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Abstract

Culture independent techniques, such as shotgun metagenomics and 16S rRNA amplicon

sequencing have dramatically changed the way we can examine microbial communities.

Recently, changes in microbial community structure and dynamics have been associated

with a growing list of human diseases. The identification and comparison of bacteria driving

those changes requires the development of sound statistical tools, especially if microbial

biomarkers are to be used in a clinical setting. We present mixMC, a novel multivariate data

analysis framework for metagenomic biomarker discovery. mixMC accounts for the compo-

sitional nature of 16S data and enables detection of subtle differences when high inter-sub-

ject variability is present due to microbial sampling performed repeatedly on the same

subjects, but in multiple habitats. Through data dimension reduction the multivariate meth-

ods provide insightful graphical visualisations to characterise each type of environment in a

detailed manner. We applied mixMC to 16S microbiome studies focusing on multiple body

sites in healthy individuals, compared our results with existing statistical tools and illustrated

added value of using multivariate methodologies to fully characterise and compare micro-

bial communities.

Introduction

The human gut microbiome contains a dynamic and vast array of microbes that are essential

to health and provide important metabolic capabilities. Until recently, studying these complex

communities has been difficult and generally limited to classical phenotypic techniques [1, 2].

With the improvement of high-throughput sequencing technology, the ability to profile com-

plex microbial communities without the need to individually culture organisms has increased

dramatically. These sequencing methods range from RNA sequencing (RNA-seq), chromatin

immunoprecipitation sequencing (ChIP-seq), metagenomic and 16S rRNA gene amplification
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analysis of microbial populations. 16S rRNA sequencing in particular has substantially changed

our understanding of phylogeny and microbial diversity, and is quickly becoming a staple for

profiling microbial communities and their abundances from soil to humans. With this

sequencing technique, hypervariable regions within the gene are amplified, sequenced, and

clustered into operational taxonomic units (OTU). Taxonomic classification of representative

sequences from each cluster is then aligned against a database of previously characterised 16S

ribosomal DNA reference sequences to identify bacteria of interest. As alterations and changes

in microbiomes have been associated with a range of diseases including obesity [3–5], Crohn’s

disease [6] or ankylosing spondylitis [7], it is integral that we analyse this data appropriately

given the impact on human health and disease treatment outcomes [8].

A number of statistical analysis tools have been proposed to examine differences between

microbial communities as well as to identify features that are key to driving the differences.

Those methods were developed to accommodate the specific sparse nature of microbiome data.

White et al. proposed Metastat, a non parametric t-test based on permutation or a Fisher’s

exact test when data are sparsely sampled [8]. Their approach was a first step towards identify-

ing organisms whose differential abundance correlated with disease. Paulson et al. developed a

zero-inflated Gaussian (ZIG) distribution mixture model to account for biases due to under-

sampling of the microbial community [9].

The other characteristic of microbiome data is their underlying compositional structure.

Due to varying sampling/sequencing depths between samples from high-throughput sequenc-

ing, each OTU count is converted into relative abundance (proportion) in each sample. This

intuitive pre-processing step results in compositional data which reside in a simplex sample

space rather than the Euclidian space [10]. As a consequence, conventional statistical methods

including correlation coefficients or univariate methods may lead to spurious results as the

independence assumption between predictor variables is not met [11–13]. A growing list of ref-

erences advocate against the use of such methods for microbiome compositional data [14, 15].

One solution that was proposed by Aitchison is to transform compositional data into Euclidian

space using centered log ratio transformation (CLR) before applying standard univariate or

multivariate methods [10, 14, 16].

Another important aspect to consider when analysing microbiome data is that microbial

communities modulate and influence biological pathways as a whole. Therefore univariate sta-

tistical approaches that test each OTU feature individually, disregarding interactions or corre-

lations between features may provide limited insight into the microbiome. One could instead

consider multivariate methods as they analyse the entire set of OTUs at once. So far, most mul-

tivariate approaches are solely used to visualise diversity patterns, such as unsupervised Princi-

pal Coordinate Analysis (PCoA [17]) based on sample-wise distance/dissimilarity matrices to

scale for species abundance (e.g. Bray-Curtis [18], unweighted [19] or weighted Unifrac [20]

distances), or supervised between-class analysis [21] to segregate sample groups. However,

those multivariate approaches limit our understanding as they do not indicate which key spe-

cies discriminate the sample groups, with the exception of ALDex2 [15], and LEfSe [22]. Those

methods still rely on univariate tests (Welch’s t- or Wilcoxon rank test) as a first step to assess

the significance of each OTU.

Finally, the other critical issue we address in this study is high inter-subject variability [4],

which is often reduced with an appropriate experimental repeated-measures design where each

subject acts as its own control. Thus, microbial sampling is performed repeatedly on the same

subjects over different habitats. While such experimental design has been widely adopted by

community profiling studies such as the Human Microbiome Project (HMP, [23, 24]) to define

a ‘healthy’microbiome community by characterising different body sites in the same subjects,
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very few statistical methods have taken advantage of this design and accommodate inter-sub-

ject variability.

We introduce mixMC, a multivariate analysis framework for 16S data to identify OTU fea-

tures discriminating multiple groups of samples. mixMC addresses the limitations of existing

multivariate methods for microbiome studies and proposes unique analytical capabilities: it

handles compositional and sparse data, repeated-measures experiments and multiclass prob-

lems; it highlights important discriminative features, and it provides interpretable graphical

outputs to better understand the microbial communities contribution to each habitat. We

applied mixMC to multiple body site studies in healthy individuals from HMP and the study

from Koren et al. [25], compared our results with existing univariate statistical approaches and

provided thorough interpretations of the microbial communities unraveled using our multivar-

iate analyses.

Material and Methods

We analysed publicly available 16S data from the NIH Human Microbiome Project and cross-

compared our results with the microbiome study from Koren et al. [25]. The data were pro-

cessed by the open-source bioinformatics software QIIME [26] for the 16S variable region 1–3.

We first describe the different processing, and normalisation steps, and the statistical methods

applied in this study, summarised in Fig 1A.

Data processing and normalisation

One of the characteristics of 16S data is their sparse nature and the differences in sequencing

depth, which makes preprocessing and normalisation steps crucial when the aim is to charac-

terise and differentiate microbial communities. Since this study focuses only on beta diversity

and differences in abundance between sample groups, we do not recommend using a rarefac-

tion step prior to the mixMC analyses.

Prefiltering. Bokulich et al. demonstrated that strict quality filtering of reads greatly

improves measures for microbial community profiling [27]. After removing samples with a

very low number of total OTU counts (less than 10), we removed OTUs with proportional

counts across all samples below 0.01%. While this may appear drastic, this prefiltering step can

counteract sequencing errors, estimated to be 1/1000 in Illumina MiSeq for example [2, 28].

The prefiltering step avoids spurious results in the downstream statistical analysis. The pro-

posed threshold is the default value in QIIME that was also used in other microbiome studies

(e.g. [29, 30]).

Normalisation. Normalisation must address the issues of sparse counts and differences in

sequencing depth and needs to be carefully chosen as this step can strongly affect the down-

stream statistical results [9]. So far, two types of normalisations have been proposed for micro-

biome studies.

The commonly used Total Sum Scaling normalisation (TSS) divides each OTU count by the

total number of counts in each individual sample to account for uneven sequencing depths

across samples. However, since TSS reflects relative information (i.e. proportions), the resulting

normalised data reside in a simplex rather than an Euclidian space which may lead to spurious

false discoveries if standard statistical methods are applied [10]. The solution is to transform

TSS data to project them to the Euclidian space using log ratio transformations. The Centered

Log Ratio transformation (CLR) has been recently applied in several compositional data studies

[14–16]. Let x = (x1, � � �, xp)
0 denote a composition on the p TSS normalised OTU counts, then
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Fig 1. Comparison betweenmultivariate and univariate statistical analysis frameworks for 16S
microbiome data. (A)Multivariate mixMC framework including processing/normalisation, optional repeated
measures design, unsupervised and supervised analyses, (B) Univariate framework, including normalisation
and optional repeated measures design analysis.

doi:10.1371/journal.pone.0160169.g001
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Alternatively, the Cumulative Sum Scaling normalisation (CSS, [9]) was developed to pre-

vent TSS bias in differential abundance analysis with sparse counts. CSS can be considered as

an extension of the quantile normalisation approach and consists of TSS scaling raw counts

that are relatively invariant across samples, up to a percentile determined using a data-driven

approach. CSS therefore partially accounts for compositional data. We applied CSS on the log

transformed counts using the metagenomeSeq package [31].

Methods

The main objective of our study is to extend and apply multivariate statistical analysis methods

for microbiome compositional data. The mixMC framework (Fig 1) includes unsupervised

analyses to visualise diversity patterns with Principal Component Analysis (PCA) and super-

vised analyses to identify indicator species or determinant microbiota members characterising

differences between habitats or body sites (sparse Partial Least Square Discriminant Analysis,

sPLS-DA). In addition, our framework addresses a commonly encountered experimental

design in microbiome studies called repeated-measures design, where microbial sampling is

performed on the same individuals but in different body sites to detect differences between

habitats. This design leads to analytical challenges in order to be able to discern subtle differ-

ences between body sites from the large variation between individuals within each body site.

Unsupervised multivariate analysis. PCA variants, such as Principal Coordinate Analysis

(PCoA, [17]) allows for dimension reduction of the data and visualisation of diversity patterns

in microbiome studies. PCoA is commonly applied to non Euclidian sample-wise dissimilarity

matrices (e.g. Bray-Curtis [18]) or phylogenetic distances between sets of taxa in a phylogenetic

tree (weighted or unweighted Unifrac distance, [19, 20]). Alternatively, and to avoid spurious

results arising from compositional data PCA can be applied on log ratio compositional data

using either CLR transformation, or Isometric Log Ratio transformation (ILR, [32], described

in S1 Text). In mixMC we applied PCA on ILR transformed data using customised R scripts

from the robCompositions package [33].

Multilevel variance decomposition. One way to account for repeated measurements

designs is to separate body site variation (termed ‘within variation’) from individual variation

(termed ‘between subject variation’) via variance decomposition. In univariate analyses, this

step refers to repeated measures ANOVA (also called within-subjects ANOVA). In multivari-

ate analysis we refer to ‘multilevel approach’ [34]. The within subject variation is obtained by

calculating the net differences between repeated observations (i.e. between each body site

within each individual). Since the within subject variation assesses the difference in the body

sites within each subject and disregards the possibly large individual variation, the within varia-

tion can then be used as input data in the subsequent multivariate statistical analysis [35]. In

mixMC, the multilevel variance decomposition is applied on the log ratio transformed data

described above, prior to the multivariate analyses (Fig 1A). Note that the variance decomposi-

tion in the multilevel approach does not take into account the correlation structure or order

between measurements and is not appropriate for a time course experiment where the objective

is to examine the effect of time in a study (see for example applications of linear mixed model

splines for those specific cases [31, 36]).
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Supervised multivariate analysis. The multivariate approach sparse Partial Least Squares

Discriminant Analysis (sPLS-DA, [37]) is an extension of the PLS algorithm fromWold et al.

[38] to perform feature selection with multilevel decomposition [35]. In mixMC we further

extended the multilevel sPLS-DA for microbiome data using either CSS normalised data, or

TSS+CLR data.

Principle of PLS-DA. PLS-Discriminant Analysis is a multivariate regression model which

maximises the covariance between linear combinations of the OTU counts and the outcome (a

dummy matrix indicating the body site of each sample). Covariance maximisation is achieved

in a sequential manner via the use of latent component scores. Each component is a linear

combination of OTU counts and characterises a particular source of co-variation between the

OTU and the body sites. As a consequence, the final number of components summarising

most of the information from the data must be specified. The sparse version of PLS-DA,

sPLS-DA uses Lasso penalisations [39] to select the most discriminative features in the

PLS-DA model. The penalisation is applied componentwise and the resulting selected features

reflect the particular source of covariance in the data highlighted by each PLS component.

Parameters and performance evaluation. The number of features to select per component

must be specified in sPLS-DA and is usually optimised using cross-validation. In this study we

used 10-fold cross-validation repeated 100 times. For varying features selected by sPLS-DA the

classification error rate resulting from the cross-validation process was then recorded and the

lowest error rate indicated the optimal number of features to select on each component. This

procedure concurrently indicated the optimal number of components for the sPLS-DA model.

Once those parameters chosen, the final sPLS-DA model was run on the entire data set to

obtain the final list of discriminative OTUs for each component.

Graphical and numerical outputs. We further characterised each selected OTU by calculat-

ing its median normalised count in each body site. An OTU was defined as ‘contributing to a

body site’ if the median count in that specific body site was higher than in any other body site.

We graphically represented the contribution of each selected OTU with a barplot where each

OTU bar length corresponds to the importance of the feature in the multivariate model (i.e. the

multivariate regression coefficient with either a positive or negative sign for that particular fea-

ture on each component) ranked by decreasing importance starting from the bottom, and with

colours matching the contributing body site. The contribution plot can display the bacterial

taxonomy at any specified level, here we chose the family level. We also used circular represen-

tations of taxonomic trees using the GraPhlAn software tool [40] to complement the contribu-

tion plot with taxonomy information. In this plot the background colour indicates the body

sites where the OTU is most abundant, the node size represents the median OTU count in that

body site and the node colour indicates a negative (black) or positive (yellow) weight from the

sPLS-DA regression coefficient. Other insightful outputs include sample representation where

each individual is projected onto the sPLS-DA components, the list of OTU features selected

on each component, the cross-validation error rate per component and the number of features

contributing to each body site for each component.

The multilevel sPLS-DA framework is implemented in the R package mixOmics [41] using

multilevel decomposition [35]. The cladogram was generated using the GraPhlAn Python code

[40]. R codes and tutorials are available on our website www.mixOmics.org/mixMC.

Univariate analysis. Unlike multivariate methods, univariate methods test each OTU for

differential abundance between body sites. P-values obtained were adjusted for multiple testing

using the False Discovery Rate (FDR, [42]) at the 5% significance level. We considered two uni-

variate approaches able to analyse repeated-measures experiments (Fig 1B).

DESeq2 was developed for DNA sequencing read count data where mean and variance for

the binomial distribution is estimated for each feature [43]. OTU counts are normalised
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internally to the method with respect to a library size factor estimation, however, this normali-

sation does not address the issue of compositional data. For microbiome data analysis DESeq2

has served as a basis of comparison to novel methodological developments [9, 15, 44]. We used

mean dispersion estimates models as implemented in the R package DESeq2 [45].

ZIG [9] is a mixture model with a Zero-Inflated Gaussian distribution to account for vary-

ing depths of coverage that is typical for microbial community under-sampling. In the ZIG

model, OTU counts are first log transformed and then CSS normalised (R package

metagenomeSeq [31]).

Case studies

HMP case studies. We analysed subsets of the NIH HMP16S data downloaded from

http://hmpdacc.org/HMQCP/all/ for the V1–3 variable region. The original data contained 43

146 OTU counts for 2 911 samples measured from 18 different body sites. We focused on the

first visit of each healthy individual and further divided the data into two data subsets. For both

data sets a preliminary exploratory PCoA confirmed that there was no confounding covariate

effect due to run center or gender (see S1 Fig).

Most diverse body sites dataset. Understanding microbial community diversity across body

habitats is fundamental to study the human microbiome. In their extensive HMP data statisti-

cal analysis, Li et al. quantified intra-sample diversity using the Shannon index. Based on their

results we chose the three most diverse habitats according to all genera-based and OTU-based

taxonomic units [46], namely Subgingival plaque (Oral), Antecubital fossa (Skin) and Stool

sampled from 54 unique healthy individuals for a total of 162 samples. The prefiltered dataset

included 1 674 OTU counts (S1 Table).

Oral body sites dataset. While many published analyses have focused on the main microbial

habitats (gut, oral cavity, skin and vagina from the [24, 47]), little has been done to comprehen-

sively characterise multiple sites within a single habitat. In this data set we solely considered

samples from oral cavity, which has been found to be as diverse as the stool microbiome [46].

The nine oral sites were Attached Keratinising Gingiva, Buccal Mucosa, Hard Palate, Palatine

Tonsils, Saliva, Subgingival Plaque, Supragingival Plaque, Throat and Tongue Dorsum. After

prefiltering, the data included 1 562 OTU for 73 unique healthy individuals and a total of 657

sample (S1 Table).

Koren dataset. Koren and colleagues examined the link between oral, gut and plaque

microbial communities in patients with atherosclerosis and controls [25]. We compared our

HMPmost diverse results to the healthy individuals from this dataset. This study contained

partially repeated measures from multiple sites including 15 unique patients samples from

saliva and stool, and 13 unique patients only sampled from arterial plaque samples. The data

were downloaded from the QIITA database (http://qiita.microbio.me/study/description/349)

and included 5 138 OTU. After prefiltering, the data included 973 OTU for 43 samples.

Results

Unsupervised analyses on Most Diverse body sites dataset

We applied unsupervised analyses PCoA or PCA on ILR transformed data to visualise diversity

patterns between microbial communities, then compared different types of normalisations

(TSS-ILR, CSS) followed by a multilevel variance decomposition for repeated measures.

A PCoA performed on the filtered OTU raw counts (with no normalisation) showed that

the unweighted Unifrac distance could highlight diversity patterns between each body site bet-

ter than weighted Unifrac (Fig 2). As this study focuses on the most diverse body sites, the pres-

ence or absence of microbial communities is expected to drive the differences between body
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sites more than the relative abundance usually highlighted by weighted Unifrac. Applying

PCoA on the unfiltered count data led to similar interpretation (S2 Fig), but we observed a

lower amount of explained variance of the first and second coordinate as more ‘noisy’OTU

were present in the data (unweighted Unifrac: 11.28% and 8.95% for the unfiltered data vs.

17.37% and 14.48% for the filtered data).

We then compared the different normalisation strategies, including the multilevel variance

decomposition using PCA. The normalisations TSS, TSS + ILR, CSS seemed to cluster the

body sites similarly (Fig 3(a), 3(c) and 3(e)). The multilevel decomposition led to a smaller vari-

ability within body sites and a greater variability between body sites (Fig 3(b), 3(d) and 3(f)),

and consequently increased the amount of variance explained. Using TSS+ILR or CSS also

increased the explained variance (TSS+ILR, 44.6% for the first two components, 33.5% for

CSS).

This preliminary exploration indicated that the abundance of microbial communities could

characterise each body site quite clearly, and that the multilevel decomposition enabled better

separation of the body site clusters, in particular when applied to the TSS+ILR or CSS normal-

ised data.

Supervised analysis on Most Diverse body sites dataset

We applied multilevel sPLS-DA to identify a microbiome signature characterising each body

site and compared the different normalisation strategies (TSS+CLR or CSS) in our multivariate

method to DESeq2 and ZIG univariate methods.

Fig 2. Most diverse data, PCoA sample plots. Sample plot on the first two coordinates with (a)weighted Unifrac (b) unweighted
Unifrac calculated on the filtered OTU count table (based on 1 674 OTU).

doi:10.1371/journal.pone.0160169.g002
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Fig 3. Most diverse data, PCA sample plots. (a) TSS and (b) TSSmultilevel OTU log counts, (c) TSS-ILR and
(d) TSS-ILR multilevel normalised log counts, (e)CSS and (f) CSSmultilevel log counts.

doi:10.1371/journal.pone.0160169.g003
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Impact of normalisation to identify discriminative features with sPLS-DA. The

sPLS-DA classification performance was similar in both TSS+CLR or CSS normalised data.

The lowest classification error rate was obtained for two components (0.7% for TSS+CLR and

0.3% for CSS, S4 Table). Both normalisations consistently misclassified antecubical fossa on

the first component but correctly classified the two other body sites, and the addition of the

second component enabled a better classification of all body sites (Fig 4). The number of OTUs

selected with sPLS-DA was 160 with TSS+CLR and 130 with CSS. We next assessed the contri-

bution of the selected OTU selected on each component (S5 Table). We found that both nor-

malisations identified similar bacterial families. Component 1 characterised the subgingival

plaque withMicrococcaceae, Neisseriaceae, Streptococcaceae, Flavobacteriaceae and Campylo-

bacteraceae. CSS also identified the Burkholderiaceae family. Component 2 characterised stool

and anticubital fossa. For anticubital fossa, TSS+CLR identified Propionibacteriaceae, Staphylo-

coccaceae and Corynebacteriaceae while CSS additionally identified Propionibacteriaceae, Sta-

phylococcaceae but failed to identify Corynebacteriaceae. Bacterial families characterising stool

included Bacteroides, Ruminococcaceae, Lachnospiraceae, Rikenellaceae and Porphyromonada-

ceae. Across the three body sites, we found that both normalisations led to very similar families

of bacteria—5 families for component 1, 10 (TSS+CLR) or 8 (CSS) for component 2 with a dif-

ference of 1 or 2 families on each component between TSS+CLR and CSS (see S5 Table). Inter-

estingly, we observed that increasing the number of selected OTU did not add more relevant

bacteria families. It is rather the proportion of number of OTU corresponding to the families

that varied (Fig 4(d)).

Comparisons with no multilevel approach. To understand the impact and benefits of the

proposed multilevel approach, we examined the OTU selected by sPLS-DA multilevel on either

the TSS or CSS normalised counts without multilevel transformation. The classification error

rate was substantially greater than with the previous multilevel analysis, (6% for TSS+CLR and

3% for CSS for two components) with a larger number of OTU selected (400 OTU selected for

TSS+CLR and 240 for CSS). With the TSS+CLR normalisation, we identified similar families

characterising subgingival plaque on the first component, including Burkholderiaceae, Fuso-

bacteriaceae, Gemellaceae, Veillonellaceae. The families selected on the second component

characterised antecubital fossa similarly to the multilevel approach, however the notable omis-

sion was the entire Ruminococcus family characterising stool in the multilevel approach that

was not identified here. Overall, we found that the multivariate analysis ignoring the repeated-

measures design tended to identify differential features driving the overall signature and disre-

garded subtleties between microbial communities in environments sampled on the same

individuals.

Comparison with univariate analysis. While the number of OTUs declared as differen-

tially abundant was similar between DESeq2 and ZIG (S2 Table), we observed strong differ-

ences at both OTU and family levels (S3 Fig). Interestingly, the sPLS-DA selections were all

included in the ZIG and DESEq2 selections. DESeq2 identified relevant features that were com-

mon to sPLS-DA selections, such as Propionibacteriaceae, Staphylococcaceae and Corynebac-

teriaceae with the addition of Burkholderiaceae as a defining feature characterising Antecubital

fossa. It also characterised the Subgingival plaque microbial community with OTUs from

Streptococcaceae, Neisseriaceae, Gemellaceae andMicrococcaceae families, also identified in

sPLS-DA. However, DESeq2 was poor at characterising Stool. Indeed, very few bacterial fami-

lies, including Bacteroides and Lachnospiraceae were identified. Such low bacterial diversity

was not consistent with the sPLS-DA nor with the literature. Similar to DESeq2 and sPLS-DA,

ZIG identified features of the Antecubital fossa with OTU belonging to Propionibacteriaceae,

Staphylococcaceae, Burkholderiaceae and Corynebacteriaceae. Like DESeq2, ZIG described the

Subgingival plaque microbiome with OTU belonging to Streptococcaceae, Neisseriaceae,
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Micrococcaceae and Gemellaceae. However, ZIG also identified OTUs belonging to Fusobacter-

iaceae, Burkholderiaceae, Flavobacteriaceae, Campylobacteraceae, Veillonellaceae and Actino-

mycetaceae. In contrast to DESeq2, ZIG identified and described the Stool microbiome well,

with OTU belonging to the families of Bacteroides, Porphyromonadaceae, Rikenellaceae, Lach-

nospiraceae and Ruminococcaceae. One reason to explain the differences between the two uni-

variate methods might be that DESeq2 does not adequately model sparse counts.

Analysis of the oral body site dataset with mixMC

Similar to the Most Diverse data set, unsupervised data analyses showed that unweighted Uni-

frac better discriminated the different body sites (plaque, gingiva) compared to weighted Uni-

frac in the PCoA sample plots (S4(a) and S4(b) Fig). TSS+ILR explained greater variance

(21.35% on the first component) than CSS (13.63%), with better separated body sites clusters

(S4(c) and S4(e) Fig). The explained variance further increased with a multilevel variance

decomposition (25.37% vs. 18.22%, S4(d) and S4(f) Fig).

sPLS-DA performance and choice of parameters. We observed similar classification per-

formances between sPLS-DA on either TSS+CLR or CSS, with a slightly lower classification

error rate for TSS+CLR (S5 Fig, Table 1). The final sPLS-DA model included 8 components

that led to optimal performance, with a classification error rate that substantially decreased

from 78% (component 1) to 26% for TSS+CLR and 30% for CSS (component 8). The classifica-

tion error rate remained relatively high as similar body sites were consistently misclassified

across components, as described in Table 1. For example, Tonsils had the highest classification

error rate as no OTU was able to characterise this particular body site (Table 1). We observed

that the TSS+CLR normalisation was better at characterising tonsil and plaque (component 1),

Fig 4. Most diverse TSS+CLR data, sPLS-DA sample, contribution and cladogram plots. (a) sample plot on the first two components with 95%
confidence level ellipse plots, (b) and (c) represent the contribution of each OTU feature selected on the first (10 OTUs) and second component (120
OTUs), with OTU contribution ranked from bottom (important) to top. Colours indicate body site in which the OTU is most abundant. (d) Cladogram
generated from the sPLS-DA result using GraphlAn.

doi:10.1371/journal.pone.0160169.g004

Table 1. Oral data. Top: Number of selected features at the OTU (family) level and mean classification error rate per component. Bottom: Number of features
at the OTU (family) level contributing to each body site for each sPLS-DA component. Note that we may observe some overlap between families across the
different body sites.

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8

# features selected 60 (13) 40 (2) 190 (18) 200 (14) 40 (8) 200 (26) 180 (23) 190 (22)

mean classification error rate 0.778 0.584 0.501 0.410 0.336 0.316 0.279 0.262

sd classification error rate 0.000 0.002 0.003 0.003 0.003 0.005 0.004 0.004

Attached Keratinized gingiva 0 35 (2) 123 (12) 9 (6) 1 (1) 73 (16) 34 (11) 47 (15)

Buccal mucosa 0 5 (1) 4 (1) 1 (1) 0 31 (4) 3 (1) 3 (1)

Hard palate 2 (1) 0 1 (1) 3 (1) 0 3 (2) 5 (3) 9 (3)

Palatine Tonsils 1 (1) 0 0 5 (3) 0 2 (2) 4 (2) 6 (4)

Saliva 5 (3) 0 2 (2) 28 (5) 0 4 (2) 11 (5) 7 (2)

Subgingival plaque 0 0 7 (7) 15 (5) 39 (7) 14 (11) 6 (5) 21 (10)

Supragingival plaque 11 (4) 0 53 (8) 23 (6) 0 31 (9) 15 (8) 31 (6)

Throat 11 (5) 0 0 16 (4) 0 5 (3) 42 (5) 9 (4)

Tongue dorsum 30 (9) 0 0 100 (8) 0 37 (11) 60 (13) 57 (12)

doi:10.1371/journal.pone.0160169.t001
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buccal mucosa (component 2) and gingiva (component 3) than the CSS normalisation. The

CSS normalisation also led to a substantial number of ties (equal median counts) when assess-

ing the body site contribution of the selected OTU (not shown). Therefore, the detailed analysis

that follows solely focuses on a multilevel sPLS-DA model with TSS+CLR normalisation.

Body sites characterisation. Wemainly focused on the first three sPLS-DA components

for our interpretation (Fig 5 and S6 Fig for the remaining 5 components). Each component

seemed to characterise specific subsets of the body sites. For example component 1 discrimi-

nated sub and supra gingival plaque against the other body sites, component 2 clustered

attached keratinised gingiva and buccal mucosa, but with no clear cut separation (Fig 5(a)),

while component 3 seemed to separate attached keratinised gingiva form the others (Fig 5(c)).

Similar conclusions could be drawn for the other components (S6 Fig). The interpretation of

these sample plots can be subjective, however, they reflect the close anatomical proximity of

the different sample sites in the mouth, such as the tongue coming in contact with the hard pal-

ate, teeth, saliva and gums.

Features contribution. Table 1 details the number of features contributing to each oral

site per component. Those outputs combined with the interpretation from the sample plots in

Fig 5 enable better insight into bacteria contributing to body sites that are contiguous. For

some cases we observed similar contributions of microbial communities in close body sites, for

example Throat and Tongue appeared to be characterised by the same family of bacteria. The

closeness of those selected bacteria in terms of their taxonomy can be visualised in the clado-

gram in Fig 6(d). We examined the ability of sPLS-DA to highlight subtle differences and char-

acterise different sites in close proximity within the oral microbiome. We reviewed the relevant

families selected on the first three sPLS-DA components, which appeared to characterise par-

ticular body sites (Table 1, S1 File).

The bacteria families selected on component 1 strongly characterised hard palate (members

of the Streptococcaceae family), saliva (Prevotellaceae, Lachnospiraceae as well as the phylum

Fig 5. Oral data, sPLS-DA sample plot for the different components. (a) Component 1 vs. Component 2, (b) Component 2 vs Component 3, using
95% confidence ellipses.

doi:10.1371/journal.pone.0160169.g005
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Fig 6. Oral data, contribution and cladogram plots of the features selected for each sPLS-DA component. (a)
Component 1, (b)Component 2, (c) Component 3. In (c) only the top 150 OTU are represented. (d)Cladogram generated
from the sPLS-DA results for components 1 and 2 using GraphlAn.

doi:10.1371/journal.pone.0160169.g006

AMultivariate Statistical Framework to Gain Insight into Microbial Communities

PLOS ONE | DOI:10.1371/journal.pone.0160169 August 11, 2016 14 / 21



TM7 recently described in [48] and found prevalent in oral cavity), supragingival plaque as

well as throat and tongue. The throat microbiome was characterised by Prevotellaceae, Lach-

nospiraceae, Veillonellaceae, Streptococcaceae and Erysipelotrichaceae. The tongue was found to

be more diverse with eight families of bacteria found to be characterising the site. These include

the order Clostridiales families Coriobacteriaceae, Gemellaceae, Carnobacteriaceae, Lachnospir-

aceae, Prevotellaceae, Micrococcaceae, Streptococcaceae and Veillonellaceae. Component 2 sep-

arated attached keratinized gingiva from buccal mucosa with the families Gemellaceae and

Streptococcaceae. Component 3 discriminated multiple sites, in particular attached keratinized

gingiva (Prevotellaceae, Porphyromonadaceae, Flavobacteriaceae, Carnobacteriaceae, Strepto-

coccaceae, Fusobacteriaceae, Campylobacteraceae, Pasteurellaceae, Neisseriaceae, Moraxella-

ceae and TM7), buccal mucosa and hard palate (Streptococcaceae for both). Interestingly,

component 3 discriminated subgingival plaque (Burkholderiaceae, Flavobacteriaceae, Gemella-

ceae, Micrococcaceae, Neisseriaceae, Prevotellaceae and Streptococcaceae) from supragingival

plaque (Actinomycetaceae, Burkholderiaceae, Flavobacteriaceae, Fusobacteriaceae, Micrococca-

ceae, Neisseriaceae and Streptococcaceae) with some overlap between the families.

The analysis of the Oral dataset using our mixMC framework identified relevant bacteria

families characterising subtle differences in the oral environment as well as deciphering partic-

ular characteristics in each body site.

Comparison with the Koren data set

To further validate the relevance of our multivariate method to discriminate and identify

microbial features describing microbial communities, we applied our sPLS-DA to the study

from Koren et al. [25]. Since the dataset only contained partially repeated measures from mul-

tiple sites (individual patients samples in plaque were not sampled in other body sites), we

applied a non multilevel sPLS-DA on the TSS+CLR data, resulting in a selection of 30+100

OTU on two components (S7 Fig, S1 File). We found that sPLS-DA was able to clearly and dis-

tinctly discriminate the three body sites saliva, plaque and stool. Component 1 best character-

ised stool identifying families of bacteria such as Lachnospiraceae, Ruminococcaceae and

Bacteroides; similar to what was observed in the HMP dataset. Component 2 best discriminated

arterial plaque and saliva. Arterial plaque was characterised by families including Burkholderia-

ceae, Propionibacteriaceae, Pseudomonadaceae and Staphylococcaceae, which was consistent

with what the authors reported to as the ‘core microbiome’ for arterial plaque samples. Our

analysis also identified Alcaligenaceae, Enterobacteriaceae, Moraxellaceae and Comamonada-

ceae as bacterial families describing arterial plaque. Saliva was also characterised on component

2 by the same families of bacteria both reported by Koren et al. and our microbiome signature

in the HMP data set.

Our comparative analysis demonstrates that sPLS-DA not only produced reliable and con-

sistent results across different sequencing platforms and datasets but was also able to identify

key members of the microbial community characterising in particular saliva, plaque and stool.

Discussion

Traditionally, unsupervised dimension reduction multivariate approaches for microbiome data

such as PCoA use pairwise distances or dissimilarities calculated on count data to scale micro-

bial community abundances. However, the output of such method is limited to the visualisa-

tion of patterns in the data only. Our mixMC framework did not propose such distances for

various reasons. From a theoretical point of view and as discussed by Warton et al. [49], dis-

tance-based analyses make implicit assumptions on the mean-variance relationship in count

data that may not hold, with the consequence of possible misleading results. From a practical
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point of view, a multivariate projection based method applied on a n × n similarity matrix does

not enable identification of bacteria driving differences between habitats. We therefore pro-

posed to directly handle abundance data to achieve that goal.

In our study, we compared two normalisation techniques for 16S OTU count data. TSS nor-

malisation is a popular approach to accommodate for varying sampling and sequencing depth

[8, 22], but with the disadvantage of producing compositional data that may lead to spurious

results when applying traditional statistical methods [13, 15]. Transforming compositional

data using log ratios such as Isometric Log Ratio (ILR) or Centered Log Ratio transformation

(CLR) enables to circumvent this issue [10, 32]. Our mixMC framework includes those trans-

formations to visualise diversity patterns (PCA) or to perform discriminant analysis and iden-

tify indicator species explaining abundance differences between habitats (sPLS-DA). We

applied the ILR transformation for PCA, as proposed by [16, 32] to overcome the CLR limita-

tion that may lead to singular covariance matrices. For sPLS-DA however, the feature selection

process requires n × p input matrix in order to identify indicator species and we therefore

applied the one-to-one CLR transformation. We showed that sPLS-DA delivered relevant

results in our three case studies using TSS+CLR transformed data. CSS normalisation was pro-

posed by Paulson et al. to account for sparse counts [9]. In the Most Diverse case study we

showed that both TSS and CSS normalisations identified the same bacteria families. In the

more complex Oral case study we observed differences as TSS+CLR led to the identification of

a greater number of families than CSS. We therefore must therefore keep in mind that normali-

sation is data specific and needs to be carefully chosen prior to statistical analysis.

Our mixMC framework proposes to handle repeated-measures design with a multilevel vari-

ance decomposition. This additional transformation step can also be seen as a scaling transfor-

mation to be able to extract subtle differences between body sites or habitats within the same

individuals. We anticipate that such experimental designs will become widely adopted in

microbiome studies. However, our framework is not only restricted to repeated measures

designs and can be used in a more general case to compare phenotypes or disease outcomes.

mixMC proposes more extensive analytical features than univariate methods, including

insightful graphical outputs for data interpretation. We found that both univariate and multi-

variate approaches led to similar overall structure of the signatures were similar at the family

level. However, dimension reduction multivariate approaches provide intuitive plots and

numerical outputs for a better understanding of the discriminative ability of the OTU features

identified.

Our study aligns well with recent studies that investigated the link between gut and oral

microbial communities [25, 50]. Franzosa et al. showed identified a subset of abundant oral

microbes surviving transit to the gut that were linked with disease markers of atherosclerosis

such as cholesterol [50]. From our detailed analyses, we reached similar conclusions identifying

bacteria such as Fusobacterium, Propionibacterium, Veillonella in both the oral body sites from

both HMP data sets (including plaque, tongue and gingiva) and stool microbiomes as under-

lined by Koren et al. [25]. Our comparative study with the Koren data set demonstrated that

sPLS-DA was able to identify a microbiome signature consistent across different individual

cohorts and sequencing platforms. The microbiome signatures we identified from the most

diverse HMP data set and the Koren data set further demonstrated that microbial communities

can not be considered discrete environments, but are, in fact, fluid environments.

Conclusions

mixMC is a statistical analysis framework enabling holistic understanding of microbial com-

munities. In this study, we demonstrated the advantages of using multivariate methodologies
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for the statistical analysis of 16S compositional data, to summarise and reduce the dimension

of possibly large data sets; to obtain a better understanding of the microbial communities

through insightful graphical outputs; and to highlight features characterising and discriminat-

ing different environments. While our study has particularly focused on repeated-measures

designs, the multivariate approach that we propose is not restricted to such designs only. Simi-

lar analyses can be performed on non-repeated designs to highlight relevant microbial features.

The multivariate approach sPLS-DA is a specific case of a larger family of projection-based

multivariate approaches, some of which also allow integration of different types of data. Our

proposed analysis framework therefore paves the transition towards a ‘microbiome system

biology’ approach by integrating large scale multi-‘omics studies such as metatranscriptomics,

metabolomics or metaproteomics currently being collected by the integrative HMP project

[51], therefore enabling the improvement of our understanding of the biomolecular activities

and regulatory systems of human microbiota.

Availability of supporting data

The data sets supporting the results of this article are available from the NIH Human Micro-

biome Project http://hmpdacc.org/HMQCP/all/ in raw data format, and in processed format

on our website www.mixOmics.org/mixMC. R functions are available on our mixOmics pack-

age [41, 52]. R scripts and a full tutorial to reproduce the results from the proposed framework

are also available on our website.

Supporting Information

S1 Text. Isometric Log Ratio transformation.

(PDF)

S1 Table. Description of the two HMP data sets through preprocessing steps.

(PDF)

S2 Table. Most diverse data, number of features selected by the different univariate and

multivariate approaches at the OTU or family level. The OTU selection is based on either 5%

significance level (adjusted FDR p-values) for DESeq2 and ZIG or the best classification perfor-

mance with mean error rate across 10-fold cross-validation repeated 100 times (standard devi-

ation) for sPLS-DA with two components.

(PDF)

S3 Table. Oral data, performance of sPLS-DA per component and body site (TSS+CLR

data). The mean classification error rate across 10-fold cross validation performed 100 times is

indicated.

(PDF)

S4 Table. Most diverse data, performance of sPLS-DA per body site. Componentwise

100�10-fold cross-validation classification error rate for sPLS-DA applied to either TSS+CLR

or CSS normalised counts with respect to each body site class leading to the optimal micro-

biome signature.

(PDF)

S5 Table. Most diverse data, number of features contributing to each body site for each

sPLS-DA component. The sPLS-DA model was applied to either TSS+CLR or CSS normalised

counts. Contribution is defined as the body site for which the maximum median normalised

OTU abundance is achieved at the OTU (family) level.

(PDF)
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S1 Fig. Oral data, PCoA sample plots with colours indicating gender or run centres. Sample

plot on the first two coordinates with colours indicating gender in (a) weighted Unifrac or (b)

unweighted Unifrac, or run centers in (c) weighted Unifrac or (d) unweighted Unifrac calcu-

lated on the filtered OTU count table.

(TIF)

S2 Fig. Most diverse data, PCoA sample plots. Sample plot on the first two coordinates with

(a) weighted Unifrac (b) unweighted Unifrac calculated on the unfiltered OTU count table

(based on 43,146 OTU).

(TIF)

S3 Fig. Most diverse data, comparison between univariate OTU selections and multivariate

sPLS-DA selection. Comparison of the most differentially abundant features identified by

DESeq2 and ZIG (FDR� 0.05) and the most discriminative features identified by TSS+CLR

with sPLS-DA or CSS withsPLS-DA (lowest mean classification error rate achieved when per-

forming 100 � 10-fold cross-validation). (a): selection size at OTU level, (b): at the family level.

(TIF)

S4 Fig. Oral data, PCoA and PCA sample plots. Sample plot on the first two coordinates with

(a) weighted Unifrac (b) unweighted Unifrac calculated on the filtered OTU count table and

on the first components for (c) TSS+ILR and (d) TSS+ILR multilevel normalised OTU counts,

and (e) CSS and (f) CSS multilevel normalised OTU counts.

(TIF)

S5 Fig. Oral data, sPLS-DA performance.Mean classification performance using 100 �

10-fold cross-validation. Each component is based on an optimal selection of OTU features

that leads to the best classification performance. The sPLS-DA classifier was applied on (a) TSS

+CLR or (b) CSS normalised data.

(TIF)

S6 Fig. Oral data, sPLS-DA sample representation for the different components of the

model. (d) Component 4 vs Component 5, (e) Component 5 vs Component 6, (f) Component

6 vs Component 7, (g) Component 7 vs Component 8.

(TIF)

S7 Fig. Koren data. Sample plot on the first two components with (a) PCA (b) sPLS-DA on

selected OTU. Contribution plots on the (c) first component (30 OTU selected) and (d) on the

second component (100 OTU selected).

(TIF)

S1 File. Diverse, Oral and Koren TSS+CLR data: selected OTU. Contribution of selected

OTU for each sPLS-DA component.

(ZIP)
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