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Abstract—In this paper, we present our latest results on Ideally, one would like to have access to these traffic
de;]/?||0pi(l;lg a_rtld imtpleTen?ng a traffic Ctonfg?s':iont TOdZEl gr_ld data continuously across time and space. However, because
venicle density estimator 1or a segment of Interstate n H 7 H H H tAi
Southern Calif)c/Jrnia. _Usi_ng a mixtur% K_alman filtering (MKF) |0f thedhlgh cost a;t]d dllfflculty ?_ff. installing and malnt.i’;unllng
algorithm on the switching-mode traffic model, the estimator oop gtectors, 9 entimes t_ra ic data are _no_t available at
is able to provide estimated vehicle densities at unmeasured all desired locations at all times. These missing data thus
locations, as well as the congestion statuses (free-flow orhave to be estimated using the available data. On the other
congested), which are not directly observed. The program runs hand, the traffic flow modei,e., whether the traffic is in
reggcl:lteigwtzlay’ thus making it possible to carry out estimation in free-flow (where traffic moves freely at high speeds) or

' congestion (where traffic moves slowly and is restricted by
downstream conditions), cannot be measured directly and
has to be inferred from other quantities. In our previous

In today’s metropolitan areas, highway traffic congesvork [2], we developed a traffic state estimator based
tion occurs regularly during rush hours. In addition, noren the switching mode traffic model [3] and the mixture
recurrent congestion often takes place as a result of incideK@man filter (MKF) [4]. This estimator is able to estimate
or road work. The congestion causes inefficient operationthfe vehicle densities at unmeasured locations, as well as
highways, waste of resources, increased air pollution, atal determine the traffic congestion mode, in a highway
intensified driver fatigue. section. It was tested on a short section of highway and its

One of the methods used to prevent and/or relieve higperformance was evaluated using the measured data. It was
way traffic congestion is on-ramp metering. Many strategiésown that on average, a mean percentage errerlofo
have been proposed and deployed to regulate the demawds achieved for vehicle density estimation at unmeasured
on the highway by limiting the rate at which vehicledocations.
enter the highway. These ramp-metering strategies can bén this paper, we describe our recent work, which involves
classified into two categories: traffic responsive and noimplementing this congestion mode and vehicle density esti-
traffic responsive. Traffic responsive ramp metering straterator on our entire selected test site, a 14-mile long segment
gies utilize real-time measurements of the traffic statef Interstate 210 Westbound in Pasadena, California, and
such as vehicle densities and traffic congestion status (frégterfacing the estimator with traffic simulation programs
flow or congested), while non-traffic responsive ones oftehat have been calibrated to the test segment, including
operate under a fixed time-of-the-day table, and ignoge macroscopic simulator—the modified cell transmission
the current traffic conditions completely. It is believed thanodel [5], and a microscopic simulator—VISSIM [6]. We
traffic responsive metering strategies are more effective awdl first briefly review the switching-mode model and the
more robust than non-traffic responsive ones. estimation method in Section Il. Then in Section Il, we will

Currently, traffic data are usually obtained from inductivgescribe the test site and discuss the constraints and other
loop detectors embedded in the pavement. These loop det@nsiderations for the cell configuration. The main results
tors provide percent occupancy (percentage of the time theitl be presented and discussed in Section IV. In the last
the detector is occupied by vehicles) and volume (numbgection, we will give some concluding remarks.
of vehicles that have passed over the detector), from which
other macroscopic quantities can be derived when accurate II. METHOD
vehicle lengths are available. These macroscopic quantitj&s
include vehicle density (number of vehicles per unit length’
of highway), flow (number of vehicles per unit time), and Highway traffic models can be categorized into two
speed. One effort to provide such macroscopic traffic de@goups: microscopic models and macroscopic models. Mi-
through a centralized database is the Freeway Performagtescopic models describe the behavior of each individual
Measurement System (PeMS) [1]. vehicle on the highway, while macroscopic models describe

the evolution of aggregated traffic quantities, such as vehicle
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I. INTRODUCTION

Cell Transmission-Based Switching Mode Model
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: Fig. 3. A schematic plot of a 4-cell highway section with one on-ramp
1 and one off-ramp.
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Fig. 1. A trapezoidal fundamental diagram (flow-density relation) use|(§ the maximum p035|ble flow from celll- 1 to i. Each of

these three terms is shown as a thick line segment in Fig. 1
and the minimum is the outline of the trapezoid.

Despite the simplifications that are made in the cell
transmission model, it still captures many important traffic
phenomena, such as queue build-up and dissipation, back-
yard propagation of congestion waves, etc. The simplicity
and accuracy of the CTM makes it very desirable for traffic
engineering. However, due to the nonlinear nature of the
flow-density relationship in the CTM, it can be quite difficult
these vehicles, often can only be solved numerically to siffy analyze the model and use it as a basis for designing
ulate the traffic evolution. On the other hand, macroscopiaffic controllers. Therefore, we have piecewise linearized
models often consist of a few dynamic equations, along withe CTM and derived a switching-mode model for each
some constitutional relation between certain traffic quagection of the highway, based on the traffic congestion status
tities, such as the so-called fundamental diagram betWe(%@ngested or free-flow) in each section [3].
flow and density. As an example, a widely used macro- tpis gyitching-mode model includes several modes. In
scopic model is the Lighthill-Whitham-Richards (LWR)gach mode, the vehicle densities in the cells evolve accord-

model, which consists of a first-order partial differentiay,, 1, 5 gifferent set of linear difference equations. Among
equation based on conservation of vehicles, and a flopase modes, two are of greatest importance: pure free-flow
dens_|ty relatlpnshlp. Because of th_elr simplicity compareghq ¢ congestion. For the purpose of designing the traffic
to microscopic models, macroscopic models are often usglyimaor, we further simplify this switching-mode model
to quantitatively analyze the effects of changing condltlorb<y considering only these two modes. For a typical section

on traffic behavior. of highway that consists of 4 cells and contains an on-ramp

The cell transmission model (CTM) [7], [8] is a Macrozng an off-ramp, as shown in Fig. 3, we write down this

scopic model. It can be viewed as an approximation a'%ﬂnplified switching-mode model as follows.
Simplification of the LWR model obtained by diSCfetiZing When the hlghway section is in free-flow mOde, the first

the PDE of the LWR model in both space and time, andrm in (1) dominates, and the difference equations are
using a simple trapezoidal fundamental diagram as shown

in Fig. 1. The CTM divides a highway into small segments,

by the cell transmission model.
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Fig. 2.
model.

A highway section divided into cells in the cell transmissio

vi1Ts

which are callectells as shown in Fig. 2. The traffic flow [p1 ;m? (\)/ngs 0 0 p1
g going into a celli is considered constant between tw2| 4 1) = 2 T 0 0 2| 1)

. . . . . o Vi2Ts Vi3Ts o
consecutive time pointsandt + 1, and is determined by |3 0 B 1-=5 0 3

“ 0 0 (1-piels g ele|lps
Gi(t) = minfvii_1pia(t). Wei (p3i — pi(0) . Quica). (1) T o o ) )
I

where for a celli, pj(t) is the average vehicle density 40 O |T—2 g:i ®
between timest and t + 1, pj; is the jam densityj.e, 0 0 Offy
the maximum vehicle density allowed in cell vy is 0 0 0 )
the free-flow speedy;; is the backward congestion wave 2)
propagation speed, ar@y,_1 is the flow capacityi.e., the = A(L)e(t) + By(1)a(®). 3

maximum possible flow. These quantities are also illustrated

in Fig. 1. where gy and grp are the mainline entering and exiting
The three terms involved in the minimum in (1) can bfows, respectivelyr is the on-ramp flowg is the split ratio

interpreted as follows. The first term;_10i_1(t) is the flow of the off-ramp flow,l; is the length of celi, andTs is the

that can be supplied by cél-1. The second term is the flow sampling time.

that can be absorbed by ceéll And the third termQm;-1 When the section is in congested mode, the second term
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in (1) dominates, and the difference equations are the switching-mode model falls into a special class, called
Markov jump linear systems (MJLSJhe previous four-cell

We1Ts WeoTs
p1 1_()# 1 ﬁcﬂs WC?TS O e example has a continuous state: [p1  p2> ps pa]" and
P2l (4 1) = T TwcsTS L 804& P2|ty possible discrete modes 1 (free-flow) and 2 (congested).
b3 0 0 -5 g It is known that it is difficult to estimate the states and the
¢ 0 0 0 == mode when the mode itself is not observed. The difficulty
(0 O IT—f lies in the fact that the sample spa& of the mode
L0 0 0 gi (0 seguence grows exponentially as tinmcreases, wherg
R | is the set of possible discrete modes.
0 -5 0 The mixture Kalman filter (MKF)[4] approximately
’WﬁllTS — teols 0 0 on solves this difficult probability inference problem by em-
0 Wﬁzjs —W?Ts o2 ploying a Monte Carlo approach that approximates the ex-
I o 0 W%:fs _ﬁwo%s pa|’ ponentially growing sample space by a fixed finite number,
| 0 0 0 Wo%s 4 M, of mode sample sequenceg“, wherem = 1,..., M.
(4) A weight is associated with each of the sample sequences
= A)p(t) + B4(2)q(t) + Bs(2)0, (5) to represent thea posteriori probability of that sample
seguence,
wherep;; is the jam density (maximum allowable density) p(sfm) | Yt,Ut)
in cell i. &" = M (m) ’ ©
It is important to point out that the dynamics of the cell Lim-1 p(s[ | Yt ut)

vehicle densities in different modes are dramatically diffeyhere a symbol in boldface, for examplg, represents a
ent, as evidenced by the observability and controllability isequence from time 0 to tinte After the new measurement
each mode. In free-flow mode, the densities in the sectigp, is available, these weights are updated by

are observable through a measurement that is downstream

. (m) (M)
of the section and controllable by an on-ramp upstream £m & i @)
of the section; while in congestion mode, the densities are theM fmm

observable through a measurement upstream of the sectign . .

. where the incremental weight
and controllable by an on-ramp downstream of the section.
These observations, especially those for congestion mode, 40 = p(Yeer | yo i 8™), (8)
are counter-intuitive at a first glance. However they agree - .
with the understanding in highway traffic theory that whel[epresents the likelihood of the new measurement for a given
during congestion, a high density wave, or in other wordgﬁIOde sample sequence.

information, propagates backwards along the highway. OT‘ each of th.ese.n"!ode sample sequences, a (time-
varying) Kalman filter is implemented to estimate the con-

B. Improved Mixture Kalman Filter tinuous states. The state estimates on all mode sample
sequences are then “mixed” (averaged) by the weights, and

In the .SW'tChmgmede model, the mod.e_ (fre_e—flow Or CoNpig weighted average approximates #hgosterioriestimate
gested) is determined by the flow condition in the sectlogf the continuous statege

However, there is no direct measurement or observation of

the current traffic congestion mode in a highway section. N M (M) o(m)

The congestion mode can only be inferred from measured X = th Kt > ©)

guantities, for example, the speed. The general practice in m=1

traffic engineering is to set an upper threshold and a lowehere Rfl't“) is the a posteriori state estimate from each of

threshold for the speed. When the speed in a sectiontlie Kalman filters.

above the upper threshold, the section is considered to bd&he accuracy of this Monte Carlo method is improved by

in free flow; when the speed is below the lower threshola, predictive sampling technique, in which the current mode

the section is in congestion; when the speed is between thesampled according a predictive probability

two thresholds, the section is considered somewhat likely m m m

to be in congestion. The problem with this kind of method THCE p(sf& =syuls )’yt’u”l)’ (10)

is two-fold: 1) The selection of the thresholds is based amhich favors the mode with higher likelihood given the

experience and, to a certain degree, is arbitrary, and 2) Whanrent measurements and the previously sampled modes.

the speed falls between the two thresholds, the mode of thélThe weight update procedure is recursive. The entire

section cannot be determined. history from time O influences the current weight. It is
Therefore, we assume that we do not have direct obften found in implementation that most of these weights

servation of the mode and that the mode jumps betweapproach 0 while only a few remain of modest magni-

possible values following a discrete-time Markov chain wittudes. This phenomenon reduces the effective number of

a certain transition probability. Under these assumptiorsample sequences and introduces an underflow risk for
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Fig. 4. An aerial photo of the test segment of Interstate 210 Westbound, from Vernon to Fair Oaks, in Pasadena, California (Image source: U.S.

Geological Survey digital orthophoto quarter quadrangle, 1996-12-03).

the weights when implemented on a machine with finite 3) New ramp metering schemes, such as System Wide
floating point precision. Therefore, a forgetting and weight  Adaptive Ramp Metering (SWARM), have undergone
underflow prevention scheme [2] has been introduced in our testing and evaluation on 1-210.

implementation. In this scheme, the weights of the sample4) District 7 of the California Department of Trans-

sequences are bounded from below, portation (Caltrans D7), which manages this highway
(m _ max{ (m) f} (11) ;egment, conti_nues to support researchers in exploring
t+1 w12 innovative traffic management techniques.

and are re-normalized after the bounding step. This simpf@erefore, our efforts in traffic modeling and model calibra-

procedure not only prevents the underflow, but in effeglon have been concentrated on this highway segment.
limits the influence of the early history on the weights

and makes the weights recover more quickly when thejr Cell Confi fi
corresponding sample sequences are favored by the curfent=®" ~OMIuraton

measurements. . . _ To apply the switching-mode model to the test highway
In addition to the mixture estimate of the continuougegment, we first need to divide it into cells. There are

states, the mixture Kalman filter also provides an approxeveral constraints and considerations that we must take into
imate maximuma posteriori (MAP) estimation of the account during this process.

congestion mode: o .
g 1) The cell transmission model requires that the cell

Smap = argmaxp(s = sl i, Ur), (12) length be larger than the product of the free-flow speed

S and the time step. In other words, vehicles cannot

where M travel across more than one cell within one time step.
p(s =S| Yo Up) ~ th(m)ls(sgm))’ (13) 2) Wlth the measurements (den§|ty and flow) from main-

= line loop detectors, the section of highway between

two mainline detectors can be decoupled from the rest
of the highway. Therefore, we generally divide the
highway into sections at the mainline loop detectors.
We skip detectors that are believed to be malfunction-
ing and combine the neighboring sections into one.
3) Within one section, cells are divided at the merge-
I1l. TESTSITE points of on-ramps and the diverge-points of off-

A segment of Interstate 210 Westbound in Pasadena, 'amps.
California, as shown in an aerial photo in Fig. 4, has be@uased on the above considerations, as well as the nominal
selected as the testbed for new ramp-metering algorithnyalue of the free-flow speed, 63 miles per hour, the geometry
It is approximately 14 miles long, from Vernon (Mile Posbf the highway and the locations of the mainline detectors,
39.159) to Fair Oaks (Mile Post 25.4). This site was selectege have chosen the sampling time to be 2 seconds.
as the pFEfEITEd test location for the following reasons: Fig. 5 on the next page shows the cell configuration for
1) It is a heavily used freeway segment that experiencé®e chosen test segment of 1-210. In the schematic, the cells
severe recurring congestion and can benefit greadye numbered at the corner of each cell, while their lengths,
from ramp-metering strategies that reduce congestion feet, are marked in the center, italic typeface. The
and improve total travel time. arrows indicate on- or off-ramps. The entire test segment
2) 1-210 has most of the necessary infrastructure, such divided into 73 cells, and the cells are grouped into
as loop detectors, on-ramp metering signal controllers8 sections divided by mainline loop detectors, as shown
and a centralized advanced traffic management systesnthick solid lines in the figure. Some of the mainline loop
(ATMS), that is needed to test new ramp-meteringdetectors, shown by thick dashed lines, are not used because
designs. they are believed to be malfunctioning.

and 14(s) is the indicator function. This is particularly im-
portant to our application because different control schemes
will be used in different congestion modes (free-flow or
congested), based on the highway density controllability
properties [3].
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Fig. 5. The cell configuration for the test segment of 1-210 West. The cell numbers are marked at the corner of each cell, while the cell length (in
feet) are indicated in italic type in the center of each cell. The schematic is not to scale.

IV. RESULTS ANDDISCUSSION

This mixture Kalman filter-based congestion mode and ..
vehicle density estimator has been implemented for the -
entire 14-mile long test segment. The program was written
in the C language for reasons of efficiency and portability.
Not only can the estimator run on collected traffic data sets,
it has been successfully interfaced with a calibrated VISSIMZ

£

microscopic traffic simulator [6], through the VISSIM DDE -

(Direct Data Exchange) interface, and with a calibrated

macroscopic cell transmission model [5]. The estimator is

running synchronously with these traffic simulators. The

running time of the estimator with 10 mode sample se- .

guences for a 7-hour (from 5AM to 12 noon) time period

and the full 14-mile segment is less than one minute on % ';gMS 15-minute average speed contour plot (Red: <40 mph; orange:
. —-55 mph; blue: >55 mph).

1.4 GHz Pentium M computer.

The traffic data were extracted from the PeMS [1]
database. The traffic flows and vehicle densities are available -
every 30 seconds, while the speeds are available every
5 minutes. We interpolated the 30-second flow and density
data into 2-second intervals and passed the interpolated data .
through a low-pass filter to reduce the amount of noise in§
the original 30-second traffic data. The estimator produced ‘[
the vehicle density for each cell, as well as the congestion
mode for each section, using these 2-second interpolated
and filtered data. "

Mile Post
916 3821 307 3659 3541 349 3405 3305 322 3202 3 3078 014 30 2088 2017 2027 2803 268 2612 2668 254

|
Fig. 6(b) shows an example of the MAP congestion mode —_ L ==
estimation from the estimator. In this example, data from =" "7 T i gy T B mTETEE m A
January 10, 2002 were used. In the plot, blue indicates fre@) MKF maximuma posterioriestimation (Red: congestion; blue: free-
flow mode, while red indicates congestion. flow).

_For comparison, a contour plot of _the 'PeM_S'd_erived 1%ig.6. Congestion mode estimation for the test segment of Interstate 210
minute average speeds for that day is given in Fig. 6(a). Westbound in Pasadena, California (January 10, 2002).

this plot, blue indicates an average speed of 55 miles per
2102



location.
2) It is not clear whether a section is in congestion or

8 not when the speed is between the upper and lower

thresholds.

7 3) The speed data usually are not available as frequently
as the density and flow data when the data are
collected using single loop detectors, which is usually
the case.

4) More importantly, the MKF-based estimation provides
the statistically most probable mode that directly

Time (Hour)

e S S corresponds to one of the possible dynamic models,
Mie Post while the speed-based estimate itself does not have

(a) VISSIM 5-minute average speed contour plot (Red: <40 mph; this direct correspondence.
orange: 40-55 mph; blue: >55 mph). 5) The MKF-based estimator also provides vehicle den-

sity estimation for all the cells where no measure-
ments are available.

V. SUMMARY

In the paper, we presented our latest results on developing
and implementing a traffic congestion mode and vehicle
density estimator for a segment of Interstate 210. Using the
mixture Kalman filtering algorithm on the switching-mode
traffic model, the estimator is able to provide the estimated
vehicle densities at unmeasured locations, as well as the
7 traffic congestion modes (free-flow or congested), which
o sz s sem ssar ows sies os sz moz w B mn %0 me mynw we we neme = gre NOt directly observed. The program runs efficiently, thus
(b) MKF maximuma posterioriestimation (Red: congestion; blue: free- making it possible to carry out estimation in real time. The
flow). availability of the congestion modes enables us to design
) ) o ) o . more effective ramp metering algorithms, utilizing the ap-
Fig. 7. Congestion mode estimation with a VISSIM microsimulation gopriate switching-mode model dynamics under different

model for the test segment of Interstate 210 Westbound in Pasadel] et
California. flow conditions.

Time (Hour)
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