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ABSTRACT 
In this paper, we propose a novel methodology for statistical 
SRAM design and analysis. It relies on an efficient form of 
importance sampling, mixture importance sampling. The method 
is comprehensive, computationally efficient and the results are in 
excellent agreement with those obtained via standard Monte Carlo 
techniques. All this comes at significant gains in speed and 
accuracy, with speedup of more than 100X compared to regular 
Monte Carlo. To the best of our knowledge, this is the first time 
such a methodology is applied to the analysis of SRAM designs. 

Categories and Subject Descriptors 
B7.2 [Hardware]: Integrated Circuits – Design Aids 

General Terms 
Algorithms, Performance, Design, Reliability. 

Keywords 
Statistical Performance Analysis, Yield Prediction, SRAM 

1. INTRODUCTION 
In sub-100nm designs, within-chip variability has become a 
serious problem in circuit design [1, 2]. While its impact on the 
delay of logic circuits [3, 4] is evident, within-chip variability has 
an even more sound impact on SRAM cells and memory designs 
in general [5]. It has been shown that the random dopant 
fluctuations are inversely proportional to the device area [6], and 
SRAM cells have the smallest devices on the chip [5]. Also, 
single (or few) cell failures can lead to failing memory parts. 
Hence, analyzing the yield of the SRAM cell in the presence of 
variability is an indispensable part of the memory design and 
analysis cycle.  

The authors in [7] proposed a method for modeling and 
analyzing the failure probability of SRAM cells. However, it is 
based on the assumption that the design (performance) metrics are 
gaussian random variables, whose means and standard deviations 

are approximated by Taylor series expansion of a response 
surface model; while this approach is suitable for early design 
stages, the method in general is prone to errors and may not be 
accurate for predicting low/rare failure probabilities. Specifically, 
the performance metric Gaussian approximations may not 
replicate well the tail probabilities. This is very crucial 
considering the fact that state-of-the-art designs can have millions 
of cells placed on a single memory unit and that the fails are 
largely independent. Consider for example a 1Mb memory design 
(with no replication).  Its yield drops from 90% to 40% when the 
cell failure rate increases from 1e-5% to 1e-4%. Hence, 
accurately estimating memory yield is highly dependent on 
accurately estimating such rare tail probabilities. 

Alternatively, it is possible to obtain more accurate results, 
and hence avoid approximations of the performance space, by 
integrating the probability density function (pdf) of the sources of 
variability over the (usually complex) feasibility region [4]. Such 
methods of statistical design in general are either deterministic or 
statistical [8], with standard Monte Carlo analysis being the most 
widely-adopted technique. However, standard Monte Carlo 
techniques are to a first order dependent on the sample size and 
are in general slow at estimating low failure/tail probabilities. 
Deterministic methods, on the other hand, suffer from the curse of 
dimensionality. Hence, variance reduction techniques, such as 
importance sampling were proposed as Monte Carlo alternatives 
[8-10] to speed up the statistical analysis. However, without the 
proper choice of the sampling function, importance sampling 
techniques may loose their efficiency and accuracy.  

In this paper, we propose using mixture ratioed importance 
sampling (MixIS) [10]. Our method 1) is independent of any 
assumptions about the performance space distributions, 2) relies 
on the proper choice of importance sampling functions, and is 
therefore 3) accurate and highly efficient. Thus, we are able to 
achieve several orders of magnitude of gain in simulation run-
time compared to standard Monte Carlo techniques. 4) Moreover, 
the method maintains its high efficiency in multi-dimensional 
parameter space problems. 

2. STANDARD MONTE CARLO 
Given the fact that one needs to estimate the SRAM cell low fail 
probabilities accurately, we will first study the efficiency of 
standard Monte Carlo at estimating such low probabilities.  

2.1 Background 
To estimate the yield of a design, we define a performance metric 
f(x); we also define f0 to be the corresponding critical value that 
sets the pass/fail criteria for the design.  Let I(x) be the indicator 
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function defined in (1). Also, let p(x) be the true (natural) 
probability density function (pdf) of the design parameters, i.e., 
sources of variability. Then the failure probability, Pf, and its 
variance σPf

 2 may be estimated from N random samples that are 
independently drawn according to p(x) (eqn. (2)) [8- 10]. 
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2.2 Estimating Rare Failure Events 
Let us assume that we want the 95% confidence interval [Pf-2σPf, 
Pf +2σPf] to be equal to [Pf-αPf, Pf+αPf], where α is a percent error 
criteria. Then, based on (2), the number of samples N must be  
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For small Pf values, N is inversely proportional to Pf, and, we 
expect standard Monte Carlo methods to become less efficient as 
Pf decreases. Table 1 presents the values of N needed to 
accurately estimate Pf= Prob( (f(x)=x) >z0) with α=10%; x 
follows a standard normal distribution. Also Table 1 lists what-
would-be the equivalent run-time if f(x) involved spice-like 
simulations of a memory cross-section (cell + peripherals). While 
the runtime, can be further minimized by using fast simulators, or 
even response surface models, the number of samples needed for 
estimating low failure probabilities is neither practical nor 
reasonable. Thus, there is a need for fundamentally different 
statistical methods.  

Table 1. Number of Monte Carlo simulations needed to 
estimate the probability Pf=Prob(x>z0) with a 95% confidence 
interval = [Pf-0.1Pf, Pf+0.1Pf]. The corresponding simulation 

runtime in days, if a spice-like simulator is used.  

z0 Probability 
value 

Number of Monte 
Carlo Simulations 

Runtime in 
Number of Days 

0 0.500 4.0e2 0.18 
1 0.159 2.1e3 0.972 
2 0.0228 1.7e4 7.87 
3 0.00135 2.9e5 Too long! 
4 3.169E-05 1.3e7 Too long! 
5 2.871E-07 1.4e9 Too long ! 

 

3.  IMPORTANCE SAMPLING  
Revisiting standard Monte Carlo simulation method, one realizes 
that Monte Carlo works well; however, it wastes a lot of time 
sampling around the mean rather than in the tails. Importance 
sampling [8 -10] is a well-known variance reduction technique 
which gets around this problem by distorting the (natural) 
sampling function, p(x), to produce more samples in the important 
region(s) (see Fig. 1). Mathematical manipulation follows to 
unbias the estimates. Mathematically, the concept is based on  
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where g(x) is the distorted sampling function. The method is 
theoretically sound, and with the proper choice of g(x), we are 

able to obtain accurate results with relatively small number of 
simulations. 

3.1 Mixture Importance Sampling (MixIS) 
A simple and logical choice of g(x) is the uniform distribution 
(see Fig. 1). However, it was shown in [8] that its efficiency 
decreases as the dimensionality increases. Many techniques have 
been proposed to choose the optimal sampling distribution. A 
common approach is to shift the natural distribution into the 
failure region [12].  Choosing g(x) = p(x-μs) enables more 
samples in the failure region (see Fig. 1).  

We go one step further. Mixture ratioed importance sampling 
depends on the idea of generating random variables using 
mixtures of distributions [10]. Thus, we choose g(x) as follows. 

)()1()()()( 2121 sxpxUxpxg μλλλλλ −−−++= ;      (5) 

where 10 21 <+≤ λλ . gλ(x) enables focusing on the failure 
region without leaving any cold spots (i.e., any non-sampled 
regions in the event of outliers …etc). Moreover, the method is 
generalizable to support multiple failure regions. The choice of λi 
is dependent on the location of μs; in general, if μs is far from the 
origin, λi is small.  

We propose the following heuristic for estimating the shift   μs. 

1. Uniformly sample the parameter space 
a.   Identify Failing points 
b.   If  (total number of failing samples < 30)   

i. Go to 1 
2. Find the center of gravity (C.O.G.) of failures. 

a.    Set μs=C.O.G. 

Note that few failing samples are in general sufficient for 
estimating the C.O.G. because we are estimating a mean. 
Furthermore, another round of sampling follows this step; the 
estimates obtained by importance sampling are not sensitive to the 
exact position of the C.O.G., or μs. This is true as long as the 
samples in step ‘1’ are representative of the population. To 
guarantee that the samples in step ‘1’ span the parametric 
(variability) space properly, we relied on Sobol sequences, also 
referred to as quasi(sub)-random techniques. The sample points in 
quasi-random sequences are “maximally avoiding” of each other 
[14]. Finally, the fact that p(x) is part of the mixture distribution 
helps bound the weight function w (eqn (6)) used in estimating Pf 
(eqn. (8)); this in turn bounds the variance of Pf, σPf:MixIS [10] (eqn. 
(9)).  NIS is the number of samples drawn from gλ(x).   
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Figure 1. Without loss of generality p(x) is a normal gaussian 
in 1-D parameter space. U(x) is a uniform pdf; p(x- μs) is p(x) 
shifted to the new center μs.  

4. MIXIS RESULTS AND ANALYSIS  
4.1 Theoretical Efficiency and Accuracy 
We repeated the experiments in Table 1, this time for MixIS. We 
relied on (10), the integral form of (9), to calculate the number of 
MixIS simulations NIS needed to estimate Pf=Prob(x>z0) with a 
95% confidence interval and error criteria α=0.1; we used 
MATLAB to evaluate the integrals. Again x follows a standard 
normal distribution. Results show that the MixIS method provides 
significant speedup for low failure probabilities; the method 
converges to regular Monte Carlo for high probability estimates 
(see Table 2).  
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Table 2. Number of Monte Carlo simulations (2nd column) and  
MixIS simulations (3rd column) needed to estimate 

Pf=Prob(x>z0) with 95% confidence interval = [Pf-0.1Pf, 
Pf+0.1Pf]. Speed up of MixIS compared to regular Montecarlo 

(4th column).  

z0 
NMC 

# Monte Carlo 
Simulations 

NIS 
#MixIS 

Simulations 

Speedup 
= NMC/NIS 

0 4.0e2 4.0e2 1e0 
1 2.1e3 5.8e2 4e0 
2 1.7e4 9.3e2 2e1 
3 2.9e5 1.4e2 2e2 
4 1.3e7 1.8e2 7e3 
5 1.4e9 2.3e2 6e5 

 

To test the efficiency of the MixIS method in higher dimensions, 
we relied on experimentation. We created a simple function, f(x1, 
…, xn), for which the yield (in terms of equivalent z; see eqn. 
(11)) could be computed analytically. 

))((1()1( 0
11 fxfprobPz ifeqv >−=−= −− ϕϕ ;                (11) 

where φ is the standard normal cumulative distribution function 
(f0 is the pass/fail critical value). We then used MixIS to estimate 
zeqv for different f0 values. Our objective was to determine the 
number of MixIS samples needed to obtain a good estimate. Table 
3 presents the experimental results in 6-D space when the number 
of MixIS samples was fixed to 2000 (next we will be focusing on 
SRAM designs with 6 random variables). The confidence 
intervals are based on 50 replications.  

The method maintained its efficiency compared to regular Monte 
Carlo techniques (see table 1 for the number of Monte Carlo 
samples needed for the different z-values). Furthermore, MixIS 
proved to be more efficient than other candidate importance 

sampling functions (e.g., using U(x) alone, which lost efficiency 
as the dimensionality increased). It is worth noting that at 6-D 
U(x) required at least 10-15X more simulations to obtain a good 
estimate.  

Table 3. Comparing MixIS method against analytical 
solutions for 6-D parameter space. The first (third) column 
presents the confidence interval lower (upper) bound values 

for 50 replications. The second column presents the estimated 
mean value. Each replication involved 1500 simulations. 

Analytical 
z0 

95%  
Confidence 

Interval  
Lower Bound   

MixIS z0  

95% 
Confidence Interval 

Upper Bound 

3.0 2.94 2.99 3.09 
3.5 3.44 3.49 3.57 
4.0 3.96 4.01 4.06 
4.5 4.45 4.48 4.55 
5.0 4.96 4.99 5.07 
5.5 5.45 5.52 5.55 
6.0 5.96 5.99 6.07 

4.2 Statistical SRAM Analysis 
For state-of-the-art memory chips with million or more cells, the 
yield can drop from 90% to 40% when zeqv drops from 5.3 to 4.8. 
In the following examples, we will see how the MixIS method 
lends itself as an efficient statistical methodology to estimate such 
high yields (low failure probabilities). 

4.2.1 Process variability impact on SRAM cells 
The threshold voltage fluctuations of the SRAM cell transistors 
are impacted by the random dopant fluctuations and may be 
considered as six independent Gaussian random variables, δvti, 
i=1 to 6 [13]. Process variations between the neighboring 
transistors can degrade the cell performance and stability.  

We used the MixIS method to estimate the yield of a 6-transistor 
SRAM cell built in sub-100nm technology in the presence of 
variability. Our performance metrics are similar to those 
described in [5]; specifically, we are interested in measuring the 
cell’s dynamic stability in terms of read upsets and writability. 
For accurate results, the circuit under study consisted of the 
following components: the SRAM cell, bitline loading and 
peripheral circuitry. We relied on the following indicator 
functions to estimate the yield. 

 cellstable
failwriteupsetreadvvI tt )_(
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Similar to [7], the overall yield is computed from the individual 
(metric) yields. For purposes of our experiments, we report the 
cell yield as an equivalent z-value as was described in eqn (11). 

4.2.2 MixIS: An efficient methodology for statistical 
SRAM Analysis 
Figure 2 compares MixIS method to regular Monte Carlo when 
estimating the cell yield. Both methods converge to the same 
estimated value. MixIS converged quickly (few thousand 
simulations), whereas Monte Carlo is very slow when dealing 
with rare failure events (very high yields). Table 4. compares 
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estimated zeqv values obtained via MixIS to those obtained by 
regular Monte Carlo (whenever a converging Monte Carlo is 
realizable). MixIS estimates were in excellent agreement with 
Monte Carlo results. A converging MixIS estimate was achieved 
with ~2000-3000 samples; this was regardless of the zeqv value.  
Whereas, the number of MonteCarlo samples increased 
exponentially with zeqv; for zeqv>4 it was no longer practical to 
rely on Regular Monte Carlo methods. Most importantly, MixIS is 
a computationally efficient alternative to regular Monte Carlo, and 
the runtime is independent of the yield estimate. This makes it a 
suitable methodology for accurately estimating rare fail 
probabilities of SRAM. Finally, in Table 5. we compare MixIS 
method results to hardware collected statistics. The results and the 
trends are in very good agreement. Some discrepancy is seen 
mainly due to the mismatch between the device models used for 
simulation and the true hardware behavior..

Figure 2. zeqv estimated using both MixIS (circles)  and Monte 
Carlo (diamonds) techniques. For all zeqv values MixIS 

reached a converging estimate and a converging confidence 
interval within few thousand simulations. Monte Carlo method 

fell behind for higher zeqv, i.e., cells with rare failure events. 
Around 100,000 simulations were needed for regular Monte 

Carlo to provide a converging estimate for zeqv ≈ 4. Many more 
samples are necessary for Monte Carlo method to satisfy the 

converging confidence interval criteria.  
Table 4. Estimated zeqv values. MixIS provided a converging 

estimate within 2000-3000 simulations. Monte Carlo 
requirements exceeded 100k simulations for z>4.  

Monte Carlo MixIS 
1.49 1.53 
2.56 2.51 
3.49 3.42 
4.15 4.22 
--- 4.96 
--- 5.68 
--- 6.06 

Table 5. Log of the number of fails based on hardware 
measurements and those estimated by the MixIS method. 

VDD1 VDD2 VDD3 VDD4 VDD5 VDD6

Hardware -1-0 0-1 1-2 3-4 4-5 5-6 
MixIS 0-1 0-1 2-3 3-4 4-5 4-5 

5. CONCLUSIONS 
We have proposed using mixture ratioed importance sampling 
(MixIS) for purposes of statistical design. The method is 
comprehensive and computationally efficient. Thus, we are able to 

achieve several orders of magnitude of gain in simulation run-time 
compared to standard Monte Carlo techniques. Moreover, the 
method maintains its high efficiency in multi-dimensional 
parameter space problems. We applied this method to the analysis 
of SRAM designs in the presence of variability. This enabled 
estimating the probability of the SRAM cell rare failure events. 
This is critical to the memory design cycle. Single (or few) cell 
failures can lead to failing memory parts, and the ability to 
accurately estimate low fail probabilities of an SRAM design is an 
indispensable part of the memory design cycle. Finally, where 
feasible, we compared our method to alternative statistical 
techniques. The results were in excellent agreement, and the 
speedup factor was significant.  
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