difference in the dielectric permittivities of the
piezoelectric fiber (εr=1850) and the epoxy matrix (εr=4). This results in a drastic reduction
of the electric field applied to the active fiber, even for a very small layer of epoxy trapped
between the electrodes and the fibers.
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At the same period, Hagood also introduced the concept of interdigitated electrodes (Fig-
ure 1b) in order to drive the piezo transducers in the d33-mode [3, 4]. The actuator perfor-
mance is enhanced due to the higher value of the d33 coefficient, which is usually 2 to 3 times
higher than the d31. On the other hand, high voltages need to be used, because of the spacing
of the finger electrodes which is 3 to 6 times higher than the thickness of the transducer.

Around the year 2000, the so-called MFCs (Macro Fiber Composites) have been devel-
oped at NASA [5]. The main difference with the previous attempts is that the fibers are
rectangular, and diced from a regular ceramic. The manufacturing process is quite cheap and
repeatable, and the shape of the fibers together with the manufacturing process allows to put
the fibers in direct contact with the electrodes, therefore solving the problem of the permittiv-
ity mismatch. Both d31 and d33 transducers have been developed and are currently produced
by the company Smart Material (Dresden, Germany). Our study focuses on MFC transducers.

a) d mode31

Negative electrode
Electric field

b) d mode33

Positive electrode

Figure 1: Electric field distribution for different electrode configurations

It is clear that many efforts have been spent to develop robust and efficient piezoelectric
flat transducers [6, 7]. The modeling of such transducers attached to thin structures is how-
ever not straightforward. The analysis of multi-layer shells including piezoelectric layers can
be performed using finite element formulations [8, 9]. Piezoelectric patches working in the
d31 mode can be modelled by a single layer of PZT material. Piezocomposite transducers are
made of several layers (electrode layer, glue layer, active layer), some of which may consist of
different materials. For an accurate modelling of these devices, a detailed description of the
layer sequence and thicknesses, as well as equivalent, homogeneous mechanical, piezoelectric
and dielectric properties of each layer is needed. Most manufacturers only provide global
information about the transducers, such as the total thickness, the free strain in the fiber
direction, the blocking force, the capacitance, etc. This information is not sufficient to build
accurate numerical models of structures with embedded piezocomposites.

The first attempts to model flat piezocomposites were conducted for AFCs [10, 4, 11]. Sev-
eral methods were used in order to compute the equivalent properties of these devices : the
uniform field method (UFM) which is a generalization of the series and parallel mixing rules
first developed in [12] for piezocomposites, the self consistent approach [13], and finite element
modelling [4]. For d33 MFCs, equivalent thermal expansion coefficients [14] and mechanical
properties [15] have been derived analytically using classical mixing rules or slightly modified
versions of them. Experiments have also been conducted in [16, 17] in order to identify the me-
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chanical properties which were found to be in good agreement with the analytical predictions.

From the above literature review, it is thought that there exists no analytical simple
mixing rules for the evaluation of the longitudinal and transverse piezoelectric coefficients
for piezocomposites with rectangular fibers such as d31 and d33-MFCs. As demonstrated in
a previous study [18, 19], both the longitudinal and the transverse piezoelectric coefficients
are important for a correct prediction of the performances of structures equipped with MFC
transducers. This study aims at filling this gap by deriving simple analytical mixing rules
for the piezoelectric coefficients of MFCs. The mixing rules are validated by finite element
computations as well as comparison with experimental results available from the literature.

2 Constitutive equations of piezocomposite transducers

2.1 d31 - piezocomposites

For d31 piezocomposites, the poling direction (conventionally direction 3) is normal to the
plane of the patches (Figure 2a) and according to the plane stress assumption T3 = 0. The
electric field is assumed to be aligned with the polarization vector (E2 = E1 = 0). Us-
ing the standard IEEE notations for linear piezoelectricity, and the Mindlin hypothesis, the
constitutive equations are :































S1

S2

S4

S5

S6

D3































=

















sE
11 sE

12 0 0 0 d31

sE
21 sE

22 0 0 0 d32

0 0 sE
44 0 0 0

0 0 0 sE
55 0 0

0 0 0 0 sE
66 0

d31 d32 0 0 0 εT
33















































T1

T2

T4

T5

T6

E3































(1)

where Ei and Di are the components of the electric field vector and the electric displace-
ment vector, and Ti and Si are the components of stress and strain vectors, defined according
to :
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Figure 2: Homogeneous models of the piezoelectric layers with electrodes : reference frames
for d31 and d33 piezoelectric layers

2.2 d33 - piezocomposites

For d33 piezocomposites, although the electric field lines do not have a constant direction
(Figure 1b), it is reasonable to consider that the poling direction is that of the fibers (direction
3, Figure 2b), and that the electric field is in the same direction. With this reference frame,
the plane stress hypothesis implies that T1 = 0. The constitutive equations are given by
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3 Mixing rules for MFC transducers

3.1 d31 MFCs

We consider a representative volume element (RVE, Figure 3) on which the average values of
Ti, Si,Di, Ei are given by :

Ti =
1

V

∫

V

TidV Di =
1

V

∫

V

DidV (4)

Si =
1

V

∫

V

SidV Ei =
1

V

∫

V

EidV (5)

where denotes the average value. Using the uniform field method (UFM, [20]), we assume
that all the fields are uniform in each constituent. In addition, the deformation mechanisms
used in the classical laminate theory and represented on Figure 4 are considered, leading to
the following equalities :
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Figure 3: Representative volume element (RVE) for a d31 MFC
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Figure 4: Deformation mechanism for the RVE of a d31 MFC
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(6)

where p denotes the piezoelectric material and m the matrix. For the other fields, the average
values are given by :

T1 = ρT p
1 + (1 − ρ)Tm

1

S2 = ρSp
2 + (1 − ρ)Sm

2

S4 = ρSp
4 + (1 − ρ)Sm

4

T5 = ρT p
5 + (1 − ρ)Tm

5

S6 = ρSp
6 + (1 − ρ)Sm

6

(7)

where ρ is the fiber volume fraction. Since the electrodes are continuous on the top and
bottom of the RVE, the electrical potential difference (and therefore the electric field) is equal
in the two phases :
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E3 = Ep
3 = Em

3 ; (8)

and

D3 = ρDp
3 + (1 − ρ)Dm

3 , (9)

Upon using the variables which are identical in the two phases as independent variables,
the constitutive equations (1) are written in the form
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with
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Following (7), we have
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Using (10), we get
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and finally using equalities (6) and (8), we have:

A = ρAp + (1 − ρ)Am (14)

Each term of matrix A follows therefore a linear mixing rule. Rearranging those linear
relationships and writing them in terms of engineering constants, we get :
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EL = ρEp
L + (1 − ρ)Em

L (15)

1

ET

=
ρ

Ep
T

+
1 − ρ

Em
T

(16)

νLT = ρ νp
LT + (1 − ρ) νm

LT (17)

1

GLT

=
ρ

Gp
LT

+
1 − ρ

Gm
LT

(18)

GLz = ρGp
Lz + (1 − ρ)Gm

Lz (19)

1

GTz

=
ρ

Gp
Tz

+
1 − ρ

Gm
Tz

(20)

where EL denotes the longitudinal Young’s modulus (in the fibre direction), ET the trans-
verse modulus, νLT is the major Poisson’s ratio, GLT is the in-plane shear modulus and
GTz, GLz are the two out-of-plane shear moduli. For these mechanical properties, we obtain
the classical mixing rules for layered composite materials [21] (note that some minor terms
have been neglected in the expression of ET ). For the piezoelectric and dielectric properties,
we find :

d31 =
1

EL

ρ dp
31 Ep

L (21)

d32 = −d31 νLT + ρ dp
31 (1 + νp

LT ) (22)

ǫT
33 = ρǫTp

33 + (1 − ρ)ǫTm
33 (23)

where we have considered that the matrix is not piezoelectric and that d31 = d32 for the
fibers. It is interesting to note that these expressions are identical to the mixing rules

for thermal expansion coefficients [21, 22] (d31 needs to be replaced by the thermal
expansion coefficient α for the analogy). d31 follows a linear mixing rules involving only
longitudinal properties (Ep

L, Em
L and dp

31), whereas d32 depends on longitudinal as well as
transverse properties. For the permittivity, the relationship correspond to the parallel rule for
capacitors (here also, some minor terms due to the piezoelectric coupling have been neglected).

3.2 d33 MFCs

Figure 5 shows the RVE for a d33 MFC. Using the uniform field method, we assume that
all the fields are uniform in each constituent. In addition, deformation mechanisms identical
to the ones considered for the d31 MFCs (Figure 4) are considered, leading to the following
equalities :
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Figure 5: Representative volume element (RVE) for a d33 MFC
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For the other fields, the average values are given by :

T3 = ρT p
3 + (1 − ρ)Tm

3

S2 = ρSp
2 + (1 − ρ)Sm

2

S4 = ρSp
4 + (1 − ρ)Sm

4

T5 = ρT p
5 + (1 − ρ)Tm

5

S6 = ρSp
6 + (1 − ρ)Sm

6

(25)

Since the electrodes are continuous on the front and rear of the RVE, the electrical po-
tential difference (and therefore the electric field) is equal in the two phases :

E3 = Ep
3 = Em

3 ; (26)

and

D3 = ρDp
3 + (1 − ρ)Dm

3 , (27)

Following similar developments as before, we obtain the mixing rules which are summarized
in Table 1 (assuming that the matrix is not piezoelectric and that d31 = d32 for the fibers),
and compared to the mixing rules developed for d31 MFCs.
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d31 MFC d33 MFC

P

Electrodes

11

2

3

P

Electrodes

1

2

3

Mechanical Properties

EL = ρEp
L + (1 − ρ)Em

L
1

ET

=
ρ

Ep
T

+
1 − ρ

Em
T

νLT = ρ νp
LT + (1 − ρ) νm

LT
1

GLT

=
ρ

Gp
LT

+
1 − ρ

Gm
LT

GLz = ρGp
Lz + (1 − ρ) Gm

Lz
1

GTz

=
ρ

Gp
Tz

+
1 − ρ

Gm
Tz

Piezoelectric Properties

d31 =
1

EL

ρ dp
31 Ep

L d33 =
1

EL

(

ρ dp
33 Ep

L

)

d32 = −d31 νLT + ρdp
31

(

1 + νp
LT

)

d32 = −d33 νLT + ρ
(

dp
32 + dp

33 νp
LT

)

Dielectric Properties

ǫT
33 = ρǫTp

33 + (1 − ρ)ǫTm
33

Table 1: Summary of mixing rules for d31 and d33 MFCs

4 Numerical validation of the mixing rules for MFCs

In order to validate the mixing rules presented in the previous section, the homogenized prop-
erties of both d31 and d33 MFCs have been computed numerically using the finite element
method. In total, six local problems are needed to identify all the coefficients of the piezo-
electric constitutive equations. These are presented in Figure 6 for a d33-MFC . The first
problem consists in applying a voltage V to the electrodes of the RVE and imposing zero
displacement on all the faces of the RVE, except the top and bottom (in order to model the
plane stress condition). In the next five local problems, the difference of potential is set to 0
(short-circuited condition), and five deformation mechanisms are induced. Each of the defor-
mation mechanisms consists in a unitary strain in one of the directions (with zero strain in
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all the other directions). For each problem, the solution is computed using piezoelectric solid
finite elements in SAMCEF [23]. The average values of Ti, Si,Di and Ei are computed and
used to determine all the coefficients in the constitutive equations, from which the engineering
constants are computed.

Note that in the finite element computations, the finger electrodes are modelled, resulting
in a curved electric field when a voltage difference is applied across the electrodes. The poling
of the PZT material is aligned with these curved electric field lines. This is in fact rarely done
in such computations as it involves a complicated definition of the PZT properties which vary
in the RVE. For these computations, the spacing between the interdigitated electrodes is five
times the thickness of the transducer (typical value used in the early developments of MFCs).

3
2

1

DV=0

All faces blocked

except top and bottom

S =13
S =12 S =14

S =16 S =15

DV

d33

Figure 6: The six local problems solved by the finite element method in order to compute the
homogenized properties of d33-MFCs

The homogeneous properties of the active layer have been computed numerically for dif-
ferent values of the volume fraction of fibers ρ. These numerical results are compared with
the analytical mixing rules developed in section 3. The properties of the fibers are given in
Table 2 (it is assumed that the fibers are made of SONOX P502 from CeramTec, for more
details, see [19]). For the matrix, typical isotropic values for epoxy are considered : 1/sE

11 =
1/sE

22 = 1/sE
33 = 2.9 GPa (Young’s modulus), ν = 0.3 and εT

11/ε0 = εT
22/ε0 = εT

33/ε0 = 4.25.
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MFC Fiber Engineering constants Symbol Unit SONOX P502

Young’s modulus 1/sE
11 = 1/sE

22 GPa 54.05
1/sE

33 GPa 48.30
Shear modulus 2/sE

32 = 2/sE
31 GPa 19.48

2/sE
12 GPa 19.14

Poisson’s ratio ν23 = ν13 - 0.44
ν12 - 0.41

Piezoelectric charge constants d32 = d31 pC/N -185
d33 pC/N 440
d15 = d24 pC/N 560

Dieletric relative constants (free) εT
11/ε0 = εT

22/ε0 - 1950
εT
33/ε0 - 1850

Table 2: MFC fibers engineering constants

The evolution of the piezoelectric properties as a function of the fiber volume fraction for
d31-MFCs is represented on Figure 7. The match between the analytical and the numerial
results is very good for d31 and good for d32.
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Figure 7: Evolution of piezoelectric properties of d31 MFCs as a function of the fiber volume
fraction : comparison between the mixing rules and the finite element computations

The evolution of the piezoelectric properties of d33-MFCs as a function of the fiber volume
fraction is represented on Figure 8 and compared to the analytical mixing rules. The numerical
values for d33 are slightly lower than the analytical ones, but the difference is not very large.
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Figure 8: Evolution of piezoelectric properties of d33 MFCs as a function of the fiber volume
fraction : comparison between the mixing rules and the finite element computations

5 Comparison with experimental results

The mixing rules can be used to compute the equivalent properties of the active layer of
MFCs. The volume fraction of fibers is approximately 86 % (estimated value from data given
by SmartMaterial). The calculated homogenized properties for this volume fraction are
given in Table 3 for d31-MFCs (material properties considered in section 4 are used), and in
Table 4 for d33-MFCs

d31 MFC Homogenized Properties Symbol Unit Mixing rules

Young’s modulus EL GPa 47.17
ET GPa 16.98

Shear Modulus GLT GPa 6.03
GTz GPa 6.06
GLz GPa 17.00

Poisson’s ratio νLT - 0.395
Piezoelectric charge constants d31 pC/N -183

d32 pC/N -153
Dieletric relative constant (free) εT

33/ε0 - 1600

Table 3: Homogenized properties of the active layer of d31-MFCs calculated using the ana-
lytical mixing rules of Table 1
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d33 MFC Homogenized Properties Symbol Unit Mixing rules

Young’s modulus EL GPa 42.18
ET GPa 16.97

Shear Modulus GLT GPa 6.03
GTz GPa 17
GLz GPa 6.06

Poisson’s ratio νLT - 0.380
Piezoelectric charge constants d32 pC/N -176

d33 pC/N 436
Dieletric relative constant (free) εT

33/ε0 - 1593

Table 4: Homogenized properties of the active layer of d33-MFCs calculated using the ana-
lytical mixing rules of Table 1

Unfortunately, there are no direct measurements of such properties available in the liter-
ature or in the datasheet. Experiments have only been performed on the packaged

MFC transducers, and not on the active layer alone. Experimentally, in-plane me-
chanical properties and free strains of the MFC have been measured.

5.1 In plane mechanical properties

The in plane mechanical properties of the MFC can be computed using classical laminate
theory, if the properties of each layer are known. Figure 9 shows the sequence of layers for a
MFC (approximate data provided by the manufacturer Smart Material and from [24])

Kapton

Kapton

Active Layer
Electrode layers
(copper + epoxy)

40 mm

40 mm

18 mm

180 mm

18 mm

Figure 9: Sequence of layers for the MFC. Approximate data provided by Smart Material

For the kapton layers, the following properties are used :

1/sE
11 = 1/sE

22 = 1/sE
33 = 2.8GPa ν = 0.3

For a d33-MFC, the electrode layers are made of an epoxy matrix and copper fibers, oriented
perpendicular to the PZT fibers. The volume fraction of copper is approximately 24% and
the following properties are used for the copper :

1/sE
11 = 1/sE

22 = 1/sE
33 = 117.2GPa ν = 0.31
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The equivalent properties of this layer are computed using the classical mechanical mixing
rules. In Table 5, the in-plane mechanical properties of d33-MFCs are computed from the
properties of all the layers, and compared with published analytical and experimental values
for a ’Reference MFC’ manufactured in the early developments of such devices [24], as well
as data from the manufacturer. Our values are in good agreement with experimental results,
despite the uncertainty on the values of certain material properties and layers thicknesses.
Note that there are no experimental or analytical results available for d31-MFCs, but the
properties should be similar to d33-MFCs, as can be seen from the values in Table 3.

Analytical Experiment Smart Mat. Present
[24] [24] datasheet study

EL (GPa) 31.2 29.4 30.34 27.27
ET (GPa) 17.05 15.2 15.86 14.76
νLT 0.303 0.312 0.31 0.32
G12(GPa) 5.27 6.06 5.52 4.13

Table 5: Comparison of analytical predictions and experimental values of mechanical proper-
ties of d33-MFCs

5.2 Free strain measurements

Free strain measurements consist in applying a voltage difference across the electrodes and
measuring the elongation of the MFC both in the longitudinal and the transverse directions.
The free strain in the fiber direction §L is directly related to the applied voltage V and the
longitudinal piezoelectric coefficient. One can show that the passive layers, because they are
soft compared to the PZT material, have little effect (2 to 3 % difference) on the free strain
of the MFC, so that it can be assumed that it is equal to the free strain of the active layer.

For a d33-MFC we have :

SL = d33
V

p
(28)

where p is the distance between two finger electrodes (0.5 mm). For d31-MFCs, the free strain
in the longitudinal direction is given by :

SL = d31
V

h
(29)

where h is the thickness of the transducer (0.18 mm). The free strains in the longitudinal
direction are computed and compared with the values from the datasheet, given in ppm/V
(10−6/Volt) in Table 6. A good agreement is found for both types of MFCs. For d33-MFCs,
the d32 and d33 coefficients have been identified from measurements and are available on the
datasheet. These values are compared with the mixing rules result in Table 7. Here again a
good agreement is found. Note that such results are not available for d31-MFCs.
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d31-MFC d31-MFC d33-MFC d33-MFC
analytical datasheet analytical datasheet

1.02 ppm/V 1.1-1.3 ppm/V 0.87 ppm/V .75-.9 ppm/V

Table 6: Comparison of analytical predictions and experimental values of longitudinal free
strains

d33 d33 d32 d32

analytical datasheet analytical datasheet

436 pC/N 467 pC/N -176 pC/N -199 pC/N

Table 7: Comparison of analytical predictions and experimental values of d32 and d33 for
d33-MFCs

6 Conclusion

Piezocomposite actuators and sensors are used in many active control applications such as
active damping or morphing. This paper is focused on Macro Fiber Composites (MFCs)
transducers. The modelling of structures equipped with such transducers is problematic
because the data sheet from the manufacturer does not contain all the necessary information.
In order to overcome this problem, we have investigated the possibility to evaluate equivalent,
homogeneous properties from the constituent properties. Simple analytical mixing rules have
been derived based on the Uniform Field Method (UFM), using the plane stress hypothesis.
In particular, mixing rules for the piezoelectric coefficients of both for d31 and d33-MFCs
have been presented. These mixing rules have been validated based on 3D piezoelectric finite
element computations and experimental results available from the literature or the datasheet
of the manufacturer. Such simple rules can also serve as useful guidelines for the engineers in
the design of piezocomposite transducers with rectangular fibers for a given application (i.e.
directional sensing or actuation).
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