
MIXSyn: An Efficient Logic Synthesis Methodology

for Mixed XOR-AND/OR Dominated Circuits

Luca Amarú, Pierre-Emmanuel Gaillardon, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland

Abstract—We present a new logic synthesis methodology, called
MIXSyn, that produces area-efficient results for mixed XOR-AND/OR
dominated logic functions. MIXSyn is a two step synthesis process.
The first step is a hybrid logic optimization that enables selective and
distinct optimization of AND/OR and XOR-intensive portions of the
logic circuit. The second step is a library-free technology mapping that
enhances design flexibility with a tractable computational cost. MIXSyn
has been tested on a set of large MCNC benchmarks. Experimental
results indicate that MIXSyn produces CMOS circuits with 18.0% and
9.2% fewer devices, on the average, with respect to state-of-art academic
and commercial synthesis tools, respectively. MIXSyn is also capable to
exploit the opportunity of novel XOR implementations offered by the use
of double-gate ambipolar devices. Experimental results show that MIXSyn
can reduce the number of ambipolar transistors by 20.9% and 15.3%,
on the average, with respect to state-of-art academic and commercial
synthesis tools, respectively.

I. INTRODUCTION

Automated logic synthesis has been the corner stone of modern

electronic design automation methodology since the past 25 years

and still plays a fundamental role in supporting the exponential

growth of Application Specific Integrated Circuits (ASICs) design

complexity. A standard logic synthesis flow for ASICs consists of

two main phases: logic optimization and technology mapping. Logic

optimization transforms the circuit to minimize its implementation

cost, while technology mapping transposes it onto its best standard-

cell implementation. In these general terms, logic optimization and

technology mapping are intractable [1]. Many heuristic methods have

been proposed in the past to solve these problems in polynomial time

complexity while maintaining a good results quality [2]. However,

the efficiency of these heuristics is heavily dependent on the targeted

circuit type, i.e. on the type of logic function that designers want

to implement in silicon. Unfortunately, in a majority of real-life

applications, different types of functions coexist within the same

circuit. The most frequent functions are AND/OR and XOR intensive

functions. NAND/NOR functions have a compact implementation

in the well-established Complementary Metal Oxide Semiconductor

(CMOS) technology. This property has driven the development of

multilevel AND/OR-optimization methods, e.g. algebraic factoriza-

tion techniques [3]–[5]. XOR-optimization has received less attention

in the past but good methods based on Binary Decision Diagrams

(BDDs) have been recently proposed to deal with XORs [6], [7]. On

the technology mapping perspective, the efficiency of the mapping

operation mainly depends on the richness of the standard-cell library

[12] and on the capability to recognize if each library element (logic

gate) can implement a certain portion of the logic function. The

richness of the library is usually pre-determined by the standard cell

full custom design carried out off-line. Instead, the recognition task,

commonly called matching, is often solved by Boolean matching

techniques since most logic gates have a small number of inputs

(i.e. less than 6) [11].

In summary, current heuristic methods for logic synthesis provide

satisfactory results for a specific function type but cannot produce

near-optimal results also for the others, missing the opportunity to

have smaller and faster ASICs.

In order to overcome these limitations, we present MIXSyn, a novel

area-efficient logic synthesis methodology targeting mixed XOR-

AND/OR dominated circuits. We propose (i) a two-step logic opti-

mization that enables selective and distinct manipulation of AND/OR

and XOR-intensive portions of the logic circuit. Intermediate EXter-

nal Don’t Care (EXDC) conditions are computed to improve the

optimization quality. Stemming from work in [13], we propose (ii)

an area-oriented library-free technology mapping method to take

full advantage of complex gates with small computational effort. A

subject-graph decomposition with an enhanced base-functions is used

to natively support both AND/OR and XOR operations. We finally

give efficient algorithms to assign and build on the fly complementary

gates. Results show that MIXSyn for CMOS outperforms modern aca-

demic and commercial synthesis tools having 18.0% and 9.2% fewer

devices on average over a set of MCNC benchmarks. In addition,

we forecast the performance of our flow in the context of emerging

ambipolar technologies. Such technology allows us to efficiently

embed the XOR functionality in a unique double-gate device, leading

to a very compact implementation of the XOR function. Results show

that MIXSyn can exploit the ambipolar technology opportunity by

giving average transistor-count improvements up to 20.9% and 15.3%

compared to academic and commercial synthesis flows.

The remainder of this paper is organized as follows. Section II

provides a background on logic synthesis for ASICs and introduces

the notations used in the paper. In Section III, the proposed logic

optimization and technology mapping methods are detailed. Then,

in Section IV, experimental methods and results for MIXSyn are

presented and compared with state-of-art commercial and academic

synthesis tools. The interest of novel technologies with higher logic

expressive power is also detailed. We finally conclude the paper in

Section V.
II. BACKGROUND AND NOTATION

This section presents some background on logic optimization and

technology mapping and introduces the notations used in the paper.

A. Notations

The support of the Boolean function f , denoted by supp(f), is

the set of all variables on which f depends. A Boolean network is

a Directed Acyclic Graph (DAG) with nodes corresponding to logic

functions and inputs/outputs directed edges corresponding to function

inputs and output, respectively. We define Primary Inputs (PIs) as

nodes without fanins in the current network and Primary Outputs

(POs) as a predefined subset of nodes. The level of a node is the

length of the longest path from any PI to the node. When the DAG

is a rooted tree, we define the reachable depth of a node as the length

of the longest path from any PI to the root passing through that node.

We define a network with no more than k-inputs a k-feasible network.

A network is k-bounded if each node is k-feasible. A subject-graph is

a k-bounded DAG used for technology mapping. In a subject-graph,

the set of all the nodes function type form the base functions set.

B. Logic Optimization

Boolean function logic optimization aims to reduce the size of the

circuit, minimizing some general metrics such as gates, literals or nets

count. Standard optimization methods target AND/OR-dominated

logic functions. AND/OR optimization is usually carried out by alge-

braic factorization [3]–[5]. In order to support also XOR optimization,

a method based on Binary Decision Diagrams (BDDs), named BDS,

was proposed in [6]. BDS iteratively search for the most efficient

decomposition among AND, OR, XOR and MUX. Despite BDS

provides excellent results for XOR-intensive functions and achieves

reasonable results for others, AND/OR-intensive functions still get

more benefit from algebraic factorization methods. A version of BDS

targeting LUTs has been proposed in [7], named BDS-pga, incorpo-

rating further decomposition schemes that generates area-minimal k-

bounded networks. Other notable attempts to optimize XOR-intensive

logic functions are based on functional linear decomposition [8] and

ESOP form minimization [9].

C. Technology Mapping

Technology mapping onto standard cells consists of three main

phases: 1) subject-graph construction, 2) matching, to recognize if

a certain portion of the subject-graph can be implemented with a

given cell and 3) selection, to choose the best matching cells to

optimize some given metric. Traditionally, subject-graph construction

consists of the decomposition of the Boolean network into a 2-

bounded DAG having only NAND and INVs as base functions [10].

There are two main matching techniques: tree matching and Boolean

matching. Tree matching [10] involves a Boolean tree isomorphism

problem that can be solved efficiently. However, since the tree

representation is not canonical, the tree matching can miss some

potential matches. Instead, Boolean matching is comparing directly

cell and sub-graph Boolean functions via tautology check therefore

every possible matching is detected [11]. For the final selection

phase, generic algorithms can be used, e.g. Dynamic Programming

(DP) algorithms that are guaranteed to find an optimal solution in

polynomial time complexity.

III. PROPOSED LOGIC SYNTHESIS: MIXSyn

MIXSyn is an area-oriented logic synthesis methodology with

novel logic optimization and technology mapping methods. Logic

optimization is performed using a hybrid two step approach to

identify and selectively manipulate AND/OR and XOR dominated

portions of the logic circuit. After logic optimization, library-free

technology mapping is employed to enhance design flexibility by

building on the fly custom complex gates (e.g. XOR-based gates) at

the transistor level. In the next subsections, we present in detail the

proposed logic optimization and technology mapping methods.

A. Hybrid Logic Optimization

1) Motivation: Over the past years, the problem of logic opti-

mization has been approached by proposing efficient methods to deal

with one of two major classes of functions that frequently appear in

logic designs: AND/OR and XOR intensive functions. Most logic

designs contain both of them intertwined in such a way that it is

not possible to clearly split one part from the other. Hence, a single

step logic optimization can minimize either the AND/OR or the XOR

dominated portion of the circuit and produce suboptimal results for

the other. An integrated optimization method that produces near-

optimal results for both types of functions is presented hereafter.

2) Algorithm: We propose to perform logic optimization in

MIXSyn through a hybrid two step approach. The pseudocode for

the hybrid logic optimization is shown in Algorithm 1. First, XOR-

optimization is applied to the Input Boolean Network (IBN) to

explicitly highlight XOR/XNOR nodes (Alg.1-α). Then, the XOR

Optimized Boolean Network (XOBN) is split in two sub-networks:

the First Boolean Network (FBN) having the evidenced XOR/XNOR

nodes and the Second Boolean Network (SBN) with remaining nodes

(Alg.1-β). SBN has two types of inputs: 1) Primary Outputs (POs)

from the FBN and 2) a subset of the Primary Inputs (PIs) of the

IBN. If there is a non-empty set of Common Inputs (CIs) between

the second type of SBN primary inputs and FBN primary inputs (i.e.

if supp(SBN\{POsFBN}) ∩ supp(FBN) = CIs 6= ∅) it is also

possible to specify the input Controllability Don’t Care set (CDCin)

for the SBN (Alg.1-χ). In particular, the CDCin(SBN) contains

the Common Inputs (CIs) combinations that never occur. The SBN is

AND/OR-dominated and hence an AND/OR-optimization method is

applied (Alg.1-ψ). Finally, the AND/OR Optimized Boolean Network

(AOOBN) is merged with FBN resulting in the global Optimized

Boolean Network (OBN) (Alg.1-ω).

Algorithm 1 Hybrid Logic Optimization

INPUT: Input Boolean Network (IBN)
OUTPUT: Optimized Boolean Network (OBN)

XOBN=XOR-Optimization(IBN) (α)
split XOBN in FBN and SBN : (β)
FBN ← XOBN evidenced XOR/XNOR nodes
SBN ← XOBN remaining nodes
CDCin(SBN) ← ∅
if (supp(SBN\{POsFBN}) ∩ supp(FBN) 6= ∅) then

compute CDCin(SBN) (χ)
end if
AOOBN=AND/OR-Optimization(SBN ,CDCin) (ψ)
OBN=AOOBN ∪ FBN (ω)

3) Example: For the sake of clarity, we report a simple example

of hybrid logic optimization and compare it with standard AND/OR

and XOR optimization methods alone. The objective function (f) in

	 y=a’	

w=ca	

z=ab	

v=bc	

x=b’	

	 b	

	 c	

	 a	

s=xy	

f=s+w+z+v	 w=ca	

v=bc	

	 b	

	 c	

	 a	

x=a¤b	

f=x+w+v	

	 b	

	 a	
x=a¤b	

w=ca	

v=bc	

	 b	

	 c	

	 a	

f=x+w+v	

	 x	

CDCin(x,a,b)={101,110,011,000}	

	 c	

f=x+c	

	 x	

	 c	

f=x+c	

	 b	

	 a	

x=a¤b	

X
O
R
-‐o
p
t	

A
N
D
/O

R
-‐o
p
t	

M
e
rg
e
	

	

Split	

Split	

Merge	

	

IBN	
	

XOBN	
	

FBN	
	

SBN	
	

AOOBN	
	

OBN	
	

β	

α	

ψ	

ω	

β	

ω	

Fig. 1: Hybrid Optimization example with f = ab+ bc+ ab+ ca.

this example has the following SOP form: f = ab + bc + ab + ca.

A single step XOR-optimization can reduce the objective function in

f = bc+ (a⊙ b) + ca. Instead, a single step AND/OR-optimization

can factorize c and obtain f = ab + ab + c(a + b). The proposed

hybrid optimization method in Alg.1 can further minimize the ob-

jective function as shown in Fig.1. First, the XOR-optimization step

highlights x = (a⊙b) in the XOBN (α). After this, the XOBN is split

in the FBN and SBN (β). The FBN consists of the node x = (a⊙b)
and its primary inputs a and b. Instead, the SBN comprises w, v
and f nodes and a, b, c and x as primary inputs. Considered that

supp(x) ∩ supp(SBN\x) = {a, b} ∩ {a, b, c} = {a, b}, CIs is

not empty and it is possible to compute CDCin(SBN) (χ). The

CIs combinations that never occur, CDCin(SBN), are specified with

x = (a ⊙ b): CDCin(x, a, b)={101, 110, 011, 000}. The successive

AND/OR-optimization is then able to reduce the SBN in f = x+ c
(ψ). Finally, the FBN (only x node with its PIs) is merged with the

AOOBN resulting in the final OBN (ω), with fOBN = (a⊙ b) + c.

B. Library-free Technology Mapping

1) Motivation: The quality of the technology mapping operation

mainly depends on the richness of the standard cell library [12] and

on the ability of the mapping tool to recognize where such cells can

be used (matching). Boolean matching can address the recognition

issue with little computational burden since most cells have a small

number of inputs (i.e. at most 5 or 6 inputs) [11]. On the other hand,

the number of cells in the library, i.e. the library size, directly affects

the complexity of technology mapping imposing a tradeoff between

the computational cost and the design flexibility. To overcome this

limitation, library-free technology mapping has been proposed in

[13]–[16] where each cell/gate is built on the fly at the transistor level.

Given a maximum gate fan-in m, library free technology mapping can

implement all the 22
m

possible functions1 of m variables in a single

gate. Boolean matching techniques are not needed here as a graph, or

tree, covering method do the equivalent task. For the aforementioned

reasons, we employ library-free technology mapping in MIXSyn.

2) Algorithm: We perform technology mapping in MIXSyn using

a library-free approach. Our algorithm consists of three main parts:

Pre-decomposition, Gate-assignment and Gate-building. It differen-

tiates from works in [13]–[16] in the Pre-decomposition and Gate-

assignment methods that here are designed to support XORs. The

pseudocode for technology mapping is shown in Algorithm 2.

Algorithm 2 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), max gate fan-in m
OUTPUT: Network of gates

G ← subject-graph-gecomposition(OBN) (α)
F ← decompose G in a forest of trees (α)
remove internal INV nodes from F (α)
IXI-free-F ← XOR-decompose F (α)
V ← ∅
for all tree T in IXI-free-F do

V ← Greedy-Tree-Decomposition(T ,m) (β)
end for
replace internal INV nodes in V
for all tree S in V do

propagate internal INVs in S to leaves (ω)
evaluate best gate polarity (ω)
build gate on the fly (ω)

end for
assign and build INVs (ω)

Pre-Decomposition (Alg.2-α): The first step of technology map-

ping aims to decompose the input Optimized Boolean Network (OBN)

into a subject-graph with a limited base function set. Our base func-

tion set comprises 2-input AND/OR/XOR/XNOR and INV. In this

way, it is possible to preserve XOR operations in the subject-graph

that are otherwise hidden by standard NAND/INV decomposition

[10]. Since we are targeting minimum area results and direct DAG

covering for minimum area is known to be NP-complete [1], we

decompose the subject-graph, that is a 2-bounded DAG, in a forest of

trees. Each generated tree has a subset of primary inputs at the leaves

and nodes representing a logic function from the base function set.

Unfortunately, internal XOR/XNOR and INV nodes do not have an

efficient physical realization such as series/parallel construction rules

holding for internal AND/OR nodes. For this reason, each tree in the

forest is further decomposed to have XOR/XNOR nodes only at the

first level of the tree, after leaves. In addition, internal INV nodes are

temporarily removed from the trees. Indeed, we take care of inverters

influence during gate-building. At the end of gate-assignment, INV

nodes are reinserted in their original position as each tree is only

decomposed but not functionally transformed during these phases.

1Note that some of the 22
m

functions have the same gate implementation
due to input permutation. However, the number of different gates implemen-
tation with m inputs is still large.

The output of the pre-decomposition phase is an Internal-XOR/INV-

free (IXI-free) forest of binary trees.

Gate-Assignment (Alg.2-β): Once the internal-XOR/INV-free for-

est of trees has been created, a tree covering/decomposition method

generates sub-trees with at most m inputs (maximum gate fan-in)

in one-to-one correspondence with logic gates. In Section III-B3,

we present a greedy decomposition to solve this task rather than the

Dynamic Programming (DP) approach used in literature [13]. We will

show that the proposed greedy algorithm produces optimal results in

our context with a smaller runtime complexity than DP.

Gate-Building (Alg.2-ω): After the tree-decomposition phase, the

logic function of each gate is defined by a Boolean rooted tree S hav-

ing at most m leaves. Before building the gate, some transformations

must be applied to S. First, internal inverters are propagated to the

leaves to enable standard gate construction rules, e.g. series/parallel

construction rules. Then, the best function polarity to be implemented

is evaluated by counting the number of required inverters for both

polarities. If the opposite function polarity is preferable for gate

implementation, an inverter is put at the root of S and it is then

propagated to the leaves. Later, each gate is built starting from S
using standard transistor-level gate design techniques [18]. Finally,

inverters are assigned and built on the fly where needed.

3) Greedy Tree Decomposition: The task of the greedy tree

decomposition algorithm is to generate Boolean binary sub-trees that

have an efficient one-to-one correspondence with logic gates. Each

generated tree must be m-feasible, i.e. it must have at most m inputs

according to the maximum gate fan-in limitation. Moreover, the tree

decomposition must result into a minimum area set of gates. To this

end, an area cost function associated with each node is needed to drive

the final decomposition. We use the number of leaves as indicator of

the implementation complexity for each subtree to remain technology

independent. Under this assumption, the tree decomposition task

might be reformulated as: ”decompose a binary-tree in m-feasible

subtrees minimizing the number of leaves”.

In Algorithm 3, a greedy method is proposed to solve the problem.

The proposed technique starts with the original tree root as current

Algorithm 3 Binary-tree decomposition in m-feasible sub-trees

minimizing the number of leaves

GLOBAL VARIABLE: Binary-Tree T
INPUT: Root R, m
OUTPUT: m-feasible Sub-Trees
FUNCTION: BynTreeDecomp(R, m)

if (∃ m-feasible subtree rooted at R
with only leaves in input) then

detach the found subtree from T (α)
update R parent reachable depth (α)
if (T 6= ∅) then

BynTreeDecomp(T root, m) (β)
else

STOP (ω)
end if

else
V =max reachable depth child of R (χ)
BynTreeDecomp(V, m) (χ)

end if

node. It first checks if there exists a m-feasible subtree rooted at

the current node. If it exists, the found subtree is detached from the

original tree and the parent of the current node updates its maximum

reachable depth (Alg.3-α). If the remaining tree is empty the

procedure stops (Alg.3-ω), otherwise the decomposition algorithm is

recursively called from the original root (Alg.3-β). Instead, if a m-

feasible subtree rooted at the current node is not found, the algorithm

is recalled from the maximum reachable depth children of the current

node (Alg.3-χ). To prove the optimality of this greedy technique,

we show that each substructure found is optimal with respect to the

overall decomposition process. In other words, we show that there

does not exist another subtree that reduces the overall number of

leaves if considered in place of the one found by our algorithm. The

following theorem states that this is our case.

Theorem: Algorithm 3 decomposes a binary-tree in m-feasible sub-

trees with the minimum overall number of leaves.

Proof: (Proof by Contradiction) Assume that there exists a sub-tree

(TB) more favorable with respect to the one found by the proposed

algorithm (TA). TA is rooted at node D. All the sub-trees rooted at

D, or at its descendants, are suboptimal by construction with respect

to TA. Then, we suppose that TB is rooted at some D ancestor. In

this scenario, TB cannot have only leaves in input still respecting m-

feasibility. Consequently, TB generates at least one additional leaf,

with respect to TA, in the tree portion below D. For the tree portion

above D, TB saves at most the leaf induced by TA at D parent

node. Thus, it follows that using TB in place of TA is not reducing

the overall number of leaves, contradicting our assumption. Q.E.D.

	 	 	 	

TA	

TB	
Leaf	 generated	 by	 TB	

Leaf	 generated	 by	 TA	

Tree	 leaf	

Tree	 node	

Using	 TA	 Using	 TB	

6	 leaves	 7	 leaves	

Level	 2	

Level	 1	

Level	 0	

Level	 3	

Maximum	 	

reachable	 	

depth	
n	

2	 2	

2	 3	

3	

3	

3	 3	

2	
TA:	 Greedy	 algorithm	

TB:	 Counterpart	

3-‐feasible	 	

decomposiBon	

m=3	

2	 2	

3	

Fig. 2: Greedy tree decomposition example. TA is the subtree gen-

erated by the greedy algorithm while TB is the counterpart subtree.

Example: In Fig.2, an example is provided about the optimality

of the greedy decomposition algorithm. In this case, TB (counterpart

sub-tree) is rooted at the original tree root R, that is the only ancestor

node for D, the root of TA (greedy decomposition sub-tree). As

m = 3, TB cannot have only leaves in input and still be 3-feasible.

Therefore, TB generates one additional leaf in the tree portion below

node D (node B). On the other hand, TB saves the leaf generated by

TA above node D. So far, TB generates the same number of leaves

with respect to TA. Already at this point, it is possible to say that

the subtree TA is minimizing the overall number of leaves of the

decomposed tree. However, TB imposes also an additional leaf at R
left child (C) while TA does not. Thus, using TB in place of TA

results in one additional leaf in the final decomposed tree.

Complexity: The run-time complexity of the greedy algorithm is

O(|T |2/m), where |T | is the number of nodes in the tree. This

approach is faster than the dynamic programming method proposed in

[13]: their complexity was O(|T |2) and did not scale with m. More-

over, the greedy nature of our algorithm makes the constant factor

hidden in the O-notation smaller than the dynamic programming one,

which suffers from postorder and preorder traversal of tree [17].

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for our proposed

area-oriented synthesis methodology: MIXSyn. We consider two tar-

get technologies: standard CMOS and ambipolar technology. Area

results (expressed as transistors count) from state-of-art academic

(ABC, BDS) and commercial (Synopsys) synthesis tools are com-

pared with MIXSyn for both target technologies.

A. Target Technologies

We consider two different target transistor technologies for

MIXSyn: the standard Complementary Metal Oxide Semiconductor

(CMOS) and the novel ambipolar Field Effect Transistors (FETs).

1) CMOS: CMOS is the standard technology for constructing

integrated circuits by means of symmetrical pairs of MOSFETs.

MOSFETs are unipolar transistors whose n-type or p-type behavior

is determined during fabrication. While traditional standard cell

mappers use predefined libraries of logic gates, we build on the

fly complementary gates during library-free technology mapping in

MIXSyn. To accomplish this task in CMOS technology, we employ

transistor-level design methods described in [18].

2) Ambipolar FETs: Ambipolar FETs are Double-Independent-

Gate (DIG) devices whose polarity can be switched on-line ap-

plying a specific binary voltage on the additional gate, usually

called Polarity Gate (PG) [19]. The Conventional Gate (CG) instead

controls the ambipolar transistor’s on-state as in usual MOSFETs.

Fig.3(a) summarizes the on-line reconfiguration of the Ambipolar

FETs polarity. Ambipolar FETs on-state is logical biconditional on

A

B’

A’

B

Y

A’

B’

A

B
S

D
S

S

D

D
CG

PG

CG

CG

PG=0

PG=1

a) b)

Vss

Vcc

Fig. 3: (a) Ambipolar FETs polarity control (b) XOR-2 gate in [19].

both gates values. For this reason, ambipolar transistors enable a

compact realization of the XOR function, such as the XOR-2 gate

depicted in Fig.3(b). Pull-Up (PU) and Pull-Down (PD) networks of

the XOR-2 gate in Fig.3(b) are good at passing both Vcc and Vss: this

gives the opportunity to implement also efficient Transmission Gate

(TG) logic elements with ambipolar transistors [20]. Design methods

for logic gates construction in [18], updated accordingly to [19] for

ambipolar FETs, are employed to build on the fly complementary

ambipolar gates during MIXSyn library-free technology mapping.

B. Methodology

MIXSyn is compared to ABC, BDS and Synopsys Design Compiler

(DC) logic synthesis flows over a heterogeneous set of benchmarks

taken from the MCNC suite.

1) MIXSyn: Our proposed methods are implemented in C lan-

guage. Interaction with external optimization tools is done via Perl

scripts. In the mixed logic optimization phase, AND/OR-optimization

is performed with ABC [5] while XOR-optimization is done by

BDS-pga [7]2. The current MIXSyn implementation does not include

the CDC computation described in Alg.1-χ, as ABC does not

properly support extensive EXDC [21]. On the technology mapping

perspective, the subject-graph construction task is already carried

out during the optimization phase. Indeed, BDS-pga can produce

2-bounded networks and AIG from ABC are compatible with our

base function-set. MOSFETs or ambipolar FETs are finally used as

basic components to build on the fly complementary gates with a

maximum fan-in m = 4. In ambipolar technology, the opportunity to

2Note that since BDS-pga is based on BDDs (and uses canonical global
ROBDDs where possible), the input circuit partition/representation does not
preclude to iterate the hybrid optimization to improve the synthesis quality.

have full-swing complementary TG gates is particularly interesting

[20]. For this reason, a different version of MIXSyn targeting mixed

static/TG ambipolar logic gates (MIXSyn TG/ST) is also evaluated.

2) Reference Flows: ABC, BDS and Design Compiler synthesis

tools are not library free and therefore need in input a reference

library. We have built a reference library with INV, XOR-2, XNOR-

2, NAND-{2,3,4}, NOR-{2,3,4}, AOI/OAI and generalized AOI/AOI

[19] standard cells. As we are targeting low area results, no timing

information is provided in the reference library to avoid area/timing

trade-off. The given area information is the transistor count for the

implementation of each cell in static complementary style. Defaults

and options for the reference flows are:

• ABC: ABC resyn2 optimization script and ABC mapper.

• BDS: BDS logic optimization and ABC mapper.

• DC: Synopsys Design Compiler compile -area effort high.

C. Results and Discussion

Area results, expressed in transistors count (T), are presented in

Table I for both target technologies. MIXSyn is referred in the Table I

as MX for brevity. Comparison with reference flows is proposed over

two set of benchmarks: XOR-intensive benchmarks (reduced-set) and

mixed XOR-AND/OR-intensive benchmarks (full-set). To distinguish

the reduced set from the full-set, the XOR-Intensiveness (XI) of each

benchmark is evaluated as follows. BDS-pga is employed to create

a 2-bounded network. Then, the XI is the ratio between the number

of XOR/XNOR nodes and the total number of nodes in the network.

We refer to XOR intensive benchmarks as the ones having XI> 0.1.

1) CMOS Technology: Results for CMOS technology are re-

ported in the right part of Table I. Positive transistors count improve-

ments are highlighted in bold.

Full Set of Benchmarks, Table I-(a): MIXSyn is the best synthesis

flow for CMOS technology having on the average 4931 devices.

The reason behind is that MIXSyn is designed to minimize the

AND/OR and XOR dominated portions of the logic circuit with an

appropriate optimization method for each case. Moreover, the library-

free mapping phase in MIXSyn takes full-advantage of all the possible

logic gates realization with m = 4 inputs. DC is the second best

CMOS synthesis flow having 10.2% more devices on average than

MIXSyn. BDS and ABC have an equal inferior performance compared

to the others, producing about 22.0% more devices than MIXSyn.

Reduced Set of Benchmarks, Table I-(b): Considering only XOR-

intensive benchmarks, the trend remains the same. Sorted by increas-

ing average transistor count, the performances are: MIXSyn (4129

devices), DC (-1.1% w.r.t. MIXSyn), BDS (-15.0% w.r.t. MIXSyn)

and ABC (-20.1% w.r.t. MIXSyn). The advantage of the hybrid

logic optimization in MIXSyn is less marked for XOR-intensive

benchmarks as they can be efficiently minimized by a single step

optimization method. However, the enhanced design flexibility of the

MIXSyn library-free mapping still produces the best result.

Average Number of Devices per Gate: The average number of

transistors per logic gate (D), indicates that CMOS synthesis flows

are producing logic gates of equivalent size (in terms of transistor

count). Therefore, MIXSyn generates circuits with commensurable

average gate fan-in, series transistors stack and circuit depth with

respect to DC, BDS and ABC synthesis flows. Note that this result

also holds for ambipolar technology.

2) Ambipolar Technology: Results for ambipolar technology are

reported in the left part of Table I and positive transistor-count

improvements are highlighted in bold.

Full Set of Benchmarks, Table I-(a): MIXSyn TG/ST is the best

synthesis flow for ambipolar technology with 4204 devices on the

average. MIXSyn TG/ST exploits the efficient mixed static/TG style

opportunity offered by ambipolar transistors (e.g. XOR-2 in Fig.3(b)

or XOR-3 in [20]). The static version of ambipolar MIXSyn have

4.6% more devices on the average than MIXSyn TG/ST. Ambipolar

DC requires 18.1% more devices on average than MIXSyn TG/ST.

Reduced Set of Benchmarks, Table I-(b): For XOR-intensive

benchmarks, MIXSyn TG/ST is again the best ambipolar synthesis

flow, with 3136 devices on average. The static version of MIXSyn

and DC require 9.4% and 14.9% more devices on average than

MIXSyn TG/ST. In ambipolar technology, the advantage of MIXSyn

methodology is appreciable even for the reduced set of benchmarks.

Indeed, MIXSyn subject-graph decomposition natively supports the

XOR nodes highlighted during the XOR-optimization. Such XOR

operations have an efficient implementation with ambipolar devices.

3) Ambipolar vs. CMOS Technologies: Comparison between

ambipolar and CMOS synthesis flows are reported in Table I in red.

Full Set of Benchmarks, Table I-(a): MIXSyn TG/ST is the most

suited synthesis flow to take advantage of ambipolar technology.

Indeed, it can reduce by 14.7% the average transistor count of the

best CMOS flow (MIXSyn). The static version of ambipolar MIXSyn

can reduce by 10.8% the average number of devices of CMOS

MIXSyn. Instead, traditional flows used with ambipolar technology

can reduce the average transistor count over their CMOS counterparts

(8.6%, 11.1% and 12.4% respectively), but fail to do the same

over CMOS MIXSyn (-0.7%, -8.4% and -7.7% respectively). This is

because the improvements of MIXSyn over DC, BDS and ABC with

CMOS technology are larger than the ones carried by the ambipolar

technology for the same reference flows.

Reduced Set of Benchmarks, Table I-(b): XOR-intensive bench-

marks derive the greatest benefit from ambipolar technology [19].

For these benchmarks, MIXSyn TG/ST can boost up to 24.0% the

average transistor count reduction over CMOS MIXSyn. In addition,

also ambipolar DC, BDS and ABC flows are now able to reduce the

average number of devices with respect to MIXSyn (12.7%, 4.4%

and 4.1% respectively) thanks to the high XI of the considered

benchmarks, which appears favorable with ambipolar devices [19].

Average Number of Devices per Gate: Averaged over the full (re-

duced) set of benchmarks, ambipolar synthesis flows have about

15.0% (20.0%) less devices per logic gate compared to their CMOS

counterparts. This is thanks to the compact realization of the XOR

function in ambipolar technology. This result confirms that circuits

in ambipolar technology are potentially denser than in CMOS.

4) Discussion: MIXSyn produces the best results, in terms of

transistor count, compared to DC, BDS and ABC synthesis tools for

both CMOS and ambipolar technologies. The advantage of MIXSyn

over the reference flows comes from three major facts. First, the

logic optimization method in MIXSyn is dependent on the circuit

type and not fixed a priori as in the reference flows. Second, the

subject-graph decomposition with enhanced base functions set allows

MIXSyn to easily recognize and map XOR functions, otherwise

hidden by conventional NAND/INV decomposition [10]. Third, the

library-free technology mapping approach permits to have a virtual

library with 22
m

different logic functions, a number not practical with

standard-cells already for small values of m (4 or 5) [22]. We expect

that the MIXSyn advantage will become even more relevant when

CDC computation will be included. Although timing results are not

considered and presented in this paper, note that the library free map-

ping technique can be adapted to obtain also delay efficient results

[13]. In this case, the delay estimation accuracy is supported by the

continuous advance in dynamic cell characterization. Even though

it is out of the scope of this work, note that library-free mapping

implies a subsequent physical design that is different from the one

employed after traditional standard-cell based technology mappers.

The physical synthesis must be carried out at the transistor level and

the interconnection impact on the circuit becomes more relevant [22].

The transistor-level physical synthesis can be accomplished by circuit

TABLE I: Experimental results for MIXSyn and comparison with reference synthesis flows

Legend: T is the number of transistors, D is the average number of devices per gate/cell
Technology Ambipolar CMOS

Flow MX TG/ST MX DC BDS ABC MX DC BDS ABC

Bench. (XI) T D T D T D T D T D T D T D T D T D

C1355 (0.46) 904 6.27 1042 6.23 1332 5.74 1432 6.50 1524 7.71 1521 9.09 1606 8.23 1972 8.96 2120 10.81

C3540 (0.04) 3510 5.01 3580 5.08 3952 3.95 4430 4.07 4378 3.76 3723 5.13 4096 4.12 4414 4.05 4512 3.83

C6288 (0.19) 7554 4.13 8436 4.21 9038 4.54 9684 4.29 10120 5.60 10038 5.01 10146 5.48 11864 5.25 13454 7.43

C7552 (0.18) 5692 4.21 5956 4.25 5884 4.70 6532 4.48 5900 4.09 7028 5.58 6906 5.60 7472 5.13 6630 4.60

des (0.03) 9650 5.44 9650 5.44 12484 4.07 12966 4.20 12990 3.95 9940 5.60 12940 4.19 13878 4.48 13534 4.11

C1908 (0.29) 1174 3.70 1278 3.75 1218 5.13 1440 5.19 1524 6.12 1515 4.65 1542 6.31 1650 6.62 1710 6.17

pair (0.07) 4796 5.27 4796 5.27 5266 4.06 5656 4.07 5332 4.01 5131 5.63 5556 4.40 6088 4.58 5660 4.24

my adder (0.22) 352 4.40 448 4.07 544 4.85 632 5.01 722 4.86 547 4.96 672 7.00 790 6.22 880 7.16

Table I-(a) Full set of Benchmarks

Average 4204 4.80 4398 4.79 4965 4.63 5346 4.72 5312 5.01 4931 5.70 5433 5.67 6016 5.66 6063 6.04

Ambipolar CMOS

Improv. → vs. ↓ MX TG/ST MX DC BDS ABC MX DC BDS ABC

Amb. MX TG/ST - - -4.6% 0.3% -18.1% 3.6% -27.2% 1.6% -26.3% -4.3% -17.3% -18.7% -29.2% -18.1% -43.1% -17.9% -44.2% -25.8%

Amb. MX ST 4.4% -0.2% - - -12.9% 3.3% -21.5% 1.4% -20.8% -4.6% -12.1% -19.0% -23.5% -18.3% -36.8% -18.1% -37.8% -26.1%

Amb. DC 15.3% -3.7% 11.4% -3.4% - - -7.7% -1.9% -7.0% -8.2% 0.7% -23.1% -9.4% -22.4% -21.1% -22.2% -22.1% -30.4%

Amb. BDS 21.3% -1.7% 17.7% -1.5% 7.1% 4.0% - - 0.6% -6.1% 7.7% -20.7% -1.6% -20.1% -12.5% -19.9% -13.4% -28.0%

Amb. ABC 20.9% 4.2% 17.2% 4.4% 6.5% 7.6% -0.6% 5.8% - - 7.2% -13.8% -2.3% -13.2% -13.2% -13.0% -14.1% -20.6%

CMOS MX ST 14.7% 15.7% 10.8% 16.0% -0.7% 18.7% -8.4% 17.2% -7.7% 12.1% - - -10.2% 0.5% -22.0% 0.7% -23.0% -5.9%

CMOS DC 22.6% 15.3% 19.1% 15.5% 8.6% 18.3% 1.6% 16.7% 2.2% 11.6% 9.2% -0.5% - - -10.7% 0.1% -11.6% -6.5%

CMOS BDS 30.1% 15.2% 26.9% 15.3% 17.4% 18.2% 11.1% 16.6% 11.7% 11.5% 18.0% -0.7% 9.7% -0.2% - - -0.8% -6.7%

CMOS ABC 30.6% 20.5% 27.5% 20.7% 18.1% 23.3% 11.8% 21.9% 12.4% 17.0% 18.7% 5.6% 10.4% 6.1% 0.8% 6.3% - -

Table I-(b) Reduced set of Benchmarks (XI>0.1)

Average 3136 4.54 3432 4.50 3603 4.99 3944 5.09 3958 5.67 4129 5.85 4174 6.52 4749 6.43 4959 7.23

Ambipolar CMOS

Improv. → vs. ↓ MX TG/ST MX DC BDS ABC MX DC BDS ABC

Amb. MX TG/ST - - -9.4% 0.9% -14.9% -9.9% -25.7% -12.1% -26.2% -24.9% -31.6% -28.8% -33.1% -43.6% -51.4% -41.6% -58.1% -59.2%

Amb. MX 8.6% 0.9% - - -5.0% -10.9% -14.9% -13.1% -15.3% -26.0% -20.3% -30.0% -21.6% -44.8% -38.3% -42.9% -44.5% -60.6%

Amb. DC 12.9% 9.0% 4.7% 9.8% - - -9.4% -2.0% -9.8% -13.6% -14.6% -17.2% -15.8% -30.6% -31.8% -28.8% -37.4% -44.9%

Amb. BDS 20.5% 10.8% 13.0% 11.6% 8.6% 1.9% - - -0.3% -11.4% -4.7% -14.9% -5.8% -28.1% -20.4% -26.3% -25.7% -42.0%

Amb. ABC 20.8% 19.9% 13.3% 20.6% 9.0% 12.0% 0.4% 10.2% - - -4.3% -3.2% -5.4% -15.0% -20.0% -13.4% -25.3% -27.5%

CMOS MX 24.0% 22.4% 16.9% 23.0% 12.7% 14.7% 4.4% 13.0% 4.1% 3.0% - - -1.1% -11.4% -15.0% -9.9% -20.1% -23.6%

CMOS DC 24.8% 30.3% 17.7% 30.9% 13.7% 23.5% 5.5% 21.9% 5.2% 13.0% 1.1% 10.3% - - -13.7% 1.4% -18.8% -10.9%

CMOS BDS 33.9% 29.3% 27.7% 30.0% 24.1% 22.4% 16.9% 20.8% 16.6% 11.8% 13.0% 9.0% 12.1% -1.4% - - -4.4% -12.4%

CMOS ABC 36.8% 37.2% 30.8% 37.7% 27.3% 31.0% 20.4% 29.6% 20.2% 21.5% 16.7% 19.0% 15.8% 9.8% 4.2% 11.0% - -

to layout automated tools or using a gate-array approach, as recently

proposed for ambipolar technology [23].

V. CONCLUSIONS

We propose a novel logic synthesis methodology, MIXSyn, capable

to produce area-efficient results for mixed XOR-AND/OR dominated

circuits. MIXSyn is designed to produce state-of-art best results for

the two most frequent types of functions that appear in logic circuits:

AND/OR and XOR intensive functions. The key concepts that enable

this opportunity are selective, and distinct, optimization of AND/OR

and XOR-intensive portions of the logic circuit followed by library-

free technology mapping. In terms of transistor count, experimental

results show that MIXSyn outperforms best academic and commercial

synthesis tools for CMOS technology by 18.0% and 9.2% on the

average. With an ambipolar technology, MIXSyn produces circuits

having on average 20.9% and 15.3% fewer devices with respect to

best academic and commercial synthesis tools, respectively.

REFERENCES

[1] K. Keutzer and D. Richards, Computational complexity of logic synthesis
and optimization. Proc. IWLS, May 1989.

[2] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-
Hill, New York, 1994.

[3] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A.R. Wang,
MIS: A Multiple-Level Logic Optimization System, IEEE Trans. CAD,
vol. 6, pp. 1062-1081, Nov.1987.

[4] E. Sentovich et al., SIS: A System for Sequential Circuit Synthesis, ERL,
Dept. EECS, Univ. California, Berkeley, UCB/ERL M92/41, 1992.

[5] ABC Logic Synthesis Tool [Online]. Available: http://www.eecs.berkeley.
edu/alanmi/abc/

[6] C. Yang and M. Ciesielski, BDS: A BDD-Based Logic Optimization
System, IEEE Trans. CAD, vol. 21, pp. 866-876, July 2002.

[7] N. Vemuri, P. Kalla and R. Tessier, BDD-based Logic Synthesis for LUT-
based FPGAs, ACM Trans. TODAES, Vol.7, pp. 501-525, Oct. 2002.

[8] T.S. Czajkowski, S.D. Brown, Functionally Linear Decomposition and
Synthesis for FPGAs, IEEE Trans. CAD, 27(12): 2236-2249, 2008

[9] N. Song, M. Perkowski, Minimization of Exclusive Sum of Products Ex-
pressions for Multi-Output Multiple-Valued Input, Incompletely Specified
Function, IEEE Trans. CAD, 15(4): 385-395, 1996.

[10] K. Keutzer, DAGON: technology binding and local optimization by DAG
matching, Proc. DAC, pp. 341-347, 1987.

[11] L. Benini and G. De Micheli, A survey of Boolean matching techniques
for library binding, ACM TODAES, Vol. 2, No. 3, pp.193-226, July 1997.

[12] K. Keutzer, K. Kolwicz, and M. Lega, Impact of library size on the
quality of automated synthesis, Proc. of ICCAD, pp. 120-123, 1987.

[13] Y. Jiang, S.S. Sapatnekar and C. Bamji, Technology Mapping for High-
Performance Static CMOS and Pass Transistor Logic Designs, IEEE
Trans. VLSI, vol. 9, pp. 577-589, Oct. 2001.

[14] M. Pullerits and A. Kabbani, Library-free synthesis for area-delay
minimization, International Conference on Microelectronics, 2008.

[15] F.S. Marques et. al, DAG Based Library-Free Technology Mapping, Proc.
GLSVLSI, pp 293-298, 2007

[16] J. Xue, D. Al-Khalili and C.N. Rozon, Technology Mapping in Library-
free Logic Synthesis, Proc. SPIE 5837, 919 (2005).

[17] T.H. Cormen et.al, Introduction To Algorithms, MIT Press, 2009.
[18] J.M. Rabaey et al., Digital Integrated Circuits, Prentice Hall, 2003
[19] M.H. Ben-Jamaa, K Mohanram and G. De Micheli, An Efficient Gate

Library for Ambipolar CNTFET Logic, IEEE Trans. CAD, vol. 30,
pp.242-255, Feb. 2011.

[20] A. Zukoski, X. Yang and K. Mohanram, Universal logic modules based
on DG carbon nanotube transistors, Proc. DAC, pp.884-889, 2011.

[21] K.Chang et al., Logic Synthesis and Circuit Customization Using Exten-
sive External Don’t-Cares, ACM Trans. Computational Logic, Jan. 2010.

[22] R. Reis, Physical Design Automation at Transistor Level, Proc.
NORCHIP, pp.241-245, 2008.

[23] S. Bobba et al., Physical synthesis onto a Sea-of-Tiles with double-gate
silicon nanowire transistors, Proc. DAC, pp. 42-47, 2012.

