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Abstract

Mixture item response theory (IRT) models have been suggested as an efficient method of
detecting the different response patterns derived from latent classes when developing a
test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a
higher-order structure, and mixtures of latent classes may occur on different orders and
influence the item responses of examinees from different classes. This study aims to
develop a new class of higher-order mixture IRT models by integrating mixture IRT models
and higher-order IRT models to address these practical concerns. The proposed higher-
order mixture IRT models can accommodate both linear and nonlinear models for latent
traits and incorporate diverse item response functions. The Rasch model was selected as
the item response function, metric invariance was assumed in the first simulation study,
and multiparameter IRT models without an assumption of metric invariance were used in
the second simulation study. The results show that the parameters can be recovered fairly
well using WinBUGS with Bayesian estimation. A larger sample size resulted in a better
estimate of the model parameters, and a longer test length yielded better individual ability
recovery and latent class membership recovery. The linear approach outperformed the
nonlinear approach in the estimation of first-order latent traits, whereas the opposite was
true for the estimation of the second-order latent trait. Additionally, imposing identical fac-
tor loadings between the second- and first-order latent traits by fitting the mixture bifactor
model resulted in biased estimates of the first-order latent traits and item parameters.
Finally, two empirical analyses are provided as an example to illustrate the applications and
implications of the new models.
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Multiple latent traits measured by a battery of tests are often correlated and can be

assumed to contain a higher-order structure based on substantive knowledge. In cer-

tain cases, large-scale measurements, such as the Programme for International

Student Assessment (PISA), can be treated as a measurement of three-order latent

traits in which multiple domains (e.g., quality, space, and shape; change and relation-

ship; and uncertainty) constitute a subject (mathematics), and three subjects (mathe-

matics, reading, and science) are governed by a general concept of essential

knowledge and skill. In this case, the domains, subjects, and general concepts can be

treated as the first-, second-, and third-order latent traits, respectively. A general

framework of higher-order item response theory (IRT) models has been developed

and can accommodate a variety of item response functions for dichotomous and

polytomous items (Huang, Wang, Chen, & Su, 2013). Higher-order IRT models have

the ability to estimate lower and higher-order latent traits simultaneously and can

enhance the testing efficiency using the higher-order latent trait as an indicator of

overall assessment for examinees and the lower-order latent traits as an indicator of

formative assessment (for an overview, see Huang et al., 2013).

Mixture IRT models (or factor mixture models) have been proposed as a method

of accounting for the mixture distributions of different latent classes in latent traits

when examinees are classified into the same group according to similar item response

patterns rather than according to the observed variables (von Davier & Carstensen,

2010). In major studies, the applications of mixture IRT models focus on measuring

a single latent trait and assume that examinee responses from different subgroups fol-

low a specific Rasch model (Rasch, 1960) with different latent trait distributions and

different item parameter sets (e.g., Bolt, Cohen, & Wollack, 2001, 2002; Cho &

Cohen, 2010; Cohen & Bolt, 2005; Cohen, Gregg, & Deng, 2005; DeMars & Lau,

2011). However, De Boeck, Cho, and Wilson (2011) developed a mixture IRT model

under a multidimensional structure to explain the causes of differential item function-

ing between latent classes, and De Jong and Steenkamp (2010) extended unidimen-

sional mixture IRT models to a multidimensional mixture IRT model for a study on

cross-cultural comparisons.

However, potential higher-order relationships among latent traits are rarely dis-

cussed in the literature in relation to factor mixture models or mixture IRT models.

Because mixtures of latent classes occur in multiple latent traits, the assumption that

multiple orders of latent traits may have different mixtures of distributions among

latent classes is justified. Thus, a new class of higher-order mixture IRT models is

developed in this study. In addition to higher-order IRT models, bifactor models

(Gibbons & Hedeker, 1992) were used to measure a common latent trait and several

specific latent traits for each test and can be treated as a special case of higher-order

IRT models when two orders of latent traits are observed (Yung, Thissen, &

McLeod, 1999). This bifactor modeling process is useful in testlets in which the test

items in the same testlet are connected by a common stimulus and a specific latent

trait for each testlet can model the local dependency among items (Wainer, Bradlow,

& Wang, 2007).
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Recently, Cho, Cohen, and Kim (2014) developed the mixture bifactor model by

accommodating mixtures of latent classes in the bifactor model, and to the best of

our knowledge, their study was the first attempt to measure the general and specific

domains while simultaneously investigating the effects of different response patterns

on both types of dimensionality. Although the mixture bifactor model shares several

similarities with our higher-order mixture IRT models in terms of model formulation,

the conceptualization differs completely between the two types of models, and the

differences should be noted.

First, from a measurement perspective, the latent trait specified for each test or

testlet are considered nuisance dimensionality in the mixture bifactor model but

measure-intended variables in higher-order mixture IRT models. This differentiation

is important because specific latent traits are considered to be a component of test

information in higher-order IRT models but should be partially removed from the

test information in bifactor models (Huang, Chen, & Wang, 2012).

Second, from a modeling perspective, bifactor models are mathematically equiva-

lent to higher-order IRT models, and the development of higher-order mixture IRT

models may appear redundant. Such equivalence between the two models is true

when a common latent trait and several specific latent traits are measured; however,

if additional common latent traits with additional hierarchical structures are involved,

then the current mixture bifactor model is not applicable. In addition, a linear func-

tion in the relationship among latent traits in bifactor models is assumed, whereas

higher-order IRT models allow for a nonlinear function among second- and first-

order latent traits. We will demonstrate the development and application of nonlinear

higher-order mixture IRT models in the following sections.

Third, from a model diversity perspective, the item response function can be speci-

fied for dichotomous and polytomous items in higher-order IRT models; therefore, its

extension to a mixture approach is expected to be more flexible compared with other

mixture bifactor models. Fourth, in a general bifactor model for a testlet, the factor

loadings (or discrimination parameters) on the specific latent traits can be estimated

separately from the factor loadings that are estimated for the common latent trait (Y.

Li, Bolt, & Fu, 2006), which allows the effects of general and specific domains on

each item to be evaluated. However, the mixture bifactor model of Cho et al. (2014)

has imposed an identical loading on both general and specific domains for each item

and is therefore considered a restricted mixture bifactor model. We will illustrate the

difference in model derivations between the two types of models in detail in the next

section.

Finally, the item parameters in the mixture bifactor model were treated as random

effects rather than as fixed effects, which cannot be justified as a practical approach

in IRT models unless an item population is included (Wang & Wilson, 2005). Based

on these previous studies, creating a new class of higher-order mixture IRT models

that serves as an extension and supplement to the current mixture bifactor model will

be of considerable value. Therefore, this task is the major purpose of the current study

and constitutes the most significant contribution of this article to testing practices.
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The following sections first introduce mixture IRT models and higher-order IRT

models and subsequently elaborate on the development of the new class of higher-

order mixture IRT models. Two simulation studies are then conducted to assess the

parameter recovery of the developed models and provide a comparison between the

developed higher-order mixture IRT models and the mixture bifactor model, and the

results are then summarized. Two empirical examples are presented to demonstrate

the applications and implications of the new models. The final section provides our

conclusions for the new models as well as suggestions for future research.

Mixture IRT Models

Mixture IRT models for dichotomous items combine a dichotomous IRT model

(Lord, 1980) and a finite discrete latent class model (McLachlan & Peel, 2000),

where a fixed number of discrete latent classes are identified and an IRT model is

assumed to underlie the item responses in each latent class. When the item response

function follows the three-parameter logistic model (3PLM; Birnbaum, 1968), a mix-

ture 3PLM can be specified, and the probability of a correct response to item i for

person n of latent class g can be formulated as

P(Xngi = 1jg, ung) = lgi + (1� lgi)
exp agi(ung � dgi)
� �

1 + exp agi(ung � dgi)
� � , ð1Þ

with

ung;N (mg, s2
g), ð2Þ

where ung is the level of the latent trait of person n within class g; lgi, agi, and dgi

are the pseudo-guessing, discrimination, and difficulty parameters of item i, respec-

tively, for class g; and mg and s2
g are the mean and variance of the latent trait for

class g, respectively. Because the item parameters contain the subscript g for each

item, a different set of item parameters can be estimated for different latent classes.

When lgi = 0 for all items and classes, the mixture two-parameter logistic model

(2PLM) can be formulated, and when lgi = 0 and agi = 1 for all items and classes, the

mixture Rasch model can be formulated (Rost, 1990, 1997).

Although mixture IRT models are flexible and can accommodate a great diversity

of item response functions, the mixture Rasch model has been widely applied to

latent class detection (e.g., Cho & Cohen, 2010; Cohen & Bolt, 2005; De Boeck et

al., 2011; DeMars & Lau, 2011; Frick, Strobl, & Zeileis, 2015) and presents better

measurement characteristics than other multiparameter IRT models (Embretson &

Reise, 2000). Therefore, we expended considerable efforts to assess the higher-order

mixture Rasch model in terms of its estimation efficiency in the following simulation

study. In addition to the Rasch model, the higher-order mixture 2PLM and 3PLM

were evaluated via simulations and compared with the corresponding mixture bifac-

tor models.

278 Educational and Psychological Measurement 77(2)



Higher-Order IRT Models

Assume that there are p + 1 orders on a set of latent traits, where u(p)
nv is the pth-order

vth latent trait for person n and u(p + 1)
n is a vector of p + 1th-order latent traits for per-

son n. The relationship between the pth- and p + 1th-order latent traits can be

expressed as

u(p)
nv = b(p)u(p + 1)

n + e(p)
nv , ð3Þ

where b(p) is a vector of regression parameters (factor loadings) and e(p)
nv represents

the residuals for person n and test v and is assumed to be normally distributed (with a

mean of zero) and independent of other u variables. Variations of Equation 3 can be

attained if higher-order latent traits have polynomial and interaction effects on low-

order latent traits. In the following section, the polynomial or nonlinear formulation

will be illustrated.

Assuming a two-order structure with one common second-order latent trait and

several first-order latent traits, for simplicity, the probability of a correct response to

item i in test v for person n in the higher-order 3PLM is

P(Xniv = 1ju(1)
nv ) = liv + (1� liv)

exp aiv(u
(1)
nv � div)

� �
1 + exp aiv(u(1)

nv � div)
� � , ð4Þ

with

u(1)
nv = bvu(2)

n + e(1)
nv , ð5Þ

where liv, aiv, and div are the pseudo-guessing, discrimination, and difficulty para-

meters for item i of test v, respectively; u(2)
n and u(1)

nv are the second-order and vth

first-order latent traits for person n, respectively; bv is the factor loading of u(2)
n on

u(1)
nv ; e(1)

nv is the residual; and the other parameters are as previously defined. Similarly,

the higher-order 2PLM and the higher-order Rasch model can be formulated when

liv = 0 and both liv = 0 and aiv = 1 are constrained, respectively. Other model exten-

sions for higher-order latent traits within the framework of IRT models are referred

to in the work of Huang et al. (2013) and Huang and Wang (2013, 2014).

Higher-Order Mixture IRT Models

If manifest groups are either not available or not reliable, a mixture IRT model can

be implemented (De Boeck et al., 2011), and the same situations can apply to higher-

order IRT models. Let g1 and g2 be the indices of latent classes that arise in the first-

and second-order latent traits. Thus, the mixtures of latent classes can be accommo-

dated in the higher-order 3PLM by formulating the probability of correctly answering

item i of test v for person n within classes g1 and g2 as follows:
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P(Xng1g2iv = 1jg1, g2, u(1)
ng1g2v) = lg1g2iv + (1� lg1g2iv)

exp ag1g2iv u(1)
ng1g2v � dg1g2iv

� �h i
1 + exp ag1g2iv u(1)

ng1g2v � dg1g2iv

� �h i ,

ð6Þ

with

u(1)
ng1g2v = bg1vu(2)

ng2
+ e(1)

ng1v, ð7Þ

and

u(2)
ng2

= h(2)
g2

+ g(2)
ng2

, ð8Þ

where lg1g2iv, ag1g2iv, and dg1g2iv are the pseudo-guessing, discrimination, and diffi-

culty parameters for item i of test v in classes g1 and g2, respectively; u(1)
ng1g2v is the

vth first-order latent traits for person n within classes g1 and g2; u(2)
ng2

is the second-

order latent trait for person n of class g2; bg1v is the factor loading for test v in class

g1; e(1)
ng1v is the residual in test v for person n within class g1 and is assumed to be nor-

mally distributed; hg2 is the mean second-order latent trait for class g2; and g(2)
ng2

is the

second-order latent trait residual for person n of class g2 and is assumed to follow a

normal distribution (with a mean of zero) and be independent of other random-effect

variables among latent classes.

Higher-order mixture IRT models are very flexible and general such that different

orders can have different numbers of latent classes. For example, one may assume

two latent classes in the second order and four latent classes in the first order based

on substantive theory or empirical findings. For simplicity and ease of interpretation,

the same number of latent classes was assumed across orders in this study; therefore,

the subscripts g1 and g2 were reduced to g. In the following simulation studies, when

the Rasch model is used as the item response function, we assumed that all latent

classes had an identical set of factor loadings (i.e., metric invariance was assumed,

see below). Therefore, bg1v was simplified to bv and e(1)
ng1v was simplified to e(1)

nv :
Furthermore, when the 2PLM and 3PLM were used, different sets of factor loadings

were estimated and the assumption of metric invariance was relaxed.

It is worth noting the major differences between the model proposed here and the

mixture bifactor model proposed by Cho et al. (2014). In the developed higher-order

mixture 3PLM, after combining Equations 6 and 7, the numerator of the probability

function in Equation 6 can be expressed as exp½ag1g2iv(bg1vu(2)
ng2

+ e(1)
ng1v � dg1g2iv)�:

Corresponding to the mixture bifactor model (Cho et al., 2014), u(2)
ng2

is the general

factor and e(1)
ng1v is the specific factor; however, the regression weights of the second-

order latent trait on the first-order latent traits (i.e., bg1v) were not attainable (i.e.,

fixed to one). Therefore, the general and specific factors share a common set of factor

loadings (or discrimination parameters) for each latent class. Such constraints in the

mixture bifactor model limit its applicability because the factor loadings are impor-

tant indicators of the effect that the general and specific factors have on each test
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item in real testing situations. In addition, the subscripts g1 and g2, which indicate the

class membership in the first and second orders, respectively, reduce to a single indi-

cator of g because the number of classes is constrained to the same number for the

general and specific factors in the mixture bifactor model.

Issues of measurement invariance deserve further attention in higher-order mix-

ture IRT models. When the discrimination parameters (as) are fixed to one and the

factor loadings (bs) are assumed to be equal across latent classes, a restricted version

of higher-order mixture IRT models can be formulated. Such a constraint on identical

factor loadings results in an absences of latent class mixtures in the first-order latent

traits; therefore, latent classes are present in the second-order latent trait because of

the relationship between the factor loadings and first-order residuals (i.e., the var-

iance of e(1)
ng1v is equal to 1� b2

g1v when the corresponding second-order latent trait is

standardized). If one of these terms lacks a g1 subscript (e.g., bv), the other parameter

also lacks such a subscript (e.g., e(1)
nv ). The imposition of equivalence constraints on

the discrimination parameters across items and the factor loadings across classes

implies that the assumption of metric invariance is satisfied. However, the assump-

tion of scalar invariance is not fulfilled because the item difficulties are allowed to

differ for each latent class (De Boeck et al., 2011; Horn & McArdle, 1992; Millsap

& Kwok, 2004; Vandenberg & Lance, 2000). When appropriate, the constraints of

equal factor loadings and first-order residual variances or identical discrimination

parameters across latent classes and items can be relaxed. Two conditions that can be

used to determine whether the metric is invariant will be demonstrated in the follow-

ing simulation studies.

For identification purposes, the mean second-order latent trait for one class (e.g.,

the first latent class and g2 = 1) is set to zero, and its corresponding residual variance

is set to one. The mean item difficulty of each test for other classes (g2 = 2, . . . , G)

is set to an identical value as that of the mean item difficulty of the first latent class

in each test. A further constraint should be considered when the metric invariance is

violated. For the higher-order mixture 2PLM and 3PLM, we set the variances of g(2)
ng2

and e(1)
ng1v equal to one and 1� b2

g1v
, respectively, such that the first-order latent traits

follow a standard normal distribution and the factor loadings can be interpreted as

the correlation between the second- and first-order latent traits. Note that the con-

straints on the first-order residual (or the specific factor) variances are not necessary

in the mixture bifactor model (Cho et al., 2014) because the factor loadings (bg1v)

are set to one for all tests and classes. Setting these constraints on model parameters

to identify the model is common practice in the literature on mixture IRT models

(e.g., De Boeck et al., 2011; De Jong & Steenkamp, 2010; Paek & Cho, 2015; von

Davier & Carstensen, 2010).

Nonlinear Higher-Order Mixture IRT Model

The proposed models mentioned above assume a linear relationship between higher-

and lower-latent traits. Therefore, in real testing situations, linear factor analysis
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models may be unrealistic in many applications and yield a poor fit to the data

(McDonald, 1962, 1967; Yalcin & Amemiya, 2001). In addition, because the mix-

tures of distributions in the second-order latent trait are of particular interest in this

study and the second-order latent trait is often formulated to include polynomials in

a nonlinear factor model, an investigation of the effects of mixtures of latent classes

on model parameter estimations in a nonlinear or quadratic higher-order IRT model

is justifiable. Therefore, a nonlinear regression curve may be a plausible alternative

and can be applied to higher-order mixture IRT models in the form of a polynomial

of degree r on the second-order latent trait, where the relationship between the sec-

ond- and first-order latent traits is given by

u(1)
ng1g2v = bg1vu(2)

ng2
+ e(1)

ng1v, ð9Þ

where bg1v = ½b1g1v, . . . , brg1v� is a vector of length r for the regression weights of

polynomials for test v in class g1, u(2)9

ng2
= ½u(2)1

ng2
, . . . , u(2)r

ng2
� is a vector of polynomials in

the second-order latent trait within class g2 (if r = 1, Equation 9 will collapse into the

linear higher-order mixture IRT model as in Equation 7), and the other parameters

are as defined above. Consider the quadratic factor model as an example (i.e., r = 2).

To ensure that the polynomials in the second-order latent trait are mutually orthogo-

nal, a different type of parameterization is used to replace Equation 9 with

u(1)
ng1g2v = bg1v1u(2)

ng2
+ bg1v2

u(2)2

ng2
� 1ffiffiffi
2
p

 !
+ e(1)

ng1v: ð10Þ

If r = 3, the formulation can be expressed as

u(1)
ng1g2v = bg1v1u(2)

ng2
+ bg1v2

u(2)2

ng2
� 1ffiffiffi
2
p

 !
+ bg1v3

u(2)3

ng2
� 33u(2)

ng2ffiffiffi
6
p

 !
+ e(1)

ng1v: ð11Þ

The generalizations of the nonlinear factor models can be found in the references

of McDonald’s studies (1962, 1967); these generalizations indicate that a higher

complexity of these extensions (e.g., r . 3) increases the flexibility of the nonlinear

higher-order mixture IRT model. Similar to the linear higher-order mixture IRT

model, the model identification settings, latent trait and residual distributions, and

measurement invariance features can directly apply to the nonlinear higher-order

mixture IRT model. Following the constraints in the linear higher-order mixture

Rasch model, we assumed that all latent classes shared a set of regression weights;

thus, the subscript g1 was omitted from Equations 9 to 11.

Posterior Distribution and Bayesian Estimation

Assume that both orders have the same latent classes (g1 and g2 simplify to g) and let

the parameter space in the higher-order mixture Rasch model be denoted as
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S = u(2)
ng , h(2)

g , g(2)
ng , u(1)

ngv, bgv, e
(1)
ngv, lgiv, agiv, dgiv, pg

n o
, ð12Þ

where pg indicates the mixing proportion for class g. The joint posterior distribution

of the parameters can then be expressed as

P(SjX)}L(g, u(1)
ngv, lgiv, agiv, dgivjX)P(h(2)

g )P(g(2)
ng )P(bgv)P(e(1)

ngv)P(lgiv)P(agiv)P(dgiv)P(pg)

3P(gjpg)P(u(2)
ng jh(2)

g , g(2)
ng )P(u(1)

ngvju(2)
ng , bgv, e(1)

ngv),

ð13Þ

with the likelihood function calculated by

L(g, u(1)
ngv, lgiv, agiv, dgivjX) =

YN
n = 1

YV
v = 1

YI

i = 1

PG
g = 1

pgP(Xniv = 1jg, u(1)
ngv, lgiv, agiv, dgiv)

( )yniv

3 1�
PG
g = 1

pgP(Xniv = 1jg, u(1)
ngv, lgiv, agiv, dgiv)

( )1�yniv

2
66664

3
77775

jl
ng

,

ð14Þ

where yniv is dichotomously scored as 1 if person n correctly responds to item i of

test v and scored as 0 otherwise; jl
ng is equal to 1 if person n is sampled from latent

class g and equal to 0 otherwise at iteration l; and the other parameters are as defined

above.

The random-effect variables of u, g, and e increase the difficulty and decrease the

efficiency of using the integral of the joint posterior distribution in conventional mar-

ginal maximum likelihood estimation because high dimensionality is involved. Thus,

Bayesian estimation with Markov chain Monte Carlo (MCMC) methods were imple-

mented to produce the full conditional distributions of the parameters to represent

the joint posterior distributions, and the mean of the marginal posterior density was

treated as the parameter estimate of interest.

Before applying the Bayesian estimation, a prior distribution for each parameter

is required. The same priors were set in the following simulations and empirical anal-

yses. For the item parameters, a normal prior distribution with a mean of 0 and a var-

iance of 4 was used for the difficulty parameters, a lognormal distribution with a

mean of 0 and a variance of 1 was used for the discrimination parameters, and a beta

prior with both hyperparameters equal to 1 was set for the pseudo-guessing para-

meters. For the person parameters, a normal prior distribution with a mean of 0 and a

variance of 10 was used for the second-order latent trait mean and a normal prior dis-

tribution with a mean of 0.5 and a variance of 10 was applied for the regression

weights. A gamma prior distribution with both hyperparameters equal to 0.01 was

specified for the inverse of the second- and first-order latent trait residual variances.

A categorical prior distribution was set for the indicators of latent classes with a con-

jugate Dirichlet distribution in which the hyperparameters were set to one. The set-

tings of the prior distributions for the model parameters were consistent with the IRT
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literature using Bayesian estimation to calibrate the parameters (Bolt, Wollack, &

Suh, 2012; Cao & Stokes, 2008; Cho & Cohen, 2010; Cho et al., 2014; Cohen &

Bolt, 2005; de la Torre & Hong, 2010; de la Torre & Song, 2009; Fox, 2010; Huang

et al., 2013; Hung & Wang, 2012; Klein Entink, Fox, & van der Linden, 2009; Y. Li

et al., 2006).

Methods

Simulation Design

To assess the efficiency of the proposed models and examine the parameter recovery,

the following two simulations were conducted: one for the higher-order mixture

Rasch model, which included linear and nonlinear approaches, and the other for the

higher-order mixture 2PLM and 3PLM, which were compared with the mixture

bifactor model. Each study contained five first-order latent traits (i.e., five tests) and

one second-order latent trait, and it was assumed that there were two latent classes: a

majority class (60%) and a minority class (40%). For the linear higher-order mixture

Rasch model, the two manipulated factors were sample size (1,000 or 2,000 persons)

and test length (20 or 30 items in each test). The majority class had a mean of zero,

the minority class had a mean of 20.5 for the second-order latent trait (i.e., hg), and

both classes had a variance of 1 for the second-order residual variance (i.e., the var-

iance of gng). The factor loadings were set to 0.9, 0.8, 0.7, 0.6, and 0.5 for the five

first-order latent traits, and their residual variances were set to 0.19, 0.36, 0.51, 0.64,

and 0.75 (i.e., 1� b2
v) for the two latent classes, respectively.

For the nonlinear higher-order mixture Rasch model, a quadratic higher-order mix-

ture Rasch model was used to generate simulated data. The sample size (2,000 or

3,000 persons) and test length (20 or 30 items in each test) were varied. A larger sam-

ple size was used in the second simulation study because the nonlinear mixture model

requires additional subjects to obtain a stable estimation. The ability distributions for

the second-order latent trait for both classes were identical to those of the linear

approach except that the mean second-order latent trait across classes was constrained

to zero. The factor loadings were obtained from an empirical example (Muthén &

Muthén, 2012) and set to 1.000, 1.050, 1.119, 0.986, and 1.093 for the five first-order

latent traits in the linear factor term (i.e., u(2)
ng ) and 20.253, 20.251, 20.185, 20.203,

and 20.210 for the five first-order latent traits in the quadratic factor term (i.e.,

(u(2)
ng � 1)=

ffiffiffi
2
p

). The same example was used to obtain residual variances with values

of 0.976, 0.944, 0.945, 1.116, and 1.001 for the five first-order latent traits.

In the second simulation study, the higher-order mixture 2PLM and 3PLM were

used to generate responses by 2,000 examinees to 20 or 30 items in each test. The

settings related to the distributions of the second- and first-order latent traits were set

to the same values used in the linear higher-order mixture Rasch model. The majority

class had the same factor loadings as the first simulation study of the linear approach,

and the minority class had factor loading values of 0.50, 0.60, 0.70, 0.80, and 0.90

for the five first-order latent traits. When the item responses were generated, we used
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the generating model and its corresponding mixture bifactor model to fit the data and

assess the consequences of implementing a misleading constraint of identical factor

loadings in the mixture bifactor model.

For both simulations, the item parameters were generated with the distribution

described below. Equally spaced values ranging between 22 and 2 were used to gen-

erate the item difficulty parameters in steps of 4
19

for the 20-item test and steps of 4
29

for the 30-item test for the majority class. A value of 0.5 or 20.5 was uniformly

added to the item difficulties for the minority class; thus, the mean item difficulty in

the test was set to the same value for both classes. When the 2PLM and 3PLM are

used as the item response functions, additional item parameters should be considered.

The item discrimination parameters were generated from a uniform distribution

between 0.50 and 1.50 for both classes. Each test had a common pseudo-guessing

parameter that was generated from a uniform distribution between 0.20 and 0.30 for

the majority class and between 0.10 and 0.20 for the minority class because this para-

meter is too uncertain to estimate precisely and such a constraint is a common prac-

tice in real testing situations (van der Linden, Klein Entink, & Fox, 2010). The

specifications of the model parameters were consistent with those commonly found

in practice. For both studies, 30 replications were conducted under each condition

because we found a smaller sampling variation across replications when the number

of replications exceeded thirty.

Analysis

Bayesian estimation with MCMC methods was used to calibrate the model para-

meters using the WinBUGS freeware program (Spiegelhalter, Thomas, & Best,

2003). The priors for the model parameters were set as previously described, and

three parallel chains were conducted for five randomly selected simulated data sets

under each condition to assess the parameter convergence using the multivariate

potential scale reduction factor (Brooks & Gelman, 1998) and monitor whether the

phenomenon of label switching occurred. Ordinal constraints were imposed on the

mixing proportions to ensure that the majority group had a higher proportion than

the minority group to avoid label switching (McLachlan & Peel, 2000). The results

indicated that 15,000 iterations were sufficient to reach stationarity for all of the

structural parameters, with the first 5,000 iterations defined as the burn-in period

because all of the multivariate potential scale reduction factors were close to unity.

No label switching was observed because the three chains mixed well and multiple

modes were not observed in the marginal posterior densities. The WinBUGS com-

mands for the proposed models are available on request.

For each estimator, the bias and root mean square error (RMSE) were calculated

to assess the parameter recovery in the two simulation studies according to Equations

15 and 16:
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Bias(EAP(zr)) =
XR

r = 1

(EAP(zr)� z)=R, ð15Þ

RMSE(EAP(zr)) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR

r = 1

(EAP(zr)� z)2=R

vuut , ð16Þ

where R is the number of simulation replications, z is the generated value, and

EAP(zr) is the expected posterior estimate in replication r.

For model comparisons, Bayesian information criterion (BIC; Schwarz, 1978) was

used to select the best-fitting model that provided a better explanation of the data

compared with Bayesian deviance information criterion (DIC) because the Bayesian

DIC index is seldom used in mixture IRT models (Cao & Stokes, 2008; De Jong &

Steenkamp, 2010). In addition, the BIC index has been found to be more efficient

than other indices across different types of dichotomous mixture IRT models (Cho &

Cohen, 2010; Cho et al., 2014; F. Li, Cohen, Kim, & Cho, 2009).

This study included the following expectations: (a) the model parameters could be

well recovered for both the linear and nonlinear higher-order mixture Rasch models

using MCMC methods; (b) the latent classes that include classifications of individuals

could be correctly identified; (c) a longer test and larger sample size enable more pre-

cise estimations of the model parameters; and (d) ignoring the differential factor load-

ings among latent traits by constraining identical factor loadings (i.e., fixed to one) in

the mixture bifactor model results in biased items and person parameter estimations.

Results

Simulation Study 1: The Higher-Order Mixture Rasch Model

Because of space constraints, the bias and RMSE values for individual parameters

are not reported; instead, their means and standard deviations are provided. Table 1

summarizes the bias and RMSE values for the linear higher-order mixture Rasch

model with a sample size of 1,000. The bias values were close to zero across all con-

ditions. For the short test length of 20 items, the mean RMSE was between 0.040

and 0.125 for all estimators in the majority class and between 0.040 and 0.198 for

those in the minority class. When the test length was increased to 30 items, the mean

RMSE was between 0.030 and 0.122 for all estimators in the majority class and

between 0.030 and 0.160 for those in the minority class. The parameter recovery was

satisfactory because the RMSE values were acceptably small. In addition, the major-

ity class yielded better parameter recovery than the majority class because of the

greater proportion of examinees in the majority class.

When the sample size was increased to 2,000 (as shown in Table 2), the bias val-

ues were also close to zero and the RMSE values were smaller than those in the small

sample size. For the 20-item test length, the mean RMSE ranged from 0.022 to 0.088

for all estimators in the majority class and from 0.022 to 0.117 for those in the
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minority class, whereas for the 30-item test length, the mean RMSE ranged from

0.023 to 0.083 for all estimators in the majority class and from 0.022 to 0.104 for

those in the minority class. The findings for the small sample size were applied to the

large sample size. In summary, the parameters were recovered well for both latent

classes, the test length had only a slight impact on the parameter estimation, and the

large sample size allowed for a better parameter recovery.

Table 3 summarizes the parameter recovery for the nonlinear (quadratic) higher-

order mixture Rasch model with respect to the bias and RMSE for a sample size of

Table 1. Parameter Recovery for the Linear Higher-Order Mixture Rasch Model With a
Sample Size of 1,000.

Test length 20 30

Class Majority Minority Majority Minority

Criterion Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Parameter

Difficulty
Test 1

Mean 0.015 0.125 0.015 0.176 0.013 0.122 0.013 0.160
SD 0.031 0.017 0.035 0.045 0.023 0.017 0.028 0.031

Test 2
Mean 0.003 0.122 0.003 0.175 0.019 0.115 0.019 0.156
SD 0.029 0.017 0.029 0.028 0.025 0.021 0.030 0.030

Test 3
Mean 0.008 0.119 0.008 0.171 0.010 0.109 0.010 0.151
SD 0.023 0.014 0.035 0.039 0.018 0.017 0.026 0.030

Test 4
Mean 0.015 0.119 0.015 0.169 0.019 0.111 0.019 0.147
SD 0.025 0.022 0.035 0.023 0.027 0.015 0.022 0.023

Test 5
Mean 0.000 0.123 0.000 0.170 0.015 0.109 0.015 0.152
SD 0.028 0.019 0.040 0.028 0.025 0.015 0.023 0.026

Second-order

u
(2)

— — 20.007 0.099 — — 0.021 0.096
Var(u(2)) — — 0.065 0.198 — — 20.005 0.111

Loading
b1 0.009 0.053 — — 0.020 0.040 — —
b2 20.017 0.053 — — 0.016 0.035 — —
b3 20.004 0.044 — — 0.007 0.030 — —
b4 20.015 0.040 — — 0.008 0.034 — —
b5 0.000 0.044 — — 0.010 0.039 — —

Residual
Mean 0.009 0.070 0.012 0.090 0.003 0.055 0.009 0.071
SD 0.016 0.020 0.025 0.018 0.008 0.009 0.011 0.013

Note. RMSE = root mean square error; Second-order = second-order latent trait; Loading = factor

loading; Residual = residual variance; — = not applicable because of model constraints.
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2,000. The bias values were close to zero for all conditions. For the 20-item test

length, the mean RMSE was between 0.036 and 0.110 for all estimators in the major-

ity class and between 0.036 and 0.135 for those in the minority class, whereas for the

30-item test length, the mean RMSE was between 0.040 and 0.099 in the majority

class and between 0.040 and 0.117 for those in the minority class. The difference in

parameter recovery between the two test lengths was not apparent, and the majority

class presented a better parameter recovery than the minority class.

Table 2. Parameter Recovery for the Linear Higher-Order Mixture Rasch Model With a
Sample Size of 2,000.

Test length 20 30

Class Majority Minority Majority Minority

Criterion Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Parameter

Difficulty
Test 1

Mean 0.007 0.088 0.007 0.120 0.004 0.083 0.004 0.101
SD 0.024 0.013 0.016 0.022 0.015 0.011 0.020 0.015

Test 2
Mean 0.007 0.088 0.007 0.113 20.002 0.080 20.002 0.103
SD 0.023 0.014 0.022 0.024 0.019 0.014 0.024 0.025

Test 3
Mean 0.006 0.081 0.006 0.117 0.002 0.080 0.002 0.100
SD 0.016 0.013 0.020 0.023 0.013 0.011 0.019 0.015

Test 4
Mean 20.001 0.086 20.001 0.115 0.005 0.082 0.005 0.104
SD 0.023 0.015 0.020 0.018 0.015 0.014 0.019 0.015

Test 5
Mean 0.001 0.084 0.001 0.116 0.003 0.082 0.003 0.102
SD 0.016 0.015 0.022 0.023 0.017 0.012 0.016 0.018

Second-order

u
(2)

— — 0.001 0.082 — — 0.009 0.067
Var(u(2)) — — 20.009 0.096 — — 20.008 0.082

Loading
b1 0.011 0.037 — — 0.006 0.025 — —
b2 0.005 0.029 — — 0.000 0.032 — —
b3 20.001 0.022 — — 0.003 0.039 — —
b4 0.002 0.026 — — 20.001 0.023 — —
b5 20.003 0.034 — — 0.002 0.026 — —

Residual
Mean 0.003 0.047 0.001 0.067 20.004 0.044 0.016 0.058
SD 0.006 0.007 0.015 0.010 0.004 0.007 0.014 0.016

Note. RMSE = root mean square error; Second-order = second-order latent trait; Loading = factor

loading; Residual = residual variance; — = not applicable because of model constraints.
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Table 3. Parameter Recovery for the Nonlinear Higher-Order Mixture Rasch Model With a
Sample Size of 2,000.

Test length 20 30

Class Majority Minority Majority Minority

Criterion Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Parameter

Difficulty
Test 1

Mean 0.020 0.092 0.020 0.123 20.002 0.087 20.002 0.114
SD 0.025 0.017 0.020 0.020 0.018 0.014 0.023 0.020

Test 2
Mean 0.030 0.098 0.030 0.130 0.011 0.085 0.011 0.114
SD 0.030 0.017 0.025 0.021 0.014 0.012 0.019 0.016

Test 3
Mean 0.027 0.096 0.027 0.126 0.003 0.092 0.003 0.111
SD 0.030 0.017 0.024 0.019 0.017 0.012 0.016 0.018

Test 4
Mean 0.026 0.098 0.026 0.133 0.003 0.091 0.003 0.117
SD 0.024 0.015 0.031 0.026 0.018 0.014 0.020 0.017

Test 5
Mean 0.028 0.095 0.028 0.128 0.009 0.086 0.009 0.113
SD 0.021 0.016 0.026 0.025 0.018 0.016 0.020 0.015

Second-order

u
(2)

— — 0.001 0.036 — — 0.006 0.051
Var(u(2)) 0.029 0.110 0.009 0.135 20.016 0.099 20.012 0.100

Loading
Linear

b11 — — — — — — — —
b12 0.010 0.045 — — 0.005 0.040 — —
b13 0.000 0.048 — — 0.012 0.061 — —
b14 0.016 0.055 — — 0.011 0.041 — —
b15 0.015 0.049 — — 20.004 0.049 — —

Quadratic
b21 20.008 0.039 — — 0.000 0.048 — —
b22 20.004 0.044 — — 20.006 0.046 — —
b23 20.010 0.043 — — 20.005 0.048 — —
b24 0.001 0.036 — — 0.001 0.049 — —
b25 20.023 0.048 — — 20.009 0.047 — —

Residual
Mean 20.001 0.080 0.000 0.121 0.013 0.073 0.003 0.100
SD 0.016 0.011 0.013 0.012 0.004 0.005 0.022 0.014

Note. RMSE = root mean square error; Second-order = second-order latent trait; Loading = factor

loading; Residual = residual variance; — = not applicable because of model constraints.
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Table 4. Parameter Recovery for the Nonlinear Higher-Order Mixture Rasch Model With
a Sample Size of 3,000.

Test length 20 30

Class Majority Minority Majority Minority

Criterion Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Parameter

Difficulty
Test 1

Mean 0.010 0.075 0.010 0.100 0.009 0.067 0.009 0.088
SD 0.017 0.011 0.016 0.014 0.011 0.011 0.017 0.013

Test 2
Mean 0.010 0.076 0.010 0.096 0.015 0.072 0.015 0.091
SD 0.017 0.011 0.021 0.018 0.009 0.009 0.018 0.014

Test 3
Mean 20.001 0.074 20.001 0.094 0.016 0.070 0.016 0.093
SD 0.013 0.011 0.013 0.010 0.011 0.011 0.016 0.015

Test 4
Mean 0.008 0.076 0.008 0.098 0.012 0.070 0.012 0.086
SD 0.022 0.012 0.015 0.013 0.010 0.010 0.019 0.013

Test 5
Mean 0.008 0.074 0.008 0.101 0.006 0.077 0.006 0.094
SD 0.016 0.011 0.017 0.011 0.014 0.011 0.014 0.016

Second-order

u
(2)

— — 0.001 0.039 — — 20.003 0.030
Var(u(2)) 20.006 0.082 0.003 0.093 20.024 0.072 20.029 0.081

Loading
Linear

b11 — — — — — — — —
b12 0.012 0.038 — — 0.012 0.040 — —
b13 0.007 0.039 — — 0.019 0.046 — —
b14 0.011 0.038 — — 0.017 0.044 — —
b15 0.002 0.030 — — 0.022 0.045 — —

Quadratic
b21 0.000 0.032 — — 0.000 0.030 — —
b22 20.005 0.039 — — 20.010 0.041 — —
b23 0.003 0.037 — — 20.009 0.038 — —
b24 20.005 0.041 — — 20.008 0.043 — —
b25 0.004 0.041 — — 20.006 0.033 — —

Residual
Mean 0.003 0.067 0.011 0.096 20.004 0.058 20.003 0.071
SD 0.017 0.005 0.024 0.010 0.005 0.012 0.019 0.006

Note. RMSE = root mean square error; Second-order = second-order latent trait; Loading = factor

loading; Residual = residual variance; — = not applicable because of model constraints.
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Table 4 summarizes the parameter recovery in the quadratic higher-order mixture

Rasch model with a sample size of 3,000. All of the bias values were close to zero

for all conditions. For the 20-item test length, the mean RMSE was between 0.030

and 0.082 in the majority class and between 0.030 and 0.101 in the minority class,

whereas for the 30-item test length, the mean RMSE was between 0.030 and 0.077

in the majority class and between 0.030 and 0.094 in the minority class. Parameter

recovery patterns similar to those in the short test length were observed in the 30-

item test, a larger sample size corresponded to more accurate model parameter esti-

mates, and the parameter estimation was less affected by the test length. In summary,

the linear higher-order mixture Rasch model yielded better parameter estimations

compared with the quadratic higher-order mixture Rasch model, which was demon-

strated by including the same 2,000 examinees that were used to generate item

responses. Furthermore, the WinBUGS computer program with MCMC methods

produced satisfactory parameter recovery for both the linear and nonlinear higher-

order mixture Rasch models independent of sample size and test length.

The recovery of group membership and individual ability for all conditions under

both the linear and quadratic higher-order mixture Rasch models is presented in

Table 5. The linear higher-order mixture Rasch model provided a more accurate esti-

mation of the five first-order latent traits than the second-order latent trait, the long

test length provided more precise estimations for both orders of latent traits and a

higher correct classification rate, and the sample size had only a slight impact on the

person parameter recovery. Note that the minority class presented a slightly less

Table 5. Statistical Summary of the Person Parameter Recovery in Higher-Order Mixture
Rasch Models.

Model Linear Quadratic

Sample size 1,000 2,000 2,000 3,000

Test length 20 30 20 30 20 30 20 30

Criterion

RMSE for the first-order latent trait
Test 1 0.429 0.371 0.426 0.371 0.520 0.443 0.517 0.442
Test 2 0.441 0.383 0.441 0.381 0.524 0.441 0.521 0.441
Test 3 0.455 0.391 0.454 0.390 0.526 0.447 0.526 0.445
Test 4 0.463 0.399 0.464 0.397 0.531 0.450 0.529 0.448
Test 5 0.473 0.403 0.469 0.404 0.531 0.449 0.527 0.448

RMSE for the second-order latent trait
Majority class 0.472 0.439 0.468 0.436 0.498 0.486 0.501 0.483
Minority class 0.613 0.610 0.613 0.607 0.448 0.427 0.448 0.433

Correct classification rate
Majority class 0.906 0.925 0.901 0.920 0.899 0.920 0.888 0.916
Minority class 0.727 0.820 0.763 0.859 0.724 0.821 0.760 0.840

Note. RMSE = root mean square error.

Huang 291



accurate estimation of the second-order latent trait and a lower correct classification

rate compared with the majority class because of the higher RMSE values for item

parameter estimates. The same conclusions can be drawn for the quadratic higher-

order mixture Rasch model, although the estimate of the second-order latent trait

was slightly more accurate than the estimates for the corresponding five first-order

latent traits for the short test length. In addition, the estimation of the second-order

latent trait in the minority class was substantially improved in the quadratic higher-

order mixture Rasch model compared with that in the linear higher-order mixture

Rasch model. Such findings provide plausible justification for the use of a quadratic

higher-order mixture IRT model when the goal is to improve the measurement preci-

sion of the second-order latent trait for the minority class simultaneously without a

substantial loss of estimation quality for the majority class.

Simulation Study 2: Consequences of Fitting a Mixture Bifactor Model to
Data Generated From the Higher-Order Mixture 2PLM or 3PLM

In this section, a comparison is performed between the generation of the higher-order

mixture 2PLM or 3PLM and its corresponding mixture bifactor model with respect to

parameter recovery. Table 6 shows the mean RMSE values for the item parameter

estimates and latent trait estimates and the class membership percentages that were

correctly classified when the higher-order mixture 2PLM or 3PLM and the mixture

bifactor model were fit to the data generated from the higher-order mixture 2PLM or

3PLM. The higher-order mixture 2PLM and 3PLM recovered the item parameters

better than their corresponding mixture bifactor models because the mean RMSE val-

ues were relatively smaller in the higher-order mixture 2PLM and 3PLM. The item

difficulty parameter estimations appeared less accurate than the other item parameters

in the mixture bifactor model because the differences in the mean RMSE values for

the difficulty parameter estimates between the generating and misused models were

relatively larger. Although not shown in Table 6, the mixture bifactor model had

higher bias values (in the absolute values) for the item parameter estimates compared

with the higher-order mixture IRT model across all conditions. Furthermore, the dis-

crimination parameters were underestimated, and for example, when the responses of

examinees to the five 20-item and 30-item tests followed the higher-order mixture

2PLM, the bias values were between 20.699 and 20.028 (M = 20.292) and between

20.655 and 0.000 (M = 20.278), respectively. Accordingly, disregarding the rela-

tionships between the second- and first-order latent traits in the mixture bifactor

model had substantial impacts on the item parameter estimations.

For the person parameter recovery comparisons, the higher-order mixture 2PLM

and 3PLM provided more precise estimations for the first-order latent traits compared

with the corresponding mixture bifactor models. However, the differences between

the two types of models in recovering the second-order latent trait and class member-

ship were small because of the similar resulting values. A less accurate estimation for

the item parameters and the first-order latent traits in the mixture bifactor model was
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expected because the variability of factor loadings between the second- and first-

order latent traits should be considered but was ignored, which influenced the varia-

bility of the first-order residuals (or specific factors) and in turn resulted in biased

estimates of the first-order latent traits and item parameters.

Although the second-order latent trait and class membership were not influenced

substantially by the use of the misleading mixture bifactor model, the effects of

ignoring the differential factor loadings on the item parameter and person parameter

estimations were not trivial because they compromised the inferences related to the

performances of examinees on each test and led to an equivocal assessment of the

latent differential item functioning when equal factor loadings were mistakenly con-

strained in the mixture bifactor model. In addition, a greater test length and a simpler

model (i.e., the 2PLM) produced better item parameter and latent trait estimations as

well as a higher classification accuracy in the higher-order mixture IRT models.

Two Empirical Studies

Example 1: High-Stakes Entrance Examination

Students in Taiwan who wish to enter senior high school must take the Basic

Competence Test for Junior High School Students (BCT), which consists of the five

subjects: Chinese, Mathematics, English, Social Sciences, and Natural Sciences. The

performances on these five subjects are merged into a single score that represents the

overall performance in essential knowledge. Therefore, a higher-order structure of

latent traits is necessary to obtain the overall assessment of examinees, and the

second-order latent trait estimation is used for the purpose of admitting the exami-

nees to senior high schools.

The Rasch model was used to calibrate the model parameters when developing

the BCT. In this study, a BCT data set was used to demonstrate the application of the

higher-order mixture Rasch model, which included 48, 33, 45, 63, and 58 items that

tested the knowledge of Chinese, Mathematics, English, Social Sciences, and Natural

Sciences, respectively. All of the items were arranged in multiple-choice format. The

five first-order latent traits were measured by each of the tests and constituted a

second-order latent trait of ‘‘overall academic ability.’’ A total of 3,000 examinees

were randomly selected from a population of over 300,000 examinees and used for

the analysis. Following practices that are normally used to analyze the BCT data, the

Rasch model was adopted, and an assumption of metric invariance was appropriate

in this analysis. Note that this approach was justifiable in this case but should be used

with caution in other cases.

We focused on two questions when performing the model comparisons. First, is a

linear or quadratic higher-order mixture Rasch model more appropriate for fitting the

data? Second, how many latent classes should be used to explain the diverse perfor-

mance on the item level resulting from different response patterns among examinees?

In this analysis, one-, two-, and three-class models were considered, and as a result, a

total of six competing models (two higher-order mixture Rasch models 3 three types
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of latent classes) were used to fit the data. The linear higher-order mixture Rasch

model with two latent classes was selected as the best-fitting model because of its

smaller BIC value (BIC = 694,100) compared with that of the other competing mod-

els (BIC values were between 694,200 and 705,600). The majority class contained

61% of the examinees, and the minority class contained 39% of the examinees. The

difference in the mean second-order latent trait between the two latent classes was

extremely small (0.003), and the five factor loading estimates were 0.47, 0.74, 0.49,

0.49, and 0.52 for Chinese, Mathematics, English, Social Sciences, and Natural

Sciences, respectively.

Because the item difficulty parameters were estimated separately for the two latent

classes and the difference in magnitude is statistically tested, the highest posterior

density (HPD) interval was calculated to assess whether the difference in magnitude

was significantly different from zero (Box & Tiao, 1973). With a nominal a value of

0.05, if the HPD interval of the difference in magnitude for the studied item included

zero, then scalar invariance was identified on that item; otherwise, the item was con-

sidered to be the qualitative difference between the two classes (Cho & Cohen, 2010;

Samuelsen, 2008).

The analysis indicated that 38 Chinese items, 31 Mathematics items, 38 English

items, 52 Social Science items, and 42 Natural Science items were found to violate

the assumption of scalar invariance. The mean difference in magnitude was 0.47

(0.00-1.22) for Chinese, 0.61 (0.01-1.68) for Mathematics, 0.68 (0.00-1.83) for

English, 0.51 (0.06-1.45) for Social Sciences, and 0.54 (0.02-1.52) for Natural

Sciences. Because the statistical significance of the HPD method is substantially

affected by the sample size, the difference in magnitude should be considered as a

measure of the effect size for item bias. Wang (2008) suggested that an item with a

difference in magnitude greater than 0.5 logits would yield substantially practical

impacts on the person parameters. In this analysis, approximately 48% of the test

items had a magnitude of more than 0.5 logits and were treated as consequences of

the different response patterns between the two latent classes. Identifying such a

large number of items exhibiting a significant difference in magnitude in the higher-

order mixture Rasch model was not surprising because the differences among the

latent classes would be maximized by the latent class approach and a number of

additional items with qualitative differences could be observed using the latent

classes than a conventional analysis using the manifest groups (Cho & Cohen, 2010;

Cohen & Bolt, 2005).

Because the BCT is a high-stakes examination, the consequences of using a model

that provides misleading results because it disregards the mixtures of latent classes

should be further investigated. The students’ ability estimates were calculated using

the linear higher-order Rasch model with two latent classes (i.e., the best-fitting

model) and without mixtures for both the second- and first-order latent traits. These

estimates were then ranked in order for comparison purposes. The rank order changes

in the absolute values between the ability estimates obtained from the two models

were calculated, and large rank-order changes indicated that the practical impact
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cannot be neglected. Figure 1 shows the rank-order changes in the five first-order

latent traits and the second-order latent trait. The maximum rank-order changes were

288, 311, 262, 176, and 248 for the five first-order latent traits measured by the

Chinese, Mathematics, English, Social Sciences, and Natural Sciences tests, respec-

tively, and 241 for the second-order latent trait. The impact of rank-order changes on

the person parameters was not trivial because expanding the number of examinees

from 3,000 to the original 300,000 produced the maximum rank-order changes,

which were as high as 28,800, 31,100, 26,200, 17,600, and 24,800 for the five sub-

jects and 24,100 for the overall performance. In summary, the results obtained from

the two models were significantly different, and the test fairness would be substan-

tially threatened if mixtures of latent classes were disregarded by using a regular

higher-order Rasch model to fit the BCT data.

Example 2: Large-Scale Survey for Basic Ability Assessment

A longitudinal large-scale assessment supported by the Taiwan Education Panel

Survey (TEPS) was administered to students from the 7th to the 12th grades in

Taiwan using four measurements. Similar to international large-scale assessments,

the TEPS was designed to measure the students’ basic analysis, mathematics, read-

ing, and science abilities; therefore, the four content domains were treated as mea-

sures of the first-order latent traits and can constitute an overall assessment of basic

ability to represent the second-order latent trait. The first measurement was analyzed

for demonstration purposes, and the four basic abilities of analysis, mathematics,

reading, and science were measured using 27, 10, 20, and 10 multiple-choice items,

respectively. A random sample of 3,000 examinees’ responses to these items was

included to evaluate whether a mixture of latent classes occurred among the exami-

nees. Because four first-order latent traits were included in this example, a linear

relationship structure between both orders of latent traits was considered under a

variety of higher-order mixture IRT models and mixture bifactor models.

Several approaches were adopted to select the model with the best fit to the data.

First, higher-order mixture IRT models that followed the item response functions of

the 1PLM (i.e., the Rasch model), 2PLM, and 3PLM with three mixture conditions

(one, two, and three latent classes) were fit to the data to determine whether item dis-

crimination and pseudo-guessing parameters were needed to calibrate and identify

the number of latent classes. Second, we compared the model selected in the first step

with its corresponding mixture bifactor model to examine whether the assumption of

identical factor loadings was satisfied.

The results of the model comparisons showed that the higher-order mixture 3PLM

with two latent classes yielded a smaller BIC value (BIC = 210,500) than the other

higher-order mixture IRT models (BIC values between 210,600 and 215,100). Next,

the higher-order mixture 3PLM with two latent classes was compared with its corre-

sponding mixture bifactor model, and the results indicated that the latter model had a

higher BIC value (BIC = 210,600); therefore, the former model was the final model
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of choice. In the higher-order mixture 3PLM, the majority (high-proficiency) class

had a mixing proportion of 58% with an estimated mean u of 1.83 and the minority

(low-proficiency) class had a mixing proportion of 42% with a constrained zero mean

u: The difference in magnitude in the absolute values between the two classes was

between 0.01 and 1.42 (M = 0.39) for the discrimination parameters, between 0.01

and 4.35 (M = 0.65) for the difficulty parameters, and between 0.03 and 0.11 (M =

0.07) for the pseudo-guessing parameters, which suggested that the two latent classes

exhibited substantial diverse response patterns. In addition, the factor loadings for the

four subscales of analysis, mathematics, reading, and science were estimated as 0.98,

0.72, 0.94, and 0.81 for the high-proficiency class, respectively, and 0.90, 0.87, 0.94,

and 0.87, respectively, for the low-proficiency class, which supported the violation of

metric invariance.

When the background information for the examinees are accessible, the associa-

tion analysis between latent class membership and manifest group membership could

be investigated. Such an analysis would be useful for explaining the potential causes

of the occurrences of latent classes (Cho & Cohen, 2010; Cho et al., 2014; Dai,

2013). Three types of student characteristics, including the gender (male and female

students), residence regions (urban and rural regions), and school types (public and

private schools), were used to associate the class membership with the statistical

hypothesis testing. As shown in Table 7, a nonsignificant association between the

latent class membership and students’ gender was observed (x2 = 0:68, p = .409),

whereas the reverse was observed for the association with the students’ residence

regions (x2 = 40:63, p = .000) and school types (x2 = 40:87, p = .000). For the stu-

dents’ residence regions, a high percentage of rural students were classified into the

low-proficiency class (62.8%), whereas most of the students residing in urban regions

were classified in the high-proficiency class (60.2%). For the school types, a higher

percentage of the students in private schools were classified in the high-proficiency

class (74.2%) compared with the public school students (56.6%). Accordingly, the

Table 7. Association Between the Proficiency Classes and Students’ Characteristics.

Characteristic Proficiency Low High Total x2

Gender Male 655 (42.0%) 904 (58.0%) 1,559 0.683
Female 584 (40.5%) 857 (59.5%) 1,441
Total 1,239 1,761 3,000

Residence region Rural 125 (62.8%) 74 (37.2%) 199 40.693***
Urban 1,114 (39.8%) 1,687 (60.2%) 2,801
Total 1,239 1,761 3,000

School type Public 1,146 (43.4%) 1,493 (56.6%) 2,639 40.870***
Private 93 (25.8%) 268 (74.2%) 361
Total 1,239 1,761 3,000

Note. The values in parentheses indicate the proportion for the two latent classes within each level of

students’ characteristic.

***p \ .001.
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occurrence of latent classes may have been dominated by the residence regions of the

students, and the diverse response strategies employed by the urban and rural stu-

dents may cause differential response patterns. Note that the results should be inter-

preted with caution because the sample of students residing in the rural region was

Figure 1. Rank-order changes in the BCT between the linear high-order Rasch models with
two latent classes and without mixtures.
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considerably smaller compared with the sample of students residing in the urban

region.

Finally, we compared the results of the latent trait and membership estimates

obtained from the higher-order mixture 3PLM with two classes (i.e., the best-fitting

model) with those obtained from its corresponding mixture bifactor model to investi-

gate the consequences of imposing identical factor loadings between the second- and

first-order latent traits. The classification consistency rate between the two models

was as high as 0.97; however, the rank-order changes between the two models were

substantial for both the second- and first-order latent traits. The maximum rank-order

changes were 174 (M = 28), 280 (M = 30), 212 (M = 24), and 230 (M = 28) for the

four first-order latent traits measured according to the subscales of analysis, mathe-

matics, reading, and science, respectively, and 1,063 (M = 135) for the second-order

latent trait, which suggested that different sets of factor loadings between the second-

and first-order latent traits were necessary and ignoring the differential factor load-

ings in the mixture bifactor model had substantial impacts on the latent trait estima-

tions. The large differences in the second-order latent trait estimates between the two

models may have been caused by the use of short tests to measure certain subjects

because these tests were associated with imprecise person parameter estimations.

Conclusions and Discussion

Higher-order mixture IRT models were proposed for tests that measure higher-order

latent traits and for data with mixtures of latent classes. These models can be viewed

as a combination of an IRT model, a higher-order factor model, and a finite discrete

latent class model. In real testing situations, the latent traits measured by multiple

tests are often observed to have a higher-order structure, and manifest groups of

examinees may be not attainable or reliable. Therefore, in this study, we provided a

variety of higher-order mixture IRT models to address this practical concern and

investigate the different response patterns among classes. Such model extensions not

only involve variations of previous IRT models but also provide an innovative inte-

gration of higher-order IRT models and mixture IRT models to examine how latent

classes can function with a higher-order structure on latent traits.

The developed higher-order mixture IRT models can provide greater flexibility if

the linear and nonlinear relationships between the second- and first-order latent traits

are accommodated and if mixtures of latent classes are allowed to occur on different

orders of latent traits. Various relationships between the higher- and lower-order

latent traits were demonstrated using the mixture Rasch model because this model

has been widely applied in data analyses in the literature and has better measurement

characteristics than other multiparameter IRT models. In addition, a higher-order

multiparameter IRT model that incorporates mixtures of latent classes on different

orders has been developed in this study to expand the generality of higher-order mix-

ture IRT models. Therefore, current factor mixture models or mixture IRT models,
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including mixture bifactor models (Cho et al., 2014), can be treated as special cases

of the developed higher-order mixture IRT models.

In the two simulation studies, parameter recovery in the new models was evalu-

ated using WinBUGS software and MCMC methods. For the first simulation study,

the results indicated that the performance of the higher-order mixture Rasch model

was satisfactory for both the linear and nonlinear approaches, although the nonlinear

approach was slightly inferior to the linear approach with regard to parameter recov-

ery. For both approaches, a larger sample size was associated with higher accuracy

in the item parameter estimations and the majority class (high proportion of exami-

nees) always exhibited more accurate parameter estimations than the minority class

(low proportion of examinees). A longer test length corresponded to better person

ability recovery and group membership recovery. The linear higher-order mixture

Rasch model yielded better person parameter recovery compared with the quadratic

higher-order mixture Rasch model for the first-order latent traits, and the quadratic

higher-order mixture Rasch model yielded better second-order latent trait recovery in

the minority class compared with the linear higher-order mixture Rasch model.

The second simulation study manipulated multiparameter IRT models and allowed

both the second- and first-order latent traits to include latent classes, which relaxed

the assumptions of both scalar and metric invariance. Furthermore, we compared the

results from the higher-order mixture 2PLM or 3PLM with the results derived from

the mixture bifactor model that was misleadingly fit to the data generated from the

higher-order mixture 2PLM or 3PLM. The results indicated that improved item para-

meter recovery occurs with the higher-order mixture 2PLM and 3PLM compared

with their corresponding mixture bifactor models, which tended to increase the vul-

nerability of item difficulty parameters and underestimate the item discrimination

parameters when used to fit the data. As for person parameters, imposing a constraint

on identical factor loadings between the second- and first-order latent traits in the

mixture bifactor model influenced the first-order latent trait estimation to a greater

degree than the second-order latent trait and class membership estimation. The effects

of fitting the misleading model on the parameter estimations were substantial because

the test validity and examinee performance inferences were threatened.

The applications of higher-order mixture IRT models were illustrated by a high-

stakes test for senior high school admission and a large-scale basic ability assessment

for a longitudinal survey. The first empirical example analysis indicated that there

were two latent classes and the linear relationship between the second- and first-order

latent traits was sufficient to account for the hierarchical structures in latent traits.

Nearly half of the test items were found to violate scalar invariance, and ignoring the

mixture of latent classes in the data by fitting a standard higher-order Rasch model

resulted in more severe rank-order changes in the person parameters for both the sec-

ond- and first-order latent traits, which compromised the test fairness. In this demon-

stration, the Rasch model was considered in the data analysis following the testing

development practices in the BCT; however, we suggest that the results should be

interpreted with caution because of the assumptions related to measurement
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invariance, which may affect the model parameter calibration quality (Alexeev,

Templin, & Cohen, 2011). In addition, for privacy policy reasons, the demographic

variables related to the examinees were not available in the BCT; therefore, the

potential causes underlying the occurrence of latent classes cannot be further

investigated.

The second empirical example analysis was presented to illustrate the application

of the higher-order mixture multiparameter IRT models and provided a comparison

between the developed models with the constrained mixture bifactor model. The

analysis results support the importance of the pseudo-guessing and discrimination

parameter estimations and indicate that constraints on both the scalar and metric

invariance should be relaxed. In addition, two latent classes, denoted as the high-

and low-proficiency classes, were observed to associate with the students’ residence

regions and school types. An inspection of the percentage of students classified in

the two classes showed that the urban students were more likely to be classified in

the high-proficiency class and the rural students were more likely to be classified in

the low-proficiency class. The mixture bifactor model that constrained identical fac-

tor loadings between the second- and first-order latent traits had a high classification

consistency rate with the higher-order mixture 3PLM but a nontrivial impact on the

latent trait estimations because of the large rank-order changes. For the items with

significant differences between the two latent classes in both the empirical example

analyses, a close examination of the item characteristics and test contents using con-

tent experts will help characterize the response patterns of the latent classes; how-

ever, this is beyond the scope of this study.

Partial credit is often given to examinees when evaluating different degrees of per-

formance in cognitive skills (e.g., PISA). The higher-order mixture IRT models for

dichotomous items can easily and directly generalize to higher-order mixture IRT

models for polytomous items. Considering the partial credit model (PCM; Masters,

1982) as an example, we can formulate a higher-order mixture PCM by integrating

the PCM with mixture and higher-order models, which can be expressed as

log
Png1g2ijv

Png1g2i(j�1)v

� �
= u(1)

ng1g2v � zg1g2iv + tg1g2ijv

	 
h i
, ð17Þ

where Png1g2ijv and Png1g2i(j�1)v are the probabilities of obtaining scores j and j2 1 on

item i of test v for respondent n within classes g1 and g2, respectively; zg1g2iv is the

overall difficulty parameter of item i in test v for classes g1 and g2; and tg1g2ijv is the

jth threshold parameter for item i of test v in classes g1 and g2. Higher-order mixture

IRT models with higher generality can be used for novelty model extensions if an

item response function can be appropriately defined for the data responses. Thus,

assessments of the estimation efficiency of the polytomous-item type of higher-order

mixture IRT models and evaluations of new model applications for data analysis are

encouraged in the future.

In this study, two orders of latent traits and one second-order latent trait were for-

mulated. Higher-order mixture IRT models are readily extended and can
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accommodate additional orders (more than two orders) and more than two second-

order (higher-order) latent traits. In addition, multilevel IRT models have been devel-

oped to describe multilevel structures in populations (Fox, 2005), and multilevel

higher-order IRT models have been proposed to account for hierarchies in both

populations and latent traits (Huang, 2015; Huang & Wang, 2014). It is of great

value to develop multilevel higher-order mixture IRT models that combine multile-

vel mixture IRT models (Cho & Cohen, 2010) and higher-order mixture IRT models

into more general formulations. Such generalizations and extensions of mixture IRT

models deserve further exploration.
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