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Abstract— In this paper, we present our latest results on
developing and implementing a traffic congestion mode and
vehicle density estimator for a segment of Interstate 210 in
Southern California. Using a mixture Kalman filtering (MKF)
algorithm on the switching-mode traffic model, the estimator
is able to provide estimated vehicle densities at unmeasured
locations, as well as the congestion statuses (free-flow or
congested), which are not directly observed. The program runs
efficiently, thus making it possible to carry out estimation in
real time.

I. I NTRODUCTION

In today’s metropolitan areas, highway traffic conges-
tion occurs regularly during rush hours. In addition, non-
recurrent congestion often takes place as a result of incidents
or road work. The congestion causes inefficient operation of
highways, waste of resources, increased air pollution, and
intensified driver fatigue.

One of the methods used to prevent and/or relieve high-
way traffic congestion is on-ramp metering. Many strategies
have been proposed and deployed to regulate the demands
on the highway by limiting the rate at which vehicles
enter the highway. These ramp-metering strategies can be
classified into two categories: traffic responsive and non-
traffic responsive. Traffic responsive ramp metering strate-
gies utilize real-time measurements of the traffic state,
such as vehicle densities and traffic congestion status (free-
flow or congested), while non-traffic responsive ones often
operate under a fixed time-of-the-day table, and ignore
the current traffic conditions completely. It is believed that
traffic responsive metering strategies are more effective and
more robust than non-traffic responsive ones.

Currently, traffic data are usually obtained from inductive
loop detectors embedded in the pavement. These loop detec-
tors provide percent occupancy (percentage of the time that
the detector is occupied by vehicles) and volume (number
of vehicles that have passed over the detector), from which
other macroscopic quantities can be derived when accurate
vehicle lengths are available. These macroscopic quantities
include vehicle density (number of vehicles per unit length
of highway), flow (number of vehicles per unit time), and
speed. One effort to provide such macroscopic traffic data
through a centralized database is the Freeway Performance
Measurement System (PeMS) [1].
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Ideally, one would like to have access to these traffic
data continuously across time and space. However, because
of the high cost and difficulty of installing and maintaining
loop detectors, oftentimes traffic data are not available at
all desired locations at all times. These missing data thus
have to be estimated using the available data. On the other
hand, the traffic flow mode,i.e., whether the traffic is in
free-flow (where traffic moves freely at high speeds) or
congestion (where traffic moves slowly and is restricted by
downstream conditions), cannot be measured directly and
has to be inferred from other quantities. In our previous
work [2], we developed a traffic state estimator based
on the switching mode traffic model [3] and the mixture
Kalman filter (MKF) [4]. This estimator is able to estimate
the vehicle densities at unmeasured locations, as well as
to determine the traffic congestion mode, in a highway
section. It was tested on a short section of highway and its
performance was evaluated using the measured data. It was
shown that on average, a mean percentage error of∼10%
was achieved for vehicle density estimation at unmeasured
locations.

In this paper, we describe our recent work, which involves
implementing this congestion mode and vehicle density esti-
mator on our entire selected test site, a 14-mile long segment
of Interstate 210 Westbound in Pasadena, California, and
interfacing the estimator with traffic simulation programs
that have been calibrated to the test segment, including
a macroscopic simulator—the modified cell transmission
model [5], and a microscopic simulator—VISSIM [6]. We
will first briefly review the switching-mode model and the
estimation method in Section II. Then in Section III, we will
describe the test site and discuss the constraints and other
considerations for the cell configuration. The main results
will be presented and discussed in Section IV. In the last
section, we will give some concluding remarks.

II. M ETHOD

A. Cell Transmission-Based Switching Mode Model

Highway traffic models can be categorized into two
groups: microscopic models and macroscopic models. Mi-
croscopic models describe the behavior of each individual
vehicle on the highway, while macroscopic models describe
the evolution of aggregated traffic quantities, such as vehicle
densities and flows, based on the conservation principle.
Due to their complexity, the microscopic models, which
require an enormous number of equations to model each
individual vehicle’s behavior and the interaction between



ρ

q

wc

ρc ρJ

vf

QM

Fig. 1. A trapezoidal fundamental diagram (flow-density relation) used
by the cell transmission model.
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Fig. 2. A highway section divided into cells in the cell transmission
model.

these vehicles, often can only be solved numerically to sim-
ulate the traffic evolution. On the other hand, macroscopic
models often consist of a few dynamic equations, along with
some constitutional relation between certain traffic quan-
tities, such as the so-called fundamental diagram between
flow and density. As an example, a widely used macro-
scopic model is the Lighthill-Whitham-Richards (LWR)
model, which consists of a first-order partial differential
equation based on conservation of vehicles, and a flow-
density relationship. Because of their simplicity compared
to microscopic models, macroscopic models are often used
to quantitatively analyze the effects of changing conditions
on traffic behavior.

The cell transmission model (CTM) [7], [8] is a macro-
scopic model. It can be viewed as an approximation and
simplification of the LWR model obtained by discretizing
the PDE of the LWR model in both space and time, and
using a simple trapezoidal fundamental diagram as shown
in Fig. 1. The CTM divides a highway into small segments,
which are calledcells, as shown in Fig. 2. The traffic flow
qi going into a celli is considered constant between two
consecutive time pointst and t + 1, and is determined by

qi(t) = min
{
vf ,i−1ρi−1(t),wc,i

(
ρJ,i − ρi(t)

)
,QM,i−1

}
, (1)

where for a cell i, ρi(t) is the average vehicle density
between timest and t + 1, ρJ,i is the jam density,i.e.,
the maximum vehicle density allowed in celli, vf ,i is
the free-flow speed,wc,i is the backward congestion wave
propagation speed, andQM,i−1 is the flow capacity,i.e., the
maximum possible flow. These quantities are also illustrated
in Fig. 1.

The three terms involved in the minimum in (1) can be
interpreted as follows. The first termvf ,i−1ρi−1(t) is the flow
that can be supplied by celli−1. The second term is the flow
that can be absorbed by celli. And the third termQM,i−1
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Fig. 3. A schematic plot of a 4-cell highway section with one on-ramp
and one off-ramp.

is the maximum possible flow from celli − 1 to i. Each of
these three terms is shown as a thick line segment in Fig. 1
and the minimum is the outline of the trapezoid.

Despite the simplifications that are made in the cell
transmission model, it still captures many important traffic
phenomena, such as queue build-up and dissipation, back-
ward propagation of congestion waves, etc. The simplicity
and accuracy of the CTM makes it very desirable for traffic
engineering. However, due to the nonlinear nature of the
flow-density relationship in the CTM, it can be quite difficult
to analyze the model and use it as a basis for designing
traffic controllers. Therefore, we have piecewise linearized
the CTM and derived a switching-mode model for each
section of the highway, based on the traffic congestion status
(congested or free-flow) in each section [3].

This switching-mode model includes several modes. In
each mode, the vehicle densities in the cells evolve accord-
ing to a different set of linear difference equations. Among
these modes, two are of greatest importance: pure free-flow
and full congestion. For the purpose of designing the traffic
estimator, we further simplify this switching-mode model
by considering only these two modes. For a typical section
of highway that consists of 4 cells and contains an on-ramp
and an off-ramp, as shown in Fig. 3, we write down this
simplified switching-mode model as follows.

When the highway section is in free-flow mode, the first
term in (1) dominates, and the difference equations are
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= A(1)ρ(t) + Bq(1)q(t), (3)

where qm1 and qm2 are the mainline entering and exiting
flows, respectively,r is the on-ramp flow,β is the split ratio
of the off-ramp flow,l i is the length of celli, andTs is the
sampling time.

When the section is in congested mode, the second term



in (1) dominates, and the difference equations are
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= A(2)ρ(t) + Bq(2)q(t) + BJ(2)ρJ, (5)

whereρJi is the jam density (maximum allowable density)
in cell i.

It is important to point out that the dynamics of the cell
vehicle densities in different modes are dramatically differ-
ent, as evidenced by the observability and controllability in
each mode. In free-flow mode, the densities in the section
are observable through a measurement that is downstream
of the section and controllable by an on-ramp upstream
of the section; while in congestion mode, the densities are
observable through a measurement upstream of the section
and controllable by an on-ramp downstream of the section.
These observations, especially those for congestion mode,
are counter-intuitive at a first glance. However they agree
with the understanding in highway traffic theory that when
during congestion, a high density wave, or in other words,
information, propagates backwards along the highway.

B. Improved Mixture Kalman Filter

In the switching-mode model, the mode (free-flow or con-
gested) is determined by the flow condition in the section.
However, there is no direct measurement or observation of
the current traffic congestion mode in a highway section.
The congestion mode can only be inferred from measured
quantities, for example, the speed. The general practice in
traffic engineering is to set an upper threshold and a lower
threshold for the speed. When the speed in a section is
above the upper threshold, the section is considered to be
in free flow; when the speed is below the lower threshold,
the section is in congestion; when the speed is between the
two thresholds, the section is considered somewhat likely
to be in congestion. The problem with this kind of method
is two-fold: 1) The selection of the thresholds is based on
experience and, to a certain degree, is arbitrary, and 2) When
the speed falls between the two thresholds, the mode of the
section cannot be determined.

Therefore, we assume that we do not have direct ob-
servation of the mode and that the mode jumps between
possible values following a discrete-time Markov chain with
a certain transition probability. Under these assumptions,

the switching-mode model falls into a special class, called
Markov jump linear systems (MJLS). The previous four-cell
example has a continuous statex = [ρ1 ρ2 ρ3 ρ4]T and
possible discrete modes 1 (free-flow) and 2 (congested).

It is known that it is difficult to estimate the states and the
mode when the mode itself is not observed. The difficulty
lies in the fact that the sample spaceSt of the mode
sequence grows exponentially as timet increases, whereS
is the set of possible discrete modes.

The mixture Kalman filter (MKF) [4] approximately
solves this difficult probability inference problem by em-
ploying a Monte Carlo approach that approximates the ex-
ponentially growing sample space by a fixed finite number,
M, of mode sample sequencess(m)

t , wherem = 1, . . . ,M.
A weight is associated with each of the sample sequences
to represent thea posteriori probability of that sample
sequence,

ξ(m)
t :=

p
(
s(m)
t

∣∣∣ yt,ut

)
∑M

m=1 p
(
s(m)

t

∣∣∣ yt,ut

) , (6)

where a symbol in boldface, for example,st, represents a
sequence from time 0 to timet. After the new measurement
yt+1 is available, these weights are updated by

ξ(m)
t+1 =

ξ(m)
t ζ

(m)
t+1∑M

m=1 ξ
(m)
t ζ

(m)
t+1

, (7)

where the incremental weight

ζ(m)
t+1 := p

(
yt+1

∣∣∣ yt,ut, s
(m)
t

)
, (8)

represents the likelihood of the new measurement for a given
mode sample sequence.

On each of these mode sample sequences, a (time-
varying) Kalman filter is implemented to estimate the con-
tinuous states. The state estimates on all mode sample
sequences are then “mixed” (averaged) by the weights, and
this weighted average approximates thea posterioriestimate
of the continuous states,i.e.,

x̂t|t =

M∑
m=1

ξ(m)
t x̂(m)

t|t , (9)

where x̂(m)
t|t is the a posteriori state estimate from each of

the Kalman filters.
The accuracy of this Monte Carlo method is improved by

a predictive sampling technique, in which the current mode
is sampled according a predictive probability

µ(m)
t+1(s) ∝ p

(
s(m)

t+1 = s, yt+1

∣∣∣ s(m)
t , yt,ut+1

)
, (10)

which favors the mode with higher likelihood given the
current measurements and the previously sampled modes.

The weight update procedure is recursive. The entire
history from time 0 influences the current weight. It is
often found in implementation that most of these weights
approach 0 while only a few remain of modest magni-
tudes. This phenomenon reduces the effective number of
sample sequences and introduces an underflow risk for



Fig. 4. An aerial photo of the test segment of Interstate 210 Westbound, from Vernon to Fair Oaks, in Pasadena, California (Image source: U.S.
Geological Survey digital orthophoto quarter quadrangle, 1996-12-03).

the weights when implemented on a machine with finite
floating point precision. Therefore, a forgetting and weight
underflow prevention scheme [2] has been introduced in our
implementation. In this scheme, the weights of the sample
sequences are bounded from below,

ξ(m)
t+1 = max

{
ξ(m)

t+1, ξ
}
, (11)

and are re-normalized after the bounding step. This simple
procedure not only prevents the underflow, but in effect
limits the influence of the early history on the weights
and makes the weights recover more quickly when their
corresponding sample sequences are favored by the current
measurements.

In addition to the mixture estimate of the continuous
states, the mixture Kalman filter also provides an approx-
imate maximum a posteriori (MAP) estimation of the
congestion mode:

ŝt,MAP = arg max
s

p (st = s | yt,ut) , (12)

where

p (st = s | yt,ut) ≈
M∑

m=1

ξ(m)
t 1s

(
s(m)
t

)
, (13)

and1s(st) is the indicator function. This is particularly im-
portant to our application because different control schemes
will be used in different congestion modes (free-flow or
congested), based on the highway density controllability
properties [3].

III. T EST SITE

A segment of Interstate 210 Westbound in Pasadena,
California, as shown in an aerial photo in Fig. 4, has been
selected as the testbed for new ramp-metering algorithms.
It is approximately 14 miles long, from Vernon (Mile Post
39.159) to Fair Oaks (Mile Post 25.4). This site was selected
as the preferred test location for the following reasons:

1) It is a heavily used freeway segment that experiences
severe recurring congestion and can benefit greatly
from ramp-metering strategies that reduce congestion
and improve total travel time.

2) I-210 has most of the necessary infrastructure, such
as loop detectors, on-ramp metering signal controllers,
and a centralized advanced traffic management system
(ATMS), that is needed to test new ramp-metering
designs.

3) New ramp metering schemes, such as System Wide
Adaptive Ramp Metering (SWARM), have undergone
testing and evaluation on I-210.

4) District 7 of the California Department of Trans-
portation (Caltrans D7), which manages this highway
segment, continues to support researchers in exploring
innovative traffic management techniques.

Therefore, our efforts in traffic modeling and model calibra-
tion have been concentrated on this highway segment.

A. Cell Configuration

To apply the switching-mode model to the test highway
segment, we first need to divide it into cells. There are
several constraints and considerations that we must take into
account during this process.

1) The cell transmission model requires that the cell
length be larger than the product of the free-flow speed
and the time step. In other words, vehicles cannot
travel across more than one cell within one time step.

2) With the measurements (density and flow) from main-
line loop detectors, the section of highway between
two mainline detectors can be decoupled from the rest
of the highway. Therefore, we generally divide the
highway into sections at the mainline loop detectors.
We skip detectors that are believed to be malfunction-
ing and combine the neighboring sections into one.

3) Within one section, cells are divided at the merge-
points of on-ramps and the diverge-points of off-
ramps.

Based on the above considerations, as well as the nominal
value of the free-flow speed, 63 miles per hour, the geometry
of the highway and the locations of the mainline detectors,
we have chosen the sampling time to be 2 seconds.

Fig. 5 on the next page shows the cell configuration for
the chosen test segment of I-210. In the schematic, the cells
are numbered at the corner of each cell, while their lengths,
in feet, are marked in the center, initalic typeface. The
arrows indicate on- or off-ramps. The entire test segment
is divided into 73 cells, and the cells are grouped into
18 sections divided by mainline loop detectors, as shown
by thick solid lines in the figure. Some of the mainline loop
detectors, shown by thick dashed lines, are not used because
they are believed to be malfunctioning.
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Fig. 5. The cell configuration for the test segment of I-210 West. The cell numbers are marked at the corner of each cell, while the cell length (in
feet) are indicated in italic type in the center of each cell. The schematic is not to scale.

IV. RESULTS AND DISCUSSION

This mixture Kalman filter-based congestion mode and
vehicle density estimator has been implemented for the
entire 14-mile long test segment. The program was written
in the C language for reasons of efficiency and portability.
Not only can the estimator run on collected traffic data sets,
it has been successfully interfaced with a calibrated VISSIM
microscopic traffic simulator [6], through the VISSIM DDE
(Direct Data Exchange) interface, and with a calibrated
macroscopic cell transmission model [5]. The estimator is
running synchronously with these traffic simulators. The
running time of the estimator with 10 mode sample se-
quences for a 7-hour (from 5AM to 12 noon) time period
and the full 14-mile segment is less than one minute on a
1.4 GHz Pentium M computer.

The traffic data were extracted from the PeMS [1]
database. The traffic flows and vehicle densities are available
every 30 seconds, while the speeds are available every
5 minutes. We interpolated the 30-second flow and density
data into 2-second intervals and passed the interpolated data
through a low-pass filter to reduce the amount of noise in
the original 30-second traffic data. The estimator produced
the vehicle density for each cell, as well as the congestion
mode for each section, using these 2-second interpolated
and filtered data.

Fig. 6(b) shows an example of the MAP congestion mode
estimation from the estimator. In this example, data from
January 10, 2002 were used. In the plot, blue indicates free-
flow mode, while red indicates congestion.

For comparison, a contour plot of the PeMS-derived 15-
minute average speeds for that day is given in Fig. 6(a). In
this plot, blue indicates an average speed of 55 miles per
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8.5 64.71 62.75 35.51 10.57 18.64 26.00 21.67 22.68 35.71 28.75 44.44 39.17 58.08 54.64 53.18 47.58 28.03 36.70 51.11 54.60 56.97 NaN

8.75 62.03 61.41 48.38 17.24 24.58 23.96 19.88 19.39 31.93 30.00 34.64 37.35 NaN 47.27 48.75 44.84 28.04 38.80 56.49 55.58 57.51 NaN

9 61.77 61.93 58.22 46.96 20.27 23.06 17.76 21.92 47.10 32.21 40.72 36.21 NaN 48.24 52.51 56.59 33.84 40.67 NaN 56.60 57.85 NaN

9.25 61.80 57.16 59.19 NaN 32.73 32.77 26.95 23.42 44.53 36.59 46.65 40.49 NaN 53.63 59.04 60.80 59.06 56.98 NaN 48.28 54.73 NaN

9.5 60.42 54.34 56.39 66.05 60.72 38.25 31.17 26.87 54.54 42.13 46.28 48.41 NaN 54.69 59.32 61.37 61.28 61.14 NaN 59.74 58.72 NaN

9.75 61.13 60.10 53.74 65.93 69.22 67.31 56.19 26.42 61.34 56.70 66.32 63.91 NaN 58.93 63.19 61.92 61.52 60.07 62.21 59.08 57.43 NaN

10 60.52 56.34 54.92 64.63 69.70 67.30 69.26 40.20 74.26 69.55 71.20 72.05 NaN 62.03 66.10 65.21 63.67 62.04 63.36 64.07 59.16 62.22

10.25 59.25 51.39 52.44 61.77 65.80 64.08 66.05 65.71 76.07 69.83 70.97 71.66 NaN 61.50 67.05 66.08 61.14 59.38 61.84 63.52 60.93 63.69

10.5 59.26 51.58 52.70 61.11 64.41 63.18 63.67 63.53 71.94 66.24 66.86 67.93 NaN 57.36 63.30 61.33 61.28 60.25 64.52 53.92 57.09 62.11

10.75 60.18 54.93 55.81 62.01 64.59 62.96 62.54 62.31 70.58 65.51 66.48 66.26 NaN 56.72 63.18 62.82 62.08 60.32 NaN 51.23 53.80 58.29

11 59.51 36.56 40.39 62.07 66.48 65.04 66.60 64.53 72.63 66.64 67.57 66.82 NaN 57.50 63.37 63.36 62.27 59.51 NaN 64.81 57.78 61.96

11.25 58.90 39.87 36.38 60.66 63.12 62.84 64.20 61.42 67.63 64.54 65.39 65.94 67.06 57.23 63.10 60.83 61.71 58.60 NaN 62.64 57.76 62.45

11.5 30.13 47.45 38.68 60.90 62.34 61.72 63.45 34.03 66.60 64.39 65.69 66.69 66.33 59.29 39.98 61.59 61.43 61.51 64.40 62.83 58.85 61.32

11.75 61.53 58.99 53.24 62.74 64.16 62.89 63.75 30.36 64.86 63.36 65.77 67.07 67.71 61.98 52.25 62.52 61.51 63.20 NaN 63.54 60.14 63.22

12 61.53 58.99 53.24 62.74 64.16 62.89 63.75 30.36 64.86 63.36 65.77 67.07 67.71 61.98 52.25 62.52 61.51 63.20 NaN 63.54 60.14 63.22

(a) PeMS 15-minute average speed contour plot (Red: <40 mph; orange:
40–55 mph; blue: >55 mph).
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(b) MKF maximuma posterioriestimation (Red: congestion; blue: free-
flow).

Fig. 6. Congestion mode estimation for the test segment of Interstate 210
Westbound in Pasadena, California (January 10, 2002).
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(a) VISSIM 5-minute average speed contour plot (Red: <40 mph;
orange: 40–55 mph; blue: >55 mph).
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(b) MKF maximuma posterioriestimation (Red: congestion; blue: free-
flow).

Fig. 7. Congestion mode estimation with a VISSIM microsimulation
model for the test segment of Interstate 210 Westbound in Pasadena,
California.

hour and above, which is generally considered to indicate
free-flow conditions in traffic engineering. Red indicates an
average speed of 40 miles per hour and below, in which the
traffic is considered to be in congestion. Orange indicates an
average speed between 40 and 55 miles per hour, in which
the traffic is somewhat likely to be in congestion. In the
plot, white indicates unavailable data.

As another example, similar plots for the VISSIM simu-
lation model of the same I-210 segment are shown in Fig. 7.
In this example, the measurements for the MKF-based
estimator were from the traffic flows and vehicle densities
simulated by VISSIM. The estimated congestion modes,
as shown in Fig. 7(b), are compared with a contour plot
(Fig. 7(a)) of the speeds that were simulated by VISSIM.

It can be seen from the plots that in general, the conges-
tion mode estimation by the MKF-based estimator agrees
with the speed contour plot. However, the MKF-based
congestion mode estimation is preferable for the following
reasons.

1) As mentioned earlier, the thresholds for the speed are
determined empirically and can vary from location to

location.
2) It is not clear whether a section is in congestion or

not when the speed is between the upper and lower
thresholds.

3) The speed data usually are not available as frequently
as the density and flow data when the data are
collected using single loop detectors, which is usually
the case.

4) More importantly, the MKF-based estimation provides
the statistically most probable mode that directly
corresponds to one of the possible dynamic models,
while the speed-based estimate itself does not have
this direct correspondence.

5) The MKF-based estimator also provides vehicle den-
sity estimation for all the cells where no measure-
ments are available.

V. SUMMARY

In the paper, we presented our latest results on developing
and implementing a traffic congestion mode and vehicle
density estimator for a segment of Interstate 210. Using the
mixture Kalman filtering algorithm on the switching-mode
traffic model, the estimator is able to provide the estimated
vehicle densities at unmeasured locations, as well as the
traffic congestion modes (free-flow or congested), which
are not directly observed. The program runs efficiently, thus
making it possible to carry out estimation in real time. The
availability of the congestion modes enables us to design
more effective ramp metering algorithms, utilizing the ap-
propriate switching-mode model dynamics under different
flow conditions.
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